
Auditing for Bias in Ad Delivery
Using Inferred Demographic Attributes

Basileal Imana

imana@princeton.edu

Center for Information Technology

Policy, Princeton University

Princeton, New Jersey, USA

Aleksandra Korolova

korolova@princeton.edu

Department of Computer Science and

School of Public and International

Affairs, Princeton University

Princeton, New Jersey, USA

John Heidemann

johnh@isi.edu

Information Sciences Institute and

Thomas Lord Dept. of Comp. Sci.,

University of Southern California

Los Angeles, California, USA

ABSTRACT
Auditing social-media algorithms has become a focus of public-

interest research and policymaking to ensure their fairness across

demographic groups such as race, age, and gender in consequential

domains such as the presentation of employment opportunities.

However, such demographic attributes are often unavailable to

auditors and platforms. When demographics data is unavailable,

auditors commonly infer them from other available information. In

this work, we study the effects of inference error on auditing for

bias in one prominent application: black-box audit of ad delivery

using paired ads. We show that inference error, if not accounted for,

causes auditing to falsely miss skew that exists. We then propose

a way to mitigate the inference error when evaluating skew in ad

delivery algorithms. Our method works by adjusting for expected

error due to demographic inference, and it makes skew detection

more sensitive when attributes must be inferred. Because inference

is increasingly used for auditing, our results provide an important

addition to the auditing toolbox to promote correct audits of ad

delivery algorithms for bias. While the impact of attribute inference

on accuracy has been studied in other domains, our work is the first

to consider it for black-box evaluation of ad delivery bias, when

only aggregate data is available to the auditor.

1 INTRODUCTION
Digital ad platforms face increased scrutiny from public-interest

researchers and regulators due to their important role in mediating

access to information and opportunities. Through external black-

box audits researchers have shown that ad delivery algorithms can

be biased by demographic attributes such as race [3], gender [28]

and age [31] in consequential and legally protected domains such as

employment and housing. Following these findings, Meta was sued

by the U.S. Department of Justice (DoJ) [53], and in 2022 reached a

settlement to deploy a Variance Reduction System (VRS) to reduce

bias in delivery of ads for economic opportunities include housing,

employment, and credit [2, 54]. This prominent example shows the

importance of holding ad platforms accountable through external

black-box audits.

The state-of-the-art method for black-box auditing of ad delivery

algorithms, and a key setting for our work, uses paired ads that are
run targeting the same audience and at the same time [3, 4, 28, 29].

Bias is then measured by looking at relative difference in delivery

along a demographic attribute of interest to the auditor. This setup is

the only knownmethodology that can isolate the role of algorithmic

bias in ad delivery from confounding factors, such as market forces

and temporal effects (we discuss this setup in §2.2).

A key challenge to applying the paired-ads methodology to

auditing ad delivery and to expanding such audits to other pro-

tected attributes is unavailability of demographic attributes of

users [5, 11, 12]. Auditors have tackled this challenge by using pub-

lic voter lists From U.S. states that contain these attributes [3, 4, 28].

Some platforms, on the other hand, ask users to voluntarily self-

identify to conduct internal audits [35], but this data is not available

for external auditors (we summarize such approaches in §3.1). An-

other technique that both auditors and platforms use is inferring

demographic attributes from other available information. For exam-

ple, Bayesian Improved Surname Geocoding (BISG), is commonly

used to infer race from name and location [11, 21] (we expand on

these existing approaches in §3.2).

Attribute inference is employed widely across various domains

as part of assessing racial disparities and enforcing civil rights

laws [1, 9, 11, 23, 57], despite their known misclassification of a

significant proportion of individuals [21]. While approaches to cor-

rect inference error have been developed [23, 38, 40, 58], they do

not directly apply in our setting of black-box audits of ad deliv-

ery algorithms due to two constraints. First, correction methods

assume inferred attributes or inference probabilities of individuals

are directly accessible at the time of model evaluation. Unfortunately
ad platforms report only aggregate data about ad recipients and

not per-individual data. We illustrate this challenge in Figure 1:

information about individuals is reserved for the platform (inside

the shaded box), while auditors see only the proposed targeted

audience (left circle) and aggregate results (below the shaded box).

Second, prior corrections for inference error focus on evaluating

group fairness metrics, such as Demographic Parity, and these do

not directly apply the paired-ads approach [16]. For ad delivery,

prior work shows that demographic parity for the delivery of a

single ad cannot demonstrate lack of bias; instead, auditors must

consider relative differences in delivery of pairs of ads [3, 28], as we
describe in §2.2. We expand on how our setting differs from prior

studies on mitigating effect of inference error in §3.3.

Our first contribution is to apply the use of inferred attributes

to black-box audit of ad delivery algorithms for skew that results

in discrimination (§5). While the effect of attribute inference error

has been studied in other domains [23, 24, 58], our work is the first

to consider it for the domain of black-box auditing of ad delivery,

where aggregate-only output and reliance on paired-ads requires

new approaches. We theoretically analyze and show how attribute

inference error can lead to underestimating measurement of skew

in ad delivery. Our findings show that attribute inference error in
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Figure 1: Decoupling between attribute inference step and evaluation of skew in black-box auditing of ad delivery algorithms.
Only aggregate size of demographic groups (no individual-level data) is available at the time of skew evaluation.

the constructed audience, if not explicitly accounted for, can lead

to failure to detect skew that exists in an ad delivery algorithm.

Second, we contribute an inference-aware approach to skew

evaluation that corrects for inference error (§6). We correct skew

evaluation by modeling how inference error rates propagate from

the targeted audience to the actual ad recipients. Our model of infer-

ence error then allows us to estimate error in the delivery audience,

and therefore in the evaluation of the platform’s algorithms for

potential skew. Our approach can be generalized to any attribute

inference method for which the inference error rates (defined in

§4.2) can be estimated on datasets with ground-truth demographics.

Our final contribution is to demonstrate that our inference-aware

evaluation is effective at detecting skew that we would otherwise

miss when ignoring inference error (§7). To validate our proposed

correction, we estimate inference error on a real-world population

and then use simulated ads to sweep through the space of parame-

ters that reflect different possible conditions. We show uncorrected

data can fail to detect skew when the sample size available is small

(§7.2) or when the true skew of the platform’s algorithm is small but

statistically significant (§7.3), two conditions that are common in

practice [28, 29]. We then apply our proposed solution to correctly

detect skew under these conditions. We use simulated ads to vary

the true level of skew, a capability that is not feasible with real ads,

and because exploring the full parameter space with real ads would

be prohibitively expensive [4, 28].

Our findings underscore that attribute-inference methods are

useful for detecting bias in ad delivery algorithms, but also that one

should account for inference error when applying these methods to

evaluate bias. Our proposedmethod for inference-aware bias evalua-

tion shows a path to expand auditing beyond a handful of U.S. states

whose voter records contain labeled demographic attributes [17].

This advance relaxes the limitation of prior bias evaluation to these

regions with demographic-rich voter datasets [3, 29, 31, 48]. It also

provides a pathway to audit disparities across other protected at-

tributes, such as gender or age, if inference probabilities can be

estimated. Moreover, our results suggests that the industry should

carefully account for inference error when applying bias-correction

methods to ad delivery, such as Facebook’s VRS [54].

2 MOTIVATION AND PROBLEM STATEMENT
In this work, we propose applying use of inferred demographic

attributes to paired-ads methodology from prior work for auditing

ad delivery algorithms. In this setting an auditor only has exter-

nal black-box access to an ad platform (see Figure 1). We focus on

paired-ads methodology because it is the state-of-the-art method

for auditing ad delivery that has been effective at uncovering algo-

rithmic harms to individuals and society [3, 4, 28, 29], supporting

regulatory actions against platforms [52], and pushing platforms to

mitigate biases in their systems [43, 54]. In this section, we motivate

and expand on why we focus on adapting this specific methodology

to use inferred demographic attributes.

2.1 Need for Black-box Audits of Ad Delivery
Black-box auditing has proved to be crucial for assessing harm

in how ad delivery algorithms shape access to information and

opportunities. By “black-box” we refer to a settingwhere the auditor

conducts an audit using only platform features available to any

regular advertiser.

Prior black-box audits of ad delivery algorithms have uncovered

biases and discrimination against protected demographic groups [3,

4, 28, 29, 47]. Starting with Sweeney’s study in 2013 [51], numerous

studies hypothesized biased or discriminatory outcomes can be a

result of platforms’ algorithmic decisions, and not the targeting

choicesmade by advertisers [18, 19, 32]. This hypothesis was proven

by Ali and Sapiezynski et al. by showing, via a black-box audit, that

delivery of job and housing ads are biased by gender and race, even

when an advertiser targets all demographic groups equally [3]. This

work served as a starting point for a DoJ lawsuit against Meta [53]

and motivated a subsequent study that demonstrated the bias in

job ad delivery can not be explained by differences in qualification

of ad recipients [28]. Other follow-up studies showed the harm

extends to other societally important domains such as politics [4],

education [29], and climate[47]. Given the far reaching effects of

such harms, continued improvement of black-box auditing methods

such as the one we propose in this work is an important step for

keeping platforms accountable.
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2.2 Need for Paired-Ads Approach
One technical challenge black-box auditors face is definitively at-

tributing biased ad delivery to platforms’ algorithms as opposed

to market effects, differences in who is online, or other potential

confounding factors. For example, an ad may be delivered to less

fraction of women than men because women are more expensive

to reach [19, 32]. Using paired-ads is a state-of-the-art method-

ology that has proven to be important for controlling for such

factors [3, 4, 28, 29], and therefore, is key to the uniqueness of

the setting we study. Conclusively demonstrating that platform-

driven algorithmic decisions are the root cause of biased ad delivery

is important for informing regulators tasked with enforcing anti-

discrimination laws [18].

In this methodology, an auditor runs a pair of ads targeting the

same audience and at the same time. The auditor selects the paired
ads based on some de-facto skew that the auditor hypothesizes

the ad delivery algorithm will propagate. For example, one may

select ads for two jobs predominantly occupied by men and women,

respectively, and hypothesize that a biased algorithm will show

the ad for the predominantly men-occupied job to relatively more

men, and vice-versa for the second ad. The auditor tests for bias by

comparing the relative difference in how the two ads are delivered.

This setup, first proposed by Ali and Sapiezynski et al. [3], is

the only known approach to date to isolate the role of ad delivery

algorithm for discrimination. It controls for other confounding

factors, such as market effects and differences in platform usage,

by ensuring both ads are affected equally such that any relative

difference between the two ads is attributable to choices made by

the ad delivery algorithm. Prior audits that did not rely on a paired-

ads approach did not control for such relevant factors [32, 51], and

therefore, were not sufficient to be used by regulators to bring

discrimination claims against platforms. Platform-driven biases

uncovered through the pared-ads approach ultimately led to the

first successful legal action against Meta that led to the deployment

of VRS [53, 54].

One constraint to widely applying the paired-ads methodology

is it requires knowing the demographic attributes of ad recipients,

which may not be available to auditors. To address this challenge,

we explore the feasibility of using inferred attributes for conducting

ad delivery audits using paired-ads approach. We next discuss prior

work related to the approach we study.

3 RELATEDWORK
Lack of access to demographic attributes, particularly those that can

be deemed sensitive, such as race, gender, religion, disability status

poses a challenge to auditing methods trying to assess algorithmic

disparities based on protected characteristics [5, 12, 27]. A recent

report led by the Center for Democracy and Technology highlights

the challenge remains despite increasing push by governments and

policymakers to assess algorithmic systems for bias, and summa-

rizes the various methodologies that practitioners currently use,

such as collection and inference of attributes [11].

3.1 Collecting Demographic Attributes
In the context of black-box auditing ad delivery algorithms, col-

lecting demographics from voter datasets is a commonly used ap-

proach [3, 28, 29, 31, 50]. Other options, such as collecting data

from volunteers [44], have been tried but have not gained as much

traction as the voter datasets approach (the latter are available at a

lower cost and are easily accessible). However, there are only a few

states in the U.S. whose publicly available voter datasets contain

demographic attributes such as race [17].

Platforms conducting internal audits of their algorithmic sys-

tems can request users to voluntarily self-identify their race to

support fairness efforts, as seen with Meta and LinkedIn [2, 35].

However, many platforms choose not to collect race information at

account creation due to privacy concerns and the potential misuse

of data [2]. Other platforms such as Apple have used federated

approaches to analyze demographic data on users’ devices to avoid

centrally collecting data [55]. Our work focuses on external black-

box auditing without access to self-identified demographic data

collected by platforms.

3.2 Inferring Demographic Attributes
Another common approach is to infer demographics when external

data sources or self-identification is not possible. BISG is a com-

monly used method for inferring race from name and location [21],

and has been applied to examine disparities in lending [9, 13],

healthcare [1], tax auditing [23], mortgage pricing [57], and human-

mobility [39]. Other studies have proposed transfer learning from

domains for which demographic data is already available [6, 30], or

using machine-learning to infer attributes [15, 40]. Another method

infers gender from first name [36]. Airbnb uses human labeling

to infer perceived race from names and photos of users, and uses

inferred race to measure racial discrimination against its users [10].

LinkedIn infers user age from graduation dates, and gender from

first names and pronouns, but they do not disclose details of their

mechanism [34]. We too infer demographics, but are the first to

explore its use for black-box audit of ad delivery.

More closer to our work is the use of BISG to evaluate racial dis-

parity in Meta’s VRS [2]. Following a historic settlement between

Meta and the U.S. Department of Justice [52], Meta agreed to imple-

ment VRS to address unfairness in the delivery ads for economic

opporunities [54]. The system was originally deployed for housing

ads in January 2023, and later that year for employment and credit

ads [7]. Meta employs BISG to estimate the racial composition of

the delivery audience of an ad and make adjustments accordingly.

While Meta’s publication acknowledges BISG’s misclassification

rate, it is not clear if their VRS implementation considers such er-

ror, and their paper does not explicitly consider it. Unlike Meta’s

internal evaluation, we explore how to factor inference error in

external black-box auditing of ad delivery, providing a method to

account for inference error.

Effects of Ignoring Inference Error: Although tools to in-

fer demographics such as race and gender are widely used, they

are known to have high misclassification rates [6, 37]. Prior stud-

ies have shown that uncertainty in demographic attributes may

lead to inaccuracy in both building fair algorithms [45, 49] and

measuring demographic disparities [9, 16]. Another study used

inferred race in fair-ranking algorithms, and showed inference pro-

duces unfair rankings by skewing the demographics represented in

the top-ranked results unless the race inferences are highly accu-

rate [25]. Rieke et al. also show that race inference methods lead to

significant error in the magnitude of estimates of racial disparities
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among Uber users, either underestimating or overestimating these

disparities [46]. However, they demonstrate the methods may still

be useful in detecting the direction of disparity. In our work, we

also show ignoring inference error can lead to underestimating

skew in ad delivery. We additionally propose a method to correct

for inference error for the paired-ads approach.

3.3 Mitigating Effect of Error in Demographic
Attributes

A number of studies have proposed methods to correct for infer-

ence error when estimating algorithmic disparities, but they do not

apply to our restricted setting of black-box auditing ad delivery

using paired-ads. Our setting has two unique constraints. First, only

aggregate data is available during model evaluation, as illustrated

in Figure 1. The auditor does not have access to the individual-level

uncertainty of attributes that most approaches rely on for model

evaluation. Second, because our method relies on evaluating rela-

tive differences between a pair of ad campaigns, one cannot apply

standard group fairness metrics on a single ad to evaluate bias.

In a line of work that studies the effect of inference error on

algorithmic audits, Chen et al. derives the statistical bias in estimat-

ing algorithmic disparity using inferred demographic attributes for

one group fairness metric: demographic disparity [16]. Wastvedt

et al. generalizes their approach to extend to other popular group

fairness notions [56]. The statistical bias they demonstrate moti-

vates the need to account for inference error in our work. However,

their specific analysis based on group fairness metrics does not

apply to our specific setting that evaluates the relative difference in

delivery between two ads. One cannot test a group fairness metric

on a single ad to evaluate bias in ad delivery due to confounding

factors (see §2.2).

Another group of work proposes methods to correct for infer-

ence error when evaluating algorithmic biases. Concurrent to our

work, two working papers propose a method to estimate disparities

while adjusting for noise in inferred demographic attributes [38, 40].

While the goal of these studies is similar to ours, they use an ap-

proach that relies on propagating the uncertainties in demographic

attributes to model evaluation. Elzayn et al. also use probabilities

of raw inference to bound the true racial disparity given estimates

based on inferred attributes [22, 23]. Ghazimatin et al. identifies

how true algorithmic disparity can be estimated using inferred

attributes, but unlike our setting, they focus on fairness in rank-

ing [24]. Zhu et al. propose using a family of demographic inference

methods to debias the estimate of true algorithmic disparity [58].

Compared to these studies, our work addresses the stricter require-

ments of black-box auditing, where only aggregate data is available

to the auditor during model evaluation. This requirement makes it

infeasible to apply corrections that track specific individuals, their

inferred attributes, and corresponding probabilities.

Another line of work studies how to build fair algorithms while

accounting for noise in demographic attributes. While these studies

consider similar models of noise in demographic attributes, they

address a different problem of training a fair algorithm instead

of auditing an existing algorithm. Fair-classification is one promi-

nent domain where noise-tolerant training algorithms have been

proposed [26]. Beyond fair-classification, other studies have ex-

plored the problem of noisy demographic attributes for fair subset-

selection [41] and fair-ranking [25, 42]. Lamy et al. proposes an

approach for fair-classification with noisy binary demographic

attributes that works by adjusting the desired “fairness tolerance”

based on estimates of noise in the attributes [33]. Celis et al. extends

noise-tolerant fair-classification to non-binary noisy demographic

attributes [14]. A related study by Awasthi et al. identifies specific

conditions for noise in demographic attributes under which a clas-

sifier’s fairness can be ensured [8]. These studies on noise-tolerant

fair-classification are similar to our work in that they consider the

effect of noisy demographic attributes and consider a group-level

noise model where the error in the attributes is the same for all indi-

viduals in a single (inferred) demographic group. But they consider

group fairness metrics that cannot be directly applied to black-box

auditing ad delivery where disparity is measured using aggregate

data and by looking at relative performance of a pair of ads.

4 ADAPTING PAIRED-AD AUDITING TO USE
INFERRED RACE

Our approach combines paired-ad auditing with inferred demo-

graphics. We cannot then simply infer demographic attributes and

use the auditing result as-is, since inference methods are known to

have error. We therefore next build a model of inference error and

how that error propagates through to skew evaluation.

4.1 Auditing with True Demographic Attributes
Before considering inference error, we first discuss from prior work

the simpler case of conducting an audit using true demographic

attributes. Let set 𝐴 represent the audience of various demographic

groups targeted by the auditor. The auditor runs a pair of ads (ad #1

and #2) targeting the same audience𝐴 constructed using true demo-

graphic attributes. Set 𝐴 does not necessarily need to contain equal

numbers of individuals from the different demographic groups;

prior work provides a method to account for such variation [3].

However, auditors typically target audiences where the population

is approximately equal by race to avoid discrimination in targeting.

Platforms report aggregate information about ad impressions

of the ads run by the auditor providing factors such as their distri-

bution by location, but not demographic attributes. We therefore

assume an auditor determines the true demographic attributes of

ad recipients by constructing audiences so that location reports

correspond to demographic attributes (prior work provides an ex-

ample of such constructions in practice [3, 28]; we omit this detail

in the rest of this paper).

We next introduce notation for ad delivery statistics when the

auditor targets using true demographic attributes. For concreteness,

we consider race as the attribute of interest. Let 𝑛
1,𝑏,𝑡 and 𝑛1,𝑤,𝑡

represent the users that saw the first ad and are Black and White,

respectively. As summarized in Table 1, we use the subscript ‘*” as a

placeholder to indicate the type of attribute (For example, 𝑡 denotes

we are using true race). One can define the corresponding terms

for the second ad (𝑛
2,𝑏,𝑡 , 𝑛2,𝑤,𝑡 ).

For an attribute other than race, “b” and “w” can represent the

disadvantaged and advantaged demographic groups, respectively,

that are relevant for that attribute. We consider the ad being ad-

vertised is for a valuable economic opportunity such as housing,
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education, or employment. Therefore, our concern is that the plat-

form’s algorithms will underrepresent the disadvantaged group in

the delivery audience.

We apply a Z-test for difference in proportions to test whether

there is statistically significant difference between the fraction of

Black individuals that saw each ad.We define the test as:ZTEST (𝑛
1,𝑏,∗,

𝑛1,𝑤,∗, 𝑛2,𝑏,∗, 𝑛2,𝑤,∗), which takes the ad delivery statistic for the

two ads and outputs a Z-test statistic. We also pick a level of sig-

nificance 𝛼 (typically, 0.05), determine the corresponding critical

value of 𝑍𝛼 from the Z-table for standard normal distribution, and

conclude that there is a statistically significant racial skew in the

ad delivery algorithm if the test statistic is greater than 𝑍𝛼 .

When targeting with true race, we calculate the test statistic (𝑍𝑡 )

by using the ad delivery statistic based on true race:

𝑍𝑡 = ZTEST (𝑛
1,𝑏,𝑡 , 𝑛1,𝑤,𝑡 , 𝑛2,𝑏,𝑡 , 𝑛2,𝑤,𝑡 ) (1)

We next describe the details of the statistical test (ZTEST ). While

Equation 1 shows how we apply it when targeting with true race,

we later use the same test for when we target with inferred race

(§4.3). In describing the test below, we use “Black” and “White”

generically; they could refer to true or inferred race depending

which case we are operating in.

We first calculate the fraction of Black users that saw each ad

as: 𝑠
1,𝑏,∗ =

𝑛1,𝑏,∗
𝑛1,𝑏,∗+𝑛1,𝑤,∗

and 𝑠
2,𝑏,∗ =

𝑛2,𝑏,∗
𝑛2,𝑏,∗+𝑛2,𝑤,∗

. We then compare

𝑠
1,𝑏,∗ and 𝑠2,𝑏,∗ and evaluate whether there is statistically significant
racial skew in ad delivery. In the absence of a skewed ad delivery

algorithm, we expect: 𝑠
1,𝑏,∗ = 𝑠

2,𝑏,∗. We use 𝐷∗ to represent the

skew in ad delivery, which is the difference between 𝑠
1,𝑏,∗ and 𝑠2,𝑏,∗:

𝐷∗ = 𝑠
2,𝑏,∗ − 𝑠

1,𝑏,∗ Our null hypothesis is that 𝐷∗ = 0, and the

alternate hypothesis is 𝐷∗ > 0. We calculate the test-statistic as

follows:

ZTEST (𝑛
1,𝑏,∗, 𝑛1,𝑤,∗, 𝑛2,𝑏,∗, 𝑛2,𝑤,∗) =

𝐷∗
SE∗

(2)

where SE∗ =
√︂
𝑠𝑏,∗ (1 − 𝑠𝑏,∗)

(
1

𝑛1,∗
+ 1

𝑛2,∗

)
, 𝑛1,∗ = 𝑛

1,𝑏,∗ + 𝑛1,𝑤,∗ and

𝑛2,∗ = 𝑛
2,𝑏,∗ + 𝑛2,𝑤,∗ and 𝑠𝑏,∗ is the fraction of the disadvantaged

group in combined set of all people that saw at least one of the two

ads: 𝑠𝑏,∗ =
𝑛1,𝑏,∗+𝑛2,𝑏,∗
𝑛1,∗+𝑛2,∗

.

4.2 Inference Error in Audience Construction
We next define the error rates for an ad audience constructed using

inferred attributes. For simplicity, we consider three categories of

race: White, Black, and Other. Exploration of more complicated

models (such as those using more categories) is future work.

We consider a constructed audience 𝐴, selected by the auditor

to consist of inferred White and Black people. Some individuals

inferred as Black might not actually be Black. The upper box of

Figure 2 illustrates this error. The box represents Black-inferred
population, but some are other races—here it is the bottom row

of orange diamond and blue triangles. We define the False Discov-
ery Rate for Black individuals, or FDR∗,𝑏 , as the ratio non-Black

individuals in this Back-inferred population. Since we consider

only three categories of race (“Black”, “White”, and “Other”), this

error is a sum of the ratio of White individuals (FDR𝑤,𝑏 ; orange

diamonds) and “Other” individuals (FDR𝑜,𝑏 ; blue triangles) among

18 inferred as Blacks

18 inferred as Whites

Legend: True Race
Black
White
Other

Audience A

18 inferred as Others

18 inferred as Blacks
18 inferred as Whites
18 inferred as Others

Figure 2: An illustration of how False Discovery Rates are
calculated for an audience constructed with inferred race.
All values shown are fractions of individuals.

the Black-inferred population. We analogously define False Discov-

ery Rates for White (FDR∗,𝑤 ) and “Other” (FDR∗,𝑜 ) individuals, as
illustrated in the middle and bottom box of the figure, respectively.

The relationship between the different rates is given by:

FDR∗,𝑏 = FDR𝑤,𝑏 + FDR𝑜,𝑏
FDR∗,𝑤 = FDR𝑏,𝑤 + FDR𝑜,𝑤
FDR∗,𝑜 = FDR𝑏,𝑜 + FDR𝑤,𝑜

(3)

4.3 Evaluating Skew using Inferred Attributes
To evaluate the effect of inference error on skew evaluation, we

define the test statistic that an auditor computes according to in-

ferred race. We then describe the parameters and assumptions we

use when evaluating the effect of inference error.

We introduce 𝑍𝑖 as the test statistic an auditor computes from

an audience that is targeted using inferred race. Let 𝑛
1,𝑏,𝑖 and 𝑛1,𝑤,𝑖

represent the number of inferred Blacks and inferred Whites that

saw the first ad. Let 𝑛1,𝑖 = 𝑛
1,𝑏,𝑖 + 𝑛1,𝑤,𝑖 . We define 𝑛2,𝑖 , 𝑛2,𝑏,𝑖 and

𝑛2,𝑤,𝑖 similarly for the second ad. While 𝑛1,𝑖 and 𝑛2,𝑖 contain in-

ferred Blacks and Whites, due to inference error, they may actually

contain a mix of true Blacks (𝑛
1,𝑏,𝑡 ), true Whites 𝑛1,𝑤,𝑡 , and true

Others (𝑛1,𝑜,𝑡 ). By applying Equation 2, the test statistic for racial

skew in ad delivery when targeting with inferred race is given by:

𝑍𝑖 = ZTEST (𝑛
1,𝑏,𝑖 , 𝑛1,𝑤,𝑖 , 𝑛2,𝑏,𝑖 , 𝑛2,𝑤,𝑖 ) (4)

Parameters and Assumptions: We use the following parame-

ters and assumptions in our analysis of inference error:

Targeted Audience Composition: We set the target audience 𝐴 to

contain equal number of individuals from each demographic group.

This choice in our experimental design follows standard practice in

prior ad delivery audits [3, 28]. Therefore, when targeting with true
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race, the following holds: 𝑎𝑤,𝑡 = 𝑎𝑏,𝑡 =
|𝐴 |
2
, and when targeting

with inferred race, the following applies: 𝑎𝑤,𝑖 = 𝑎𝑏,𝑖 =
|𝐴 |
2
.

Inference accuracy: We model inference error by assuming error

is exactly some expected rate, so the true racial composition of the

audience with inferred race multiplied by the error terms defined

in §4.2.

Modeling Skew in Ad Delivery: We assume ads are delivered to

a fixed fraction, 𝑅, of the audience. An algorithmic skew will alter

this rate in favor of one demographic group.

We add a parameter 𝑆 to model skew introduced by the delivery

algorithm; 𝑆 = 1 means the algorithm has no skew, 𝑆 < 1 means

it delivers fewer ads to the disadvantaged group (𝑏), 𝑆 > 1 means

means it over-delivers to the disadvantaged group (𝑏). When the

ad being advertised is for an economic opportunity, such as a job

for which equal access is important, we consider the algorithm

as discriminatory if delivery is biased against the disadvantaged

group (𝑆 < 1). If the ad is considered harmful to users, in which

case we consider delivery that is biased towards a disadvantaged

group (𝑆 > 1) to be discriminatory. In this work, we focus on the

former scenario where the ad is for an economic opportunity.

We instantiate the above model of skew for race where we con-

sider Black individuals as the disadvantage group. We assume the

algorithm makes decisions on the basis of true race (in practice,

ad delivery algorithms likely do not explicitly use the race but

may have models that have learned proxies of race based on the

extensive data they have on users).

We expect the two ads to show different skews, and so model

the first ad as skewed against Blacks (𝑆 < 1) and the second as not

(𝑆 = 1). This model reflects a first ad that reflects a racial bias that

is captured by the platform’s algorithms, causing skewed delivery.

We assume the ad creative chosen for the second ad is neutral. Prior

work shows a real-world example that reflects this assumption,

where an ad for Hip-Hop music (expected to be skew Black) and a

general ad for music (expected to be neutral) are compared [3].

Formally, 𝑆 is a multiplier representing increased or decreased

delivery rate of the first ad: 𝑅 · 𝑆 for true Blacks, and 𝑅 · (2 − 𝑆) for
true Whites. We assume 0 < 𝑆 < 2, where 𝑆 = 1 represents a case

where there is no racial skew. For simplicity, we also assume the

delivery rate for Whites also applies to people of “Other” race who

are included in the target audience. For example, if 𝑅 = 0.1 and

𝑆 = 0.87, then the delivery rate for true Blacks for the first ad will

be 0.87 · 0.1 = 0.087 and the rate for true Whites and “Others” for

the first ad will be 1.13 · 0.1 = 0.113. The rate for all races does not

change for the second ad and remains at 0.1. We round the number

of impressions to integers after applying the delivery rate.

5 EFFECTS OF ATTRIBUTE ESTIMATION ON
AUDITING AD DELIVERY

We next show that using inferred attributes to evaluate ad deliv-

ery algorithms can underestimate the true level of skew and thus

miss detection of algorithm-induced skew. Although the details

of our analysis are specific to race, evaluations for other inferred

demographics can follow an analogous path.

We show how inference error can affect evaluation of skew in

ad delivery through two theorems. In Theorem 5.1, we consider a

baseline case where there is no algorithmic skew and, as a result,

Number of Blacks targeted 𝑎𝑏,∗
Whites 𝑎𝑤,∗
Others 𝑎𝑜,∗

Total number of people seeing ad 1 𝑛1,∗
ad 2 𝑛2,∗

Number of Blacks seeing ad 1 𝑛
1,𝑏,∗

Whites ad 1 𝑛1,𝑤,∗
Others ad 1 𝑛1,𝑜,∗
Blacks ad 2 𝑛

2,𝑏,∗
Whites ad 2 𝑛2,𝑤,∗
Others ad 2 𝑛2,𝑜,∗

Fraction of Blacks who saw ad 1 𝑠
1,𝑏,∗

Blacks ad 2 𝑠
2,𝑏,∗

Skew between ads 𝐷∗
Test statistics 𝑍∗

Table 1: Notations for measurement of skew in ad delivery.
The “*” in each is a placeholder for an audience with: 𝑡 : true
race; 𝑖: inferred race, ignoring inference error; 𝑐: inferred
race with omniscient correction; 𝑓 : inferred race with our
solution to accounts for expected inference error.

inference error does not affect evaluation of skew. In Theorem 5.2,

we consider a case with known amount of skew. We show that

measuring skew using inferred attributes underestimates the algo-

rithm’s true skew, had it been measured using true demographic

attributes. These results apply for any attribute inference method

with known error rates (FDR∗,∗ defined in §4.2), and assume the

specific behavior of skew described in §4.3. Together, these results

support our claim that attribute inference must be used carefully

with consideration for how inference error affects evaluation of

skew in ad delivery algorithms.

5.1 First Case: No Algorithmic Skew
We first consider a simple case where there is no algorithmic skew.

In this case, we show that measuring skew using inferred demo-

graphic attributes does not affect our conclusion of skew:

Theorem 5.1. If an ad delivery algorithm is not skewed by a
protected demographic attribute (𝑆 = 1), inference error does affect
the measurement of skew in ad delivery. Specifically, the skew an
auditor measures is 0 in both cases where the auditor targets using
true attributes (𝐷𝑡 = 0) and inferred attributes (𝐷𝑖 = 0).

The theorem shows that when is no ad delivery skew, measure-

ment of skew (𝐷𝑖 = 0) is correct regardless of inference error. We

prove the theorem in §5.3, and, in §A.2, illustrate this case in a

thought experiment. We find that inference error affects both ads

equally, and because we measure skew as relative difference in de-

livery between the ads, we see no overall change in our conclusion.

5.2 Second Case: Skew is Underestimated
In a second case, we add a known amount of algorithmic skew

and analyze how it affects measurement of skew in ad delivery.

We show that, if the ad delivery algorithm is skewed, measuring

skew using inferred attributes underestimates the true skew in the

algorithm.
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Theorem 5.2. If an ad delivery algorithm is skewed by a protected
demographic attribute (𝑆 ≠ 1), the skew that an auditor measures by
targeting using inferred attributes (𝐷𝑖 ) underestimates the true skew
one would measure using true attributes (𝐷𝑡 ): |𝐷𝑖 | < |𝐷𝑡 |.

We prove the result in §5.3, and in §A.2, we provide a concrete ex-

ample where underestimation hides a skew that exists by making it

appear as statistically insignificant. The intuition behind this result

is that inference error always pushes towards a neutral outcome,

reducing how much skew is observed. This intuition follows from

our test process with paired ads: skew is maximized by targeting

audiences using true race. Targeting with inferred race produces

an actual audience composed of a mix of races. Because we assume

algorithm skew operates on true race, the effect of the algorithmic

skew is reduced because it only applies to a subset of the mixed au-

dience that matches the true demographic attribute. This claim, that

error only underestimate skew, is a contrary to our initial assump-

tion that error could both hide or exaggerate skew. We developed

this intuition from examples in Appendix A.

This result demonstrates that auditing ad delivery algorithms for

bias using inferred attributes can underestimate true level of racial

bias, |𝐷𝑖 | < |𝐷𝑡 |. If demographics are inferred, one must consider

how error may change their use. This result also suggests that use

of attribute inference in real-world applications, such as Meta’s

VRS [54] should be examined closely. Because our methodology is

quite different than their application (we use paired ads and they

do not, for example), further examinations are future work.

5.3 Proofs: Theorem 5.1 and Theorem 5.2
Proof of Theorem 5.1: In this proof, we show that inference error

has no effect on auditing if there is no true underlying skew in the

ad delivery algorithm.

Proof. We derive and compare the skew that an auditor mea-

sures when the targets audience 𝐴 is constructed using true and

inferred demographic attributes.

First, we first consider a case where 𝐴 is constructed using true

race. Based on our setup in §4.1, we know 𝐷𝑡 = 𝑠
2,𝑏,𝑡 − 𝑠

1,𝑏,𝑡 , where

𝑠
1,𝑏,𝑡 =

𝑛1,𝑏,𝑡

𝑛1,𝑏,𝑡+𝑛1,𝑤,𝑡
𝑠
2,𝑏,𝑡 =

𝑛2,𝑏,𝑡

𝑛2,𝑏,𝑡+𝑛2,𝑤,𝑡
.

The platform’s report the number of true Black and White indi-

viduals that see each of the ads (𝑛
1,𝑏,𝑡 , 𝑛1,𝑤,𝑡 , 𝑛2,𝑏,𝑡 , 𝑛2,𝑤,𝑡 ) individ-

uals that see the ad. We can write these quantities using the racial

composition of the targeted audience (𝑎𝑏,𝑡 and 𝑎𝑤,𝑡 ), the delivery

rate (𝑅) and the skew in the ad delivery algorithm (𝑆):

𝑛
1,𝑏,𝑡 = 𝑎𝑏,𝑡 · 𝑅 · 𝑆

𝑛
2,𝑏,𝑡 = 𝑎𝑏,𝑡 · 𝑅

𝑛1,𝑤,𝑡 = 𝑎𝑤,𝑡 · 𝑅 · (2 − 𝑆)
𝑛2,𝑤,𝑡 = 𝑎𝑤,𝑡 · 𝑅

(5)

Using the fact that our audience 𝐴 contains equal number of

true Black and true White individuals: 𝑎𝑤,𝑡 = 𝑎𝑏,𝑡 =
|𝐴 |
2
, we can

now derive the fraction of true Black individuals that see each ad

as follows:

𝑠
1,𝑏,𝑡 =

𝑛
1,𝑏,𝑡

𝑛
1,𝑏,𝑡 + 𝑛1,𝑤,𝑡

=
𝑎𝑏,𝑡 · 𝑅 · 𝑆

(𝑎𝑏,𝑡 · 𝑅 · 𝑆) + (𝑎𝑤,𝑡 · 𝑅 · (2 − 𝑆))

=
𝑎𝑏,𝑡 · 𝑆

(𝑎𝑏,𝑡 · 𝑆) + (𝑎𝑤,𝑡 · (2 − 𝑆))

=

|𝐴 |
2

· 𝑆

( |𝐴 |
2

· 𝑆) + ( |𝐴 |
2

· (2 − 𝑆))

=
𝑆

𝑆 + (2 − 𝑆) =
𝑆

2

𝑠
2,𝑏,𝑡 =

𝑛
2,𝑏,𝑡

𝑛
2,𝑏,𝑡 + 𝑛2,𝑤,𝑡

=
𝑎𝑏,𝑡 · 𝑅

(𝑎𝑏,𝑡 · 𝑅) + (𝑎𝑤,𝑡 · 𝑅)

=
𝑎𝑏,𝑡

(𝑎𝑏,𝑡 ) + (𝑎𝑤,𝑡 )

=

|𝐴 |
2

|𝐴 |
2

+ |𝐴 |
2

=
1

2

(6)

Plugging in 𝑆 = 1, 𝐷𝑡 = 𝑠
2,𝑏,𝑡 − 𝑠

1,𝑏,𝑡 =
1

2
− 𝑆

2
= 1

2
− 1

2
= 0.

We next consider the case where an auditor targets an audience

𝐴 constructed using inferred race and show 𝐷𝑖 = 0.

In this case, the report from the platform gives us the number of

inferred Black and White individuals that see each of the ads (𝑛
1,𝑏,𝑖 ,

𝑛1,𝑤,𝑖 , 𝑛2,𝑏,𝑖 , 𝑛2,𝑤,𝑖 ) individuals that see the ad. We can write these

quantities using the racial composition of the targeted audience

(𝑎𝑏,𝑡 and 𝑎𝑤,𝑡 ), the error rates of the attribute inference method,

the delivery rate (𝑅) and the skew in the ad delivery algorithm 𝑆 :

𝑛
1,𝑏,𝑖 = 𝑎𝑏,𝑖 · (1 − FDR∗,𝑏 ) · 𝑅 · 𝑆

+ 𝑎𝑏,𝑖 · FDR𝑤,𝑏 · 𝑅 · (2 − 𝑆)
+ 𝑎𝑏,𝑖 · FDR𝑜,𝑏 · 𝑅 · (2 − 𝑆)
= 𝑅 · 𝑎𝑏,𝑖

[
𝑆 · (1 − FDR∗,𝑏 ) + (2 − 𝑆) · (FDR𝑤,𝑏 + FDR𝑜,𝑏 )

]
= 𝑅 · 𝑎𝑏,𝑖

[
𝑆 · (1 − FDR∗,𝑏 ) + (2 − 𝑆) · (FDR∗,𝑏 )

]
(7)

𝑛1,𝑤,𝑖 = 𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · 𝑆
+ 𝑎𝑤,𝑖 · (1 − FDR∗,𝑤) · 𝑅 · (2 − 𝑆)
+ 𝑎𝑤,𝑖 · FDR𝑜,𝑤 · 𝑅 · (2 − 𝑆)
= 𝑅 · 𝑎𝑤,𝑖

[
𝑆 · (FDR𝑏,𝑤) + (2 − 𝑆) · (1 − FDR∗,𝑤 + FDR𝑜,𝑤)

]
= 𝑅 · 𝑎𝑤,𝑖

[
𝑆 · (FDR𝑏,𝑤) + (2 − 𝑆) · (1 − FDR𝑏,𝑤

]
(8)

We can now derive the fraction of inferred Black individuals

that see each ad as follows. From our setup, we know that the

audience 𝐴 contains equal number of inferred Black and inferred

White individuals: 𝑎𝑤,𝑖 = 𝑎𝑏,𝑖 =
|𝐴 |
2
.
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𝑠
1,𝑏,𝑖 =

𝑛
1,𝑏,𝑖

𝑛
1,𝑏,𝑖 + 𝑛1,𝑤,𝑖

=

[
𝑆 · (1 − FDR∗,𝑏 ) + (2 − 𝑆) · (FDR∗,𝑏 )

][
𝑆 · (1 − FDR∗,𝑏 ) + (2 − 𝑆) · (FDR∗,𝑏 )

]
+
[
𝑆 · (FDR𝑏,𝑤) + (2 − 𝑆) · (1 − FDR𝑏,𝑤

]
𝑠
2,𝑏,𝑖 =

𝑛
2,𝑏,𝑖

𝑛
2,𝑏,𝑖 + 𝑛2,𝑤,𝑖

=
(1 − FDR∗,𝑏 ) + (FDR∗,𝑏 )

(1 − FDR∗,𝑏 ) + (FDR∗,𝑏 ) + (FDR𝑏,𝑤) + (1 − FDR𝑏,𝑤)

=
1

1 + 1

=
1

2

(9)

Plugging in 𝑆 = 1:

𝑠
1,𝑏,𝑖 =

(1 − FDR∗,𝑏 ) + FDR∗,𝑏
(1 − FDR∗,𝑏 ) + FDR∗,𝑏 + (FDR𝑏,𝑤) + (1 − FDR𝑏,𝑤

=
1

1 + 1

=
1

2

Therefore, 𝐷𝑖 = 𝑠
2,𝑏,𝑖 − 𝑠

1,𝑏,𝑖 =
1

2
− 1

2
= 0 = 𝐷𝑡 .

□

Proof of Theorem 5.2: We next present our proof for Theo-

rem 5.2 that shows ignoring inference error leads to underestimat-

ing skew.

Proof. To show |𝐷𝑖 | < |𝐷𝑡 |, we consider two cases: when 𝐷𝑡 >

0, we show 𝐷𝑖 < 𝐷𝑡 ; when 𝐷𝑡 < 0, we show 𝐷𝑖 > 𝐷𝑡 .

Case 1 (𝐷𝑡 > 0): we would like to show 𝐷𝑖 < 𝐷𝑡 . Plugging the

definition of 𝐷 in §4.1, we want to show: 𝑠
2,𝑏,𝑡 −𝑠1,𝑏,𝑡 > 𝑠

2,𝑏,𝑖 −𝑠1,𝑏,𝑖 .
From Equation 6 and Equation 9, we know 𝑠

2,𝑏,𝑡 = 𝑠
2,𝑏,𝑖 =

1

2
, so they

cancel out. We are then left with showing 𝑠
1,𝑏,𝑖 −𝑠1,𝑏,𝑡 > 0. Plugging

in the expressions we derived in Equation 6 and Equation 9:

𝑠
1,𝑏,𝑖 − 𝑠

1,𝑏,𝑡 =

©­­­­«
[
𝑆 · (1 − FDR∗,𝑏 ) + (2 − 𝑆) · (FDR∗,𝑏 )

][
𝑆 · (1 − FDR∗,𝑏 ) + (2 − 𝑆) · (FDR∗,𝑏 )

]
+
[
𝑆 · (FDR𝑏,𝑤) + (2 − 𝑆) · (1 − FDR𝑏,𝑤)

]
ª®®®®¬
− 𝑆

2

> 0

For brevity, we define the following symbols: 𝑝 = FDR∗,𝑏 and

𝑞 = FDR𝑏,𝑤 . After rearranging the terms, the inequality is then

given by:

(𝑆 − 1) · ((𝑝 · (𝑆 − 2)) − 𝑞 · 𝑆)
(𝑝 · (𝑆 − 1)) + (𝑞 · (−𝑆)) + (𝑞 − 1) < 0 (10)

To show the above inequality holds, we use the following:

0 ≤ 𝑆 < 1 because 𝐷𝑡 > 0

0 < 𝑝 ≤ 1 by definition of FDR∗,𝑏
0 < 𝑞 ≤ 1 by definition of FDR𝑏,𝑤

(11)

We prove Equation 10, by show the numerator and denominator

have opposite signs, because the numerator is positive and the

denominator is negative for all possible values of 𝑆 , 𝑝 and 𝑞.

Case 1a: We show (𝑆−1) · ((𝑝 · (𝑆−2)) −𝑞 ·𝑆) is positive because
both terms (𝑆 − 1) and ((𝑝 · (𝑆 − 2)) − 𝑞 · 𝑆 are negative. For the

first term, 𝑆 − 1 < 0 because, by Equation 11, we know 0 ≤ 𝑆 < 1.

For the second term, 𝑝 · (𝑆 − 2) < 0 because 𝑝 > 0 and 𝑆 − 2 < 0.

Finally, 𝑞 · 𝑆 ≥ 0 by Equation 11. Since we subtract a non-negative

term from a negative term, the result is always negative.

Case 1b: we show the denominator (𝑝 · (𝑆 − 1)) + (𝑞 · (−𝑆)) +
(𝑞 − 1) is negative. We can rearrange the expression and show

(𝑝 − 𝑞) (𝑆 − 1) < 1. From Equation 11, we know, for the first term,

−1 < 𝑝 −𝑞 < 1, and for the second term, −1 ≤ 𝑆 − 1 < 0. Therefore,

the product of the two terms (𝑝 − 𝑞) (𝑆 − 1) < 1 holds.

Therefore, we have shown Equation 10 holds because both the

numerator and denominator have opposite signs.

Case 2 (𝐷𝑡 < 0): we would like to show 𝐷𝑖 > 𝐷𝑡 . Following the

same steps we took for Case 1, we can derive the following inequal-

ity where the only difference from Equation 10 is the direction of

the inequality:

(𝑆 − 1) · ((𝑝 · (𝑆 − 2)) − 𝑞 · 𝑆)
(𝑝 · (𝑆 − 1)) + (𝑞 · (−𝑆)) + (𝑞 − 1) > 0 (12)

For this case, we know the following:

1 < 𝑆 ≤ 2 because 𝐷𝑡 < 0

0 < 𝑝 ≤ 1 by definition of FDR∗,𝑏
0 < 𝑞 ≤ 1 by definition of FDR𝑏,𝑤

(13)

To prove Equation 12, it suffices to show both the denominator

and numerator are negative for all possible values of 𝑆 , 𝑝 and 𝑞.

From Case 1, we already know the denominator is negative, so we

just show the numerator is negative.

To show the numerator (𝑆 − 1) · ((𝑝 · (𝑆 − 2)) −𝑞 · 𝑆) is negative,
we need to shown the terms (𝑆 − 1) and ((𝑝 · (𝑆 − 2)) − 𝑞 · 𝑆) have
opposite signs. By Equation 13, we know the first term 𝑆 − 1 > 0,

so we need to show the other term is negative. For the other term,

we know (𝑝 · (𝑆 − 2)) ≤ 0 because 𝑝 > 0 and 𝑆 − 2 ≤ 0. We also

know 𝑞 · 𝑆 > 0 by Equation 13. Therefore, we are subtracting a

positive number (𝑞 · 𝑆) from a number that is either negative or 0

(𝑝 · (𝑆 − 2)), resulting a negative term.

Therefore, |𝐷𝑖 | < |𝐷𝑡 | holds for both cases. □

6 INFERENCE-AWARE AUDITING FOR SKEW
Having shown that inference error can hide skew during auditing

(§5), we next suggest how to account for such error. The challenge

is that it is difficult to track how error propagates from the targeted

audience to the delivery audience because the fairness evaluation is

decoupled from the target audience (Figure 1). Detecting such prop-

agation is hard because platforms do not provide demographics of

specific ad recipients, only aggregate statistics. A second challenge

with modeling how inference error propagates to the delivery audi-

ence is that the parameters we use to model algorithmic skew (𝑆)

and the delivery rate (𝑅) are not known in practice.

Our insight for inference-aware skew evaluation, even with

limited ad delivery statistics, is that we can solve for 𝑅 and 𝑆 and

model how inference error propagates based on the aggregate data

that we get from the platform. We can then adjust our detection

sensitivity accordingly.

6.1 Modeling Propagation of Inference Error
In order to model how inference error propagates to ad delivery, we

first solve for 𝑅 and 𝑆 . The following theorem gives a closed-form

solution for both parameters (we prove the theorem in Appendix B).
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Theorem 6.1. Assumingwe can estimate FDRs of the race-inference
method based on a dataset with ground truth, the targeted audience
𝐴 is constructed so that it contains an equal number of inferred White
and inferred Black users, and assuming the specific behavior of skew
(described in §4.3), we can solve for the delivery rate (𝑅) and the
skew parameter (𝑆) as follows: 𝑅 = 𝑋𝑃−𝑀𝑌

𝑁𝑃−𝑀𝑄
and 𝑆 =

𝑋𝑄−𝑁𝑌
𝑀𝑌−𝑋𝑃

,

where 𝑀 =
|𝐴 |
2

− (|𝐴| · FDR∗,𝑏 ), 𝑁 = |𝐴| · FDR∗,𝑏 , 𝑋 = 𝑛
1,𝑏,𝑖 ,

𝑃 = 𝐴 · FDR𝑏,𝑤 − |𝐴 |
2
, 𝑄 = |𝐴| − |𝐴| · FDR𝑏,𝑤 , and 𝑌 = 𝑛1,𝑤,𝑖 .

Using 𝑅 and 𝑆 , we can model how inference error propagates

from the targeted audience to the delivery audience. As an example,

we describe below how the error rate propagates to the delivery

audience of the first ad.

Among those inferred as Black in the targeted audience (𝑎𝑏,𝑖 ),

we expect 𝑎𝑏,𝑖 · FDR𝑤,𝑏 people to actually be White. To know how

many of those White individuals see the first ad, we multiply their

expected number (𝑎𝑏,𝑖 · FDR𝑤,𝑏 ) by the delivery rate (𝑅) and the

skew applicable for White individuals (2 − 𝑆). We then divide the

resulting number by the total number of inferred Black individuals

that saw ad 1 (𝑛
1,𝑏,𝑖 ) to derive the ratio of individuals that areWhite,

which we denote by fdr𝑤,𝑏,1. Compared to the notation for targeted

audience, we use lower case “fdr” to represent error in the delivery

audience and an additional subscript (1 or 2) to indicate which ad:

fdr𝑤,𝑏,1 =
𝑎𝑏,𝑖 · FDR𝑤,𝑏 · 𝑅 · (2 − 𝑆)

𝑛
1,𝑏,𝑖

, (14)

We can apply a similar procedure to derive the other error

rates fdr𝑜,𝑏,1, fdr𝑏,𝑤,1, and fdr𝑜,𝑤,1. Similar to the error in the tar-

geted audience (Equation 3), we define the following notations

that represent the total ratio of ad recipients wrongly labeled as

Black (fdr∗,𝑏,1) or White (fdr∗,𝑤,1): fdr∗,𝑏,1 = fdr𝑤,𝑏,1 + fdr𝑜,𝑏,1 and
fdr∗,𝑤,1 = fdr𝑏,𝑤,1 + fdr𝑜,𝑤,1.

6.2 Correction Based on Expected Error
We next adjust ad delivery statistics using our model of how error

propagates. Our goal is to derive an estimate of the number of

true Black (𝑛
1,𝑏,𝑓 ) and White (𝑛

1,𝑤,𝑓 ) individuals that saw an ad

based on the number of inferred Black (𝑛
1,𝑏,𝑖 ) and White (𝑛1,𝑤,𝑖 )

individuals that saw the ad.

As summarized in Table 1, we use “𝑓 ” to denote the corrected

statistics we compute based on the expected inference error. Using

our model of how error propagates to ad delivery audience (§6.1),

we calculate the corrected ad delivery statistics as follows:

𝑛
1,𝑏,𝑓 = 𝑛

1,𝑏,𝑖 · (1 − fdr∗,𝑏,1) + 𝑛1,𝑤,𝑖 · fdr𝑏,𝑤,1

𝑛
1,𝑤,𝑓 = 𝑛

1,𝑏,𝑖 · fdr𝑤,𝑏,1 + 𝑛1,𝑤,𝑖 · (1 − fdr∗,𝑤,1)
𝑛
2,𝑏,𝑓 = 𝑛

2,𝑏,𝑖 · (1 − fdr∗,𝑏,2) + 𝑛2,𝑤,𝑖 · fdr𝑏,𝑤,2

𝑛
2,𝑤,𝑓 = 𝑛

2,𝑏,𝑖 · fdr𝑤,𝑏,2 + 𝑛2,𝑤,𝑖 · (1 − fdr∗,𝑤,2)

(15)

We then apply a hypothesis test for significance of skew in ad de-

livery using our corrected delivery statistics.We plug these values to

Equation 2, to calculate the test statistic for racial skew that accounts

for inference error: 𝑍 𝑓 = ZTEST (𝑛
1,𝑏,𝑓 , 𝑛1,𝑤,𝑓 , 𝑛2,𝑏,𝑓 , 𝑛2,𝑤,𝑓 ).

7 VALIDATION OF PROPOSED CORRECTION
Finally, we validate our proposed method for inference-aware skew

evaluation. We simulate various levels of skew in an ad delivery
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Figure 3: Left column shows the effect of sample size on
our inference-aware skew evaluation. Parameters: 𝑅 = 0.065,
ThBISG = 0.5, FDR𝑤,𝑏 = 0.4727, FDR𝑜,𝑏 = 0.030 FDR𝑏,𝑤 = 0.144,
FDR𝑜,𝑤 = 0.032. The right column shows the effect of BISG
inference error rates on our inference-aware evaluation. Pa-
rameters: 𝑅 = 0.065, |𝐴| = 30, 000. In both columns, as sample
size and BISG threshold increases (inference error decreases),
the red shaded region where inference error leads to hiding
skew that exists gets reduced.

algorithm and compare the outcome of evaluation with and without

correcting for error. We find that when the skew in the ad delivery

algorithm and the sample size available for auditing are both small,

inference error hides skew from the auditor as statistically insignif-

icant. In contrast, our inference-aware skew evaluation corrects

the expected size of each group in the delivery audience we ob-

tain, which reflects on the statistical tests on the delivery audience,

making detection possible even if skew is small.

We estimate inference error rates on a real-world population

and use simulated ads to sweep the parameter space and consider

how our proposed correction affects the evaluation of skew. We use

simulations for two reasons. First, in simulations we know ground

truth and so we can make strong statements on how inference error

affects outcomes, while ground truth is unknown or difficult to

obtain in real-world experiments. Second, simulation allows us to

sweep the parameters space to understand how sensitive our results

are to many possible conditions. Such wide exploration would be

expensive with paid, real-world advertisements, as shown in prior

work [4, 28].

7.1 Validation Methodology
Our validation methodology uses simulations where we sweep

the amount of skew (𝑆) through a wide range of possible values,

then consider how detectable the skew is through three different

statistics. The first statistic represents skew measured by targeting

with true race (Equation 1), and serves as ground truth for presence

of skew in the platform’s ad delivery algorithm. The other two

9



statistics are measured by building the target audience with inferred

race (Equation 4) and after adjusting for inference error (§6.2).

We instantiate the inference error rates defined in §4.2 by ap-

plying BISG to real-world voter datasets that contain name and

location. We use BISG because it is the a state-of-the-art method

for inferring race [21], but one can apply our approach for other

inference methods for which these error rates can be estimated.

For BISG, we assign a race when the inference probability ex-

ceeds a threshold. We denote this threshold by ThBISG . Another
common approach is to directly use the raw probabilities [16, 20],

but we use thresholding because we must construct audiences that

match specific racial demographics. In addition, since the platform

only provides aggregate results regarding to whom an adwas shown,

we cannot propagate the raw probabilities through to our evalua-

tion of potential skew.

The rate of inference error depends not only on the BISG method

but also on the audience it is measured on. It is important tomeasure

the error rate with respect to the same audience that will be used

in a real-world experiment because that is the error relevant for

the experiment. Here we measure the inference error using the

North Carolina dataset, which has previously been used to study

gender bias in the delivery of job ads [28]. However, researchers

using BISG or other algorithms should re-evaluate error for the

algorithm and location they study.

From the North Carolina voter dataset we take a sample of

100,000 individuals and apply BISG. We then calculate the inference

error rates over the sample population. For real-world experiments,

in general, these values will not be known, since any specific sam-

ple will vary randomly. However, this simplified model can help

demonstrate propagation of error. Here we consider only expected

error; we leave exploring variance of inference error as future work.

7.2 Varying Audience Size
We first evaluate how the sample size available for auditing affects

whether inference error leads to hiding skew that exists. For this

simulation, we vary the size of the targeted audience used for

auditing (|𝐴|) and compare the outcome of skew evaluationwith and

without correcting for inference error. We fix the level of inference

error to ThBISG = 0.5 and𝑅 = 0.065.We fix the BISG threshold to 0.5

to be consistent with VRS’s implementation of BISG [2]. 𝑅 = 0.065

also gives us the number of impressions per ad that is roughly

consistent with real-world delivery rates from prior work [28]. For

example, using the definitions in §4.3, at 𝑅 = 0.065, an audience

of size of 10, 000 and 30, 000 will result in approximately 650 and

2, 000 impressions, respectively.

From the left column of Figure 3, we find ignoring inference

error leads to missing skew when the targeted audience is small. In

each subfigure, the horizontal dotted line represents the threshold

for statistical significance. The red shaded region is the range of 𝑆

where we detect skew when targeting with true race (black dots are

above the line) but we fail to detect the skew when targeting with

inferred race but ignore inference error (red cross marks below the

line). If the skew we measure using our inference-aware method

(green circles) is above the horizontal line in the shaded region, it

indicates we successfully detect a skew that we would miss if we

do not correct for inference error.

As shown in the red-shaded region in Figure 3(a), when |𝐴| =
10, 000, ignoring inference error hides skew (red cross-marks be-

low the horizontal line) when 𝑆 is in approximately in the range

[0.74, 0.92]. In the same range, we see our solution correctly detects
skew (green circles above the horizontal line). The width of the

range decreases as we increase the audience size to |𝐴| = 30, 000

and |𝐴| = 60, 000, as shown in Figure 3(b) and Figure 3(c), respec-

tively. In Appendix D, we report the interval and width for larger

audience sizes for which we see a similar trend.

Therefore, using a larger audience can reduce error and increase
confidence in skew detection. However, one must consider the size

of the skew before reaching conclusions about harm. In addition,

increasing the audience size can be costly in practical scenarios

where access to data is limited, demonstrating our error correction

is a valuable tool.

7.3 Varying Level of Inference Error
We next evaluate how different levels of inference error rates lead

to missing skew that exists and show how our proposed correction

successfully detects the skew. We vary inference error by setting

the probability threshold we use for BISG (ThBISG ), and compare

the outcome of skew evaluation with and without correcting for

inference error. We fix |𝐴| = 30, 000 and 𝑅 = 0.065.

We vary inference error by setting ThBISG to 0.5, 0.7, and 0.9. We

start at 0.5 because it is the threshold used by Meta’s VRS [2], and

evaluate how skew detection improves as we increase the threshold.

Each part of the figure uses a specific BISG threshold. We fix the

targeted audience size to𝐴 = 30, 000 and𝑅 = 0.065. As the threshold

increases, the corresponding error rates either decrease or stay the

same. For example, FDR𝑤,𝑏 decreases from 0.47 to 0.38 when the

threshold changes from 0.5 to 0.7, respectively.

We find inference error is more likely to hide skew that exits

when we use a lower threshold (inference error is higher), as shown

in the right column of Figure 3. As shown in Figure 3(d), the width

of the shaded region where we miss skew is the largest when

ThBISG = 0.5. Figure 3(e) and Figure 3(f) show that the width

decreases as we increase the threshold to 0.7 and 0.9. In the shaded

regions, we see our inference-aware evaluation (green circles) are

above the horizontal line, showing we successfully detect skew.
Our result suggests we should also use a higher inference threshold

when possible. A higher threshold will increases confidence in the

results, but it does so by excluding individuals with names that

are not strongly correlated with race, so it also increases costs

in audience construction. Therefore, we must ensure the delivery

audience is large enough for statistical analysis after excluding

individuals that receive a low score.

8 CONCLUSION
We have shown the importance of considering error in inferred

demographics during black-box audits of ad delivery algorithms for

bias. Our proposal applies attribute inference to the unique setting

of the paired-ads method that remains a key black-box auditing

tool for keeping platforms accountable. This application differs

from prior studies that consider inference error when training

classifiers. Our analysis relies on only aggregate statistics, making it

applicable to black-box evaluation of ad delivery bias. This approach

differs from previous work that required individual-level data and,

10



therefore, was not applicable to black-box evaluation. By showing

how to account for inference error, we expand the auditing toolkit,

allowing evaluation of bias in ad delivery algorithms for domains

where demographic attributes are inaccessible. Our approach can

be extended to audit disparities across protected attributes beyond

race, such as gender or age, for which the inference methods can

be developed and error rates can be estimated using datasets with

ground-truth demographics.
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ror and without creating new privacy risks to individuals. Overall,

or work has a positive outcome by improving our understanding of

how to audit social media algorithms, and important part of today’s

Internet. It poses minimal risks for several reasons:

Our work poses no new privacy risks to individuals because our

input data is currently publicly available in existing voter datasets.

Additionally, our approach does not involve collecting individual-

level identifiers as platforms report only aggregate information

about ad recipients. In cases where the GDPR applies, inferred

demographic attributes may be considered personal data for which

consent is required [11]. We do not solicit informed consent because

we have no means to directly interact with the individuals in our

data.

The methodology we adopt from prior work (using paired ads [3,

28, 29]) poses minimal cost on individuals. The ad budget is small

($50 per ad campaign) and has minimal influence on the overall

on-line ad market or on the full mix of ads any individual sees. In

addition, we consider ads that link to real-world economic oppor-

tunities; which are of potential benefit to the recipients.
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A THOUGHT EXPERIMENTS ON THE
EFFECTS OF INFERRED ATTRIBUTES

In §5, we gave theoretical results that show the effect of attribute es-

timation on auditing ad delivery. In this section, we explore thought

experiments that provide concrete examples of how inference error

affects the conclusions of an audit.

In our first thought-experiment, there is no algorithmic skew

(Theorem 5.1). We use this case to explore perspectives on what

is true, what can be observed, and where they differ, to show how

inference can potentially affect the conclusion. In this baseline

example, we find race inference error does not affect our evaluation

of skew because there is no skew in the ad delivery algorithm.

In our second thought-experiment we add known algorithmic

skew (Theorem 5.2). We show we can detect this skew with statisti-

cal rigor given construct with true race. We then show that when

we infer race, inference error can hide the skew. We lose signifi-

cance because, although we intended for audiences with the same
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Parameters

for this

example

|A|=30,000, R=0.065, S=1

Inference error rates:

𝐹𝐷𝑅𝑏,𝑤=0.14, 𝐹𝐷𝑅𝑜,𝑤=0.03,

𝐹𝐷𝑅𝑤,𝑏=0.47, 𝐹𝐷𝑅𝑜,𝑏=0.03

Targeted

using

True race Inferred race

Inferred race

(omniscient

correction)

Targeted

audience

A=30,000

[100%]

𝑎𝑏,𝑡=15,000

[50%]

𝑎𝑤,𝑡=15,000

[50%]

|A|=30,000

𝑎𝑏,𝑖=15,000 [100%]

7,466 B [49.8%]

7,090 W [47.3%]

444 O [3.0%]

𝑎𝑤,𝑖=15,000 [100%]

2,156 B [14.4%]

12,369 W [82.5%]

476 O [3.2%]

29,080 (B+W)

𝑎𝑏,𝑐
=7,466+2,156

=9,621 B [33.1%]

𝑎𝑤,𝑐

=7,090+12,369

=19,460 W [66.9%]

Delivery

audience

for ad 1:

rate of 𝑅 · 𝑆
for true Blacks;

𝑅 · (2 − 𝑆)
for non-Blacks

𝑛1,𝑡=1,950

[100%]

𝑛
1,𝑏,𝑡=975

[50%]

𝑛1,𝑤,𝑡=975

[50%]

𝑛1,𝑖=1,950

𝑛
1,𝑏,𝑖=975 [100%]

485 B [49.8%]

461 W [47.3%]

29 O [3.0%]

𝑛1,𝑤,𝑖=975 [100%]

140 B [14.4%]

804 W [82.5%]

31 O [3.2%]

𝑛1,𝑐=1,890 (B+W)

𝑛
1,𝑏,𝑐

=485+140

=625 B [33.1%]

𝑛1,𝑤,𝑐

=461+804

=1,265 W [66.9%]

Delivery

audience

for ad 2:

rate of 𝑅

for all

𝑛2,𝑡=1,950

[100%]

𝑛
2,𝑏,𝑡=975

[50%]

𝑛2,𝑤,𝑡=975

[50%]

𝑛2,𝑖=1,950

𝑛
2,𝑏,𝑖=975 [100%]

485 B [49.8%]

461 W [47.3%]

29 O [3.0%]

𝑛2,𝑤,𝑖=975 [100%]

140 B [14.4%]

804 W [82.5%]

31 O [3.2%]

𝑛2,𝑐=1,890 (B+W)

𝑛
2,𝑏,𝑐

=485+140

=625 B [33.1%]

𝑛2,𝑤,𝑐

=461+804

=1,265 W [66.9%]

Skew

evaluation

𝑠
1,𝑏,𝑡 = 0.50

𝑠
2,𝑏,𝑡 = 0.50

𝐷𝑡 = 0.00

𝑍t = 0.00

(≤ 1.64)

(Not signif.)

𝑠
1,𝑏,𝑖 = 0.50

𝑠
2,𝑏,𝑖 = 0.50

𝐷𝑖 = 0.00

𝑍𝑖 = 0.00

(≤ 1.64)

(Not signif.)

𝑠
1,𝑏,𝑐 = 0.33

𝑠
2,𝑏,𝑐 = 0.33

𝐷𝑐 = 0.00

𝑍i,c = 0.00

(≤ 1.64)

(Not signif.)

Table 2: A baseline example where race inference error does
not affect evaluation of skew in ad delivery because there is
no skew in the platform’s ad delivery algorithm (𝑆 = 1).

ratio of races (𝑎𝑏,𝑖 : 𝑎𝑤,𝑖 is the same as 𝑎𝑏,𝑡 : 𝑎𝑤,𝑡 ), inference error

means the actual audience is different than expected. We find this

difference occurs when the inference method performs more poorly

for Black individuals than White individuals (FDR∗,𝑏 > FDR∗,𝑤 ),
resulting in underrepresentation of Black individuals.

A.1 Setup and Assumptions
For our thought experiments, we assumewe have omniscient knowl-

edge both the true and inferred race of ad recipients; a luxury we

lack in real applications. We use omniscient information to compute

a corrected version of the outcome using an inferred population.

This corrected version lets us separate inference error from poten-

tial platform-induced skew. Because the skew in the ad delivery

algorithm is fixed in each thought experiment, we expect the skew

we measure when targeting with true race to be roughly the same

as the skew we measure when targeting with inferred race but

compute skew with our omniscient knowledge of true race. We

use different notation to distinguish when the attribute is known,

inferred or an omniscient as we show in Table 1.

We introduce notation for the corrected statistics we compute

using our omniscient knowledge of true race when targeting with

inferred race. Let 𝑛
1,𝑏,𝑐 and 𝑛1,𝑤,𝑐 represent the number of true

Blacks and true Whites that saw the first ad. Let 𝑛1,𝑐 = 𝑛
1,𝑏,𝑐 +

𝑛1,𝑤,𝑐 . We define 𝑛2,𝑐 , 𝑛2,𝑏,𝑐 and 𝑛2,𝑤,𝑐 similarly for the second ad.

We do not include in 𝑛1,𝑐 and 𝑛2,𝑐 people of “Other” race that may

have seen an ad because our goal is to compute an estimate of the

true statistics we would have computed if we targeted with true

race. By applying Equation 2, the test statistic is given by:

𝑍𝑐 = ZTEST (𝑛
1,𝑏,𝑐 , 𝑛1,𝑤,𝑐 , 𝑛2,𝑏,𝑐 , 𝑛2,𝑤,𝑐 ) (16)

For both thought experiments, we use the inference error values

we observe by applying BISG to North Carolina voter data using

ThBISG = 0.5: FDR𝑏,𝑤 = 0.14, FDR𝑜,𝑤 = 0.03, FDR𝑤,𝑏 = 0.47,

FDR𝑜,𝑏 = 0.03 (see §7.1 for details).

When operating with true race, we calculate the test statistic for

statistical significance using 𝑍t . When operating with inferred race

we calculate the test statistic for statistical significance using 𝑍i .
All statistical tests are conducted at a significance level of 𝛼 = 0.05.

We conclude statistical significance when a statistic is above the

critical value 𝑍𝛼 = 1.64.

A.2 Example Without Algorithmic Skew
Wefirst consider the casewith no skew for either ad (𝑆 = 1). Herewe

evaluate how inference error changes the target audience, slightly

distorting the results, although not the conclusion.

We work through the example in Table 2. The left column shows

a case where we construct our target audience using true race. We

begin with an audience of 30,000 people (top row, 𝑎𝑏,𝑡 = 𝑎𝑤,𝑡 =

15, 000). Each ad is delivered to 𝑅 = 0.065 of them (𝑛
1,𝑏,𝑡 = 𝑛1,𝑤,𝑡 =

𝑛
2,𝑏,𝑡 = 𝑛2,𝑤,𝑡 = 975). Since there is no skew in the ad delivery

algorithm, both ads are delivered to the same fraction of true Blacks

(𝑠
1,𝑏,𝑡 = 𝑠

2,𝑏,𝑡 = 0.5), the test statistics are zero (𝐷𝑡 = 0; 𝑍𝑡 = 0),

and we conclude there is no statistically significant skew. Using

the method established in §4.1, and without inference, we correctly

confirm there is no skew.

Now we analyze what delivery statistics we observe when we

target using inferred race, in the middle column. Again, we choose

30,000 targets, and we think they are 15,000/15,000 Black/White

from inference. However, this our equal mix is not realized—because

of inference error, more than half of our Black targets (50.3%=

47.3%+3.0%) are not actually Black, while only 17.6% of our White

targets are mis-identified. In this secnario with no skew, delivery

results for both ads are identical to the mix of the target audience

(both audiences are multiplied by delivery rate 𝑅, and 𝑆 = 1).

We evaluate the results when the audiences are targeted using

inferred race in two ways: in the middle column, we consider what

we can tell based on inferred race only. In the third column, we

examine who really saw the ad, computing statistics with our om-

niscient knowledge of true race. To compute the third column, we

take the audience we use, which we believe is an equal 50/50% split

by race. We compute how much of this inference was incorrect,

to find the actual audience we selected. We see it has only 9,621

Blacks (33%) and 19,460 Whites (67%). We conclude that, while we
thought we had a 50/50% audience, we actually have a 33%/67% audi-
ence, where Blacks are represented much less than we expect.With

omniscient true race, the fraction of Blacks that see the first ad is
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Parameters

for this

example

|A|=30,000, R=0.065, S=0.87

Inference error rates:

𝐹𝐷𝑅𝑏,𝑤=0.14, 𝐹𝐷𝑅𝑜,𝑤=0.03,

𝐹𝐷𝑅𝑤,𝑏=0.47, 𝐹𝐷𝑅𝑜,𝑏=0.03

Targeted

using

True race Inferred race

Inferred race

(omniscient

correction)

Targeted audience: same as the top row of Table 2

Delivery

audience

for ad 1:

rate of 𝑅 · 𝑆
for true Blacks;

𝑅 · (2 − 𝑆)
for non-Blacks

𝑛1,𝑡=1,950

[100%]

𝑛
1,𝑏,𝑡=848

[44%]

𝑛1,𝑤,𝑡=1,102

[56%]

𝑛1,𝑖=2,041

𝑛
1,𝑏,𝑖=976 [100%]

422 B [43.3%]

521 W [53.4%]

33 O [3.3%]

𝑛1,𝑤,𝑖=1,065 [100%]

122 B [11.4%]

909 W [85.3%]

35 O [3.3%]

𝑛1,𝑐=1,973 (B+W)

𝑛
1,𝑏,𝑐

=422+122

=544 B [27.6%]

𝑛1,𝑤,𝑐

=521+909

=1,429 W [72.4%]

Delivery audience for ad 2: same as the penultimate row of Table 2

Skew

evaluation

𝑠
1,𝑏,𝑡 = 0.43

𝑠
2,𝑏,𝑡 = 0.50

𝐷𝑡 = 0.07

𝑍t = 4.07

(> 1.64)

(Stat. sign.)

𝑠
1,𝑏,𝑖 = 0.48

𝑠
2,𝑏,𝑖 = 0.50

𝐷𝑖 = 0.02

𝑍𝑖 = 1.39

(<= 1.64)

(Not signif.)

𝑠
1,𝑏,𝑐 = 0.28

𝑠
2,𝑏,𝑐 = 0.33

𝐷𝑐 = 0.06

𝑍i,c = 3.73

(> 1.64)

(Stat. sign.)

Table 3: An example with known inference error demonstrat-
ing that inference of the target audience can result inmissing
detection of actual skew. Compared to the baseline example
(Table 2), the only change is to inject known skew (𝑆 = 1.13),
which affects the delivery of ad 1.

𝑠
1,𝑏,𝑐=0.33, showing the under-presentation of Blacks in the 33/67%

audience propagates to ad delivery. However, using only inferred

information (middle column) hides this fact: 𝑠
1,𝑏,𝑖 = 0.5. Fortunately,

the same case is true for both ads, as we assume that there is no

skew, 𝑆 = 1, resulting in no net effect that alters our conclusion, so

our evaluation of skew is correct regardless of inference error.

A.3 Example Where Algorithmic Skew is
Hidden

We now inject a known amount of skew (𝑆) into ad delivery for our

second example in Table 3. We use a specific value of 𝑆 = 0.87 to

provide a concrete example; we study a range of values in §7. In

this scenario, we will show inference error during target audience

creation hides algorithm skew. It gives us an incorrect conclusion,

and a different outcome than hadwe testedwith correct information

about race.

Left column labelled “true race” in Table 3 shows auditing using

perfect information about race. We again target an audience of

30,000 (omitted in Table 3, but the same as the top row of Table 2).

While ad 2 is delivered equally by race (975 each for Blacks and

Whites, the same as the third row of Table 2), delivery of ad 1

is skewed by the platform (𝑆 = 0.87), going to more Whites than

Blacks (1,102 vs. 848, as shown in Table 3). This difference appears in

the fraction of impressions of the first and second ad seen by Blacks,

with the delivery audience of the first ad (𝑠
1,𝑏,𝑡 = 0.43) having a

larger fraction of Blacks than the delivery audience of the second

ad (𝑠
2,𝑏,𝑡 = 0.5). The relative difference in delivery for the two

ads for Blacks (𝐷𝑡 = 0.07) and the test statistic of 𝑍𝑡 = 4.07 show

a statistically significant skew in the ad delivery algorithm. This

thought experiment with known race data correctly demonstrates

one can prove skew exists, as we expect from §4.1.

In the middle column, we analyze delivery statistics observed

when targeting using inferred race. We know algorithmic skew ex-

ists, so we examine how inference changes our evaluation, because

the impressions ad 1 receives are influenced by two factors: algo-

rithmic skew and the unexpected racial mix in the audience. Recall

that the platform’s algorithms propagate bias according to true race,

since the platform’s algorithms use rich data and it does not use our

inferred race, thus a different audience mix could confuse our eval-

uation for algorithm skew. These factors have several results on our

analysis: First, the skew we measure using inferred race (𝐷𝑖 = 0.02)

underestimates the true skew we measured when targeting using

true race (𝐷𝑡 = 0.07). This underestimation prevents statistically

significant detection of skew according to inferred race (𝑍i = 1.39).

In this case, inference error in audience construction results in being
unable to prove skew exists (with statistical significance), even though
we know it exists.

To explore why known skew is not detectable in this case, we

examine how three factors interact: inference error, affecting the tar-

get audience, and thereby indirectly affecting the delivery audience;

algorithmic skew, affecting the delivery audience from the true tar-

get audience; and our requirement for statistically strong evidence.

Inference error causes a large difference between our expected

target audience and the true target audience. Those audiences are

shown in the top row of Table 2, with the same audiences used

in Table 3. Although we expect an audience that is 15,000:15,000

Black:White (50/50%) (the middle column, inferred race), we get an

audience that is 9,621:19,460 Black:White (33/67%), a very different

ratio.

Second, we see that algorithmic skew alters this ratio for de-

livery audience of ad 1 in Table 3. The true outcome is 544:1,429

Black:White (Table 3, rightmost cell), but we think it is 976:1,065

Black:White (the middle cell). These ratios are very different, with

inferred race telling us about an even split, while the truth is visibly

uneven. However, the ratio of Black:White in one ad is not evidence

of skew, instead we need to look at the relative difference of the

ratios between the pair of ads.

Finally, we look at that statistical comparison. With inferred race,

that comparison is not statistically different (the bottom center cell

of Table 3). If we knew the truth, we would see a statistically signifi-

cant difference when we compare delivery of ads 1 and 2, as shown

in bottom right cell of Table 3. Exactly how these three factors

interact is a function of the particular parameters we chose (in §7

we explore many parameters to show which yield different out-

comes). Our point is that inference error can be an important factor
in auditing algorithms for delivery skew when true demographics

are not known.

This second example again shows that inference of the target
audience propagates to change ad impressions and can skew statistics
about presence of skew. In this example, inference of attributes in
does change our conclusion.

These examples are thought experiments done with a simplified

model of error and algorithmic skew, but they support our claim:

inference error needs to be considered if one is to make statistically
strong statements about presence or absence of algorithmic bias.
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|A| ThBISG = 0.5 ThBISG = 0.7 ThBISG = 0.9

10,000 0.18; [0.73, 0.91] 0.10; [0.81, 0.91] 0.04; [0.87, 0.91]

30,000 0.10; [0.85, 0.95] 0.05; [0.90, 0.95] 0.03; [0.92, 0.95]

60,000 0.08; [0.90, 0.97] 0.05; [0.92, 0.97] 0.03; [0.95, 0.97]

90,000 0.05; [0.92, 0.97] 0.04; [0.94, 0.97] 0.01; [0.96, 0.97]

120,000 0.04; [0.94, 0.97] 0.03; [0.95, 0.97] 0.01; [0.96, 0.97]

150,000 0.05; [0.94, 0.99] 0.03; [0.96, 0.99] 0.01; [0.97, 0.99]

Table 4: Ranges of values of 𝑆 for which ignoring inference
error leads to hiding skew that exists. For each cell, the first
number indicates the width of the red shaded regions (shown
in Figure 3), and the interval indicates the start and end
values of 𝑆 for each region. The width of the region generally
decreases as the audience size and BISG threshold increase.

The practical correctionwe propose in §6matches the omniscient

correction we derived using omniscient knowledge of true race

(right-most column). In other words, our solution’s estimate of the

number of true Black and White individuals that saw the first ad

(𝑛
1,𝑏,𝑓 and 𝑛

1,𝑤,𝑓 ) matches the number we would calculate using

omniscient knowledge of both the true and inferred race (𝑛
1,𝑏,𝑐 and

𝑛1,𝑤,𝑐 ). We prove this claim in Appendix C.

B SOLVING FOR 𝑅 AND 𝑆

In this section, we prove Theorem 6.1. The proof shows we can

solve for the parameters we use to model skew in the algorithm (𝑆)

and delivery rate (𝑅 based on the data we get from the platform.

Proof. We know from the platform’s report the number of in-

ferred Black (𝑛
1,𝑏,𝑖 ) and White (𝑛1,𝑤,𝑖 ) individuals that saw the ad.

We can write these quantities use the true racial composition of

the targeted audience, the delivery rate (𝑅) and the skew in the ad

delivery algorithm 𝑆 :

𝑛
1,𝑏,𝑖 = 𝑎𝑏,𝑖 (1 − FDR∗,𝑏 ) · 𝑅 · 𝑆 + 𝑎𝑏,𝑖 · FDR𝑤,𝑏 · 𝑅 · (2 − 𝑆)

+ 𝑎𝑏,𝑖 · FDR𝑜,𝑏 · 𝑅 · (2 − 𝑆) (17)

𝑛1,𝑤,𝑖 = 𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · 𝑆 + 𝑎𝑤,𝑖 · (1 − FDR∗,𝑤) · 𝑅 · (2 − 𝑆)
+ 𝑎𝑤,𝑖 · FDR𝑜,𝑤 · 𝑅 · (2 − 𝑆)

We now have the above two equations with two unknowns (𝑅 and

𝑆). We rewrite the equations as:𝑀 · 𝑅 · 𝑆 + 𝑁 · 𝑅 −𝑋 = 0 and 𝑃 · 𝑅 ·
𝑆 +𝑄 · 𝑅 −𝑌 = 0, where |𝐴| is the size of the targeted audience and
we define: 𝑀 =

|𝐴 |
2

− (|𝐴| · FDR∗,𝑏 ), 𝑁 = |𝐴| · FDR∗,𝑏 , 𝑋 = 𝑛
1,𝑏,𝑖 ,

𝑃 = |𝐴| · FDR𝑏,𝑤 − |𝐴 |
2
, 𝑄 = |𝐴| − |𝐴| · FDR𝑏,𝑤 , and 𝑌 = 𝑛1,𝑤,𝑖 . We

can then a closed-form solution for 𝑅 and 𝑆 by simply plugging in

one of the equations into the other:

𝑅 =
𝑋𝑃 −𝑀𝑌

𝑁𝑃 −𝑀𝑄
𝑆 =

𝑋𝑄 − 𝑁𝑌

𝑀𝑌 − 𝑋𝑃

□

Once we solve for 𝑅 and 𝑆 using this closed-form solution, we

can estimate the expected inference error for the delivery audience

of an ad. Equation 14 showed one example but we define all error

rates below:

fdr𝑤,𝑏,1 =
𝑎𝑏,𝑖 · FDR𝑤,𝑏 · 𝑅 · (2 − 𝑆)

𝑛
1,𝑏,𝑖

fdr𝑜,𝑏,1 =
𝑎𝑏,𝑖 · FDR𝑜,𝑏 · 𝑅 · (2 − 𝑆)

𝑛
1,𝑏,𝑖

fdr𝑏,𝑤,1 =
𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · (𝑆)

𝑛1,𝑤,𝑖

fdr𝑜,𝑤,1 =
𝑎𝑤,𝑖 · FDR𝑜,𝑤 · 𝑅 · (2 − 𝑆)

𝑛1,𝑤,𝑖
,

(18)

C COMPARISON OF PRACTICAL AND
OMNISCIENT CORRECTION

In §6.2, we claimed that our proposed solution for correcting for

expected inference error matches the correction we would apply

if we had omniscient knowledge of both true and inferred race.

Mathematically, our claim is the following four equalities hold:

𝑛
1,𝑏,𝑓 = 𝑛

1,𝑏,𝑐 , 𝑛1,𝑤,𝑓 = 𝑛1,𝑤,𝑐 , 𝑛2,𝑏,𝑓 = 𝑛
2,𝑏,𝑐 , and 𝑛2,𝑏,𝑓 = 𝑛

2,𝑏,𝑐 .

Proof. We prove 𝑛
1,𝑏,𝑓 = 𝑛

1,𝑏,𝑐 . The other three equation can

be proved similarly.

We start with the expression for 𝑛
1,𝑏,𝑓 we derived in Equation 15

and plug in the expressions from Equation 14 for the expected

inference error in the delivery audience.

𝑛
1,𝑏,𝑓 = 𝑛

1,𝑏,𝑖 ∗ (1 − fdr∗,𝑏,1) + 𝑛1,𝑤,𝑖 · fdr𝑏,𝑤,1

= 𝑛
1,𝑏,𝑖 ·

(
1 −

(
𝑎𝑏,𝑖 · 𝑅 · (2 − 𝑆) · FDR∗,𝑏

𝑛
1,𝑏,𝑖

))
+ 𝑛1,𝑤,𝑖 ·

(
𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · 𝑆

𝑛1,𝑤,𝑖

)
=
(
𝑛
1,𝑏,𝑖 − 𝑎𝑏,𝑖 · 𝑅 · (2 − 𝑆) · FDR∗,𝑏

)
+
(
𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · 𝑆

)
(19)

By rearranging the expression for 𝑛
1,𝑏,𝑖 from Equation 6, and

using our knowledge that FDR∗,𝑏 = FDR𝑤,𝑏 +FDR𝑜,𝑏 , it follows that(
𝑛
1,𝑏,𝑖 − 𝑎𝑏,𝑖 · 𝑅 · (2 − 𝑆) · FDR∗,𝑏

)
= 𝑎𝑏,𝑖 · (1 − FDR∗,𝑏 ) · 𝑅 · 𝑆). By

substituting this expression into the last step of Equation 19, we

get:

𝑛
1,𝑏,𝑓 =

(
𝑛
1,𝑏,𝑖 − 𝑎𝑏,𝑖 · 𝑅 · (2 − 𝑆) · FDR∗,𝑏

)
+
(
𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · 𝑆

)
= (𝑎𝑏,𝑖 · (1 − FDR∗,𝑏 ) · 𝑅 · 𝑆) +

(
𝑎𝑤,𝑖 · FDR𝑏,𝑤 · 𝑅 · 𝑆

)
= 𝑛

1,𝑏,𝑐

(20)

The last step follows because the number of inferred Blacks

individuals that saw the ad and are truly Black is given by (𝑎𝑏,𝑖 ·
(1 − FDR∗,𝑏 ) · 𝑅 · 𝑆), and the number of inferred Whites individuals

that saw the ad but are actually Black is given by (𝑎𝑤,𝑖 ·FDR𝑏,𝑤 ·𝑅 ·𝑆).
Taken together, the sum of the two terms gives us the total number

of truly Black individuals that saw the ad (𝑛
1,𝑏,𝑐 ).

□

D VARYING BOTH INFERENCE THRESHOLD
AND AUDIENCE SIZE

In Table 4, we provide additional simulation results where we vary

both the audience size (|𝐴|) and inference threshold (ThBISG ) and
check the range of values of skew in the algorithm where ignoring

inference error leads to missing skew that exists. Similar to the

trend we observed in Table 4, the width of the region generally

decreases as the audience size and BISG threshold increase.
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