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ABSTRACT
Denial-of-service attacks on the Internet today are often launched
from zombies, multiple compromised machines controlled by an
attacker. Attackers often take control of a number of zombies and
then repeatedly use this army to attack a target several times, or to
attack several targets. In this paper, we propose a method to iden-
tify repeated attack scenarios, that is, the combination of a partic-
ular set of hosts and attack tool. Such identification would help a
victim coordinate response to an attack, and ideally would be a use-
ful part of legal actions. Because packet contents can be forged by
the attacker, we identify an attack scenario by spectral analysis of
the arrival stream of attack traffic. The attack spectrum is derived
from the characteristics of the attack machines and can therefore
be obscured only by reducing attack effectiveness. We designed
a multi-dimensional maximum-likelihood classifier to identify re-
peated attack scenarios. To validate this procedure we apply our
approach on real-world attacks captured at a regional ISP, identi-
fying similar attacks first by header contents (when possible) and
comparing these results to our process. We conduct controlled ex-
periments to identify and isolate factors that affect the attack fin-
gerprint.

1. INTRODUCTION
Denial of service (DoS) attacks occur every single day on the

Internet [16]. To launch a DoS attack, the attacker relies on the ex-
istence of attack tools on compromised machines that enable him
to attack any target on command. Typically, an attacker compro-
mises a machine (also called a zombie), installs the attack tools
there, and then organizes one or many compromised machines into
attack troops. The attacker then repeatedly deploys the same attack
troop to flood different targets. Every invocation of the attack troop
to target a new victim is identified as a DoS attack and the combi-
nation of the attack troop and the attack tool is defined as an attack
scenario.

Approaches to network security are focused on attack preven-
tion, detection, and resolution. Prevention of DoS attack encom-
pass techniques that ensure integrity of the hosts [24, 26] and tech-
niques to detect and rate-limit abnormal network activity [14, 15].
The difficult task of detecting a DoS attack has attracted a great deal
of research attention in the last few years. The prevailing approach
of most of these efforts has been to focus on packet content signa-
ture matching [19, 20] or anomaly detection by correlating network
traffic [8, 17, 25]. However, without large-scale deployment of the
attack prevention strategies, it is unlikely that malicious activity
will be eliminated on the Internet. Approaches for the resolution
of ongoing attacks range in difficulty. One simple and effective
technique adopted by many systems is to block malicious packets,
whereas more complex traceback techniques [21, 23] attempt to
isolate the source machines.

When resolving DoS attacks, it would be helpful to know if the

current attack has been observed previously and if it originated
from the same hosts. In criminal courts of law, forensic evidence
is used to investigate and establish facts, and consequences often
depend on the severity of the attackers actions. We believe that net-
work traffic can provide evidence to identify repeated DoS attacks
from the same attack scenario, and, by inference, the same attacker,
much as ballistics studies of firearms can trace multiple uses of a
weapon to the same gun. Such evidence of repeated attacks would
help establish the maliciousness of a given attacker prompting le-
gal response. It might also help guide practical response, such as
the amount of effort spent tracing back attack hosts or improving
filtering.

In this paper we explore the possibility of applying network traf-
fic forensics to identify patterns in attack traffic and build an attack
fingerprinting system to passively monitor attack traffic on the In-
ternet. The goal of the proposed attack fingerprinting system is not
to design yet another intrusion detection system based on attack
packet content, but to design a system that can identify attack pat-
terns encoded in the attack stream, the sequence of attack packets
created by the host machine and the attack tool. The attack stream
is shaped by many factors: number of attackers, attack tool, op-
erating system, host CPU, network speed, host load, and network
cross-traffic. Since we define an attack scenario as a combination
of the attacker and attack tool, the fingerprinting techniques should
be robust to variability in host load and network cross traffic.

The contribution of this paper is an automated attack fingerprint-
ing algorithm to identify repeated attack scenarios. The algorithm
is based on detailed analysis of the effects of host load and cross
traffic on the attack signature. The attack scenario fingerprints are
learned by observing the attacks on the Internet. Once an attack is
detected, the spectral profile of the attack is compared to the pre-
viously registered fingerprints in the database to look for similar
attacks. The spectral profile is generated by identifying the dom-
inant frequencies from the power spectral density. We found that
even though there is sensitivity with respect to host load and cross
traffic, the dominant frequencies remain nearly invariant and can
be used to uniquely identify an attack scenario To our knowledge,
there have been no previous attempts to identify or analyze attack
scenarios for forensic purposes. We describe these techniques in
detail in Section 3. In Section 5, we carefully study how traffic is
influenced by changes at the source (in application software, OS, or
CPU) and in the network (cross-traffic). Although, we undertook
these studies to validate our forensic work, the observations apply
to Internet traffic in general.

We validate our fingerprinting system on 18 attacks collected at
Los Nettos, a regional ISP in Los Angeles. We support our method-
ology by considering two approaches: (a) by comparing different
attack sections of the same attack with each other to emulate an
ideal repeated attack scenario, and (b) by comparing different at-
tacks to each other. The results indicate that different sections of
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Create Scenario Fingerprint for Attack A
• Create multiple attack segment time-series xk(t) of the filtered

attack packets where k = 1 . . . NA and 0 ≤ t ≤ 2 seconds,
• Estimate the power spectral density Sk(f) for each

xk(t) (Eq 3),
• Extract dominant frequencies from each segment Sk(f) to form

a attack feature segment Xk , where k = 1 . . . NA

• Define the attack fingerprint FA consisting of all Xk

• Create attack digest estimating distribution parameters,
MA and CA(Eq 4 and 5),

• Register attack A in the database
Compare Current Attack C with Registered Fingerprint for Attack A
• Create multiple attack segment time-series xl(t) of the filtered

attack packets where l = 1 . . . NC and 0 ≤ t ≤ 2 seconds,
• Estimate the power spectral density Sl(f) for each

xl(t) (Eq 3),
• Extract dominant frequencies from each segment Sl(f) to form

a attack feature segment Xl, where l = 1 . . . NC

• Compute the divergence, lCA,l for each
attack feature segment Xl against attack digest A (Eq 6),

• Define LCA as set of NC matches between attack C and A
• Test for accuracy and precision of the attack match

by computing lowCZ and rangeCZ ,

Table 1: Algorithm used to register and compare attack scenar-
ios

the same attack always provide a good match, supporting our at-
tack scenario fingerprinting techniques. Further, comparing the
different attacks indicated that seven attacks were probably from
repeated attack scenarios. We describe these approaches in more
detail in Section 4. We further investigate our methodology by con-
ducting controlled experiments on a testbed with real attack tools.
The testbed environment enabled testing the robustness of the at-
tack scenario fingerprints with changes in host load and cross traf-
fic. We discuss experimentation details in Section 5

2. RELATED WORK
Pattern recognition has been applied extensively in character,

speech, image, and sensing applications [11]. Although, it has been
well developed for applications in various problem domains, we
have not seen wide-scale application of this technology in network
research. Broido et al. suggest applying network spectroscopy for
source recognition by creating a database of inter-arrival quanta and
inter-packet delay distributions [4] and Katabi and Blake apply pat-
tern clustering to detect shared bottlenecks [12]. In this paper, we
make use of pattern classification techniques to identify repeated at-
tack using spectral fingerprints and suggest that similar techniques
can be applied in other areas of network research.

Signal processing techniques have been applied previously to an-
alyze network traffic including to detect malicious behavior. Cheng
et al. apply spectral analysis to detect high volume DoS attack due
to change in periodicities in the aggregate traffic [5] whereas Bar-
ford et al. make use of flow-level information to identify frequency
characteristics of DoS attacks and other anomalous network traf-
fic [1]. Prior research in the DoS area has applied signal processing
to detect ongoing attacks. In a broader context, researchers have
used spectral analysis to extract information about protocol behav-
ior in encrypted wireless traffic [18]. In this paper, we transform the
attack stream into a spectral fingerprint to detect repeated attacks.

Intrusion detection refers to the ability of signaling the occur-
rence of an ongoing attack and is a very important aspect of net-
work security. DoS attacks attempt to exhaust or disable access to
resources at the victim. These resources are either network band-
width, computing power, or operating system data structures. At-
tack detection identifies an ongoing attack using either anomaly-
detection [8, 17, 25] or signature-scan techniques [19, 20]. Both

these techniques have their disadvantages. Anomaly-detection sys-
tems first need to learn what normal traffic consists before it can
identify unusual network events. making it prone to many false
positives. Signature-scan techniques require a large set of frequently
updated rules to identify attacks and are not an effective defense for
novel attacks. While both types of IDS can provide hints regarding
if a particular attack was seen before, they do not have a techniques
to identify if it originated from the same set of attackers.

3. ATTACK SCENARIO FINGERPRINTING
In this section we develop the algorithm used to identify simi-

lar attack scenarios. We first provide an intuitively explanation of
how the detection of repeated attacks works. We then detail the
algorithm with the help of an example.

3.1 Our Approach in a Nutshell
Given an attack, we wish to test if this scenario occurred previ-

ously. To make this identification, we filter the attack packets and
create an attack fingerprint. Intuitively, the fingerprint of each at-
tack scenario can be uniquely mapped as a set of points in space
generating a density of points at a particular location in space, or
in other words, a multivariate probability density function corre-
sponding to the attack scenario. We define attack scenario finger-
printing as categorizing attacks based on the distance between their
probability densities. The detailed methodology to compare two
attack scenarios is outlined in Table 1 and described in Section 3.3
and Section 3.4.

Figure 1 can be used to show how such a system would work.
Assume the attack fingerprint database consists of two attacks O
and H. We now want to compare a current attack M with both these
attacks in the database to identify if the attack M has occurred ear-
lier. When visually comparing attack M with O (top plot in Fig-
ure 1), we observe that the spectra overlap indicating very simi-
lar behavior. Thus the algorithm (discussed in Section 3.3) would
return good precision and accuracy distance values for attack M
compared with O that can then be used to indicate a repeated at-
tack. Next, we will compare current attack M with attack H in the
database to distinguish dissimilar attacks. Looking at the spectral
fingerprints of attack M and H in the bottom plot of Figure 1 we ob-
serve that the spectral fingerprints are distinct and do not overlap.
Therefore the algorithm would return poor precision and accuracy
distance values for attack M compared with H that can be used to
indicate no match. We present more examples with real attacks in
Section 4. Next, we elaborate on the approach outlined in Table 1.

3.2 Creating the Attack Fingerprint
Before we can generate the attack fingerprint, we first need to

extract fingerprint features from the attack stream. To extract fea-
ture data, we first convert the packet trace into a time series. We
assume a given sampling bin of p second and define the arrival pro-
cess x(t) as the number of packets that arrive in the bin [t, t + p).
For a T second long packet trace, we will have M = T

p
samples.

The bin size p limits the maximum frequency that can be correctly
represented to 1

2p
Hz. Therefore, based on the frequency range of

interest, researchers use different bin sizes [9, 5]. In this paper, we
use a sampling bin of 1ms for the attack fingerprint.

Given attack A, we divide the attack stream into k, where k =
1 . . . NA, segments. For each segment we compute the power spec-
tral density Sk(f). Since initial ramp-up or abrupt changes in the
attack stream can bias the spectral analysis, we do not include such
segments in the analysis. We compute the power spectral density of
each attack segment by performing the discrete-time Fourier trans-
form on the autocorrelation function (ACF) of the attack segment.
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Figure 1: Top plot: Frequency Spectra of two similar attacks
overlap, Bottom plot: Frequency Spectra of two dissimilar at-
tacks are distinct

The ACF is a measure of how similar the traffic is to itself shifted
in time by offset ` [2, 3]. When ` = 0 we compare the traffic
stream to itself, and the autocorrelation is maximum and equal to
the variance of the traffic stream. When ` > 0 we compare the
traffic stream with a version of itself shifted by lag `. Therefore,
for every attack segment k we calculate the ACF as:

ck(`) = 1/M

M−`∑

t=0

(xk(t) − x̄k)(xk(t + `) − x̄k); (1)

rk(`) = ck(`)/ck(0) (2)

where x̄k is the mean of xk(t) and M is the length of the attack
segment xk(t).

The power spectrum Sk(f) of the attack is obtained by the discrete-
time Fourier transform of the ACF to gives the frequency spectra
for each attack segment, as shown in Figure 1. Formally:

Sk(f) =

2M−1∑

`=0

r(`)e−ı`2πf (3)

Next we need to define a technique to quantitatively compare
each attack segment. Therefore, we define an attack segment fin-
gerprint Xk to be the frequency representation for each segment
k (where k = 1 . . . NA), consisting of the twenty dominant fre-
quencies in Sk(f). Dominant frequencies are extracted by identi-
fying frequencies that contain most power in Sk(f) Ideally, when
comparing two attacks, an exact match for the attack would consist
of the complete frequency spectrum. However, handling the com-
plete spectrum makes computation of the comparison more costly
as well as requires significantly more attack segments. Therefore,
formulating the signature as the dominant twenty frequencies helps
reduce the number of samples to make robust comparisons, with
minimal loss of information. The dominant twenty frequencies pro-
vide a good estimate of the important periodic events that constitute
the attack stream. In Section 6, we perform a detailed analysis of
the effect of signature size on the matching algorithm.

Next for each attack A, we define FA as the attack fingerprint
consisting of all the segment fingerprints Xk(k = 1 . . . NA). We
can think of FA as representing a sample of the dominant frequen-
cies of A. For easy comparison of candidate attacks against the
database, we compute attack digests summarizing FA. We do this

xk(t) Segment of the times series of attack packet traces
p Sampling bin size used to create time series
NA Number of attack segments available for attack A
M Length of each attack segment
Sk(f) Spectral density of the attack segment xk(t)
Xk Attack feature segment where k = 1 . . . NA

FA Attack fingerprint consisting of all Xk

MA Mean vector of FA

CA Covariance vector of FA

lCA,k Match value between segment k of attack C and attack digest A
LCA Set of all matches between attack C and A
lowCA 5% quantile of LCA

highCA 95% quantile of LCA

rangeCA The difference highCA - lowCA

Table 2: Notation used in the attack fingerprinting algorithms

by computing the mean and covariance of FA defined as:

MA = 1/NA

NA∑

k=1

Xk (4)

CA = 1/NA

NA∑

k=1

(Xk − MA)(Xk − MA)T (5)

A minimum ratio of 10 for the the number of attack segments
NA, to the size of the feature segment Xk, is required to ensure
robust estimates for the mean and covariance of FA. Since the fea-
ture segment consists of twenty dominant frequencies, we therefore
consider attacks that consist of at least 200 segments, (NA = 200)
each of 2 second, duration making the minimum attack duration
of 400seconds. As a result, the attack fingerprint FA is defined
as a 20x200 matrix. The attack digest MA is defined as 20 ele-
ment mean vector of the dominant frequencies and CA is defined
as a 20x20 element matrix of the covariances of the frequencies.
Intuitively, these summarize the most common frequencies by rep-
resenting them as distribution parameters of the attack sample.

Table 2 summarizes the notation used to estimate the distribution
parameters. We found the attack spectrum to be a good indicator
of a unique attack scenario. In fact identifying repeated attacks
was motivated by observing identical spectral behavior in separate
attacks when we were working on our previous paper [10].

3.3 Comparing Two Attacks
Once we have a database of registered attack fingerprints, we can

test if the current attack scenario, C, has been previously observed
by applying the Bayes maximum-likelihood classifier [7]. The ML-
classifier makes the following assumptions:

1. For a given attack scenario, the spectral profiles have a nor-
mal distribution with respect to each dominant frequency.

2. Every attack scenario is equally likely.

3. Every attack occurs independent of previous attacks.

To validate these assumptions, we first verify that the attack seg-
ment fingerprint FA has an approximately normal distribution for
each dominant frequency represented in each segment Xk where
k = 1 . . . NA . To test this assumption, we plot the distribution of
the first element from Xk of attack A in Figure 2. The first element
has a mean of 15Hz with good spread of values around the mean,
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Figure 2: The distribution of the first dominant frequency in
FA for 200 attack segments is approximately normal.

indicating that the spectral profiles are approximately normal. Ad-
ditionally, we the the χ2 test at 90% significance level indicate nor-
mal distribution of the first element of Xk. We verify all the dom-
inant frequencies of the attack have normal distribution and repeat
the same procedure for all attacks incorporated into the database.
The second and third assumption, regarding the attack likelihood
and independence are more difficult to validate. Clearly attack oc-
currences are not completely independent since attack techniques
and attackers change with time, for example, Smurf attacks are not
as popular today as they were couple of years ago. But to quan-
tify the comparisons, we must make these assumptions. As future
work, we will attempt to understand the impact of these assumption
as discussed in Section 6.

We use the Bayes maximum-likelihood classifier to test if the
current attack scenario C is similar to a registered attack finger-
print A. First, we need to create an attack fingerprint for attack
C. We therefore segment the attack trace into NC time series seg-
ments, xl(t), each of duration 2 seconds. We then compute the
spectrum Sl(f) for each attack segment, l = 1 . . . NC and identify
the dominant twenty frequencies to form the attack feature segment
Xl collectively defined as the attack fingerprint FC . The value of
NC depends solely on attack length and can be less than 200 used
for NA. Since for making attack comparison, we are not estimating
distribution parameters and therefore there are no requirements on
the minimum number of attack segments NC .

Once the attack segment fingerprints are generated, we can com-
pare the fingerprint FC against the database of registered attack
digests. We make comparisons using the maximum likelihood of
each segment in FC against all previously registered attack A us-
ing:

lCA,l = (Xl − MA)T C−1
A (Xl − MA) − log|CA| (6)

where Xl represents each attack feature segment in FC , l =
1 . . . NC . Intuitively, Equation 6 quantifies the separation between
the registered attack scenario A and the current scenario C and is
also called the divergence of the attack scenario distributions. This
procedure generates a set of NC matches, LCA, for each segment
Xl of FC against each attack digest. A match set is be generated
for all the attacks in the database.

3.4 Interpreting the Match Data
Once the match set LCA for comparing current attack C with

each attack digest in the database is generated, we must summarize
this match data. For any comparison, some segments will match
better than other segments. In this paper, we try to find good gen-
eral comparisons by specifically answering the following two ques-
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Figure 3: The maximum-likelihood values when comparing the
attack M with attacks O and H.

tions:

1. Are the comparisons accurate? ie: Does attack C match well
with the attack digest A?

2. Are the comparisons precise? ie: Does attack C consistently
have a small divergence with attack digest A?

To measure accuracy, we compute lowCA, as the 5% quantile
of LCA. A small value for lowCA indicates at least 5% attack
segments from attack C have a very accurate match with attack
A. To measure precision, we compute highCA, as the 95% quan-
tile of LCA and the define the rangeCA as the difference between
highCA and lowCA. A precise match will have a small range in-
dicating a large percentage of the attack segments match with the
attack digest.

For example, Figure 3 shows cumulative plots of the matches for
attacks M , O and H indicated in Figure 1. Since attack M and
O have similar spectra, the set of matches LMO are both accurate,
indicated by a small lowMO value of 174, and precise, indicated
nearly vertical line since the rangeMO value is 28. On the other
hand, when comparing M with H , we obtain a lowMH value of
342 and a rangeMH value of 1700 indicating a poor match.

To automate the matching procedure, we now need to identify
what values of low and range indicate a good match and how they
are related. We define the matching condition used for compar-
ison of the attacks as Attack C matches attack A if and only if
rangeCA < threshold AND lowCA < lowCB∀B 6= A (Condi-
tion 1).

We empirically derive the values of the range threshold in Sec-
tion 4.2 by comparing separate sections of real-world attack to it-
self. In addition to identifying the closest match for attack C in
the database of attacks, we need to define a test for when attack C
is a new attack we have not seen previously. We believe that the
comparison of a new attack not present in the database will have a
matching condition of the form lowCA > threshold (Condition
2). The identification of such a threshold if more difficult since we
would need observe completely new attacks in the wild. We believe
such a threshold will emerge as the database increases in size.

4. ANALYZING ATTACK TRAFFIC
We now evaluate our comparison technique on attacks captured

at Los Nettos, a moderate size ISP located in Los Angeles [13].
This approach was motivated by observing similar spectra during
attack classification [10]. We observed that the spectral content of
several attacks, even though they occurred at different times, was
remarkably similar. Since the trace data is from a live network,
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links at Los Nettos.

we cannot prove that independent attacks are from the same hosts.
Instead, in Section 4.2 we compare different sections of the same
attack to show our approach can identify the repeated attack scenar-
ios and use the results to define thresholds for a good match. We
then present examples of different attacks that we hypothesize may
be from the similar scenarios in Section 4.3.

4.1 Trace Methodology
Los Nettos has four major peering links with commercial ISP

providers. Due to lack of available mirroring capacity, we were
able to monitor only two links. Los Nettos has a diverse clien-
tele including academic and commercial customers. The trace ma-
chine is an off-the-shelf Intel P4 1.8GHz, with 1GB of RAM run-
ning FreeBSD 4.5. We use a Netgear GA620 1000BT-SX NIC,
and modified the driver to support partial packet transfer from the
NIC to the kernel. Typical daytime load is 140Mb/s with a mean
of 38Kpackets/s. Measurement drops (as reported by tcpdump) are
usually below 0.04% during normal operation, rising to 0.6% dur-
ing attacks that increase packet rates to 100Kpackets/s.

For each monitored link, we continuously capture packet headers
using tcpdump, creating a trace file every two minutes. Each trace
is processed and flagged as containing a potential attack if either of
two thresholds are reached: (a) the number sources that connect to
the same destination within one second exceeds 60, or (b) the traffic
rate exceeds 40Kpackets/s. These thresholds were determined by
observing the traffic on the network. Traces that are not flagged
as an attack are discarded. We identify and ignore known servers
that would trigger these thresholds through normal traffic. Finally,
we manually verify each flagged trace to confirm the presence of
an attack. The automated thresholding works reasonably well, but
provides a false positive rate of 25–35%.

We applied the attack fingerprinting system on 18 attacks cap-
tured at Los Nettos. Although, we have observed 80 attacks at Los
Nettos when monitoring, we chose to use only longer attacks (at
least 400s) to generate fingerprint digests to capture steady-state
behavior. This requirement leaves only 18 eligible attacks. This
threshold is probably overly pessimistic; evaluating attack duration
needed for fingerprint generation is an area of future work.

Table 3 summarizes the the packet header content for each attack
captured at Los Nettos. The second column gives the packet type,
the third column gives the TTL values and the last column summa-
rizes the prefix-preserving, anonymized, source IP addresses seen
in the attack packets. The TCP no flags refers to pure TCP data
packets with no flags set, and the mixed refers to attacks that use
a combination of protocols and packet types such as TCP, UDP,
ICMP and IP proto-0. Few attacks subnet spoof the source ad-
dresses (for example: attack B), few attacks randomly spoof the
source address (for example: attack A), whereas few attacks use
constant IP addresses (for example: attack F). For the six echo re-
ply reflector attacks the last column indicates the observed number
of reflector IP addresses (along with the subnet address when pos-

Id Packet Type TTL Source IP
A TCP ACK+UDP 14, 48 random
B TCP ACK 14, 18 6.13.8.0/24
C TCP no flags 248 random
D TCP SYN 61 12.9.192.0/24
E Echo Reply 78 reflectors from 4.15.0.0/16
F IP-255 123 31.5.19.166, 31.5.15.186, 31.5.23.11
G IP-255 123 31.5.19.166, 31.5.15.186, 31.5.23.11,

31.5.15.8
H Echo Reply 1262 reflectors
I Mixed 27, 252 28.25.14.0/24
J Mixed 27, 252 28.25.14.0/24
K UDP 53 6.22.12.20
L TCP SYN 4,7 random
M Echo Reply 72 reflectors from 18.9.200.0/24
N Echo Reply 72 reflectors from 18.9.200.0/24
O Echo Reply 71 reflectors from 18.9.200.0/24
P Echo Reply 73 reflectors from 18.9.200.0/24
Q TCP no flags 248 random
R IP-255 123 31.5.10.96, 31.5.89.96, 31.5.87.24,

31.5.87.13

Table 3: Packet header content observed in the captured at-
tacks

sible). We believe the attacks that have very similar packet header
content indicate the possibility that they are manifestations of the
same attack scenarios.

4.2 Emulating the Same Attack Scenario
We have extremely limited amount of information regarding the

attack scenario for attacks captured at Los Nettos. The attacks
listed in Table 3 are “from the wild”, therefore the comparisons
among them can only suggest, but not prove, reuse of the same
attack hosts and tools. Therefore, to establish the viability of our
methodology in detecting similar attack scenarios, we emulate a re-
peated attack scenario by comparing different attack sections of a
registered attack. We chose this approach on the assumption that an
attack’s tail should best match itself and not match all other attacks,
thus this comparison allows a controlled study of our technique.
Additionally, this approach also helps establish what threshold val-
ues of low and range indicate a good match for the matching con-
ditions described in Section 3.4.

We divide each attack (A–R from Table 3) in two parts, a head
and a tail section. The head section is composed of the first 400s of
the attack, that is used to define the attack fingerprint by applying
the technique described in Section 3.2. The tail section is made up
of at least 20seconds of the remaining attack to ensure reasonable
number of matches that will give the low and range values.

For each of the tail section, we compare the attack against the
registered fingerprints, using the technique outlined in Section 3.3
and Section 3.4 to produce the comparison matrix of low and range
values given in Table 4 that indicate the accuracy and precision of
the match. For example, we compute lowAA and rangeAA for the
set of matches LAA, obtained when comparing the tail of attack A
with the attack digest of attack A. Since values greater than 1000 in-
dicate large divergence and hence poor matches, we represent such
value by an asterix (∗).

If our match condition holds, we should get small values for the
low and range in the diagonal elements of the comparison ma-
trix. The results presented in Table 4 indicate that when comparing
against the same attack scenario, lowXX is the lowest provided the
rangeXX being less than 100. For example, in the row of At-
tack H, although Attack L has a smaller lowHL than lowHH , the
rangeHL is large than 100. We consistently observe comparing
the head and tail sections of the same attack provide the closest
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Figure 5: The cumulative distribution of the maximum-
likelihood values when comparing the same attack scenario and
when comparing different attacks.

matches for all attacks (exceptions are discussed in Section 4.3),
validating our comparison techniques. Thus, the comparisons of
the head and tail sections provides us with the estimate for the
range threshold. We subsequently use a range threshold of 100
in match Condition 1 (Section 3.4) to indicate a good match.

Table 4 compares 18x18 possible matches between attack sce-
narios. As an example of two of those matches, we take com-
paring the tail of attack F to the registered fingerprint of attack F
(lowFF = 172 and rangeFF = 57) and the registered fingerprint
of attack J (lowFJ = 223 and rangeFJ = 768333), and visually
analyze the difference in the values. We plot the cumulative distri-
bution of the set of matches LFF in Figure 5 (shown by the solid
line). Observe the small rangeFF indicated by a nearly vertical
line in the graph. In contrast, the cumulative distribution of set of
matches LFJ is spread across a large range of values (show by the
dashed line). The difference in the cumulative plot arises since the
ML-classifier consistently returns a small divergence value for the
similar attacks and large divergence values when comparing dis-
similar attacks.

We also evaluate the false negative, that is attacks that have their
tail section match better with a separate attack head section. The
lowMM , lowNN , and lowOO diagonal elements are about three
points higher than the non-diagonal elements lowMP , lowMO , and
lowOP indicating closer matches with separate attach head sec-
tions. We believe this is due to the close match in these attacks.
The false positives in the attack matching algorithm, indicated by
detecting an attack has occurred previously, when actually it not
present in the fingerprint database is more difficult to identify in
the real world attacks without well defined threshold match Condi-
tion 2 (Section 3.4).

We have demonstrated that our approach can detect repeated at-
tack scenarios by considering the ideal case of matching attacks
with themselves. This “success” may not be surprising since we
knew that each candidate attack had a match; however lack of mis-
matches in this case is promising. The above process also provided
thresholds for range values that can be used to to indicate good
matches for different attacks. We next compare different attacks
to see if it is plausible that any two observed attacks represent the
same scenario.

4.3 Testing with Different Attacks
We now attempt to identify similar attack scenarios by compar-

ing different attacks against the fingerprint registered in the attack
database. The comparison matrix presented in Table 4 provides the
lowXY and rangeXY statistics for all the attacks compared with

each other in the non-diagonal elements. To test for similarity, we
use the match Condition 1 (Section 3.4), with the range threshold
of 100, established in the previous section. The packet contents
in Table 3, provide insight into plausible repeated attack scenarios.
We expect the low and range values to be small for similar attacks.
We observe four sets of very similar scenarios.

The first set consists of three attacks F, G, and R. All three attacks
have the protocol field in the IP header set to 255, and a TTL value
of 123, and the source IP addresses originate from the same subnet
but vary in number. Attacks F and G occur approximately 31 hours
apart, whereas attack R occurs 75 days later. Comparing the statis-
tics we observe that the values of lowFG, lowGF are the smallest
in the non-diagonal elements with rangeFG, rangeGF less than
100. Further, small lowRF , and lowRG with small rangeRF , and
rangeRG statistics indicate attack R is similar to attacks F and G.
We did not obtain sufficiently small lowFR and lowGR statistics.
These the statistical values indicate a strong similarity between the
attack scenarios.

The next set consists of attacks M, N, O, and P. All four attacks
originate from reflectors belonging to the same subnet. These at-
tacks occur within 6 hours of each other. The attacks have very
small low and range statistics in the non-diagonal elements pro-
viding a good four-way match with each other. Due to the close
match, the lowMM , lowNN and lowOO diagonal elements are
approximately three points higher than the non-diagonal elements
lowMP , lowMO and lowOP respectively. These attacks therefore
are an exception of the rule indicating smallest low values are seen
in the diagonal elements and discussed in Section 4.2. We believe
the small difference in the statistics is due to close matches with the
similar attack scenarios and validates the conclusions made earlier.

The statistics do not provide a good matching criteria for the two
sets of attacks. Attacks I and J are mixed attacks with same subnet
and occur more than 33 hours apart. The statistics for comparing
these attacks are more than 1000 points apart indicating no match.
The last set consists of attacks C and Q and they occur approxi-
mately 3 months apart. The statistics do not provide a good match
for attacks C and Q. Due to the limited information available for the
captured attacks, it is very difficult to assess why the techniques do
not work. However, two these sets of attacks are single-source at-
tacks that have a very noisy spectrum when observed at 1ms sam-
pling bins [10]. The comparison approach tries to identify domi-
nant frequency patterns when comparing two attacks, therefore it
can not make good matches for noisy spectra indicating these tech-
niques can be applied only to attacks that have distinct dominant
frequencies. We are exploring how to estimate frequency spectra
more robustly especially for single-source attacks as future work.

Hence we observed highly probable repeated attack scenarios,
that were detected by the attack fingerprinting system. In the next
section, we investigate factors that effect the attack fingerprint, we
conducting controlled experiments and isolating one factor at a
time.

5. EXPERIMENTAL EVALUATION
In the previous section, we showed that real attacks traces can

be used to build a database of attack fingerprints, to detect mul-
tiple attacks representing the same attack scenario. But to trust
these results we must understand what network phenomena affect
these fingerprints, and particularly how robust this technique is to
interference. We cannot do this with observations of real attacks
because they do not provide a controlled experiment.

The key question to the utility of our approach is, what factors
influence a fingerprint? Our prior experience working with power
spectra [10] suggests that number of attackers, host CPU speed,
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A B C D E F G H I J K L M N O P Q R
A 201(15) 210(123) 205(18) 211(172) 201(30) 237(133) 237(110) *(*) 363(*) 223(*) 246(143) *(*) 351(405) 423(658) 341(311) 396(493) 230(244) 216(117)
B 211(19) 198(19) 209(14) 211(63) 216(18) 235(83) 234(56) *(*) 221(289) 222(*) 230(90) *(*) 307(127) 358(191) 288(139) 338(203) 276(178) 239(90)
C 207(32) 209(167) 203(20) 198(161) 211(68) 205(151) 200(133) 354(*) 225(833) 219(*) 206(160) *(*) 216(371) 231(506) 215(313) 221(441) 213(298) 203(174)
D 208(38) 215(213) 202(33) 188(38) 206(96) 172(170) 185(120) 130(*) 251(813) 213(*) 173(210) 92(*) 186(324) 198(521) 185(347) 183(429) 159(396) 167(199)
E 189(40) 221(23) 197(31) 231(76) 185(42) 239(97) 250(71) *(*) 324(558) 187(*) 243(165) *(*) 376(169) 423(312) 391(87) 460(175) 182(342) 180(177)
F 211(23) 248(157) 203(22) 187(58) 240(54) 172(57) 185(69) 135(*) 344(636) 223(*) 173(125) 256(*) 188(109) 203(109) 185(120) 181(169) 160(231) 167(128)
G 203(26) 237(108) 198(23) 189(51) 221(64) 180(91) 180(42) 330(*) 253(422) 203(*) 183(93) *(*) 172(127) 173(116) 172(152) 171(179) 178(233) 176(119)
H 211(8) 377(49) 202(6) 188(15) 275(25) 172(25) 186(15) 129(80) 881(180) 223(*) 172(27) 101(*) 196(21) 218(31) 187(31) 185(21) 159(81) 166(35)
I 206(19) 207(13) 203(19) 204(27) 209(19) 220(50) 211(49) *(*) 175(50) 0(*) 236(53) *(*) 262(77) 286(146) 255(91) 286(107) 226(149) 224(59)
J 212(77) 340(124) 217(49) 298(147) 230(87) 338(150) 345(77) *(*) 660(*) 188(49) 361(96) *(*) 455(658) 439(*) 505(408) 529(768) 282(496) 249(305)

K 210(19) 270(155) 203(15) 188(31) 250(50) 173(78) 186(48) 129(*) 350(697) 219(*) 172(49) 79(*) 185(66) 187(65) 186(78) 185(86) 159(203) 167(107)
L 213(1) 412(8) 203(1) 188(1) 295(4) 172(1) 188(1) 128(3) 990(34) 223(*) 172(1) 68(21) 201(3) 237(6) 192(3) 189(3) 159(1) 166(1)

M 204(7) 257(50) 198(6) 190(13) 224(32) 180(24) 182(13) 342(*) 336(251) 206(*) 180(29) *(*) 174(18) 176(22) 174(28) 171(38) 182(64) 178(33)
N 204(7) 261(41) 199(5) 190(11) 227(29) 182(20) 182(13) 372(*) 335(210) 209(*) 182(25) *(*) 175(26) 175(18) 173(27) 174(40) 180(55) 179(26)
O 204(7) 256(60) 198(5) 188(17) 228(30) 177(27) 180(18) 298(*) 326(280) 204(*) 178(28) *(*) 172(27) 174(26) 170(26) 168(39) 172(71) 173(37)
P 205(6) 271(58) 198(5) 188(11) 232(30) 176(22) 180(15) 249(*) 397(242) 207(*) 178(23) *(*) 172(20) 175(19) 170(24) 167(25) 171(64) 172(32)
Q 212(16) 222(202) 203(17) 187(80) 217(82) 172(130) 187(98) 129(*) 308(747) 223(*) 172(138) 85(*) 198(266) 229(335) 190(255) 187(351) 159(96) 166(133)
R 194(30) 201(226) 193(24) 188(41) 202(99) 172(88) 180(70) 130(*) 192(874) 206(*) 173(132) 97(*) 182(173) 183(215) 177(160) 177(237) 159(205) 166(72)

Table 4: The comparison matrix of lowXY ( rangeXY ) statistics for 18 Los Nettos attacks (value greater than 1000 is indicated as ∗).
The columns indicate registered attack fingerprints and the rows indicate trial attack segments.

hub

OP
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LM1

LM2

LM3

FM1

FM2

FM3

Figure 6: The testbed setup used to evaluate attack spectral
stability.

host load, network link speed, attack tool, and cross-traffic, all af-
fect the dominant frequencies of traffic. Our definition of attack
scenario is the combination of a set of hosts and the attack tool.
Our hypothesis is that the primary factors that define and alter the
frequency spectra are characteristics of an individual attack host
(OS, CPU speed, and network link speed) and the attack tool; such
a definition of attack scenario would provide a useful tool for net-
work traffic forensics.

If other factors affect the attack traffic, we will require a broader
or narrower definition of attack scenario. A broader, less restric-
tive, definition of attack scenario might be the attack tool alone, if
spectral content is largely independent of host characteristics and
network characteristics. Such a definition may still be useful for
identifying new attack tools, but it would lose the value of apply-
ing this approach for forensic purposes. Alternatively, fingerprints
may be more strongly dependent on other factors such as network
cross-traffic. If fingerprints are strongly influenced by cross-traffic
then a fingerprint may be very specific to a point in time and space,
thus our approach may lose its value to track a single host/tool pair.

We believe the trace data presented in Section 4 is consistent with
our hypothesis, since self-comparison argues against a broad inter-
pretation, yet repeated examples of similar fingerprints at different
times argues against a narrow interpretation. But we cannot truly
verify our definition from trace data because it does not provide a
controlled environment.

To validate our definition of the attack scenario, we conduct a
battery of controlled experiments on a network testbed testing fin-
gerprint sensitivity. First, we observe how the spectral behavior of
an attack tool varies across different operating systems and hard-
ware configurations and analyze spectral behavior of different at-
tack tools. Finally we study the effect of host load and cross traffic

on the attack spectral behavior. In recent work, He et al explore the
effect of cross traffic on spectral behavior in context of congested
links [9]. The experiments suggest that the attack fingerprint is pri-
marily defined by the host and attack tool characteristics.

5.1 Testbed Setup
To study the effect of various factors such as OS, attack tool,

CPU speed, host load, and cross traffic, on the attack fingerprint, we
conduct a battery of controlled experiments on a network testbed.
During each experiment, we isolate one parameter of interest, for
example, operating system behavior, and study the stability of packet
stream fingerprints.

To perform these experiments, we constructed a symmetrical
testbed consisting of eight machines as shown in Figure 6. The
testbed machines are chosen such that there are three sets of two
identical machines, the LMx machines have Linux 2.4.20 installed
whereas the FMx machines have FreeBSD 4.8. This allows us to
keep all hardware configurations exactly the same, when studying
the effects of software, such as operating system and attack tools.
The testbed includes different hardware architectures and operat-
ing speeds to stress our algorithm to the maximum and validate it
works in most conditions.

Each pair of machines on the testbed represents increasingly
more powerful computers. The first pair of machines, LM1 and
FM1, collectively called M1 testbed machines are the slowest ma-
chines on the testbed. They have 266MHz Intel PII CPU with
128MB of memory. These machines represent the old generation
CPUs on the Internet machines. The next pair of machines, LM2
and FM2, collectively addressed as the M2 testbed machines have
1.6GHz Athelon CPU with 512MB of memory. These machines
are the previous generation CPU and they also helps test for differ-
ences between Intel and Athelon hardware. The last pair, LM3 and
FM3, collectively called as M3 testbed machines, are the current
generation of machines and have a 2.4GHz Intel P4 with 1GB of
memory.

Great care was taken while setting up the testbed to ensure that
all factors, other than the one we wanted to vary, are we kept con-
stant. For example, we ensured all the testbed machines have iden-
tical 3Com 3c905C network cards. We constructed a 10Mbit/s net-
work with all the testbed machines connected together with a hub to
allow traffic observation. In addition to the symmetrical machines
that are used to generate packet stream, we use two additional ma-
chines; a observation point machine, which is a 1GHz Intel PIII
with 512MB of memory, to gather tcpdump network traces during
the experiments, and a victim machine, which is a 600MHz Intel
PII with 256MB of memory, that is used as the target for all at-
tack traffic on the testbed. Additionally, we try to minimize local
network traffic such as ARPs by ensuring all the testbed machines
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Type of tool Testbed Machine
M1 M1 w/ load M2 M2 w/ load M3 M3 w/ load

I 15Kpkt/s 10Kpkts/s 15Kpktss/s 10Kpkts/s 15Kpkts/s 10Kpkts/s
II 9-11Kpkts/s 6Kpkts/s 15Kpkts/s 10Kpkts/s 15Kpkts/s 10Kpkts/s
III 50pkts/s 50pkts/s 50pkts/s 50pkts/s 50pkts/s 50pkts/s

Table 5: Attack tool categories exercised on the testbed with 50B packets

have a static route to the victim machine and the victim machine is
configured to not generate additional ARP or ICMP messages.

The above setup allows us to test attack fingerprint sensitivity
to factors such as operating system, host CPU, and host load. We
conduct all the experiments using using six different attack tools:
mstream, stream, punk, synful, synsol, and synk4. We categorize
the attack tools into three groups:

(I) tools that can generate packets at their maximum capacity even
when deployed on slow testbed machines such as M1, For
example: mstream and stream,

(II) tools that can generate more attack packets when deployed on
a fast testbed machines such as M2 and M3, For example:
punk and synful,

(III) tools that have a fixed packet rate that is not affected by the
testbed machine For example: synsol and synk4.

We selected our attack tools such that each category above has
two attack tools. All the attack tools generate 40 byte packets and
consist of packet headers only. In Section 5.7, we modify the attack
tools to generate 500B packet to evaluate how a saturated network
modifies the fingerprint.

Although, all the attack tools generate the same size packets, the
different behaviors categorized above is due to the way the tools
are programmed. The type I tools have efficient for and while loops
that can rapidly generate packets without requiring much compu-
tational power. Additionally these tools do not randomize many
fields in the packet headers. Whereas the type II tools require
more computational power usually because they randomize most
of the header fields and invoke multiple functional calls between
each packet generation. The type III tools are not CPU bound, that
is, they do not generate high packet rates as they deliberately intro-
duce delays between packet generation to evade detection. Table 5
provides information regarding the packet generation capabilities
of each attack tool category.

5.2 Comparing the Experiment Spectra
We conduct more than 1000 experiments to explore the factors

the affect the attack spectra. While exploring each factor, we con-
ducted experiments on all pairs of testbed machines using all the
attack tools. Further, to make sure our results were stable, we per-
formed each experiment at least three times. In all cases the spectral
fingerprint estimates were nearly identical.

For each experiment, we observe detailed spectral information
using a sampling bin size of p = 10µs which provides a frequency
range up to 50KHz. Since some of the attack tools generate packets
at very high rates the increased resolution allows observation of all
the frequencies present in the spectrum without losing any infor-
mation. When the attack tool generates packets at a slower rate, we
reduce the sampling rate to minimize the effect of harmonics. We
are currently working on how to improve the sampling technique
to minimize the effect of harmonics.

Although, the testbed setup allows us to systematically explore
all the factors that effect the fingerprint, we next need to quantita-
tively compare each set of attack fingerprints. In addition to com-

paring the spectral plots visually, we find the match set defined in
Section 3.3.

Specifically, we first need to create a fingerprint database. Since
all our experiments were repeated three times, we use one set of
the experiment results to generate the fingerprint digests and reg-
ister them to create the fingerprint database. We then use 100 at-
tack segments from the remaining experiment runs to compare the
two spectral fingerprints. We assess the accuracy and precision of
the match by computing the low and range values for the set of
matches.

In the next sections, we present both results, that is, the attack
spectral plots as well as the match quality data for each comparison.
The results indicate that the attack fingerprint is primarily governed
by host and attack tool characteristics. However, if a network link
gets completely saturated en route to the victim, the spectrum get
significantly altered, and extracting the fingerprint from resulting
spectrum may not be possible.

5.3 Experimenting with different OS
First we evaluate if different operating system can alter the attack

stream in different ways when all other factors are constant. If we
find that the operating system significantly alters the attack spec-
trum, then it will be a an important aspect of the attack fingerprint.

We conduct experiments with all the attack categories on each
pair of the testbed machines. Figure 7 compares the spectra finger-
print for all three categories of attack tools on testbed machines M1
by comparing the attack spectrum of the attack tool on a FreeBSD
machine to a Linux machine. The top plot shows the power spectral
density, while the bottom plot shows the cumulative power spectral
density. We observe that both operating systems produce nearly
identical spectra for type I and type III tools on all three pairs of
testbed machines (note: only M1 testbed machines as shown in
Figure 7). Specifically, both Figure 7(a) and Figure 7(d) have a
sharp peak at 15KHz and then we observe equally spaced harmon-
ics at 30KHz and 45KHz. Figure 7(c) and Figure 7(f) have peaks
at 50Hz and then harmonics at the remaining frequencies.

However, when comparing Figure 7(b) and Figure 7(e), we ob-
serve difference in the spectra for type II tools. We observed that
type II tools generate packets at a slightly higher rate on FreeBSD
(11Kpkts/sec) than Linux (9Kpkts/s) for M1 machines resulting in
different spectra. For the other two sets of testbed machines, since
type II tools manage to generate packets at their maximum capacity
(15Kpkts/s), they have identical spectra.

Because of the difference in spectra observed for type II tools
on M1 machines leads us to conclude that the operating system
does effect the attack scenario signature. Table 6 summarizes the
results. Each entry in the table indicates the quality of the com-
parison on the attack fingerprint when using same attack tool on
a FreeBSD machine compared to a Linux machine. As expected
the rangeFM1(II)LM1(II) for type II attacks on testbed machines
LM1 and FM1 is extremely high (814) indicating a poor match.
All the other match values indicate a good match between the two
attack fingerprints since their values are below the threshold of 100.

We believe that since testbed machines M1 are CPU bound, the
operating system can influence the efficiency of packets generation
and thus the attack spectrum created by the attack stream. We ex-
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Figure 7: Effect of the operating system on the attack fingerprint

Type of tool Testbed Machine
M1 M2 M3

I 1(35) 101(57) 22(57)
II 131(814) 34(87) 7(1)
III 1(1) 2(1) 1(1)

Table 6: Effect of operating systems on the attack fingerprint

plore this hypothesis in the next section.

5.4 Experimenting with different CPU speeds
We now evaluate if CPU speed differences produce a different

spectral behavior when keeping all other factors constant. In the
earlier section, we saw that the operating system can influence the
attack fingerprint, especially on M1 testbed machines. In this sec-
tion, we demonstrate that when using the same operating system
(we use FreeBSD in this example) we observe different attack spec-
tral signatures based on the speed of the CPU.

The results shown in Figure 8 compare all three attack tool cate-
gories on the slowest machines, FM1, against the fastest machines,
FM3, on the testbed. The top plot show the power spectral density,
while the bottom plot shows the cumulative power spectral density.

If the CPU speed did not matter, then we would observe no dif-
ference in all the spectra. However, when looking across Figure 8
we observe two things. First, type I and type III have identical spec-
tra on both testbed machines indicating that the CPU speed does not
alter the attack spectra significantly; Figure 8(a) and Figure 8(d)
have a sharp peak at 15KHz and then we observe equally spaced
harmonics at 30KHz and 45KHz. Figure 8(c) and Figure 8(f) have
peaks at 50Hz and then harmonics at the remaining frequencies.
Second, type II tools have different spectral behavior on FM1 ma-
chines compared to FM3. The Figure 8(b) shows that since FM1

Type of tool Testbed Machines
M1:M2 M1:M3

I 6(23) 71(35)
II 78(472) 40(436)
III 1(1) 2(1)

Table 7: Effect of CPU speed on the attack fingerprint

has a slower CPU, it cannot generate packets at the network speed
and has a frequency at 11KHz as compared to machine FM3 (Fig-
ure 8(e)) that has a sharp peak at 15KHz. These two behaviors
combined indicate that the CPU speed affects the spectrum if the
attack tool is limited by the computation power of the CPU.

Table 7 summarizes the results of the effects of the CPU on the
attack fingerprint. Each entry in the table indicates the comparison
of the attack spectrum using the attack tool on FM1 as compared to
FM2 and FM3 respectively. The results are similar when machines
LM1, LM2, and LM3 are compared. Observe that the type II tools
have large range values indicating a poor match.

5.5 Experimenting with host load
We have previously observed that CPU speed has a strong influ-

ence on spectrum. This suggests that other programs competing for
the host CPU may alter an attack spectrum. Therefore in this sec-
tion, we evaluate the effect of host load on the spectral behavior of
the attack stream. If we find that the fingerprint is sensitive to host
load changes during the attack, it would make this technique more
restrictive in its application. Host load, similar to cross traffic on
the network (Section 5.8), is ephemeral (since it changes with time)
and thus ideally should not contribute to the attack signature. Our
results indicate that the proposed algorithms are robust to changes
in the attack fingerprint due to host load.
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Figure 8: Effect of CPU on the attack fingerprint

To perform this set of experiments, we first need to generate
host load on the testbed machines. We therefore launch the at-
tack tools along with a command-line instance of Seti@home [22].
Seti@home is a widely available, non-trivial application that gener-
ates large amounts of computational load. For our experiments, we
execute a single copy of Seti@home in the foreground at normal
priority, unlike it’s usual configuration where it runs in the back-
ground. Seti@home forces the CPU usage of the attack tool to
drop to a 45–60% range. When the attack tools are executed ex-
clusively on the testbed machine the CPU usage ranges between
85-95% as reported by top. These CPU usage values indicate a sig-
nificant difference in the performance of the attack tool with and
without Seti@home.

Referring to Table 5, observe that both type I and type II tools
experience a drop in the aggregate attack packet rates when load
is added. Due to the extra load on the testbed machine, the attack
tool get scheduled less frequently and hence can no longer generate
packets at its peak attack rate.

In Figure 9 we compare the attack spectral fingerprints for type
I tools on the Linux machines with and without load. In this ex-
ample, we compare only type I attack tools, since both type II and
type III tools are not good candidates for such comparisons. Type
II tools are more sensitive to CPU speeds and hence cannot be com-
pared across testbed machines whereas type III tools generate pack-
ets at such low rates that they are not affected by the increased load.

Looking across Figure 9, we observe all the testbed machines
have the same dominant frequency at 15KHz for both no load and
load conditions. However, observe that the addition of host load
increases the power in in low frequencies by about 10%, clearly
visible in the cumulative spectrum. Although, the load changes the
lower frequency content, it does not add any dominant frequencies
and therefore the spectral signature is stable.

Type of tool Testbed Machines
M1 M2 M3

I 2(29) 201(25) 2(1)
II 390(485) 25(174) 1450(2)
III 9(1) 34(1) 2(1)

Table 8: Effect of load on spectrum

The above observation indicates that although the load reduces
the overall packet rate by the attack tool our technique for gener-
ating spectral signature is robust to load and thus can be used to
identify repeated attacks. Table 8 summarizes the quality of the
signature matches under load conditions. The entries in the table
match the spectral signatures of the Linux testbed machines, with
and without load. Type I tool provides a good match across all
testbed machines indicating that the host load does not affect the
spectral fingerprint significantly.

5.6 Experimenting with different attack tool
Next we evaluate how much does the attack tool contribute to

the attack spectral fingerprint. In this section, we try to answer the
question, is it possible to identify each attack tool by their spectral
behavior observed in the attack stream? If it is possible to do so
then each attack tool can have its own spectral fingerprint and it
will allow us to understand the deployment and usage of specific
attack tools on the Internet.

When comparing the attack fingerprints in the previous sections,
we observe that the attack stream is strongly influenced by host
parameters such as operating system, CPU speed, and host load.
Therefore, we know that the attack tools spectral signature does
not survive in the packet stream in all cases partially answering the
above question. In this section, we present results that indicate that
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Figure 9: Effect of host load on the attack spectra

the attack tool defines the spectrum provided the attack tool is not
limited by any other resource.

Referring to Figure 7 and Figure 8 we observe that type I and
type III attack tools have identical spectra when seen across all the
hardware platforms. Both these tool categorizes are not limited by
the available resources since they require low resources due to the
way they are programmed. Type I tools are efficiently written and
thus do not have a high packet generation overhead and creates the
same spectra on all the testbed machines. Type III attack tools on
the other hand, have their own distinct signature that is a function of
how long the tool waits between two packets. Therefore the graphs
lead us to believe that as long as the attack tool is not limited by the
available resources, the attack signature will survive.

5.7 Experimenting with different packet sizes
All the above experiments suggest that the host characteristics

(such as operating system, CPU speed) and the attack tool defines
the spectral behavior provided the network is not saturated. For
Type I and Type II attacks tools, the spectra is influenced by the
available network capacity. These tools saturate the network by
generating packets at 15Kpkts/s which results in a sharp peak at
15KHz in their respective spectrum. We believe, that if we modify
the packet rate by increasing the packet size, then the attack tools
will produce a different spectra.

To verify if this is true, we rerun the above set of experiments by
increasing the packet size in the attack tools to 500B and observe
how the change affects the spectral behavior. Type I tools now
generate packets at 2100pkt/s across all testbed machines and are
not affected by the load on the machine. Type II tools also generate
packets at 2100pkts/s across all testbed machines but the packet
rate reduces to 1700pkts/s when load is increased using Seti@home
instances. Type III tools still generate packets at 50pkts/s.

Figure 10 plots the attack spectra of type I tools on both FreeBSD
and Linux machines. The increase in packet size resulted in the
dominant frequency to move from 31KHz to 2.1KHz supporting
our hypothesis that a saturated network can completely alter the
attack spectrum.

Further, since the packet size is large in this set of experiments,
the attack spectra are not susceptible to host load. However, the
Type II tools on the other hand can generate more packets when
there is extra computational resources available, thus when load is
added the attack rate reduces. Type III attacks generate a very low
volume of packets that can keep up with the slowest machine on
the testbed and are thus not affected by the load and have a fixed
packet rate.

5.8 Experimenting with network cross-traffic
The above set of experiments provide insight into how software

and hardware characteristics contribute to the attack fingerprint. In
this section, we explore the effect of cross traffic on the attack spec-
tra.

To understand the impact of the network cross-traffic, we pro-
pose a simple model that simulates exponential packet arrivals. A
packet is transmitted with a probability prob, which ranges from
5–100%. If a decision is made not to transmit a packet, during any
time instance, it delays transmission for an exponential amount of
time before attempting transmission again. The mean exponential
inter-arrival time is the transmission time for smallest packet on the
network. The network cross-traffic consists of a mix of different
packet sizes. The cumulative distribution of the packet sizes mod-
els traffic seen on the Internet [6]. In particular, 50% of the packets
are 40bytes, 25% packets are 560bytes, and 25% of the packets are
1500bytes.

The cross-traffic is then combined with the attack traffic to see
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Figure 10: Effect of packet size on the attack spectra

its effect on the attack spectral signature. Since we are interested in
observing at what point the attack spectrum is affected by the cross-
traffic, we progressively increase the cross-traffic rate to see what
maximum ratio of cross traffic to attack traffic will still preserve the
attack signature.

In Figure 11 we observe how the attack spectrum of type II at-
tacks on LM1 changes as the amount of network cross-traffic in-
creases from 5–100%. When there is less than 60% cross-traffic, a
sharp peak can still be observed at 10KHz. Once the cross-traffic
increases to 60% of the traffic on the network, the signature shifts to
a sharp peak at 32KHz. The sharp peak at 32KHZ reflects that the
network is saturated and corresponds to the frequency created by
40byte packets on the network. As the rate of cross-traffic increases
further, we can observe other dominant frequencies corresponding
to 560bytes and 1500bytes appear in the spectrum.

The battery of experiments suggest that the spectral fingerprint
is defined by the attack tool and can be altered by the follow-
ing components: operating system, the host speed and load, and
the network capacity and cross-traffic. The operating system and
host speed alters the spectrum only in type II tools. Although the
host load increases the energy in the lower frequencies, it does not
change the attack fingerprint and therefore gives good matches.
The network influences the fingerprint completely when it is sat-
urated. Thus when the cross-traffic is increased to the network ca-
pacity then the fingerprint is dominated by the frequencies present
in the cross-traffic. All the experiments thus collectively support
our hypothesis that the attack scenario is primarily defined by the
attacker host and the attack tool.

6. FUTURE WORK
Our system uses statistical techniques and pattern matching to

identify repeated attacks. As such the quality if its results depend

algorithm parameters and environmental factors. Although we have
explored sensitivity of the results to many factors above, several
areas remain.

Number of features: The success of the matching algorithm
proposed in Section 3.3 depends largely on the feature data. In
this paper, we use dominant twenty spectral frequencies as the fea-
tures that identify the attack fingerprint. We have a preliminary
exploration of varying the number of frequencies used as features,
finding that we will get more accurate match values are the feature
set increases and the converse is true for a smaller feature set. We
tested our algorithm with feature sets of 5 and 30 frequencies on
the testbed attacks and obtained varying match results. The top 5
feature produced significantly lower quality matches (evaluated us-
ing precision and accuracy statistics) while the top 30 frequencies
did not improve the quality of our matches. The current approach
of using the dominant twenty frequencies seems to capture most of
the important features in the attack spectra. As future work we hope
to re-evaluate the feature data once again when the attack database
increases in size.

In addition to varying the number of frequencies, we could group
adjacent frequencies as one feature. This approach may be more
robust to noisy data.

Alternate feature definitions: Rather than simply varying the
number of frequencies, alternative definitions of what a feature is
may be helpful. Other features might include the complete spectra,
certain fields of the packet header, or inter-arrival rate, could also be
used to create unique fingerprints. These fingerprints may be more
robust to single-source attacks, that our current technique cannot
handle. Previous work has shown that usually there are multiple
disjoint features that can be extracted from the data. For example,
there are six popular feature sets for 0–9 handwritten numerals [11].
Exploration of other kinds of features is an area for future work.

12



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

S
(f

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

C
(f

)

Frequency

(a) 50% Traffic

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

S
(f

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

C
(f

)

Frequency

(b) 60% Traffic

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

S
(f

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

C
(f

)

Frequency

(c) 100% Traffic

Figure 11: Effect of cross traffic on the attack spectra

Higher sampling rates: We currently compute spectra from
timeseries evaluated based on sampling bins of fixed size p. Chang-
ing p will affects the algorithms since more detailed sampling will
generate higher frequency spectra. Particularly with single-source
attacks, most “interesting” behavior will be at high frequencies.
Sampling at a higher rate may improve identification of such at-
tacks.

Temporal stability: Another important research question we
need to explore when creating a attack fingerprint database is the
level of temporal stability that is required for fingerprinting. Traffic
usage patterns and volume change dynamically in the Internet vary-
ing the composition and quantify of cross traffic. If the fingerprint
is sensitive to this variability, the database will need to be recycled
periodically and will not provide accurate results. We will attempt
to answer such questions by gathering more real-world attacks over
a longer period.

Other applications: In the past, studies have been done to quan-
tify attack prevalence on the Internet. Moore et al. used backscatter
analysis and detected 12,805 attacks during a period of 3 weeks [16].
However, there are no studies on how many attacks are launched
from the same attack troops and are indeed repeated attacks. As
our database of attacks grow, we would like to analyze how many
repeated attacks occur on the Internet every day. This study would
also help understand independence and likelihood of repeated at-
tack occurrences (Section 3.3). Such a study could maybe provide
insight into attacker motivation and psyche.

Further, we would also like to explore how this research be ap-
plied to different network traffic problems. Such techniques may
be applicable to other systems with regular traffic patterns. In Sec-
tion 2, we list other efforts that analyze network traffic applying
pattern recognition techniques. We believe the application of pat-
tern recognition to network traffic is a new area of research that can
provide valuable insights into network traffic behavior.

7. CONCLUSION
In this paper we presented techniques to identify attack streams

in network traffic. We developed an attack fingerprinting system
to identify instances of repeated attack scenarios on the network.
We applied unique pattern matching techniques making use of the
maximum-likelihood classifier to identify repeated attack scenarios
in 18 attacks captured at a regional ISP. We observed seven attacks
that are probably repeated attack scenarios and our hypothesis is
also corroborated with packet header information gathered from
the attack stream.

We also performed a systematic experimental study of the factors
that affect the attack stream. We conducted a battery of controlled

experiments that allow us to isolate various factors, such as, attack
tool, OS, CPU speed, host load, and cross traffic, that may affect
the attack fingerprint. Our study indicates that spectral fingerprint
is primarily defined by the attacking host and the tool. However, the
network influences the fingerprint completely when it is saturated.
We believe such a system would enhance network traffic forensic
capabilities and aid in investigating and establishing attribution of
the DoS attacks seen on the Internet.
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