
Submitted for publication to ACM Computer Communication Review.

Performance Interactions Between
P-HTTP and TCP Implementations�

John Heidemann
USC / Information Sciences Institute

November 4, 1996

Abstract

This document describes several performance problems
resulting from interactions between implementations of
persistent-HTTP (P-HTTP) and TCP. Two of these
problems tie P-HTTP performance to TCP delayed-
acknowledgments, thus adding up to 200ms to each P-
HTTP transaction. A third results in multiple slow-starts
per TCP connection. Unresolved, these problems res-
ult in P-HTTP transactions which are 14 times slower
than standard HTTP and 20 times slower than poten-
tial P-HTTP over a 10 Mb/s Ethernet. We describe each
problem and potential solutions. After implementing
our solutions to two of the problems, we observe that
P-HTTP performs better than HTTP on a local Ether-
net. Although we observed these problems in specific
implementations of HTTP and TCP (Apache-1.1b4 and
SunOS 4.1.3, respectively), we believe that these prob-
lems occur more widely.

�This research is supported by the Defense Advanced Research
Projects Agency (DARPA) through FBI contract J-FBI-95-185
entitled “Cities Online”. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed
or implied, of the Department of the Army, DARPA, or the U.S.
Government.

The author can be contacted at 4676 Admiralty Way, Marina del
Rey, CA, 90292-6695, or by electronic mail to johnh@isi.edu.
Other information about the LSAM project can be found at
http://www.isi.edu/lsam/.

Copyright c
 1996 by the USC/ISI. Permission to make digital
or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that new copies
bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than USC/ISI must be
honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request Permissions from the
authors.

1 Introduction

At ISI we are currently examining HTTP protocol per-
formance across various transport protocols [7, 15]. As
a part of this work we have examined the performance
of HTTP and persistent-HTTP (P-HTTP) in detail. We
have developed a model for HTTP performance based on
a function of server and network characteristics [7].

To validate our HTTP performance model we com-
pared predicted performance to measured performance
in an actual web server. Our early experiments sugges-
ted that P-HTTP performance was ten times slower than
the corresponding HTTP transactions in a simple page-
retrieval benchmark. This result is surprising since P-
HTTP is intended to improve performanceby amortizing
costs of connection creation across multiple requests [11,
10].

We found several interactions between P-HTTP and
TCP which explain the exceedingly poor P-HTTP per-
formance. These performance problems are not caused
by specific errors in our server (Apache, beta ver-
sion 1.1b4) or in our TCP implementation (SunOS
4.1.3), but they instead result from interactions between
application-level P-HTTP behavior and existing TCP al-
gorithms. Resolution of these interactions provides an
HTTP implementation where P-HTTP is 40% faster than
simple HTTP over an Ethernet. With these implement-
ation changes, most P-HTTP overhead is accurately ac-
counted for by our analytic model [7].

Although we found problems in particular implement-
ations of P-HTTP and TCP, we believe that there are
several reasons broader understanding of these issues is
needed in the web community. First, P-HTTP is a rel-
atively new protocol and is only now becoming stand-
ardized [5]. Although P-HTTP is derived from HTTP,
P-HTTP exhibits very different network dynamics. To
a first approximation, simple HTTP is identical to the
data channel of FTP: a new connection is opened for
each data object. FTP behavior has been studied for
many years. P-HTTP involves multiple exchanges over
a single TCP connection, thus it behaves much more like

SMTP or NNTP (the Internet’s standard e-mail and news
transfer protocols) than FTP. SMTP is a batch protocol
and NNTP usually runs over LANs, so it is not surprising
that TCP is not tuned for wide-area P-HTTP-style traffic.

Second, we have observed these problems in widely
deployed implementations of HTTP and TCP. We have
also made an early draft of this work available to oth-
ers and been told that similar problems exist in at least
one other HTTP server [6]. Together, these observa-
tions suggest that the web development community is
not widely familiar with these problems.

Finally, HTTP is becoming very widely deployed out-
side its original domain of hypertext exchange. HTTP
server implementations have been deployed for weather
sensor arrays, networked disk drives, network routers
and gateways, and implementations exist for nearly all
types of general-purpose computers. Although many of
these platforms will implement only a subset of HTTP
(and possibly not P-HTTP), the many potential P-HTTP
implementations suggest that a broader understanding of
its behavior is important.

This document summarizes two observed perform-
ance problems and a third anticipated problem. In each
case we describe the problem and demonstrate it with
packet traces (where possible). We have implemented
solutions to the first two problems we describe and show
that, with these solutions, P-HTTP performs better than
HTTP. We outline a solution to the third problem.

2 The Performance Problems

Of the three performance problems identified in our
work, two involve delayed acknowledgments, and the
third concerns congestion control. This section de-
scribes each problem and their solutions. Detailed fixes
for the problems are available from our web page at
http://www.isi.edu/lsam/tools/.

2.1 Experimental Framework and Initial
Performance

Our experiments involved two hosts directly connected
by a 10 Mb/s Ethernet (RTT less than 1ms, measured
user-to-user bandwidth 8.7Mb/sec). These experiments
were performed between two Sun SPARC 20/71 com-
puters running SunOS 4.1.3 with some TCP modifica-
tions (multicast support, a 16KB default TCP window
size, and slow-start enabled for directly connected net-
works). Our HTTP server was Apache 1.1b4 and the cli-
ent was a custom program written in Perl. The client
made HTTP/1.0 requests; persistent connections were
indicated with a “Connection: Keep-Alive” header.

With this configuration we ran a workload consist-
ing of 100 web-page transactions. Each retrieval con-
sists of retrieval for three documents of 6,651, 3,883, and
1,866 bytes over a single P-HTTP connection. (These
documents are the same size as the front page of Yahoo
(http://www.yahoo.edu/) on May 1, 1996, and
represent a hypertext document with two embedded im-
ages.)

Initial transaction times for HTTP and P-HTTP are
summarized in the first two rows of Table 1. P-
HTTP performance is about 14 times worse than simple
HTTP performance over Ethernet. The relative over-
head would be substantially less if these pages were ac-
cessed over wide-area networks with lower bandwidth
and higher latencies. Nonetheless, this high overhead
suggests that something is wrong with P-HTTP perform-
ance for these implementations.

As of this writing the current release of Apache-1.1.1
is available (at http://www.apache.org/). Al-
though we have not repeated our experiments with this
release, the code relevant to these problems does not ap-
pear to have changed. We have informed the Apache de-
velopers of the problems and fixes we discuss below; we
expect that some of our patches will be part of a future
Apache release.

2.2 The Short-Initial-Segment Problem

The first problem we encountered was an interaction
between Apache sending MIME headers as a separate
segment and SunOS’ implementation of TCP’s slow-
start and delayed-acknowledgment algorithms.

Apache supports keep-alive connections, an early im-
plementation of P-HTTP. When handling a keep-alive
connection, Apache sends its headers as a separate seg-
ment. (It does so to work around a bug in a popular
browser.) TCP MSS (maximum segment size) is typic-
ally 1460B for Ethernet or 512B or 536B for wide-area
TCP connections. HTTP headers are much less than a
full segment, typically 200–300 bytes. TCP’s slow-start
algorithm specifies that the connection opens its conges-
tion window exponentially. For each segment acknow-
ledged the congestion window increases by a full-size
segment, allowing two segments to be introduced into
the network (one replacing the old segment and one new
segment).

When a server replies to an HTTP request the conges-
tion window begins at two segments1; thus the Apache
server will send one small segment with the HTTP head-
ers followed by a second segment of size MSS. It then
waits for an ACK before continuing.

1The HTTP-reply congestion window starts at two segments in
most BSD-derived TCP implementations because the ACK of connec-
tion setup has already opened the congestion window by one segment.

2

server retrieval time
HTTP 1.1b4 43ms (4.0ms, 94%, �8.0ms)
P-HTTP 1.1b4 605ms (10ms, 16%, �19.7ms)
P-HTTP 1.1b4 (w/first fix) 195ms (1.9ms, 1%, �0.38ms)
P-HTTP 1.1b4 (w/both fixes) 26ms (8.8ms, 33%, �1.7ms)

Table 1: Retrieval time (for HTML and images) for different protocol and software versions. Each measurement
is the average of 100 samples. Values in parentheses give standard deviation, percent relative standard deviation, and
95% confidence intervals.

The client reads both of these segments. TCP’s
delayed-acknowledgmentalgorithm specifies that ACKs
should be delayed in hopes of piggybacking the ACK on
return traffic. The host requirements RFC adds that at
least every other full segment must be acknowledged [1].
Unfortunately, the client has received only one full seg-
ment and one partial segment. The client therefore
delays ACKing the data until the delayed ACK timer ex-
pires, which can take up to 200ms on BSD-derived TCPs
or 500ms according to the specification [1].

A packet trace illustrating this problem can be seen
in Figure 1. Details of the packet exchanges are listed
in Figure 2. Although this trace represents a single re-
sponse, time between the second and third data segments
is consistently 170–190ms in our experiments. After the
first exchange, the client actually becomes synchronized
with the server’s slow-start clock.

A solution to this problem is to insure that the HTTP
server does not send the HTTP headers in a partial
segment. Apache sent the headers with an explicit
application-level flush; removing this flush causes the
headers to be sent with the initial data. This flush was
explicitly added to Apache for persistent connections to
work around a bug in a popular browser; we discuss this
problem in Section 2.6.

Resolution of this problem improves P-HTTP per-
formance substantially. The third row of Table 1 shows
Apache performance with this fix. While P-HTTP per-
formance reduced to a third of unmodified Apache’s P-
HTTP (the second row), it is still substantially worse
than simple HTTP performance.

We believe that this problem is an example of a
broader problem in using TCP for request–response
traffic. TCP delays acknowledgments with the goals
of piggy-backing them on return traffic and of reducing
ACK frequency. For request–response usage (such as
HTTP), piggy-backing is rarely successful since data
traffic is almost completely unidirectional. This same
problem occurs in FTP data traffic; each FTP data ex-
change stalls for up to the delayed-ACK time-out period.

With primarily unidirectional traffic segments are usu-
ally sent back-to-back. A better approach for such traffic
would be to delay ACKs by the time required to send a
full segment and then immediately send an ACK, thus

consolidating every other ACKs without unnecessarily
delay.

2.3 The Odd/Short-Final-Segment
Problem

The second problem we encountered involved odd num-
bers of segments interacting with the silly-window-
syndrome (SWS) avoidance algorithm [4]. The problem
occurs when the Nagle algorithm is enabled and a re-
sponse requires an odd number of full segments followed
by a short final segment. The Nagle algorithm was de-
signed for terminal I/O traffic and so is not appropriate
for HTTP traffic, but it is enabled by default and has not
been a problem with simple (non-persistent connection)
HTTP traffic.

Odd numbers of segments arise when Apache sends
data over a TCP connection with a large MSS. TCP
connections between Ethernet-connected hosts typically
have an MSS of 1460B, as would wide-area connec-
tions where the hosts implement MTU-discovery [9].
(Without MTU-discovery wide-area connections typic-
ally see a 512B or 536B MSS.)

Apache writes data at the application-layer in 4KB
chunks. TCP breaks this data into three segments of
lengths 1460, 1460, and 1175. The client will acknow-
ledge the first two segments immediately upon receipt
(recall that according to the host requirements RFC,
every two full segments must be acknowledged [1]).
The client will delay acknowledgment of the third seg-
ment according to the TCP delayed acknowledgment al-
gorithm.

Next assume that the server has only a small amount of
data to send to complete the current response (small here
means less than half of the client’s maximum advert-
ised window). Apache will immediately write this data.
TCP, however will refuse to send it because of sender-
side SWS avoidance [3]. According to Stevens’ sum-
mary of the BSD TCP algorithms [12] (paraphrased from
page 326), the server won’t send data until: (a) a full-
size segment can be sent, (b) we can send half of the cli-
ent’s advertised window, (c) we can send everything we
have and either are not expecting an ACK or the Nagle
algorithm is disabled. Cases (a) and (b) can never be

3

0

1000

2000

3000

4000

5000

6000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

se
qu

en
ce

 n
um

be
r

(in
 b

yt
es

)

time since first SYN (in seconds)

request

data

ACK

short inital
segment

delayed ACK stall

ACK

Figure 1: A sequence-number plot illustrating the short-initial-segment problem. The segment through byte 227
is short. It is followed by a long segment (through 1687B) and then stalls until the delayed ACK at 0.189201.

0.000000 client.3199 > server.8080: S 676352001:676352001(0) win 16384 <mss 1460>
0.000251 server.8080 > client.3199: S 1807168001:1807168001(0) ack 676352002 win 16384 <mss 1460>
0.000460 client.3199 > server.8080: . ack 1 win 16384
request
client_think_time: 0.650ms
0.001110 client.3199 > server.8080: P 1:53(52) ack 1 win 16384
response
server_think_time: 2.175ms
first segment: headers
0.003285 server.8080 > client.3199: P 1:227(226) ack 53 win 16384
second segment: data
delta_time: 1.626ms
0.004911 server.8080 > client.3199: . 227:1687(1460) ack 53 win 16384
server delays for ACK before sending next segment
0.189201 client.3199 > server.8080: . ack 1687 win 16384
additional data
delta_time: 185.736ms
0.190647 server.8080 > client.3199: . 1687:3147(1460) ack 53 win 16384
0.191879 server.8080 > client.3199: . 3147:4607(1460) ack 53 win 16384

Figure 2: Packet trace demonstrating the short-initial-segment problem. The segment through byte 227 is short.
It is followed by a long segment and then stalls waiting on the delayed ACK.

4

true for the transaction because we’re sending the last
few bytes of the response. Case (c) is not true because
we have outstanding unacknowledged data (the odd seg-
ment) and Nagle is enabled by default. The server there-
fore waits for the client to ACK this segment before re-
sponding. Delaying acknowledgments means that the
client will not do so for up to 200ms.

This problem is illustrated graphically in Figure 3.
The detailed packet trace of a portion of the plot is lis-
ted in Figure 4. Again, although this trace represents a
single run, the time between the second and third data
segments is consistently 170–190ms.

This problem occurs because Nagle’s algorithm is
intended for small-packet, interactive traffic while P-
HTTP uses TCP for a series of requests and responses.
This problem does not occur with non-persistent HTTP
requests because closing the TCP connection also im-
mediately sends any data waiting for transmission. We
solve this problem by disabling Nagle’s algorithm for
P-HTTP connections, thus disabling the aspect of SWS
avoidance which interferes with performance.

Resolution of this second problem brings P-HTTP
performance in line with what we expect (see the final
line of Table 1); P-HTTP performs better than simple
HTTP by avoiding connection setup costs. With this
fix we observe actual P-HTTP performance over wide-
area connections that is with 5% of that predicted by our
model of TCP connection setup behavior [7].

2.4 The Slow-Start Re-Start Problem

A final potential problem we are aware of involves con-
servative assumptions made in some TCP implementa-
tions about congestion control. These assumptions ori-
ginated post-4.3BSD TCP [8] and do not occur in many
BSD-derived systems (such as SunOS). The interaction
between these assumptions and P-HTTP was originally
observed in other work on P-HTTP performance [15].

BSD TCP makes a very conservative assumption
about the congestion window. If at any time all data sent
has been acknowledged and nothing has been sent for
one retransmission time-out period, then it reinitializes
the congestion window to 1 segment, forcing a slow-
start. The motivation for this algorithm was the obser-
vation that some applications such as SMTP and NNTP
typically have a negotiation phase followed by a data
transfer phase [8]. The negotiation phase can artificially
open the congestion window; data transfer will then res-
ult in a burst of packets which can move the network
out of equilibrium, potentially resulting in congestion or
packet loss.

A result of reinitializing the congestion window is
that, even without packet loss, P-HTTP connections will
frequently slow-start “mid-stream”. In fact, since users

nearly always spend more than the retransmit-ion time-
out browsing a given page, P-HTTP will nearly always
slow-start when the user follows a link. The primary
goal of P-HTTP is to avoid the cost of multiple connec-
tion setup and slow-starts; this interaction defeats much
of the purpose of P-HTTP’s optimization. Web pages
today typically require a “cluster” of HTTP requests, one
for the HTML document and one for each embedded im-
age. While P-HTTP’s optimizations will be successful
across a cluster, they will not be between clusters, thus
limiting P-HTTP performance [7].

We have not yet experimentally verified that this
behavior occurs. We have, however, examined the
source code of several existing Unix implementations.
SunOS 4.x does not reduce the congestion window ex-
cept due to packet loss. 4.4BSD, FreeBSD 2.1, and
Linux 2.0 will reset the congestion window. Stevens de-
scribes this behavior (Section 26.2, [13]), although he
states that the idle time is one round-trip time rather than
the retransmission time-out interval.

Several solutions exist to unify the goals of the TCP
layer (congestion avoidance via packet conservation)
and P-HTTP (maximum throughput). First, one could
omit the code to reset the congestion window (as in
SunOS 4.1.3) or significantly increase the time before
the window is closed. This approach improves P-HTTP
performance by avoiding additional slow-starts, but will
send a burst of up to a full window of packets. In an in-
ternetwork, bursty traffic can result in packet loss due to
router queue overflow, possibly resulting in poorer per-
formance overall (both for the P-HTTP connection and
for other traffic).

The other extreme is to insure that all TCP implement-
ations reset the congestion window after an idle period.
Ideally the window would be closed in the kernel as
is done 4.4BSD and Linux. In addition, application-
level protocols could implement this algorithm by clos-
ing connections after the appropriate length of time. Un-
fortunately, adjusting this time to network behavior re-
quires information (the round-trip estimate) not easily
available to the application. This approach also limits
the performance advantage of persistent connections.

We believe that an intermediate approach is preferable
to the alternatives. One intermediate approach would be
to decay the congestion window over time rather than re-
set it to one. This approach improves P-HTTP perform-
ance but can still result in packet bursts unless the win-
dow is capped at some value. Determining parameters
for this approach is difficult.

A preferable intermediate approach would be to keep
the window open but to limit the rate at which packets
are introduced into the network, thus avoiding bursti-
ness. Although rate-based flow-control is difficult to use
for new TCP connections because network conditions

5

0

2000

4000

6000

8000

10000

12000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

se
qu

en
ce

 n
um

be
r

(in
 b

yt
es

)

time since first SYN (in seconds)

delayed ACK stall
odd
segment

ACK and short
segment

request

ACK

data

Figure 3: A sequence-number plot illustrating the odd/short-final-segment problem. The segment at 10772B is
an odd segment, a short segment at 10785B is available for transmission but cannot be sent until the ACK arrives at
0.189262ms.

(connection setup and first P-HTTP request omitted)

% base time 9:44:07.871221 +10598
request
0.010598 client.1029 > server.8080: P 53:111(58) ack 6676 win 16384
0.011122 server.8080 > client.1029: . ack 111 win 16326
reply
0.019869 server.8080 > client.1029: . 6676:8136(1460) ack 111 win 16384
0.021099 server.8080 > client.1029: . 8136:9596(1460) ack 111 win 16384
0.022103 server.8080 > client.1029: P 9596:10772(1176) ack 111 win 16384
ACK first two packets
(ack was queued at client pending transmission of third packet)
0.022835 client.1029 > server.8080: . ack 9596 win 16384
ACK is delayed 166ms
0.189262 client.1029 > server.8080: . ack 10772 win 16384
final packet immediately follows ack
0.189479 server.8080 > client.1029: P 10772:10785(13) ack 111 win 16384

Figure 4: Portion of a packet trace demonstrating the odd/short-final-segment problem.

6

are unknown, TCP connections could collect congestion
control information and apply it to limit data flow when
restarting transmission after the connection goes idle.
The TCP implementation might estimate packet rate by
counting packets sent in a given packet’s round trip. If
n packets were sent in time t, packets after an idle con-
nection would be sent out one every n=t seconds.

A rate-based algorithm for mid-stream re-starts
provides a good balance between the desires for good
HTTP performance and steady packet traffic. Solutions
like this one can be deployed incrementally since for
HTTP traffic only the server’s TCP implementation
need change. An open issue is how difficult it would be
to add this algorithm to existing TCP implementations.
We plan to explore this issue in future work, possibly
using TCP-Vegas mechanisms to measure transfer
rate [2] and adding a new rate-based alternative to
slow-start.

Finally, the question of how to initialize or reset TCP
status information over time and space arises not only
when a connection goes idle, but also when initiating
new connections in parallel or serial. For a more detailed
discussion of the alternatives, see [14].

2.5 Other problems

In addition to interactions between P-HTTP and TCP we
have observed two performance problems not specific to
P-HTTP. These problems and their solutions have been
widely explored; we describe them here briefly in the
context of Apache.

First, many web servers employ standard I/O pack-
ages (for example, C’s stdio library). The buffering used
in these packages allows the application to do small I/Os
efficiently (by merging several small, application writes
into a single system-level write) but result in several ex-
tra data copies for bulk data transfer. For example, us-
ing stdio for both input and output requires up to six
data copies (disk, file-system cache, input-stream stdio
buffer, user buffer, output stdio buffer, network buffers,
network device). The common solution to this problem
is memory-mapping the input file, reducing data copies
to three (disk, file-system cache, network buffers, net-
work device). With memory-mapping all data copying
can happen directly in the kernel.

Both Apache 1.0.5 and NCSA 1.5 use the C stand-
ard I/O library; Apache 1.1 replaces stdio with a custom
library with a similar buffering scheme. We have mod-
ified Apache to use stdio for header output and switch
to memory-mapped files for bulk-data transfer. To avoid
the short-initial-segment problem we also write enough
of the initial data to insure a steady return of ACKs.
Since there is a fixed overhead in setting up memory-
mapping we enable it only for files larger than 8KB.

The second general problem we encountered was
socket buffers too small to support steady segment flow
for wide-area connections. TCP’s sliding-window is
limited by socket buffer size; if this window is smaller
than the bandwidth-delay product between the client and
the server, the server will be unable to send enough data
to keep the pipe full and performance will be less than
optimal. The default size of a TCP socket buffer is sys-
tem dependent, ranging from 2–16KB. A common value
is 4KB. Although this may be sufficient for connections
with a low bandwidth-delay product (such as modems
and ISDN), well connected hosts will find it insufficient
when browsing distant web pages. For example, well-
connected hosts crossing the United States benefit from
a 12KB or larger buffer (1Mb/sec bandwidth at 90ms
latency). A default buffer size of 16KB is not unreas-
onable, larger buffers are recommended for particularly
well-connected hosts.

Neither Apache nor NCSA set the socket send-buffer
size. We have modified Apache to support a configur-
able send buffer.

2.6 Current Status

We have modified Apache to solve or work around each
of these problems except for the slow-start re-start prob-
lem. We are currently exploring options and plan to
modify TCP to address that problem shortly. The ef-
fects of our modifications are seen in Table 1. With the
fixes, P-HTTP performance is better than non-persistent
HTTP.

Our patches to Apache are available from our web
page at http://www.isi.edu/lsam/tools/.
We have discussed the problems we have observed with
the Apache developers; our fixes to the odd/short-final-
segment problem and the send-buffer-size problem will
be in the next release.

Incorporationof our short-initial-segment fix has been
discussed by the Apache developers. Code to flush head-
ers (and thus send them as a separate segment) was ad-
ded to Apache specifically to work around a bug in Nets-
cape Navigator’s implementation of persistent connec-
tions. Navigator appears to discard data sent after the
headers in a persistent connection under some circum-
stances. We are currently investigating this bug. Until
the Navigator bug is resolved, it appears best to either
disabling persistent connections or keeping the explicit
flush for clients which identify themselves as Netscape
in their request headers.

7

3 Conclusions

We have identified three performance problems that oc-
cur due to interactions between specific implementations
of TCP and P-HTTP. We have demonstrated that two of
these interactions can result in P-HTTP performance 20
times slower than possible for hosts on a directly connec-
ted, 10 Mb/s Ethernet, and that the third can substantially
reduce the performance benefits of P-HTTP.

Although our observations of these interactions are
specific to BSD-derived TCPs and the first two are spe-
cific to the Apache HTTP server, these implementa-
tions are widely used. To avoid similar situations in
other implementations, developers must be aware of
these interactions. We have suggested solutions to each
of the problems, and implemented solutions to the first
two problems, demonstrating that these solutions bring
Apache P-HTTP performance in line with expectations.

Acknowledgments

I would like to thank Katia Obraczka, Joe Touch, and
Ted Faber for their discussions about these performance
problems. I would also like to thank Rod van Meter,
Joe Bannister, and Jon Postel for suggestions about this
paper. Finally, I would like to thank the members of
the Apache developers mailing list, particularly Randy
Terbush, for their comments upon this work and these
patches.

References
[1] R. Braden. Requirements for Internet hosts—

communication layers. RFC 1122, Internet Request For
Comments, October 1989.

[2] L. Brakmo and L. Peterson. TCP Vegas: End to end con-
gestion avoidance on a global internet. IEEE Journal
of Selected Areas in Communication, 13(8):1465–1480,
October 1995.

[3] David D. Clark. Modularity and efficiency in protocol
implementation. RFC 817, Internet Request For Com-
ments, July 1982.

[4] David D. Clark. Window and acknowlegement strategy
in TCP. RFC 813, Internet Request For Comments, July
1982.

[5] R. Fielding, H. Frystyk, T. Berners-Lee, J. Gettys, and
J. Mogul. Hypertext transfer protocol—HTTP/1.1.
RFC draft-ietf-http-v11-spec-04.txt, Internet Request For
Comments, June 1996.

[6] John Franks. Change log for WN. WN distribution,
http://hopf.math.nwu.edu/, August 1995.

[7] John Heidemann, Katia Obraczka, and Joe Touch. Mod-
eling the performance of HTTP over several transport

protocols. Submitted to IEEE/ACM Transactions on Net-
working, November 1996.

[8] Van Jacobson and Mike Karels. Congestion avoidance
and control. ACM Computer Communication Review,
18(4):314–329, August 1990. Revised version of his
SIGCOMM ’88 paper.

[9] J.C. Mogul and S.E. Deering. Path MTU discovery. RFC
1191, Internet Request For Comments, November 1990.

[10] Jeffrey C. Mogul. The case for persistent-connection
HTTP. In Proceedings of the SIGCOMM ’95, pages 299–
313. ACM, August 1995.

[11] Venkata N. Padmanabhan and Jeffrey C. Mogul. Improv-
ing HTTP latency. In Proceedings of the Second Interna-
tional World Wide Web Conference, October 1994.

[12] W. Richard Stevens. TCP/IP Illustrated, volume 1.
Addison-Wesley, 1994.

[13] W. Richard Stevens. TCP/IP Illustrated, volume 2.
Addison-Wesley, 1995.

[14] Joe Touch. TCP control block interdependence. Work in
progress (Internet draft draft-touch-tcp-interdep-00.txt,
expires 11 December 1996), June 1996.

[15] Joe Touch, John Heidemann, and Katia Obraczka.
Analysis of HTTP performance. Released as web page
http://www.isi.edu/lsam/publications-
/http-perf/, June 1996.

8

