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Abstract

In-network data aggregation is essential for wireless
sensor networks where energy resources are limited. In a
previously proposed data dissemination scheme (directed
diffusion with opportunistic aggregation), data is oppor-
tunistically aggregated at intermediate nodes on a low-
latency tree. In this paper, we explore and evaluate greedy
aggregation, a novel approach that adjusts aggregation
points to increase the amount of path sharing, reducing en-
ergy consumption. Our preliminary results suggest that, un-
der investigated scenarios, greedy aggregation can achieve
up to 45% energy savings over opportunistic aggregation in
high-density networks without adversely impacting latency
or robustness.

1 Introduction

Large-scale networks of small and inexpensive sensors
may require novel data dissemination paradigms which
are scalable, robust, and energy-efficient [2]. One such
paradigm is directed diffusion [5] which incorporates data-
centric routing and application-specific processing inside
the network (e.g., data aggregation). Given that the commu-
nication cost is several orders of magnitude higher than the
computation cost [7], directed diffusion can achieve signif-
icant energy savings with in-network data aggregation [5].
This benefit of data aggregation has been confirmed theo-
retically [6] and experimentally [3].

The instantiation of directed diffusion described in the
earlier work establishes low-latency paths between sources
(sensor nodes that detect phenomena) and sinks (user
nodes) using only localized algorithms. Paths from differ-
ent sources to a sink form an aggregation tree rooted at the
sink. Data from different sources is opportunistically aggre-
gated. Whenever similar data happens to meet at a branch-
ing node in the tree, the copies of similar data are replaced
by a single message. Energy-wise, opportunistic aggrega-
tion on a low-latency tree is not optimal because data may
not be aggregated (or reduced) near the sources. In this pa-
per, we propose using a greedy incremental tree (GIT) to

improve path sharing for more energy savings. We have
implemented this greedy-tree approach in ns-2 and we com-
pare it to our prior opportunistic approach (Section 3). Due
to space constraints, some of the more detailed algorithms,
simulations, and analysis have been omitted. Please refer
to [4] for more details.

2 Greedy Aggregation

Greedy aggregation differs from opportunistic aggrega-
tion in path establishment and maintenance. To construct
a greedy incremental tree, a shortest path is established for
only the first source to the sink whereas each of the other
sources is incrementally connected at the closest point on
the existing tree.

Path Establishment: Directed diffusion establishes
paths using path reinforcement; a node in the network may
locally decide (based possibly on perceived traffic charac-
teristics) to draw data from one or more neighbors in pref-
erence to other neighbors. In directed diffusion, exploratory
samples have initially and repeatedly been flooded through-
out the network. The sink then has some empirical infor-
mation about which of its neighbors can provide it with
the highest quality data (lowest loss or lowest delay). To
this preferred neighbor, it sends out a reinforcement. That
neighbor then locally determines its most preferred neigh-
bor in the direction of the source, and so on. In our prior
opportunistic approach, the most preferred neighbor is a
neighbor which has delivered samples with the lowest de-
lay.

In our greedy approach, each exploratory sample also
contains an energy cost for delivering this sample from the
source to the current node. In addition, each source on
the existing tree (i.e., a source on an established path) also
generates an on-tree incremental cost message which corre-
sponds to each new exploratory sample received. The incre-
mental cost message contains the incremental energy cost
required for delivering the corresponding exploratory sam-
ple to the existing tree. This incremental cost message is
only sent and updated along the aggregation tree toward the
sink. To find the closest point on the tree, the incremental
energy-cost field can be updated only by closer nodes (i.e.,
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Figure 1. Greedy vs Opportunistic.

nodes which have received the corresponding exploratory
sample at lower cost). In this greedy approach, the most
preferred neighbor to reinforce is a neighbor which has de-
livered the exploratory sample or its corresponding incre-
mental cost message at the lowest energy cost.

Data Aggregation and Set-Covering Problem: Inter-
mediate nodes process or delay received data for a period of
time before aggregating multiple messages into an aggre-
gate. Before sending the aggregate, the nodes also compute
associated energy cost for that aggregate. (This energy in-
formation will be used for path pruning.) However, differ-
ent neighbors might report aggregates of different subsets
of data items, with varying costs. The challenge is to find
the set of incoming aggregates which cover the data items
at the smallest cost. This is an instance of the weighted set-
covering problem, for which we use heuristics from [1].

Path Pruning: Due to network dynamics, there can be
multiple paths being reinforced. For energy efficiency, we
need to prune unnecessary or inefficient paths. Our prun-
ing rule is to negatively reinforce neighbors from which
no energy-efficient aggregates have been received within a
window of events or time. An incoming aggregate is con-
sidered energy-efficient if it is selected as a subset in the set
cover. Specifically, we compute the set cover of sources that
generate data items contained in received aggregates rather
than the set cover of those data items.

3 Performance Evaluation

Figure 1 shows the mean dissipated energy per packet as
a function of the network density, evaluated through sim-
ulation (see [4] for experiment details). Greedy aggrega-
tion has noticeably better energy efficiency than the oppor-
tunistic approach for very high-density networks. For dense
sensor fields (40 or more neighbors per node), the dissi-
pated energy is only 55% that of opportunistic aggregation.

The reason for this benefit is that, given a high-density net-
work, there exist several shortest paths from a source to a
sink. The available path diversity reduces the probability of
path sharing among different sources for opportunistic ag-
gregation. Moreover, greedy aggregation has a delay and
a distinct-event delivery ratio comparable to opportunistic
aggregation (not shown here).

We also study the sensitivity of our greedy aggregation
to several factors: network dynamics, number of sources,
number of sinks, source placement schemes, and aggrega-
tion functions. These factors can adversely impact the en-
ergy savings of our approach, particularly when sources are
near to one another and data is not perfectly aggregatable.

4 Conclusions

Our greedy approach constructs an energy-efficient ag-
gregation tree using data-centric reinforcement mechanisms
and prunes inefficient paths using a greedy heuristic for
weighted set-covering problems. Our preliminary results
suggest that although greedy aggregation and opportunistic
aggregation are roughly equivalent in low-density networks,
the greedy-tree approach can achieve signficant energy sav-
ings at high densities. In one experiment we find that greedy
aggregation can achieve up to 45% energy savings over op-
portunistic aggregation without adversely impacting latency
or robustness. Given that energy is scarce, this path opti-
mization technique is essential for prolonging lifetime of
highly-dense sensor networks.
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