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ABSTRACT

Previous measurement-based IP geolocation algorithms have
focused on accuracy, studying a few targets with increas-
ingly sophisticated algorithms taking measurements from tens
of vantage points (VPs). In this paper, we study how to scale
up existing measurement-based geolocation algorithms like
Shortest Ping and CBG to cover the whole Internet. We
show that with many vantage points, VP proximity to the
target is the most important factor affecting accuracy. This
observation suggests our new algorithm that selects the best
few VPs for each target from many candidates. This ap-
proach addresses the main bottleneck to geolocation scala-
bility: minimizing traffic into each target (and also out of
each VP) while maintaining accuracy. Using this approach
we have currently geolocated about 24% of the allocated,
unicast, IPv4 address-space (about 55% of the addresses in
the Internet that can be directly geolocated).

1. INTRODUCTION

IP geolocation is the process of finding geographic lo-
cations of Internet Protocol addresses. IP geolocation is
widely used today. For example, companies use IP ge-
olocation to limit the content to certain countries (for
example, television and movies that are often licensed
differently by the viewer’s country) and to customize ad-
vertising based on location. Internet researchers use 1P
geolocation to relate network phenomena to countries,
such as studying the cultural impacts on social network-
ing, or rates of computer crime by country and policy.
Moreover, IP geolocation is essential in law enforcement
to identify the appropriate jurisdiction to handle en-
forcement of computer crime statues.

Several research and commercial geolocation systems
exist, exploring many different approaches. They can
be roughly divided into three categories: systems driven
by databases (such as NetGeo [9] and GeoCluster [12]),
measurement based geolocation such as Geoping [12],
Shortest Ping [8], CBG [5], TBG [8], and target-assisted
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geolocation such as Skyhook [14]. We focus on measurement-

based systems here, since they provide better coverage
and accuracy than database approaches and are inde-
pendent of the target. Measurement-based algorithms
all depend on wvantage points (VPs) to actively probe
the geolocation targets. We study both Geoping- and
CBG-like algorithms.

Our goal is not to invent a new geolocation algorithm,
but to understand how existing algorithms can scale up
to many millions of targets and the entire IPv4 address
space. We encounter several problems in scaling-up ex-
isting algorithms to the whole Internet. First, all exist-
ing work uses a relatively small set of VPs, typically tens
of VPs [5, 8]. Second, existing work is tested on a rela-
tively small set of targets, typically hundreds of targets.
Typical targets are selected with known ground truth
to evaluate algorithm accuracy. With a dozens of VPs
and hundreds of targets, current algorithms each have
all VPs send many probes to each target. While this
product is reasonable when both are small, with hun-
dreds of VPs and a billion targets, the product is large.
The result is a huge amount of traffic out of each VP,
burdensome traffic into each target, where hundreds of
probes arrive to each IP address in a target block, and
a heavy load to bring this data together.

To scale geolocation to the entire Internet, our first
contribution is to study what factors affect geolocation
scalability and accuracy for the measurement-based ge-
olocation protocols. We show that traffic, both out-
bound from VPs and inbound to targets, is a signifi-
cant limitation to full-Internet geolocation, and show
that fewer VPs can make inbound traffic manageable.
We then show that most VPs provide little benefit to
geolocation, suggesting that one can select only a few
VPs to geolocate each TP address, getting reasonable ac-
curacy while greatly reducing traffic. We develop three
conjectures factors that affect accuracy and show that
good accuracy with a few VPs is possible (Section 4.1).

Our second contribution is to define new algorithms
to choose the right few VPs (Section 4.2). Our idea
is to select the closest VPs to the target, since closer
VPs provide stronger constraints on location. We show



Figure 1: Vantage points (VP), targets and landmarks
in Geoping (left), with RTT vectors for Geoping (right).

that VP selection using trial measurements to each /24
address block works well (Section 4.2). Our experimen-
tal results show that representatives can identify close
VPs and provide accuracy almost as good as many VPs.
For Shortest Ping, the median error is the same with 10
close VPs compared to all 400 VPs, and for CBG me-
dian error is only 11% worse.

2. PROBLEM STATEMENT

Our goal is to geolocate every allocated, unicast IPv4
address, with similar accuracy as basic Shortest Ping
and CBG. While geolocation algorithms are well known,
the main constraint in scaling them up to cover the en-
tire Internet is probing traffic. We next review geoloca-
tion elements and these constraints.

2.1 Geolocation terminology

Measurement-based geolocation systems send probes
from vantage points to geolocate targets in the Internet.
Some systems also probe landmarks at known reference
location. Figure 1 shows those entities: Vi, Vo and V3
are VPs, T is the target, L1, Lo are landmarks.

Targets are IP addresses on the Internet that we wish
to geolocate. In this paper we assume targets have fixed
physical locations (for example, if associated with a mo-
bile phone), although with mobile IP and wireless net-
works they can have multiple locations.

Vantage points (VPs) are hosts in the Internet, al-
ways with known locations. They send messages (probes)
to targets to determine the targets locations.

Landmarks are IP addresses with known locations
used by some IP-geolocation algorithms such as Geop-
ing. Unlike VPs, landmarks do not actively send mes-
sages. Since VPs are usually in known locations, they
often also serve as landmarks.

Address blocks, (or blocks), are groups of consecutive
addresses. Block size is usually identified as the num-
ber of leading bits in common, so all addresses in a /24
block have the same leading 24 bits. Because of IP ad-
dress allocation policies, blocks are usually managed by
the same organization and often have similar character-
istics [1], presumably including physical location [12].

2.2 Problem Constraints

Unfortunately, it is intractable to probe billions of
addresses from hundreds of VPs. Assume we have 500
VPs and each VP probes every IP address 10 times to
get the minimum round-trip time (RTT). The number
of all allocated, unicast IPv4 addresses is about 3.7 bil-
lion. Simple probing of all addresses 10 times by all VPs
therefore would generate 1.8 x 102 records, too many
to process centrally a large amount of traffic. Cover-
ing this number of targets is difficult because of the the
amount and diversity of incoming traffic at the targets,
and the amount of traffic required from the VPs, com-
binined with the need to probe relatively quickly so that
observations can be combined. We expore each of these
constraints below.

The primary challenge is incoming traffic to the tar-
gets, partially because of its size and moreso because it
can be misinterpreted. The amount of traffic for geolo-
cation is not huge, but can be noticed. Ten probes from
500 VPs is only 320 kB of traffic, equal to about a 10
seconds of a Skype video call (at 250 kb/s). While not
a huge amount of traffic by itself, the network admin-
istrator of a /24 network (or her users) can easily be
alarmed at this traffic rate as it covers all 256 addresses
over much of an hour. Even a few percent of very vig-
ilant network operators can result in abuse complaints
due to concerns of denial-of-service attacks; we must
minimize complaints in our use of a shared measure-
ment infrastructure.

The challenge of outgoing traffic at the VPs is that it
requires sustained, high-rate traffic. While sustaining
1 Gb/s of traffic for 5 hours is not impossible, geoloca-
tion requires geographically distributed VPs. Current
public measurement infrastructure, such as PlanetLab,
caps sustained outgoing traffic to less than 10 Mb/s,
thus pushing measurement time to more than 500 hours,
or much longer when the nodes are shared. A simple so-
lution to traffic problems is to spread probes out in time.
Slowing probing can reduce traffic arbitrarily, poten-
tially to the same level as “background radiation” [16].

Potentially probing traffic could be spread out in time
to reduce the negative effects on VPs and targets. How-
ever, measurements must be coherent, that is consistent
in the face of path or target chagnes. Probes cannot
easily be combined if they cross changes in routing or
target movement. According to Paxon, most paths have
routes that are stable for days [13]. In our experiment,
we assume that most paths are stable for more than
two days (48 hours), so we keep measurements of each
address to 48 hours or less.

2.3 Our Approach

To make our goal tractable, we must reduce the work-
load by using fewer targets or fewer VPs. Prior work
such as GeoCluster selects a single target to represent
an entire cluster of IP addresses [12], which can signifi-



cantly reduce the number of targets. However, Gueye et
al. [4] show that the geographic area spanned by blocks
can be far larger than the typical distance between any
two IPs within a block, so we choose not to reduce the
number of targets.

We therefore instead focus on reducing the number
of VPs. Ethan et al. [8] shows that geolocation rarely
works better than the distance to the nearest landmark.
Our approach is based on one similar observation: al-
though one needs many potential observation points for
accurate IP geolocation, only a few add information®.

In the next section we formalize this observation as

three conjectures and develop a geolocation system around

it. Reducing the number of VPs also addresses each of
our constraints, lowering the demand on each individual
VP, the inbound traffic to each target, and the amount
of data we must process.

3. RELATED WORK

Three general approaches to geolocation have been

proposed. The earliest is database-driven, using WHOIS [9,

11] or DNS [12] to infer location, although with gener-
ally poor accuracy. Recent work has explored target-
assisted geolocation, such as with GPS and Wifi-based
method such as Skyhoook [14]. These approaches re-
quire geolocation code to run on the target, an approach
incompatible with covering the entire Internet.

The focus of this paper is on measurement-based ge-
olocation: systems that measure network delay from
VPs to target to estimate location.

Geoping [12] is based on the assumption that hosts
exhibiting similar network delays to other fixed hosts
tend to be co-located. In Geoping, all VPs probe RTT
to many landmarks at known locations, building a set
of distance fingerprints (Figure 1). To geolocate an ad-
dress, all VPs actively probe the target and compare
the resulting fingerprint against known landmark fin-
gerprints using Euclidian distance, placing the target at
the best matching landmark. Shortest Ping is a simplifi-
cation of Geoping where targets are mapped to the clos-
est VP (effectively making VPs the only landmarks) [8].
We use Shortest Ping to approximate Geoping because
of its efficiency, and its similar accuracy [8].

Constraint-based Geolocation (CBG) instead uses mul-
tilateration [5]. The geographic location of a given point
is estimated by measuring distances from multiple van-
tage points at known locations. Each VP draws a circle
with its location as center and the distance (estimated
from measured network delay by “bestline”) to the tar-
get as radius. CBG locates the target in the overlap
of all circles. Topology-based Geolocation (TBG) im-
proves CBG accuracy by considering network topology
and using a better latency-to-distance estimate [8]. Oc-
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tant extends CBG by using both positive constraints
(which the target might satisfies) and negative con-
straints (which the target doesn’t satisfy) to reduce the
estimated region for the target [15]. We explore basic
CBG as representing a second class of algorithms.

Yong et al. propose a three-tiered geolocation algo-
rithm which takes advantage of a massive landmark
database and the fact that relative distances are pre-
served in delay measurements at small scales [17]. In
the first tier, the algorithm utilizes the same idea of
CBG to geolocate a target IP into a region. In the
second tier, the algorithm employs the landmarks in
the region of tier 1 to narrow down the possible region,
with the distance constraint-based method. In the final
tier, the target is mapped to the closest landmark found
in the region of tier 2. We do not examine this algo-
rithm because of the difficulty of generating a landmark
database with sufficient detail.

Although we focus on Shortest Ping and CBG as rep-
resentatives of the two main classes of measurement-
based geolocation, we expect that other approaches that
also use VPs can also benefit from our evaluation.

4. METHODOLOGY

To address the problem of scaling current geolocation
approaches (Section 2), we next describe how selecting a
few, good VPs can reduce inbound traffic on each target
while preserving accuracy. This section outlines our
approach: first we identify three conjectures that must
be satisfied for our approach to work, then specific VP
selection algorithms, and finally we describe our overall
system to geolocate the world.

4.1 Three Conjectures

To minimize traffic on each target, we probe each tar-
get only from a few VPs. In this section we explore three
conjectures required to minimize traffic while maintain-
ing accuracy:

1. A few VPs can be as accurate as many VPs
2. Certain small subsets have good accuracy
3. The closest VPs generally maximize accuracy

4.1.1 A Few VPs Can Be Accurate

We begin with our first conjecture: a few VPs can be
as accurate as many VPs. If all VPs are important to
accuracy, then there is no way to reduce traffic.

To evaluate this conjecture we begin with 400 vantage
points and select non-exact subsets of 2 to 150 VPs. We
do not go with more VPs, because the result has already
converged with less than 150 VPs. For each trial we
geolocate 24 targets with known locations, using both
Shortest Ping and CBG. We repeat each trial 100 times
with a different, random subsets of VPs. Our VPs are
400 PlanetLab nodes, the targets are 24 university sites
from around the world.



Figure 2a reports median and standard deviations of
Shortest Ping accuracy. With more than 60 VPs, me-
dian error is small and stable. With less than 60 VPs,
median error rises and standard deviation is high—
some random subsets do well, but some do poorly. This
experiment shows that many VPs add no information
to geolocation—we can certainly reduce the number of
VPs, but few are used affects accuracy.

We repeated this experiment with CBG. CBG re-
sults are shown in Figure 3a. The affects of number
of VPs are qualitatively similar as Shortest Ping: mod-
erate numbers of VPs are stable, and use of only a few
VPs shows very large variance in accuracy.

4.1.2 Certain Small Subsets Have Good Accuracy

We have shown that subsets can generally have good
accuracy, but variance increases greatly as the number
of VPs gets very small: some instances do well, but
many cases result in large error. We next explore, for a
given number of VPs, how different instances perform.

We use the same 400 possible VPs, 25 targets as Sec-
tion 4.1.1. However, here we look at the distribution
of accuracies for several specific sizes of VP subsets.
Ideally, for each size we would study all possible combi-
nations, but that is computationally infeasible. (There
are about 83 x 10'2 possible combinations of 5 VPs se-
lected from 400.) Instead, we evaluate Shortest Ping
and CBG on each of 10,000 randomly chosen subsets.

Figures 2b (Shortest Ping) and 3b (CBG) show the
cumulative distribution of median location error across
all 24 targets for all 10,000 trials for the two algorithms.
The result supports our second conjecture: different in-
stances of same-size VP sets get different accuracy.

With fewer VPs, a small number of cases have very
large error (about 5% of cases with 10 to 50 VPs, and
20% of cases with 5 VPs). However, many of the best
instances have similar accuracy. For example, in Fig-
ure 2b, with 5 VPs, the worst instance has errors larger
than 4000 km, error in the best instance is less than
42 km, close to the best instance with 50 VPs (about
30 km). (Using all 400 VPs is closer still, at about
12 km, so full exploration of all VPs and 80x greater
traffic does provide some improvement.) This experi-
ment indicates that if we can select the right VP sub-
set, we can achieve fairly good accuracy with just a few
VPs.

4.1.3 The Closest VPs Generally Maximize Accuracy

Since we know some combinations of a few VPs pro-
vide good results; presumably some VPs provide more
information than others. Our final step is to predict
which few those are.

Our assumption is that close VPs provide stricter
constraints than far away VPs. To quantify this intu-
ition, we next explicitly compare VP distance and ge-

olocation error. We fix the number of VPs to 10, drawn
from the same 400, and geolocate our 25 targets. We
carry out 800 trials, each with a different, randomly
selected subset of 10 VPs. In each case, we plot the
minimum RTT across all VPs with the geolocation er-
ror.

Figures 2c and 3c show our study for a single target
(a computer at New York University in New York City,
USA). This example is representative of all 25 targets.
Each point in the figure represents one set of randomly
chosen VPs. The line shows the mean geolocation error
for all observations in each 5 ms bin of minimum RTTs.

This experiment shows that geolocation error for Short-
est Ping has an almost linear relationship with mini-
mum RTT. For CBG, the linear relation between ge-
olocation and minimum RTT holds when the minimum
RTT is small (less than 25ms); for larger values of mini-
mum RTT the relationship is much noisier. The correla-
tion coefficient value is 0.88 for the example with Short-
est Ping and 0.71 for the example with CBG. In both
graphs, we can see that small geolocation errors usu-
ally have small minimum RTTSs, supporting our claim
that we can select a good set of VPs by estimating the
closest VPs.

4.2 VP Selection and Geolocation

From these conjectures we next propose our VP selec-
tion algorithm. We work on /24 blocks, typically con-
sider groups of 6 /8s, processing 150k—217k /24 blocks
a time to spread load on the targets (Section 4.4). Al-
though we select VPs by only several representatives of
the block, we geolocate every IP address in the block
with those selected VPs to understand how often and
which /24 blocks have multiple locations.

Our algorithm has four steps:

1. Using Internet census histories, select several rep-
resentatives for the block.

2. Probe those representatives from all VPs to select
nearby VPs for the block.

3. Probe all addresses in the block from nearby VPs
to generate raw geolocation input.

4. Centralize this input and process it with Shortest
Ping (or CBG) to identify IP geolocation.

Finding Representatives: We begin by finding rep-
resentatives for each block. Prior work studied IP hitlists
and approaches to select representatives, IP addresses
most likely to respond [3]. For geolocation, we require
at least one representative that responds; we use three
to provide some redundancy. If all three representatives
do not respond, we just ignore the block. As with hitlist
discovery, we use the results of prior IPv4 censuses and
the hitlist prediction algorithm to select representatives.
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Because census histories are public, this step requires no
network traffic. We distribute a list of representatives
to all VPs for the next step.

Selecting Nearby VPs: To select close VPs, we probe
representatives for each block from all possible VPs.
With only a few representatives per block, we probe
fairly slowly (200 probes/s) in parallel across all VPs.
We probe each representative 10 times, typically taking
about 16 hours.

We use our own high-rate probing software, first de-
veloped for IPv4 census collection [7]. It probes each ad-
dress on a target list in a pseudorandom order, spread-
ing probes in time and space to minimize impact on the
target networks.

After the representatives are probed, we retrieve all
data in parallel to a central site. We estimate VP-
representative RT'T using the second-to-minimum mea-
surement to reduce occasional measurement noise. Fi-
nally, we select the closest VPs for each target block.

Given representatives for each block, we centrally com-
pute target lists unique to each VP and distribute them.

Probing Blocks: VPs then probe targets using the
same software. We use a higher probing limit of 500
probes/s, since with 85x more targets, traffic to each
block is still limited. After probing, we copy the raw
geolocation data to a central site.

Retrieving Data and Geolocating: Finally, with
the raw data centralized, we first extract second-to-
minimum RTT for each target, then run standard Short-
est Ping and CBG.

4.3 VP Selection and Accuracy

We next examine how our VP selection affects geolo-
cation accuracy. We know geolocation will have some
error; our question is: does VP selection increase that
error? We randomly select 18 /24 blocks from our
ground truth dataset, each block with about 100 re-
sponsive IP addresses. We then compare the distribu-
tion of accuracy of 10 VPs selected by our algorithm
against use of all 400 VPs, using both Shortest Ping
and CBG.

Figure 4 shows accuracy for both Shortest Ping and
CBG. For Shortest Ping, accuracy of our 10 VPs is
basically indistinguishable from use of all VPs. Median
error is 105 km for both 10 close VPs and all VPs. This
similarity is because the geolocation algorithm depends
only on shortest VPs, but it shows that our assumptions
about representatives hold here. For CBG, accuracy of
using our selected 10 VPS is slightly worse than using all
VPs: median error is 231 km instead of 208 km, 11%
worse. We conclude that our approach is successful,
adding no or only slight error while using only about
2% the number of VPs.
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4.4 Managing Probing Rates

Our approach must manage probing rate, going as
fast as we can (to maximize coherence) but not so fast
as to generate traffic that harms or worries the targets.
Our main constraint is the amount of traffic arriving
at each target. We evaluate incoming traffic per /24
block, with a goal of being no more than the Internet
background radiation [16], that is 0.5 to 0.9 packets/s
per /24 block. The traffic rate we generate is:

probes_per_VP X VPs X tx_rate_per_VP

addr_rate =
target_blocks X targets_per_block

block_rate = targets_per_block X addr_rate

Since probes-per-VP and number of VPs are fixed, we
control our block-rate by capping the transmit rate and
increasing the number of blocks. Our probing software
sends probes for a given run in a pseudorandom order,
so with a fixed transmit rate, adding targets spreads
probes out over more time, decreasing the traffic to each
target per unit time.

In our current practice we study 393k /24 blocks per
run (6 /8s). For VP selection, we probe only 3 targets
per block, so we cap each VPs transmit rate at 200
probes/s. With fewer VPs and more targets per block
for geolocation we are able to probe at a greater rate of
500 probes/s, so we estimate that each /24 receives at
most 0.64 probes/s.

Experimental verification: The above analysis as-
sumes steady state and smooth flow; we expect traffic
will be burstier in practice. To verify our analysis we
recorded all incoming probes to one target over 16 hours
for VP selection and about 12 hours for geolocation.

Because VPs are not synchronized and probe rates
vary due to response, we see that traffic is moderately
bursty. If we normalize time to one probe per interval,
most periods see no traffic and a few see two or three
probes. If we project to block probe rates, the mean ob-
served probe rate is 0.13 probes/s (standard deviation:
0.20) during VP selection, and 0.48 probes/s (standard
deviation: 0.79) during geolocation.

Our early use of PlanetLab generated traffic at about

S

Figure 5: The IPv4 address space placed on a Hilbert
curve, with colors corresponding to geolocation (hue fol-
lows longitude; lightness, latitude).

double our current rate and drew some complaints. How-
ever, after limiting probing as described above, the com-
plaints have stopped.

4.5 Visualization of Geolocation Data

Picturing the results of geolocating the entire IPv4
address space requires new visualization methods. We
cannot simply project blocks onto the globe.

Several prior efforts have plotted the IPv4 address
space on a Hilbert curve [10, 6, 1, 2]. A Hilbert curve
keeps numerically close addresses physically close in two
dimensions, and as a fractal it is easy to zoom in or out
to control detail. We use it here to show the geographic
location of IP addresses, rendering location as color.

To date we have geolocated 54 /8s, about 24% of
the allocated, unicast, IPv4 address-space with our pro-
posed techniques. We can only geolocate addresses that
respond to probes. From IPv4 censuses we know that
those addresses are unevenly distributed; our best esti-
mate is that our progress so far corresponds to about
55% of the addresses in the Internet that can be directly
geolocated. Figure 5 shows the map of our geolocation
results. Each of the large squares corresponds to a /8
address block (for example, the redish block near the
top left is 2/8). The light green hatched regions are
private or multicast address space, the blue hatched re-
gions have not yet been geolocated. Areas that have
been geolocated are colored by their location; colors are
keyed to latitude and longitude, with hue correspond-
ing to longitude and lightness to latitude, as shown in
the country color map at the right bottom of Figure 5.



Code for our color conversion function is freely available
at our website.

Because of limited resolution, in this figure each pixel
is colored to show the mean latitude and longitude of
all addresses in a /18 block. We are evaluating dif-
ferent aggregation methods. While using the mean is
our current method, we are considering the use of the
modal location, the most common value, although that
is sensitive to jitter.
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