
To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

Enabling Large-scale Simulations:
Selective Abstraction Approach to the Study of Multicast Protocols

Polly Huang, Deborah Estrin, John Heidemann
USC/Information Science Institute
University of Southern California
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90291
{huang, estrin, johnh}@isi.edu

Abstract

Due to the complexity and scale of the current
Internet, large-scale simulation is an increasingly
important tool to evaluate network protocol design.
Parallel and distributed simulation is one appropriate
approach to the simulation scalability problem, but it
can require expensive hardware and have high
overhead. We investigate a complimentary solution --
simulation abstraction. Just as a custom simulator
includes only details necessary for the task at hand, a
general simulator can support configurable levels of
detail for different simulations. We demonstrate two
abstraction techniques in multicast simulations and show
that they each help to gain one order of magnitude in
performance. Although abstraction simulations are not
identical to more detailed simulations, in many cases
these differences are small and result in minimal
changes in the conclusions drawn from simulations.

1. Introduction

Modeling and simulation traditionally have been the
two approaches to evaluate network protocol designs.
However, modeling is often intractable with today’s large
networks and complex traffic patterns, so researchers
have turned increasingly to simulation. In order to
evaluate wide-area protocols with thousands of nodes, we
must be able to perform large-scale simulations.

General-purpose network simulators (such as ns-2
[11]) make simulation easier by capturing characteristics
of real network components and providing a modular
programming environment, often composed by links,
nodes and existing protocol suites. For instance, a link
may contain transmission and propagation delay

modules, and a node may contain routing tables,
forwarding machinery, and local agents. These
composable modules provide a flexible environment to
simulation network behavior, but depending on the level
of details a particular simulation is investigating, these
details may or may not be required. Unfortunately, this
modular structure can result in significant resource
consumption, especially when the simulation scenarios
grow. Ahn and Danzig estimated that “five minutes of
activity on a network the size of today’s Internet would
require gigabytes of real memory and months of
computation on today’s 100 MIP uniprocessors.” [3]

One approach to the scalability problem is to apply
parallel and distributed simulation, dividing tasks into
parts coordinated over numbers of machines. Parallelism
can improve simulation scale in ratio to the number of
machines added, but this linear growth is not sufficient to
add several orders of magnitude scaling needed. Parallel
simulation can also require hardware that is not widely
available or expensive.

A complimentary solution is to slim down simulations
by abstracting out details. The idea is to analyze
simulations, identify the bottleneck, and eliminate it by
abstracting unnecessary details. The risk of abstraction is
that simulation results may be distorted; users must be
careful that their simulation results are not changed. We
address this problem by providing identical simulation
interfaces for detailed and abstract simulations, allowing
users to make side-by-side comparisons of their
simulations at small scales. When the abstraction is
validated through the general guidelines provided, it can
then be used for larger simulations.

Because multicast protocols potentially have more
complicated scaling problems, we apply our abstraction
techniques, centralized computation and abstraction
packet distribution, on multicast routing and packet
transmission as examples.

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

2

This work shows that abstracting details can speed up
and reduce memory consumption significantly while the
results of simulations are not crucially affected.
Application of our abstractions and the techniques may
allow the research community to perform large-scale
simulations that were impossible before, and to perform
previously achievable large-scale simulations at much
lower cost to the same user. As a result, this work
enables protocol evaluation for large-scale scenarios.

After discussing related work, we present the
techniques used to abstract details, particularly for
multicast simulations, and the general guidelines to
perform abstract simulations. We then discuss results
comparing performance and accuracy for the abstract and
detailed versions, and, finally, SRM (Scalable Reliable
Multicast) simulations are studied to demonstrate the use
of guidelines and the abstraction techniques.

2. Related work

There has been a great deal of work on network
simulation. However, most of the simulators focus on
providing protocol modules and user-friendly interface.
Only few address the scaling problem. Here we briefly
summarize priori work in parallel and distributed
simulation, abstraction, and hybrid simulation.

Parallel and distributed simulation exploits the cost
benefits of microprocessors and high-bandwidth
interconnections by partitioning the simulation problem
and distributing executions in parallel. The distributed
simulations require techniques such as conservative and
optimistic synchronization mechanisms to maintain the
correct event ordering [1,2]. Consequently, the
simulation efficiency may be degraded due to the
overhead associated with these mechanisms. Although
parallel and distributed simulation is useful when large
computers are available, alternative techniques such as
abstraction are also needed to make very large
simulations.

Ahn and Danzig [3] proposed to abstract packet
streams (Flowsim) for packet network simulations and
proved that Flowsim can be adjusted to the desired
simulation granularity and help to study flow and
congestion control algorithms more efficiently.
However, Flowsim only abstracts one aspect of network
simulation. We present two other techniques for a wider
range of network protocols.

In hybrid simulation models [4], both discrete-event
simulation and analytic techniques are combined to
produce efficient yet accurate system models. There are
examples of using hybrid simulations on hypothetical
computer systems. Discrete-event simulation is used to
model the arrival and activation of jobs whereas the

analytical queuing model is used for the scheduling of
system processors. The accuracy and efficiency of the
hybrid techniques are demonstrated by comparing the
result and computational costs of the hybrid model of the
example with those of an equivalent simulation-only
model. Our abstract simulation can be thought of as an
application of hybrid simulation to networking.

3. Abstraction techniques

Large-scale simulations are prevented because of
resource constraints, typically in CPU and memory
consumption. Through abstraction we reduce resource
consumption, enabling large-scale simulations.
Abstraction is possible because Internet protocols are
layered. In evaluation of a level-n protocol, we need
information provided by level n-1, but not necessarily
(depending on the research questions) all the details of
the lower level protocols. For instance, a multicast
transport protocol may need multicast routing tables in
order to forward multicast packets, but not the detailed
message exchange that is required to generate the routing
tables. If we abstract away unnecessary details, the
memory and time consumption can be conserved and
used to simulate larger-scale scenarios. Here we briefly
introduce two abstraction techniques using multicast
simulations as examples and the general guidelines to
abstract. Implementation details of the abstraction
techniques and their effect on simulation performance
and distortion are presented in the next section.

Multicast supports transfer of information from one
or more sources to multiple receivers (multicast group
members). Current Internet multicast protocols transfer
information along distribution trees rooted at the group
sources and spanning the group members. Various
multicast routing protocols establish these multicast trees
in different ways: broadcast and prune (e.g., DVMRP [5]
and PIM-DM [6]), membership advertisement (e.g.,
MOSPF [9]), and rendezvous-based (e.g., CBT [7] and
PIM-SM [8]). Much of the current IP multicast
infrastructure uses broadcast and prune protocols, so we
use a DVMRP-like implementation as the standard
detailed multicast for the comparison. The broadcast and
prune multicast protocols are suitable for groups with
dense member distribution, and, thus, also called dense
mode multicast protocols.

Our detailed implementation of multicast does not
scale well as numbers of nodes and group members rise
due to the overhead of flood-and-prune message
processing. Our first abstraction technique, centralized
computation, avoids this network-level message
exchange by centrally computing protocol states.
Centralized multicast, an example of applying the

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

3

centralized computation on multicast routing, computes
the result of routing message exchange and updates
routes in multicast trees instantly. The same approach
can be applied to other network-layer protocols (e.g.,
unicast routing). The centralized computation technique
conserves a significant amount of memory and time at the
cost of a slight difference in control message overhead,
and route convergence latency when group membership
or topology changes.

Centralized computation allows us to scale to 100s of
nodes, but at thousands of nodes the overhead of general-
purpose per-node and link data structures becomes very
large. To reduce the node and link structure, we
developed abstract packet distribution, our second
abstraction technique. Abstract packet distribution
avoids transport-level node by node, link by link packet
transmission by direct packet scheduling at the receiving
ends. Consequently, nodes and links become lightweight
data structures. Session multicast, an example of
applying abstract packet distribution on multicast
transmission, sets up a direct connection (i.e., a session)
between a source and its receivers, computes loss and
delay characteristics for each source and receiver pair,
and schedules packets receive events accordingly. The
same technique can be applied to other transport-layer
protocols (e.g., TCP). The abstract packet distribution
technique significantly improved the simulation
performance with increased topology size, but with
observable difference in packet end-to-end delay when
the network is congested.

Our experience in preparing and designing the two
abstraction techniques can be generalized into the
following guidelines to help users conduct their own
abstract simulations:

1. Define scaling factors and measurement metrics
2. Start from small-scale detailed simulations
3. Profile simulations to find bottleneck
4. Adapt techniques to avoid simulation bottleneck
5. Verify simulations in small-scale in detailed mode
6. If one of the following conditions holds, proceed
with large simulations using the abstract version.

• The defined measurement metrics are not
affected by the introduced distortion at all.

• Distortion will not be enlarged when scaling
factors grow.

We demonstrate the above general guidelines in the
case study.

4. Systematic Comparison

We start this section by providing details of the
original dense mode multicast, centralized multicast, and

session multicast implementations in ns-2. After
presenting the simulation resource consumption by the
three implementations, finding that the session multicast
scales the best and centralized multicast the second, we
illustrate the distortions introduced by centralized
multicast and session multicast.

4.1 Mechanism Detail

n0

n1

n3

n2

n4 n5

n0

n1

n3

n2

n4 n5

n0

n1
n2

n4

I: Interface
Q: Queue
D: Delay
T: TTL

I
Q

D
T

I

I
Q

D
T

I

I
Q

D
T

I

n0

n4 n2

Replication
Delay
TTL

Session Helper

: Member
: Data
: Prune

Centralized
Route

Computation

Dense Mode Multicast Detailed Packet Distribution

Centralized Multicast Abstract Multicast Distribution
Abstraction

Figure 1. Illustration of the Detailed and
Abstract Simulation Mechanisms

Dense Mode Multicast & Detailed Packet
Distribution. The ns-2 implementation of dense mode
multicast closely follows real-world implementations in
terms of message exchanges (Figure 1, upper left). Each
dense mode multicast agent maintains a parent-child
relationship to all other agents by a triggered checking to
neighbors’ routing tables. When a node does not find
any forwarding entry for a packet, the node upcalls its
local dense mode agent to install a multicast forwarding
entry according to the source and group addresses in the
packet header. The dense mode multicast agent inserts
only the child links indicated in its parent-child
relationship as the outgoing interfaces. Packets are then
forwarded to the outgoing interfaces.

When a packet reaches a leaf node that does not have
any local member, a prune message is sent upstream to
start a prune timer in the upstream dense mode agent for
the particular outgoing interface. Within this prune
timeout period, multicast packets will not be forwarded
onto this outgoing interface. When a member joins a
group and there exists a multicast forwarding entry for
the group but no local or downstream members, a graft
message is sent upstream to cancel a prune timer (if
there’s any) so multicast packets can be received at this
member. Similarly, when a member leaves a group and
there are no local or downstream members, a prune
message is sent upstream to prune off this branch.

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

4

Packets are forwarded through a series of objects that
are linked to mimic detailed packet forwarding
machinery in the real network (Figure1, upper right).
When packets enter a node, an entry classifier decides
which next classifier to go to, depending on the
destination address in the packet header. If the address is
a multicast address (mask and mask length), packets are
forwarded to a multicast classifier which maintains a
hash table of routing entries (source, destination,
outgoing target, incoming interface). These entries are
installed by the multicast routing protocol. The
classifiers then hash on the source, destination, or
incoming interface, to decide which next object to
forward the packets. In unicast classifiers, the next
object is typically the network interface. However, in
multicast classifiers, next object is a replicator. The
replicator copies the packets and then forwards on to
several outgoing network interfaces.

Each network interface is connected to a queue
object, which holds packets inside the queue if the link is
occupied. When the link is clear, packets are forwarded
onto a transmission and propagation delay module which
delays the packets with the propagation delay and
transmission delay given in the simulation configuration.
Finally, the packets reach a TTL (time to live) checker
which decrements the TTL field in the packet header and
passes to the receiving network interface. The receiving
network interface labels the incoming interface field in
the packet header and forwards to the entry classifier of
the receiving node.

Centralized Multicast. The detailed protocol
implementations are helpful in validating the detail
protocol design, but they often are unnecessarily specific.
Our centralized multicast abstraction eliminates much of
its message exchange.

The centralized multicast computation agent keeps
track of source and member lists for a group. Therefore,
when a member joins a group, a multicast tree branch is
installed toward each source for the group until it merges
with the original tree. Similarly, when a member leaves a
group, a multicast tree branch is pruned until it reaches
the original tree. When a new source starts to send
packets to a group, the entire multicast tree is installed
according to the member list of the group. There are no
prune timers associated with outgoing interfaces, and
whenever there is a topology change, all the multicast
trees are re-installed.

The periodic broadcast and prune, parent-child
relationship, and other message exchange in the dense
mode multicast are eliminated in centralized multicast.
As a result, some detailed characteristics may not be
captured.

Session Multicast. Another area with possibly
unnecessary detail is hop by hop packet transmission and
heavyweight link and node structures. Session multicast
reduces these overheads.

Session multicast avoids set-up and maintenance of
multicast forwarding entries altogether. Instead, source
and members are directly connected with appropriate
delay and loss characteristics. In the simulated version,
the propagation delay and bandwidth are calculated and
represented between a source and each of its members.

It is important that the session multicast and detailed
multicast transmission share the same loss patterns. In
particular, losses on a link will correlate to losses to any
recipients downstream of that link. Session multicast
retains this dependency. To illustrate, the left diagram in
Figure 2 presents a multicast tree with source n0 and
members n1-n6, and an error modules is inserted in each
of link n0-n1, n1-n3, and n2-n6. The right diagram in
Figure 2 shows the equivalent error dependency retained
in session multicast, where n6 is dependent on e2, n3 is
dependent on e1, and n1, n4 and e1 are dependent on e0.

n0

n1

n3

n2

n4 n6n5

e0

e1 e2

e0

e1

e2

n3

n1 n6n4

error_dependency_

Example Multicast Tree with Error Modules The Equivalent Error Dependency Tree

Member Node

Error Module

Figure 2. An Example of Error
Dependency in Abstract Multicast
Distribution (Session Multicast)

In abstract multicast packet distribution, all the
replication, delay, loss and forwarding machinery are
combined into one compact multicast ‘session helper’
agent. As a result, the original link structure (a sequence
of interface, loss, queuing, delay, and TTL objects) is
reduced to numbers, delay and bandwidth; the original
node structure, a combination of classifiers, is reduce to
two numbers, node id and port id. Our simple delay
calculation entirely ignores queuing delay and therefore
session multicast is not suitable for studying queuing
behavior.

4.2. Performance Comparison

The purpose of our abstractions is to improve
performance in the face of large-scale simulations. The

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

5

numbers of nodes, members, and groups are the three
factors that affect the scale of multicast simulations.
Three sets of tests explore each of the three dimensions
from a standard case, 300 nodes (average degree 1.77),
30 groups, and 30 members. We use 2-level hierarchical
network topologies with a constant degree of
connectivity (~1.77), created by GT-ITM (Georgia Tech
- Internetwork Topology Model) [10]. Sources and
members are randomly chosen for all simulations.
Memory and running time are measured to compare the
performance among the three versions of simulations.
All simulations are conducted on a FreeBSD Pentium PC
with 128 MB real memory.

0

20

40

60

80

100

120

140

160

180

0 200 400 600

Number of Nodes (degree ~ 1.77)

M
e

m
o

ry
 in

 M
B

Dense Mode

Centralized

Session

0

20

40

60

80

100

120

140

160

180

0 20 40 60

Number of Groups

M
e

m
o

ry
 in

 M
B

0

20

40

60

80

100

120

140

160

180

0 20 40 60

Number of Members

M
e

m
o

ry
 in

 M
B

Figure 3. Comparison of Memory Usage

Memory Consumption. From all three graphs in Figure
3, we observe the dramatic effect of periodic flood and
prune in detailed multicast on the memory consumption.
Especially, when the number of nodes increases, the area
for flood and prune becomes larger as well, which
contributes to the high memory usage for dense mode
multicast. Centralized multicast replaces flood-and-
prune messages, eliminating this source of overhead.
However, centralized multicast still experiences a
significant growth along with the topology size because
of heavyweight links and nodes. Session multicast scales
the better than the other two.

One interesting point observed from the right most
graph is that three simulations grow at similar rates. This
is because of the random selection of members. If the
member distribution is diverse (fairly random), increased
number of members does not necessarily imply the
multicast tree spans a wider range. In another words, the
area of flood and prune in dense mode does not
necessarily grow or shrink. On average, the flood and
prune area should stay constant. However, we expect
centralized multicast to consume slightly more memory
than dense mode when all or most nodes are members,
because the flood and prune overhead in dense mode is
reduced and centralized multicast carries extra global
states required for route computation.

In summary, we show that abstraction can save
substantial amounts of memory, allowing larger

simulations. The benefits of these approaches vary
depending on what dimensions of scale is being pushed.
We see large absolute and incremental benefits when
numbers of nodes and multicast groups rise, but only
absolute benefits when the number of group members
changes.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600

Number of Nodes (degree ~ 1 .77)

U
se

r
T

im
e

 in
 S

e
c

Dense Mode

Centralized

Session

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60

Number of Groups

U
s

e
r

T
im

e
 in

 S
e

c

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60

Number of Members

U
s

e
r

T
im

e
 in

 S
e

c

Figure 4. Comparison of Time Usage

Time Consumption. Dense mode scales even worse in
CPU time, looking at all three graphs in Figure 4, due to
the flood and prune over the entire topology. In
particular, the drastic growth of detailed multicast scaling
number of nodes is also contributed by the extra CPU
cycles spent for swapping after the memory consumption
exceed the available real memory. Centralized multicast
scales much better because it avoids the scheduling of
packets that flood everywhere. Abstract multicast
distribution does even better by avoiding hop-by-hop
packet processing overheads.

4.3. Distortion

The performance gains are possible because
abstractions remove some protocol details, consequently
introducing distortions. Users must follow the general
guidelines (Section 3) and understand if the distortions
associated with the applied abstraction techniques will
affect the defined measurement metrics. In this section
we characterize the distortions introduced by centralized
multicast and session multicast.

Distortion by Centralized Multicast. The centralized
multicast replaces routing message exchange with a
centralized computation agent. Although the resulting
routes by the two implementations are identical, their
transient behavior can be different. In detailed dense
mode multicast, messages propagate topology changes
through the tree at link speeds, while with centralized
abstraction, topology changes are globally known the
instant they occur.

To demonstrate the difference, we simulate various
group events (join, leave, link down, link up) on a sample
topology. We periodically count the numbers of data
packets on the entire topology and draw Figure 5, we

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

6

referred to as the behavior chart. This behavior chart
roughly represents the accuracy of the simulations.

Packets in transit

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (in sec)

of

 p
ac

ke
ts

 in
 tr

an
si

t

DM

CtrMcast

Figure 5. Difference Between Dense Mode
and Centralized Multicast

The dark line represents dense mode multicast
behavior. The light dashed line represents centralized
multicast behavior. Dark spikes (for example, at time
0.1, 0.4, and 0.8) nicely demonstrate the periodic flood
and prunes. We find that steady states of the lines rise
by a few packets when members, not currently in the
multicast tree, join the group (e.g., at time 0.2, 0.4, and
0.6), and vice versa. Furthermore, when a link on the
tree fails (for example, at 0.8), we find that the lines drop
a few packets lower and, when new routes converge, the
lines jump back to the original level. Comparing the two
lines, other than the extra flood and prune overhead in
dense mode, we also observe that the route convergence
latency differs depending on the update sensitivity of the
two implementations.

Concluding from the above observations, centralized
multicast is not appropriate when examining detailed
multicast behavior during transients (e.g., amount of loss
during transients and amount of bandwidth consumption
by flood and prune). However, centralized multicast
should give no difference to end results when control
message overhead are transient delay are not critical
issues.

Distortion by Session Multicast. Session multicast
replaces hop-by-hop message passing with direct end-to-
end delays, which ignore queuing delays. We therefore
expect the abstract simulations to be the same as detailed
simulations when there is no cross traffic but to fail to
model queuing delays when cross traffic is added. To
demonstrate this effect we compare end-to-end delay in
abstract and detailed simulations and draw the mean
difference with 1 to 80 multicast groups (roughly
represents degree of congestion). See Figure 6.

Mean (Diff in E-E Delay)

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

Number of Sessions

S
ec

on
ds

Figure 6. Difference Between Detailed
Packet Distribution and Abstract Multicast
Packet Distribution

When there is only one multicast flow, link capacity
is high enough to carry the incoming traffic smoothly, so
there is no queuing contributing to the end-to-end delay,
which is closely modeled by the abstract multicast
distribution. Therefore, we see almost no difference in
end-to-end delay. However, when we increase the
number of multicast flows, the network starts to
experience cross-traffic and so queuing delay. Queuing
delay is omitted by current abstract multicast distribution,
causing differences in end-to-end delay when queue
builds up.

This example suggests that abstract multicast
distribution must be used carefully when simulations
involve very high source rates or cross traffic (i.e.,
congested network). For example, abstract multicast
distribution should not be used with congestion control
protocols because there must be congested network
components in order to exercise the congestion control
mechanism.

5. Impact on Simulation Studies - Case
Study SRM

Abstraction techniques improve performance, but in
some cases it produces different results. It is important
that users follow the general guidelines to create efficient
and accurate abstract, large-scale simulations. To
demonstrate, we examine the use of the general
guidelines on an important, active research area, reliable
multicast. In particular, we choose Scalable Reliable
Multicast (SRM) [12], one of the pioneer research in
reliable multicast.

5.1. SRM Mechanism

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

7

SRM (Scalable Reliable Multicast) [26] is a reliable
multicast transport protocol. Each member detects losses
individually and issues multicast requests for
retransmission per loss. Any member who successfully
receives the packets may multicast a retransmission to
recover losses for the requesting node. A timer based on
the distance between members is used to suppress
duplicate requests and recoveries. Therefore, the time to
recover and amount of duplicate messages are important
measurement metrics to SRM experiments. Scaling
factor is group size.

5.2. SRM Simulations

We profile SRM simulations and find one of the
bottleneck is hop-by-hop packet transmission. Thus, we
apply session multicast on the SRM simulations and
perform the following set of experiments. Members are
randomly selected on a 100-node 2-level hierarchical
topology. The time and memory consumption is
measured to observe the improvement. Recovery delay,
duplicate repair, and duplicate request are measured to
compare the simulation results.

Figure 7 shows that abstraction improves memory
and CPU time consumption. The abstract SRM
simulations experience a slower increase in memory
consumption but similar increase in time consumption
when group size grows. In Figure 8, we plot the 95%
confidence interval for each of the measurement metrics
and place the results of detailed and abstract simulations
side by side. As we can see, these intervals are very
close to each other suggesting that abstract simulations
produce about the same results.

SRM is an error recovery scheme, so simulations do
not concern operationally congested networks. Hence,
the session multicast work well for SRM simulations and
will continue to work for larger-scale simulations as long
as there is no congestion in the simulated network.
However, there are other protocols (e.g., congestion
control) that clearly need to be studied in the presence of
congestion. Can these mechanisms be studied in abstract
packet distribution? The answer may be yes, depending
on the levels of details the mechanism requires and the
availability of the models for congested links and nodes
(e.g., input rate, output rate, => queuing time). As
mentioned earlier, to scale simulations is application
specific. Currently, we are working on mixed mode
technique that will allow the critical areas to run in
detailed mode while the rest in abstract mode. With
minor performance degrade, we will be able to improve
accuracy in simulation results.

Memory Consumption

0

5

10

15

20

25

30

35

40

45

50

0 50 100

Group S ize

M
e

m
o

ry
 in

 M
B

De tailed

Abstract

Time Consumption

0

50

100

150

200

250

300

350

0 50 100

Group S ize

U
s

e
r

T
im

e
 in

 S
e

c

Figure 7. Performance Comparison for
SRM and Session SRM

Recovery Delay

0

5

10

15

20

25

30

20 40 60 80

Group Size

D
e

la
y

 i
n

 R
T

T

Duplicate Repairs

0

2

4

6

8

10

12

14

20 40 60 80

Group Size

N
u

m
b

e
r

o
f

R
e

p
a

ir
s

Duplicate Requests

0

1

2

3

4

20 40 60 80

Session Size

N
u

m
b

e
r

o
f

R
e

q
u

e
s

tsDetailed
Abstract

Figure 8. Accuracy Comparison for SRM
and Session SRM

6. Future Work

Our short-term objective is to apply our abstraction
techniques on other multicast transport protocols such as
MFTP (Multicast File Transfer Protocol) [13] and RLM
(Receiver-Driven Layered Multicast) [14]. Then, we
would like to experiment our mixed mode technique to
include queuing characteristics so that we could apply
abstract multicast distribution on congested network
scenarios. For longer term, we would like to further
expand simulation scale to the order of tens of thousands.

7. Conclusion

We found that the general-purpose dense mode
multicast with detailed packet distribution is not scalable
with increased topology size, group size, and number of
groups. Therefore, we applied the centralized
computation technique on multicast routing. The
resulted centralized multicast avoids periodic flood and
prune but exhibits difference in control traffic overhead
and convergence latency. Higher level multicast protocol
simulations do not necessarily need the transient details,
so in many cases using centralized multicast does not
affect the end-results. However, if a particular set of
simulations requires the transient details, we suggest run

To appear, International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Montreal, Canada, July 1998

8

these simulations at the detailed mode and avoid
centralized multicast.

Although centralized multicast scales well with
increased group size and number of groups, it does not
scale as well with increased topology size. Therefore, we
apply the abstract packet distribution technique on
multicast packet distribution. The resulted session
multicast significantly reduces link and node structures,
and the amount of packet scheduling, but exhibits
difference in end-end delay when the simulated network
is congested. Many multicast error recovery mechanisms
do not require simulation on congested networks, so
using abstract multicast distribution does not affect the
end-results. In the case study, we use SRM as an
example to demonstrate that our abstraction techniques
conserve resources and retain accuracy. Session
multicast ignores queuing delays, so mechanisms such as
multicast congestion control should avoid the abstract
packet distribution. However, we are working a mixed
mode simulation technique that will allow simulations for
congested networks. These abstraction techniques will
improve the scale the research community studies
protocols.

Acknowledgements

The authors would like to thank Jon Postel, Joseph
Bannister (ISI), Sally Floyd (LBNL), and the anonymous
reviewers for their useful comments and insightful
feedback on the paper.

References

[1] David R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and Systems, 3(40):404-425,
July 1985

[2] K. M. Chandy and J. Misra. Asynchronous Distributed
Simulation via a Sequence of Parallel Computations.
Communications of the ACM, 24(11):198-205, April 1981

[3] J. Ahn and P. B. Danzig. Speedup vs. Simulation
Granularity. IEEE/ACM Transaction on Networking,
4(5):743-757, October 1996

[4] D. Schwetman. Hybrid Simulation Models of Computer
Systems. Communication of the ACM, September 1978

[5] D. Waitzman, S. Deering, and C. Partridge. Distance
Vector Multicast Routing Protocol. RFC1075, November
1988

[6] D Estrin. D. Farinacci, A. Helmy, V. Jacobson, and L.
Wei. Protocol Independent Multicast - Dense Mode (PIM-
DM): Protocol Specification. Proposed Experimental
RFC, September 1996

[7] A. J. Ballardie, P. F. Francis, and J. Crowcroft. Core
Based Trees. In Proceedings of the ACM SIGCOMM, San
Francisco, 1993

[8] S. Deering, D. Estrin, D. Farinacci, M. Handley, A.
Helmy, V. Jacobson, C. Liu, P. Sharma, D. Thaler, and L.
Wei. Protocol Independent Multicast - Sparse Mode
(PIM-SM): Motivation and Architecture. Proposed
Experimental RFC, September 1996

[9] J. Moy. Multicast Extensions to OSPF. RFC1584, March
1994

[10] E. Zegura, K. Calvert, and M. Donahoo. A Quantitative
Comparison of Graph-based Models for Internet
Topology. To Appear in IEEE/ACM Transactions on
Networking, 1997

[11] S. McCanne and S. Floyd. UCB/LBNL/VINT Network
Simulator - ns (version 2). http://www-
mash.CS.Berkeley.EDU/ns/

[12] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang.
A Reliable Multicast Framework for Light-weight
Sessions and Application Level Framing. To Appear in
IEEE/ACM Transactions on Networking, 1997

[13] StarBurst Communication Corporation. StarBurst MFTP:
An Efficient, Scalable Method for Distributing
Information Using IP Multicast.
http://www.starburstcom.com/while.htm

[14] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-
Driven Layered Multicast. ACM SIGCOMM, Stanford
CA, August 1996

