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Abstract— Previous studies of Internet traffic have
shown that a very small percentage of flows consume most
of the network bandwidth. It is important to understand
the characteristics of such flows for traffic monitoring and
modeling purposes. Several prior researchers have char-
acterized such flows using different classification schemes:
by size as elephant and mice; by duration as tortoise and
dragonfly; and by burstiness as alpha and beta traffic.
However, it is not clear how these different definitions
of flows are related to each other. In this work, using
data recorded from two different operational networks,
we study these “heavy-hitter” flows in four different
dimensions, namely size, duration, rate and burstiness,
and examine how they are correlated. This paper makes
three contributions: First, we systematically characterize
prior definitions for the properties of such heavy-hitter
traffic. Second, based on our datasets, we observe that
there are strong correlations between some combinations
of size, rate and burstiness. Finally, we provide a plausible
explanation for the observed correlations. We show that
these correlations could be explained by transport and
application-level protocol mechanisms.

I. INTRODUCTION

Recent studies have shown that a very small per-
centage of flows carry the majority of the bytes [2],
[10], [26]. It is important to understand the properties of
such traffic for traffic monitoring and modeling purposes.
In this paper, we refer to such flows as “heavy-hitter”
flows. By studying these heavy-hitter flows, one can
understand a large portion of the overall traffic. Poten-
tial applications for employing such knowledge include
anomaly and attack detection [15], scalable differentiated
services [5], [20], usage-based pricing and account-
ing [9], [27]. However, while important and several
efforts have looked at characterizations of heavy hitters
by size [2], [6], [10], [21], [30], [33], duration [4], and
burstiness [25], there has been no systematic effort to
study how these characteristics interact.

Several researchers previously have characterized In-
ternet flows using different classification schemes: size
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(mice and elephant) [2], [6], [10], [21], [30], [33], dura-
tion (dragonfly and tortoise) [4] and burstiness (alpha and
beta traffic) [25]. While each of these studies provides
different insights into understanding the characteristics
of Internet flows, it is not clear how they relate to each
other. For example, are most elephant flows long-lived
(The answer depends on what types of links are used to
transfer large file.)? On the other hand, are most long-
lived flows due to the download of large files? Various
applications can benefit from understanding the relation-
ship between different characterizations of heavy-hitter
flows. For instance, understanding of the relationship
between long-lived and large-size flows might help one
evaluate different pricing schemes (e.g. usage-based vs.
duration-based). Knowledge of the correlation between
high volume and bursty traffic could shed some insight
into distinguishing large file transfer from malicious
traffic.

Previously, Zhang et al. [32] showed that there is
a strong correlation between flow size and rate. They
hypothesized that users might have chosen the size of
their transfer strongly based on the available bandwidth.
In this work, based on datasets from two different
sources, we propose another plausible explanation for the
strong correlation between flow size and rate. While user
behavior might have an effect on flows with a larger size,
our data suggests that the strong correlation between size
and rate might be better explained by protocol reasons
for small- or medium-size flows. Our observation has
some important implications for application and protocol
design. For example, we show that, for small/medium
flows, the strong correlation between rate and size is
likely a pervasive artifact due to different timeout mech-
anisms. Such an observation might argue for the use of
a larger packet size or a larger initial window to improve
TCP performance (so that more data can be sent in one
RTT before the timeout occurs).

The contribution of this paper is threefold. First, to
our knowledge, our work is the first to systematically
characterize the properties of these heavy-hitter flows
(Section V). Second, based on data collected from two
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different sources, we observe that there are strong cor-
relations between some combinations of size, rate and
burstiness. Finally, we provide a plausible explanation
for the observed correlations. We show that these cor-
relations can be explained by transport and application-
level protocol mechanisms (Section VI).

Note that, in this study, due to time constraints, the
results of this paper are based on only a limited set of
traces. However, since our data are recorded from two
different levels of operational networks (one regional
network and one backbone link), we believe that our
work still provides some useful insights and a first step
toward understanding the relationship between different
characterizations of Internet flows.”

II. FLOW CHARACTERIZATION

We define a flow as an unidirectional series of IP
packets with same source and destination addresses,
port numbers and protocol number. Similar to previous
studies [8], [32], we use a 60 second timeout to decide
that if an idle flow has terminated. In this work, we
characterize and study Internet flows in four different
dimensions, namely size, duration, rate and burstiness.
Size is the total number of bytes sent in a flow (including
headers). Duration is the time elapsed between the first
packet and the last packet of a flow. Rate is size divided
by duration. However, to the best of our knowledge,
currently there is no consensus on definitions for bursti-
ness. While all other characteristics of a flow are defined
over the entire flow duration, burstiness is a property of
part of the flow. Previous work on traffic self-similarity
has identified this problem in characterizing burstiness
at some timescale [14]. We propose three definitions of
burstiness which are described shortly. We ignore very
short flows, particularly flows with a duration of less
than 100 millisecond, based on similar reasons to prior
work [32].

Previous studies showed that distributions of flow sizes
in the Internet traffic have a long tail. In this work, we
focus on flows that are in the tail of the distribution
and term them as heavy-hitter flows. Heavy-hitter flows
typically account for only a small percentage of total
flows but consume most of the network bandwidth.
Specifically, we define and classify flows in four different
dimensions: size (elephant and mice), duration (tortoise
and dragonfly), rate (cheetah and snail) and burstiness
(porcupine and stingray). We use a threshold-based
scheme to define heavy-hitter flows in each category.
We compute the mean plus three standard deviations of

the sampled data to set the particular threshold1. For
example, an elephant flow is defined as a flow with a
size larger than the mean plus three standard deviations
of all flows.

Size (s): We define elephants as flows with a size
larger than or x kB and mice as flows with a size
less than or equal to x kB. For readability, we use the
notation s to stand for size for the rest of the paper. For
example, flows means the size of a flow. Other notations
(d, r and b) are used for duration, rate and burstiness
respectively.

Duration (d): We define tortoises as flows with a
duration longer than y minutes and dragonflies as flows
with a duration less than or equal to y minutes.

Rate (r): we define cheetahs2 as flows with a rate
greater than z kB/sec and snails as flows with a rate less
than or equal to z kB/sec.

Burstiness (b): In this work, three different definitions
of burstiness are proposed. Our first definition of bursti-
ness is based on the variation of traffic at a time-scale of
T. Given a flow, we first divide it into bins bi of duration
T . Assuming that si is the number of bytes sent in bi,
variance burstiness of that flow is then defined as the
standard deviation of all si.

The problem of using such a definition is that the
result typically depends on the choice of T. In particular,
a larger T tends to bias against small-size flows which
have less data to sent in each T. However, small-size
flows can still be bursty by sending most of their data in
a very short period. Another weakness of this definition
is the relationship between T and the flow duration. For
flows shorter than T , variance is undefined, and boundary
effects add error for flows shorter than 3–5 T . In addi-
tion, this definition does not consider network conditions,
leading us to explore to alternative definitions.

Second, we consider RTT burstiness. We first define
burst size as the number of bytes sent in each RTT
of a flow. We then characterize RTT burstiness as the
product of the mean burst size and the average RTT.
That is,

bursts
def
= bytes sent in each RTT

burstiness
def
= mean(bursts) × RTTavg

1We are in the process of looking at the results using median
instead of mean, since mean might not be a good metric for heavy-
tailed distributions. In addition, some distributions may not have well-
defined second moments, or even first moments. Hence, we also look
at using percentiles (e.g. the largest 1% of all flows) as breakpoints,
as described later in Section VII.

2We borrow the terms “elephant”, “mice”, “tortoise” and “dragon-
fly” from previous work. We use the term “cheetah” for its swiftness
and “porcupine” for its sharp bristles which are visually similar to
the shape of the bursts in the traffic.
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Such a definition avoids the drawback of defining bursti-
ness based on one particular fixed time scale. However,
in practice, it is non-trivial to measure the RTTs of an
uni-directional flow.

Our third definition, train burstiness, defines a burst
as a train of packets with a packet inter-arrival time
less than a threshold t. Burst size is the number of
bytes sent during each burst. Burst duration is the time
elapsed between the first packet and the last packet of
a burst. Burst rate is the burst size divided by burst
duration, excluding any one-packet train. Inter-burst
is the inter-arrival time between two bursts. Train
burstiness is then defined as the product of mean burst
rate and mean inter-burst. In other words,

burst
def
= packets with interarrival time < t

bursts
def
= bytes sent in each burst

burstd
def
= duration of a burst

burstr
def
=

bursts
burstd

bursti
def
= gap between bursts

burstiness
def
= mean(burstr) × mean(bursti)

We evaluate both variance burstiness and train burstiness
and find that the results are qualitatively similar. For
brevity, in this paper we present only the results based
on train burstiness. We define porcupines as flows with
burstiness greater than m kB and stingrays as flows with
burstiness less than or equal to m kB.

In this paper, we present the results based on the
analysis using x=152 kB, y=12 minutes, z=101 kB/s,
m=48.7 MB and t=1 ms. We calculate the mean plus
three standard deviations in each category to obtain these
values (i.e. 152 kB, 12 minutes, etc.). In Section VII,
we look at three other ways of defining heavy-hitters.
We first define heavy-hitters as the top 1% of all flows.
Second, we set the threshold as the cutoff point in the
heavy-tailed distribution. We select the cutoff point by
employing the aest test as proposed in [7]. Finally, we
define heavy-hitters as the largest flows that together
contribute 50% or more of the aggregated traffic. We
find that the results do not change significantly in all
three cases.

III. RELATED WORK

Prior work has classified Internet flows based on
several different schemes: size (elephant and mice),
duration (tortoise and dragonfly) and burstiness (alpha
and beta traffic). In our work, we study how these
classifications relate to each other. Additionally, previous
studies showed that there is a strong correlation between
size and rate of Internet flows. They hypothesized that
such a correlation between size and rate might be due
to user behavior. In this paper, based on the data we
collected, we demonstrate that the correlation between
size and rate for small- or medium-size flows could be
better explained by protocol reasons.

A. Elephant and Mice

While the sizes of most Internet flows are small,
the majority of packets and bytes of Internet traffic
are carried by a small percentage of large flows. This
property persists across several levels of aggregation [2],
[6], [10], [30], [33], and is known as the “elephant and
mice phenomenon”.

Several previous studies tried to identify elephant
flows. Estan et al. [8] defined elephant as any flow whose
rate that is larger than 1% of the link utilization. Papa-
giannaki et al. [21] proposed a more sophisticated two-
feature classification scheme to identify elephant flows.
According to their definition, flows are characterized as
“elephant” based on both their volume and their persis-
tence in time. Note that the definition of “flow” in Estan’s
work is similar to ours (as described in Section II), but
the flow granularity chosen by Papagiannaki et al. is at
the network prefix level.

Our definition of elephant is closer to Estan’s work.
We define elephant flows as flows with a size larger than
the mean plus three standard deviations of the sampled
data. Specifically,
Prior: elephant := flows > 1% of link bandwidth
Ours: elephant := flows > (mean + 3 * std) of all flows
Note that our work does not focus on how to choose the
criterion for defining an elephant. Instead, given a fixed
criterion, we focus on the correlation between elephant
flows and other dimensions (i.e. duration, speed and
burstiness). However, to understand if different choices
of the threshold would affect our results, we also look at
the effects from using different criteria in Section VII.
We find that our results do not significantly change due
to different choices of the threshold

B. Tortoise and Dragonfly

Brownlee et al. [4] studied Internet flows from a
different aspect. They classified Internet flows based on
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Trace Date Duration # of packets # of flows TCP UDP
Los Nettos Apr, 2003 2 hours 168 million 2.8 million 82% 15%
NLANR Aug, 2002 20 minutes 42 million 0.1 million 94% 4%

TABLE I

CHARACTERISTICS OF PACKET TRACES

their durations. They found that 45% of flows have a
duration of less than two seconds (dragonflies), and less
than two percents of the flows last longer than fifteen
minutes and carry more than 50% of the total bytes on
a link (tortoises).

Our definition of long-lived flows are flows with
a duration larger than the mean plus three standard
deviations of the sampled data. That is,
Prior: tortoise := flowd > 15minutes
Ours: tortoise := flowd > (mean + 3 * std) of all flows
Additionally, we look at the other properties of these
long-lived flows (i.e. size, rate and burstiness).

C. Alpha and Beta traffic

Sarvotham et al. [25] showed that traffic bursts typi-
cally arise from just a few high-volume connections that
dominate all the others. They named such flows as alpha
traffic and define them as any flow whose peak rate
exceeds certain threshold. Specifically, they identified the
connection(s) that transmits the largest number of bytes
in each 500ms time bin and labeled it as an alpha flow
if its rate exceeds the mean (Aggµ) plus three standard
deviations (Aggstd) of the aggregate traffic. They defined
the remaining flows as beta traffic and found that the
beta component of the aggregate traffic carries the same
fractal scaling exponent as the aggregate traffic.

In this paper, we propose three different definitions
of burstiness, namely variance burstiness, RTT
burstiness, train burstiness, as described in Section II.
We have evaluated both variance burstiness and train
burstiness and found that the results are qualitatively
similar. Our definition of bursty flows are flows with
a burstiness larger than the mean plus three standard
deviations of the sampled data. In other words,
Prior: alpha := burstpeak > Aggµ + 3 ∗ Aggstd
Ours: porcupine := flowb > (mean + 3 * std) of all
flows

Surprisingly, as shown later in Section V, our results
are consistent with the observation from Sarvotham’s
work (where they found that most bursty flows are due
to transfer of large files over fast links) even when we
define burstiness differently.

D. Flow analysis

Previously Zhang et al. [32] looked at flows with a
duration longer than 30 seconds and found that there is
a strong correlation between flow size and rate. They
hypothesized that, for large flows, the strong correlation
between size and rate might be due to user behavior.
In other words, users tend to choose the size of their
transfer based on the available bandwidth. While user
behavior might introduce some correlation between rate
and size, we find that the strong correlation between size
and rate for small- or medium-size flows might be better
explained by protocol reasons. Additionally, we show
that using flow duration as a metric to separate large-
and small-size flows could be misleading. As described
later in Section VI-A, our data suggests that most of
the flows longer than 30 seconds actually only have a
medium or small size.

E. Multi-dimensional traffic characterization

Estan et al. [9] proposed a traffic characterization
scheme that automatically groups traffic into minimal
clusters of conspicuous consumption. They analyzed
traffic along multiple different dimensions (source ad-
dress, destination address, protocol, source port and
destination port) at once, and then compressed the results
into a concise report. While our work is also based
on a multi-dimensional classification scheme, we focus
on understanding the relationship between different di-
mensions. Additionally, we look at a different multi-
dimensional space (size, duration, rate and burstiness).
One possible extension of our work is to apply similar
technique like theirs on the multi-dimensional space we
study to detect interesting/important traffic clusters.

IV. TRACES

The datasets we utilize in this study are from two
different sources. The first set of traces were collected at
Los Nettos [19], a regional area network in Los Angeles.
Los Nettos has peering relationships with several ISPs
and the LA-Metropolitan Area Exchange, and serves a
diverse clientele that includes academic institutes and
corporations around the Los Angeles area. The second
set of traces were from the NLANR site [18]. The
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Category % of no. of bytes % of no. of flows
Los Nettos

Elephant 71% 1%
Tortoise 43% 4%
Cheetah 16% 2%
Porcupine 39% 0.9%

NLANR
Elephant 82% 4%
Tortoise 45% 4%
Cheetah 36% 2%
Porcupine 40% 1%

TABLE II

FRACTION OF INTERNET TRAFFIC FOR EACH CATEGORY IN TERMS

OF BYTES AND NUMBER OF FLOWS

NLANR traces were previously collected on an Abilene
OC48 backbone link that lies between Indianapolis and
Cleveland. The characteristics of the traces are summa-
rized in Table I. Although the duration of NLANR trace
is much shorter than Los Nettos trace, its mean flow
size is significantly larger. Because the short duration of
NLANR trace will inevitably introduce a bias against
long-lived flows, our results are mainly based on Los
Nettos traces. We utilize NLANR traces for comparison
and validation. Note that Los Nettos data has a larger
percentage of UDP traffic due to the presence of a DNS
root name server. Figure 1 shows the distributions of
different flow metrics in Los Nettos data. The scaling
exponents α for distributions of flow size, duration, rate
and burstiness are 1.2, 1.8, 1.3 and 1.5 respectively.

V. RELATIONSHIPS BETWEEN DIFFERENT

CHARACTERIZATIONS OF HEAVY-HITTER FLOWS

In this section, based on the data we collected, we
present some properties of different characterizations of
heavy-hitter flows.

As shown in Table II, although accounting for only
a very small percentage of total flows, these heavy-
hitter flows carry a large portion of network traffic. In
particular, porcupine flows carry almost as much traffic
as tortoises although they account for less flows.

Table III shows relationships between different char-
acterizations of heavy-hitter flows. The first column in
the upper table indicates that, in Los Nettos traces,
“20% of elephants are also tortoises, 7% of elephants
are cheetahs, and 19% of elephants are porcupines”.
The last column shows that about 68% of porcupines
are also elephants, which indicates that bursty flows
are strongly correlated with large-size flows. The third
column shows that cheetah flows are less correlated with
other categories in Los Nettos traces when comparing
against NLANR traces. As described in Section IV, Los

given
expect Elephant Tortoise Cheetah Porcupine

Los Nettos
Elephant - 6% 3% 68%
Tortoise 20% - 0.007% 8%
Cheetah 7% 0.004% - 3%
Porcupine 19% 1% 4% -

NLANR
Elephant - 29% 72% 75%
Tortoise 17% - 12% 9%
Cheetah 39% 8% - 80%
Porcupine 28% 5% 57% -

TABLE III

RELATION BETWEEN ELEPHANT, TORTOISE, CHEETAH AND

PORCUPINE FLOWS

Nettos data has a larger percentage of DNS traffic due
to the presence of a root name server. A large portion
(about 60%) of cheetah flows in Los Nettos data are
comprised of small bursts of DNS traffic. The mean size
of cheetah flows consequently is significantly larger in
NLANR data than in Los Nettos traces. As a result, there
are more cheetah flows that are also elephants in NLANR
traces than in Los Nettos data.

Table IV shows five of the most popular applications
in each category of Los Nettos data. We identify the
applications based on their well-known port numbers
(e.g. port 80 for web traffic). Note that this approach
might introduce bias against some applications such as
P2P traffic which commonly uses random port numbers
to avoid the blocking of firewall. Overall, web and
P2P applications account for most of Internet traffic in
terms of the number of bytes, which is consistent with
prior work [16]. In particular, web traffic accounts for
most of the fast and bursty traffic. More than 50% of
long-lived flows are DNS traffic (We classify any flow
that uses port 53 as DNS traffic, and do not distin-
guish zone transfers from standard queries. A closer
examination of our traces, however, shows that most
of these long-lived flows are comprised of DNS zone
transfers.). Surprisingly, DNS traffic is also responsible
for significant portion of high-rate traffic. A closer look
at our traces shows that a large number of DNS flows
consist of burst of packets due to repeated DNS queries
originated from the same host. Similar results were also
reported in a previous study of CAIDA [31]. Note that
some of elephant flows are contributed by telnet traffic.
Such an observation suggests that interactive traffic like
telnet could still consume significant amount of network
bandwidth due to its persistence in time.

Figure 1 shows the relationship between different
characterizations of flows in Los Nettos data. The results



6

Rank Elephant Tortoise Cheetah Porcupine
1 web (67%) DNS (51%) web (53%) web (71%)
2 kazaa (5%) web (15%) DNS (28%) smtp (10%)
3 telnet (3.5%) telnet (9.1%) ftp (5%) ftp (6%)
4 gnutella (2%) ftp (5%) smtp (3.3%) nntp (2.1%)
5 nntp (2%) smtp (4.5%) WinMX (1.3%) pop (1.3%)

TABLE IV

TOP FIVE APPLICATIONS IN TERMS OF TOTAL NUMBER OF FLOWS IN DIFFERENT CATEGORIES IN LOS NETTOS TRACE
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(c) Distributions of flow rate
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(d) Distributions of flow burstiness

Fig. 1. The relationship between different characterizations of heavy-hitter flows

for NLANR traces are similar. For brevity, we do not
show the same plots for NLANR data here.

First, we look at the flow size distribution for different
classifications of flows, as shown in Figure 1(a). One
interesting insight that one can infer from Figure 1(a) is
the origin of long-lived flows. There are two possibilities
for the cause of long-lived flows. The first case is due
to the user/application behavior. For example, a long-
live flow might occur when an application repeatedly
sends some amount of traffic and then pauses for a long
period (such as periodic DNS updates or telnet). Another

possibility is the transfer of a big file over slow links.
Based on our traces, we find that the former explanation
is more plausible. As shown in Figure 1(a), only about
6% of tortoises are flows with a size greater than 100
kB and around 80% of tortoises are smaller than 10
kB, which does not support the second case. Hence,
we conjecture that the majority of long-lived flows in
our traces are most likely due to application/protocol
reasons. Furthermore, about 70% of cheetah flows are
smaller than 10 kB, which indicates that a large number
of fast flows contain only a small burst of packets (such
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as the bursty DNS queries described previously). Finally,
the distributions of porcupine flows and elephant flows
share some similarities, which again suggests that they
might have some correlation.

Next, we look at the distribution of flow durations
for different types of flows. As shown in Figure 1(b),
more than 70% of Internet flows have a duration of less
than 10 seconds, which is consistent with prior work [4]
that reported that most Internet flows are short-lived.
More than 95% of cheetah flows are short (less than one
second), which confirms that most cheetah flows consist
of just a small burst of packets. About 50% of elephant
flows have a duration longer than two minutes and 20%
of elephants last longer than 15 minutes, which suggests
that most elephant flows are long-lived. Note that the last
10% of elephant flows have a similar duration, which is
due to the boundary effect of our fixed-length traces.
Finally, about 65% of porcupine flows have a duration
less than 10 seconds and more than 95% of porcupines
last less than 2 minutes. Since most porcupine flows are
also elephants, this observation suggests that most of the
bursty traffic might be due to the transfer of large files
over fast links. Note that our observation is consistent
with prior work [25] even though we define “bursty flow”
differently (as described in Section III-C).

Figure 1(c) shows the flow rate distribution for differ-
ent types of flows. About 80% of porcupine flows have a
rate greater than 10 kB/sec and 30% of porcupines have
a rate greater than 100 kB/sec, which suggests that most
bursty flows are also fast. Around 30% of elephant flows
are faster than 10 kB/sec and about 5% of elephants are
faster than 100 kB/sec, which implies that most elephant
flows are not fast. Lastly, we find that around 80% of
Internet flows have a rate less than 10 kB/sec.

Finally we look at the distribution of flow burstiness
for different types of flows, as shown in Figure 1(d).
Based on our definition of burstiness, tortoises, elephants
and most Internet flows are comparatively less bursty
than porcupines and cheetahs. Specifically, there are only
around 5% of elephant flows are burstier than 10MB.
More than 80% of Internet flows and more than 90% of
tortoise flows are less bursty than 1MB. More than 80%
of cheetah flows are burstier than 10MB, although most
cheetahs only consist of a small number of packets.

Table V shows a taxonomy that characterizes the
“heavy-hitter” traffic. In summary, elephant flows are
long-lived, but neither fast nor bursty. Tortoise traffic is
slow and not bursty. Individual tortoise flows in general
do not use up a lot of network bandwidth although
aggregatively they consume significant amount of band-
width, as shown previously in Table II. Cheetah flows
are typically small but bursty. Finally, porcupine flows

Category large-size long-lived fast bursty
Elephant Y Y N N
Tortoise N Y N N
Cheetah N N Y Y
Porcupine Y N Y Y

TABLE V

TAXONOMY OF HEAVY-HITTER TRAFFIC

Correlation coefficient
metrics Los Nettos NLANR
(rate,burstiness) 0.83 * 0.82 *
(size,rate) 0.81 * 0.87 *
(size,burstiness) 0.80 * 0.77
(size,duration) 0.21 0.23
(duration,burstiness) -0.17 -0.07
(duration,rate) -0.32 -0.04

TABLE VI

CORRELATION BETWEEN DIFFERENT CATEGORIES

are likely due to the download of big files over fast
links. These results obviously depend on our definitions
of heavy-hitter traffic. We also look at other ways of
defining heavy-hitters, as later described in Section VII,
and find that the results do not change significantly.

VI. ORIGIN OF CORRELATION BETWEEN DIFFERENT

FLOW STATISTICS

Zhang et al. [32] showed that there is a strong cor-
relation between flow rate and size. Motivated by their
work, in this paper we study the physical explanation
for the observed phenomena of correlations between
different flow statistics. Table VI shows six pairs of
correlations: rate and size, rate and duration, rate and
burstiness, size and duration, size and burstiness, and
duration and burstiness. We computed correlations of
the log of these data because of the large range and
uneven distribution. To compute the correlation between
different flow statistics, we use rank-based Kendall’s
τ method, which is less sensitive to outliers and non-
normality than the standard Pearson estimate [28]. As
shown in Table VI, we find that size, rate and burstiness
are strongly correlated. In this section, based on our data,
we present some plausible explanation for the reason of
strong correlations between flow size, rate and burstiness.

Note that one might expect that there is a stronger
correlation between size and duration than what is shown
in Table VI. Since small flows account for more data
points in our traces, one possibility for the observed
weak correlation between size and duration might be
that our results are bias toward small flows. To verify
such a hypothesis, we look at the correlation between
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Correlation coefficient
types Los Nettos NLANR
size less than 10K 0.17 0.41
size between 10K and 100K 0.13 0.47
size greater than 100K 0.16 0.32
duration greater than 1 sec (ALL) 0.57 0.79
duration greater than 5 sec (ALL) 0.65 0.81 *
duration greater than 30 sec (ALL) 0.81 * 0.87 *
duration greater than 1 sec (TCP) 0.71 0.81 *
duration greater than 5 sec (TCP) 0.83 * 0.87 *
duration greater than 30 sec (TCP) 0.92 * 0.96 *
duration greater than 1 sec (UDP) 0.34 0.70
duration greater than 5 sec (UDP) 0.61 0.77
duration greater than 30 sec (UDP) 0.74 0.82 *

TABLE VII

CORRELATION BETWEEN SIZE AND RATE FOR DIFFERENT

PROTOCOL, FLOW SIZES AND DURATION

size and duration for large-size flows alone. However,
we do not find a strong correlation between size and
duration for large-size flows. One plausible reason could
be that, for large-size flows, users might choose the size
of their transfer based on the link speed, as suggested
by prior work [32]. For example, one might decide not
to download big files (or abort after a long wait) when
browsing the web via a slow modem link. Hence, most
of larger flows might tend to be seen on faster links.
As a result, a larger-size flow might not have a longer
duration if such a flow is sent over a faster link.

A. High correlation between rate and size

Previous work [32] showed that there is a strong
correlation between flow rate and size. They hypoth-
esized that the observed strong correlation is due to
user behavior: users choose the size of their transfer
based on available bandwidth. In this section, based on
our data, we provide another plausible explanation for
the observed correlation. We suspect that, while user
behavior could have some effect on large-size flows,
the origin of the observed correlation might be better
explained by transport and application-level protocol
mechanisms for small- or medium-size flows.

To systematically investigate the cause of correlation
between flow size and rate, we first group flows based on
their protocols, size and duration, as shown in Table VII.

As shown in Table VII, there is a strong correlation
between rate and size for flows longer than 30 seconds3

(the correlation coefficients are greater than 0.8 for both
traces). We do not see similar results for flows with a

3As shown in the second row, the correlation between flow size
and rate becomes stronger as we increase the threshold from 1 to 30
seconds
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Fig. 2. Distribution of flow size for flows with a duration longer
than 30 seconds in Los Nettos trace

larger size (for example, the correlation coefficient for
flows with a size larger than 100K is only 0.16 for
Los Nettos traces). However, if the strong correlation
between size and rate is due to that users choose the
file to transfer based on the available bandwidth, as
suggested by prior work, we expect to see a strong
correlation between size and rate for large-size flows as
well. After taking a closer look, surprisingly, we find
that most of the flows longer than 30 seconds actually
only have a medium or small size. As shown in Figure 2,
70% of such flows have a size of less than 10 kB and
90% of them are smaller than 60 kB.

While indicating that there is a strong correlation
between size and rate, Table VI, however, does not
provide enough information for understanding the cause
of such a correlation. To visually examine at what range
of size and rate where this correlation arises, we plot
size against rate on a density plot. Figure 3 shows the
density plots of TCP flows for Los Nettos and NLANR
traces. To generate each graph, the area is divided into a
1000x1000 grid. We then place each of the millions of
flows from the traces into a grid cell, sum the number
of flows in that cell and map it to a a gray-scale value,
with cells from 0 to 8192 flows representing white to
pure black. The density plot therefore highlights which
combinations of size and rate are most “popular”. In
other words, a darker point on the plot indicates that
there are more flows with that particular combination of
size and rate4.

There are a few distinct features on both plots of
Figure 3: several slanted bands on the right (region
2,3,4,5) and a few vertical lines on the left (region 6).
The diagonal bands on the right indicate that the rate

4Note that since there are more flows in Los Nettos traces than in
NLANR traces, for presentation purposes, we reduce the number of
flows required to represent the same gray-scale by a factor of 8 for
NLANR traces. In other words, for NLANR traces, cells with from
0 to 1024 flows are represented by white to pure black.
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Fig. 3. Density plots of size and rate for TCP flows (at log-log scale)

of flows is proportionally increasing to the size at a
log scale (i.e. positively correlated). The vertical lines
suggest that these are flows with the same size but
different rates. Finally, there are more and also darker
points in region 1 of Figure 3, which indicates that
there are more TCP flows fall in this region (with sizes
between 1 kB and 10 kB and rates from 1K/sec to
10K/sec).

A closer look at the flows in each diagonal band
indicates that these flows have similar durations. The
reason that these flows have similar durations can be
explained by the protocol mechanism. Figure 4 demon-
strates a typical flow in region 2 of Figure 3(a). While the
actual transfer of a flow requires only a few hundred mil-
liseconds, the timeout for SYN retransmission stretches
the flow duration to about three seconds [3]. Flows in
region 3, 4 and 5 of Figure 3(a) also have similar flow
durations respectively. These similar durations are due to
different timeout mechanisms. Specifically, most of the
flows in region 3 last about 15 seconds and are mainly
due to HTTP persistent connection timeout [11]. The
flows in region 4 last about 60 seconds and flows in
region 5 last about two minutes. The durations of these
flows are mainly stretched out by the TCP TIME WAIT
delay (2MSL wait). RFC 793 [23] specifies the MSL
as 2 minutes. However, common implementation values
typically range from 30 seconds to 2 minutes [29]. In
summary, each diagonal band (region 2,3,4,5) consists of
a group of flows with similar flow durations but varying
amount of data. The spacing between different diagonal
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Fig. 7. Distribution of TCP flow duration of Los Nettos traffic

bands is due to variable flow durations which in turns
are caused by different protocol mechanisms.

Another distinct feature of the plots is the existence of
vertical lines on the left (region 6) for both Los Nettos
and NLANR traces. These vertical lines mainly consist
of flows with only three or four packets. They account
for 8% of total flows in NLANR traces, and 9% in Los
Nettos traces. After manually examining a large number
of such flows in both traces, we find that they mainly
consist of two types of flows.

The first type of flows, as shown in Figure 5, consist
of a sequence of SYN retransmissions. We suspect that
these flows are either some particular implementation
of TCP (that stops re-transmitting after sending three
SYN packets) or some kind of port scanning. The second
type of flows, as shown in Figure 6, only transmit SYN
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28.477 10.0.0.1.2355 > 10.0.0.2.80: S 12193306:12193306(0) win 8192
31.460 10.0.0.1.2355 > 10.0.0.2.80: S 12193306:12193306(0) win 8192
31.784 10.0.0.1.2355 > 10.0.0.2.80: . ack 3335637810 win 8760
31.792 10.0.0.1.2355 > 10.0.0.2.80: P 0:758(758) ack 1 win 8760
31.852 10.0.0.1.2355 > 10.0.0.2.80: . ack 124 win 8638
31.852 10.0.0.1.2355 > 10.0.0.2.80: R 12194065:12194065(0) win 0

Fig. 4. retransmission timeout in a small flow

13.893 10.0.0.1.1183 > 10.0.0.2.80: S 167211179:167211179(0) win 16384
16.878 10.0.0.1.1183 > 10.0.0.2.80: S 167211179:167211179(0) win 16384
23.119 10.0.0.1.1183 > 10.0.0.2.80: S 167211179:167211179(0) win 16384

Fig. 5. SYN retransmission in a small flow

8.865 1.0.0.1.12474 > 1.0.0.2.4308: S 3856:3856(0) ack 53513 win 9152
8.925 1.0.0.1.12474 > 1.0.0.2.4308: F 1:1(0) ack 1 win 9152
8.977 1.0.0.1.12474 > 1.0.0.2.4308: . ack 2 win 9152

Fig. 6. TCP connection with no data

and FIN with no data packets in between. We suspect
that these flows might be due to some kind of port
scanning. Finally, as shown in Figure 7, more than 5% of
flows have durations less than a couple of seconds and
account for the concentration of flows in region 1. A
detailed examination shows that these flows are normal
web traffic.

The density plot of NLANR traces, as shown in
Figure 3(b), is similar to that of Los Nettos traces. Note
that we do not see a significant number of flows with
SYN retransmission (region 2 in Figure 3(a)) in NLANR
traces as in Los Nettos traces.

There is a strong correlation between flow rate and
size for UDP traffic as well, as shown in Table VII. We
also look at the density plots of UDP traffic for both
Los Nettos and NLANR traces, as shown in Figure 8.
The majority of UDP traffic is contributed by DNS flows
(which account for 78% of all UDP flows in Los Nettos
traces and 81% in NLANR traces). A common feature
between Figure 8(a) and Figure 8(b) is the existence of
several diagonal bands. Similar to the analysis for TCP
flows, we find that these bands are also due to flows with
similar durations and varying amount of traffic.

The diagonal line on the bottom (region 1 on both
plots) consists of long-lived server-to-server DNS flows
that last across the entire duration of our traces. The
diagonal lines on the top of both plots consist of flows
with durations ranging from 1 to 9 seconds. These flows
are mainly contributed by DNS flows with repeated
transmissions. Consistent with prior work [31], such
flows account for a significant percentage of DNS traffic
in our traces (52% in Los Nettos traces and 38% in
NLANR traces). Figure 9 demonstrates one of such
flows. The duration of such flows is a function of the

number of retransmission and the length of timeout.
Since DNS retransmission timeouts are typically some
fixed values [17], the durations of these flows resultingly
concentrate on certain lengths.

There are some vertical lines on the upper left-hand
side of the plot for Los Nettos traces (region 2 in
Figure 8(a)). A closer look shows that these small flows
mainly consist of probe packets of game traffic. Finally,
there are some dark dots on the bottom of Los Nettos
plot (region 3 in Figure 8(a)). A careful examination
shows that these flows are contributed by a number
of extraordinarily busy sources sending repeated “A?”
queries. These DNS flows account for about 4% of
total DNS queries in our traces. A similar observation
of such busy sources was also previously reported by
CAIDA [31].

The flows in region 2 (the vertical line) and region 3
(the dark slanted line) of Figure 8(b) mainly consists of
probe packets of Kazaa traffic. The typical duration for
flows in region 3 is about 9 seconds.

B. High correlation between burstiness and size

Table VI shows that flow size and burstiness are
also highly correlated. In this section, using similar
analysis as described in Section VI-A, we show that
the correlation between size and burstiness can also be
explained by protocol reasons.

The density plots of size versus burstiness for TCP
flows are shown in Figure 10. A common feature in
Figure 10 for both traces is the existence of diagonal
lines. Similar to the observation from previous section,
we find that each diagonal line consists of a group of
flows with similar duration.
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(a) Los Nettos trace

(b) NLANR trace

Fig. 8. Density plots of size and rate for UDP flows

3.019 1.0.0.1.711 > 1.0.0.2.53: 643 PTR? 7.3.2.1.in-addr.arpa. (42)
4.046 1.0.0.1.711 > 1.0.0.2.53: 644 PTR? 7.3.2.1.in-addr.arpa. (42)
6.038 1.0.0.1.711 > 1.0.0.2.53: 645 PTR? 7.3.2.1.in-addr.arpa. (42)
10.037 1.0.0.1.711 > 1.0.0.2.53: 646 PTR? 7.3.2.1.in-addr.arpa. (42)

Fig. 9. DNS repeated query



12

(a) Los Nettos trace (b) NLANR trace

Fig. 10. Density plots of size and burstiness for TCP flows

6.072 10.0.0.1.1300 > 10.0.0.2.80: S 647474:647474(0) win 4288
6.145 10.0.0.1.1300 > 10.0.0.2.80: . ack 55646058 win 4288
6.146 10.0.0.1.1300 > 10.0.0.2.80: P 0:645(645) ack 1 win 4288
9.061 10.0.0.1.1300 > 10.0.0.2.80: P 0:645(645) ack 1 win 4288
9.116 10.0.0.1.1300 > 10.0.0.2.80: . ack 50 win 4240
9.117 10.0.0.1.1300 > 10.0.0.2.80: F 645:645(0) ack 50 win 4240

Fig. 11. Flow A

2.221 10.0.0.1.3784 > 10.0.0.2.80: S 972052848:972052848(0) win 3392
2.261 10.0.0.1.3784 > 10.0.0.2.80: . ack 3276864582 win 50000
2.262 10.0.0.1.3784 > 10.0.0.2.80: P 0:297(297) ack 1 win 50000
5.210 10.0.0.1.3784 > 10.0.0.2.80: P 0:297(297) ack 1 win 50000
5.258 10.0.0.1.3784 > 10.0.0.2.80: . ack 1588 win 50000
5.405 10.0.0.1.3784 > 10.0.0.2.80: . ack 2921 win 49666
5.406 10.0.0.1.3784 > 10.0.0.2.80: . ack 3376 win 50000
5.610 10.0.0.1.3784 > 10.0.0.2.80: F 297:297(0) ack 3376 win 50000

Fig. 12. Flow B

Figure 11 and Figure 12 show two typical flows in the
darkest diagonal line at the center of Figure 10(a) (region
1 on the plot). The corresponding time series plots of
both flows are shown in Figure 13. The durations of both
flows are stretched out by TCP retransmission timeout
to around three seconds. As a result, the burstiness of
the flow depends on the volume of traffic it transmits.
Flow A is burstier than flow B because that flow A has
a larger HTTP transfer (Specifically, flow A has a size
of 1530 Bytes, a duration of 3.04 second, a rate of 503
Bytes/sec and a burstiness of 2055 kB, while flow B
has a size of 914 Bytes, a duration of 3.39 second, a
rate of 267 Bytes/sec and a burstiness of 950 kB.). Note
that there are a few vertical lines at the left-hand side
of Figure 10(a) (region 2 on the plot). These vertical
lines are mainly due to SYN retransmissions and probing

packets as described previously in Section VI-A.
Similarly, the correlation between rate and burstiness

in Table VI could also be explained by the above
reasoning. For brevity, we do not show the corresponding
plots here.

VII. SENSITIVITY OF RESULTS

Our work does not focus on choosing the criterion
for defining elephant, tortoise, cheetah and porcupine.
Instead, given a fixed criterion, we focus on the statistical
properties of heavy-hitter flows in different dimensions,
namely size, duration, rate and burstiness. However, to
understand if different choices of thresholds (as defined
Section II) would affect our results, we investigate the
effects from using three different criteria in this section.
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Fig. 13. Bandwidth-time plots of flow A and B

given
expect Elephant Tortoise Cheetah Porcupine
Elephant - 1% 0.5% 83%
Tortoise 19% - 0.003% 3%
Cheetah 9% 0.001% - 2%
Porcupine 22% 1% 9% -

TABLE VIII

RELATION BETWEEN ELEPHANT, TORTOISE, CHEETAH AND

PORCUPINE FLOWS WHEN DEFINING HEAVY-HITTERS AS THE

LARGEST 1% OF THE FLOWS

First, instead of using the thresholds defined in Sec-
tion II, we define heavy-hitters traffic as the largest 1%
of all flows. After applying such a definition to Los
Nettos data, the resulting thresholds are equivalent to
the choices of x = 110, y = 23, z = 368, m = 56742 (x,
y, z, m are defined in Section II). The second criterion
that we employ is to apply the aest test (previously
proposed by Crovella et al. [7]) to our data, and choose
the threshold as the cutoff point in the heavy-tailed
distribution (the scaling exponents α for size, duration,
rate and burstiness are 1.2, 1.8, 1.3 and 1.5 respectively).
The resulting thresholds are equivalent to the choices
of x = 138, y = 20, z = 121, m = 50111. Finally,
we define heavy-hitters traffic as the largest flows that
together carry 50% or more of the total bytes. The
resulting thresholds are equivalent to the choices of
x = 145, y = 21, z = 113, m = 51887. As shown in
Table VIII, Table IX and Table X, although the numbers
are slightly different, overall the results are similar to
Table III.

VIII. DISCUSSION

Modeling and simulating Internet traffic is difficult due
to its scale, heterogeneity and dynamics [13]. It is impor-
tant to understand the causal root of traffic characteristic
so that one can determine what is fundamental and what
is just an artifact. Knowledge of fundamental correlations

given
expect Elephant Tortoise Cheetah Porcupine
Elephant - 3% 2% 74%
Tortoise 19% - 0.006% 4%
Cheetah 8% 0.006% - 3%
Porcupine 20% 1% 5% -

TABLE IX

RELATION BETWEEN ELEPHANT, TORTOISE, CHEETAH AND

PORCUPINE FLOWS WHEN DEFINING HEAVY-HITTERS AS FLOWS

BEYOND THE CUTOFF POINT IN THE HEAVY-TAILED DISTRIBUTION

given
expect Elephant Tortoise Cheetah Porcupine
Elephant - 2% 0.8% 59%
Tortoise 22% - 0.001% 3%
Cheetah 15% 0.01% - 9%
Porcupine 24% 2% 4% -

TABLE X

RELATION BETWEEN ELEPHANT, TORTOISE, CHEETAH AND

PORCUPINE FLOWS WHEN DEFINING HEAVY-HITTERS AS FLOWS

THAT CONSUME 50% OF TOTAL TRAFFIC

of traffic characteristics allows one to limit the number
of cases needed to be considered. Complementary to
previous studies that characterized Internet flows based
on different metrics (e.g. size, duration, etc.), this paper
emphasizes on understanding the relationship between
different characterizations of flows in order to get a better
insight of traffic dynamics.

In this work, we show that some of traffic metrics are
strong correlated (e.g. size and burstiness) while the oth-
ers are relatively independent of each other (e.g. size and
duration). Our results have some important implications
in protocol design and network modeling/simulation.

As implied by the last row of Table V, by paying
more attention to bursty flows, one could captures most
of high-rate and large-size traffic. Based on this obser-
vation, it seems reasonable to explicitly take burst traffic
into account in protocol and router design. The recent
proposal of Optical Burst Switching [24] is such an
example. Additionally, such an insight can be applied to
reduce the complexity of simulation. Instead of modeling
and simulating traffic in details, one can focus on bursty
traffic and still capture most of the traffic dynamics
required in a large simulation. Furthermore, one can
utilize the burstiness of traffic as another metric to
identify elephant flows in addition to the use of size and
duration [21].

On the other hand, as discussed in Section VI-A, using
the duration of a flow as an indication of the volume of
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traffic sent could be misleading in some cases. Flow size
and duration might need to be treated as different and
independent dimensions.

In this work, we study characteristics of heavy-hitter
flows in four different dimensions: size, duration, rate
and burstiness. However, based on the root of traffic
characteristics, one can still identify different classes of
traffic within each individual metric. For example, in
Section V we show that long-lived flows can be due to ei-
ther transfer of large files or the effect of application/user
behavior. Instead of treating them indiscriminately as one
single class of long-lived flows, it seems more reasonable
to separate them as different classes of traffic for network
modeling and traffic monitoring purposes.

IX. FUTURE WORK

In this work, we show that the durations of a large
number of small/medium flows are stretched out by
various protocol timeout mechanisms. The cause of
timeouts might be due to either application/user behavior
or network congestion. It is important to character-
ize these timeouts and understand their prevalence for
performance and modeling purposes. For example, we
observed a significant number of packet retransmissions
in our traces. It would be interesting to understand what
fractions of them are due to network congestion, software
flaws [12], malicious attack, etc. Some recent work [1]
based on measurements from NIMI [22] has shown that
a significant number of TCP retransmissions in their data
are not caused by congestion-induced packet losses.

Prior work [32] showed that the most frequent cause
for limiting the rate of a flow is network congestion.
Our data suggests that the origin of some long-lived
flows are likely due to application behavior instead of
download of big files. In addition, we confirm that most
bursty traffic might be due to transfer of large files
over fast links. However, relatively little study has been
done to understand the cause of burstiness in Internet
traffic. The burstiness of a flow can be due to either
application/protocol behavior or network congestion. For
TCP traffic, one way to infer the occurrence of queuing
is to compare the observed burstiness of the flow with
its congestion window size. As future work, we plan to
study what fractions of burstiness in Internet traffic are
due to network congestion.

In this study, due to time constraints, the results of this
paper are based on a limited set of traces. We plan to
collect more traces from other places, particularly traces
from backbone links of a large ISP to further compare
and validate our results.

X. CONCLUSION

Previous studies of Internet traffic have shown that
a small percentage of flows carry most of the network
traffic. It is important to understand the characteristics of
such flows for traffic monitoring and modeling purposes.
Several prior studies have characterized such flows using
different definitions: elephant and mice, tortoise and
dragonfly, and alpha and beta traffic. However, it has
not been clear how these different classifications of flows
relate to each other. In our work, using data from differ-
ent traffic sources, we study these “heavy-hitter” traffic
in four different dimensions, namely size, duration, rate
and burstiness, and examine how they are correlated. We
first systematically characterize prior definitions for the
properties of these heavy-hitter traffic. In our datasets,
we observe that a significant percentage of long-lived
flows are comprised of DNS traffic. Our data suggests
that the bursty traffic is likely due to the transfer of
big files over fast links, which is consistent with the
observation from previous work even when we define
bursty flows differently. We also observe that there are
strong correlations between flow size, rate and burstiness.
Additionally, we show that using the duration of a flow
as an indication of the volume of traffic sent could
be misleading in some cases. Flow size and duration
might need to be treated as different and independent
dimensions. Finally, we present a plausible physical
explanation for the observed correlations between size,
rate and burstiness.
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