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This dissertation presents the design, implementation and evaluation of file-system
design with stackable layers. Stackable layering addresses two significant problems
in file-system development. First, existing services are difficult both to extend incre-
mentally and to re-use in new work. Stacking addresses this problem by constructing
sophisticated new services as a stack of new and existing layers. Layers work together
since each layer is bounded above and below by the same (symmetric) interface; layer
configuration is limited only by semantic constraints. Layers can be independently de-
veloped and distributed as binary-only modules to protect the investment in their devel-
opment. Incremental improvements to existing services can be provided through new,
thin layers.

Second, evolution of filing interfaces presents a problem to development and main-
tenance of services. In some respects, evolution is often too fast, as when vendor
changes to interfaces invalidate existing third-party layers, greatly adding to their de-
velopment and maintenance costs. At the same time, evolution is too limited and slow,
as when developers and especially third parties cannot provide new services because
of the constraints of old, centrally-managed interfaces. We address these problems by
providing an extensible layering interface which supports managed interface evolution
by both vendors and third parties. When interface changes are too large or are incom-
patible with existing practice, a compatibility layer can smooth over the changes. With
an extensible interface, a layer may be confronted by an operation it does not under-
stand. A standard mechanism allows layers to handle these operations by sending the
operation to a lower layer for processing.

Stacking enables and simplifies several design techniques. A transport layer may
move operations between machines and allows user-level layer development. Our
stacking solution also includes a cache-coherence protocol to synchronize state across
stack layers and a lightweight layering protocol allowing the benefits of independent
development to extend even to very “thin” layers. We have constructed several layers
using our stacking facilities.

This dissertation describes both the implementation of these services and their
measurement and evaluation. We examine the performance of the stacking framework,
cache-coherence protocols, and lightweight layers, concluding that stacking often adds
little or no cost to user-observed performance and minimal additional kernel overhead.
Finally, our experiences using stacking to develop and deploy several layers suggest
that new services can be provided significantly easier with stacking than with traditional
methods.
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Chapter 1

Introduction

Filing services are one of the most user-visible parts of
the operating system, so it is not surprising that many
new services are proposed by researchers and that a
variety of third parties are interested in providing these
solutions. Of the many innovations which have been
proposed, very few have become widely available in a
timely fashion. We believe this delay results from two
deficiencies in practices of current file-system develop-
ment. First, file systems are large and difficult to im-
plement. This problem is compounded because no good
mechanism exists to allow new services to build on those
which already exist. Second, file systems today are built
around a few fixed interfaces which fail to accommod-
ate the change and evolution inherent in operating sys-
tems development. Today’s filing interfaces vary from
system to system, and even between point releases of a
single operating system. These differences greatly com-
plicate and therefore discourage third-party development
and adoption of filing extensions.

These problems raise barriers to the widespread de-
velopment, deployment, and maintenance of new filing
services. The thesis of this dissertation is that a layered,
stackable structure with an extensible interface provides
a much better methodology for file-system development.
We propose construction of filing services from a num-
ber of potentially independently developed modules. By
stackable, we mean that these modules are bounded by
identical, or symmetric, interfaces above and below. By
extensible, we mean that these interfaces can be inde-
pendently changed by multiple parties, without invalid-
ating existing or future work.

To validate this thesis we developed a framework sup-
porting stackable file-systems and used that framework
to construct several different filing services. This disser-
tation describes the design, implementation, and evalu-
ation of this system.

1.1 Motivation

This dissertation explores stackable layering in three
stages. First we discuss the issues and approaches in-
volved in stacking. We then explore issues in cache-
coherence and lightweight layering which follow from
this model. This section introduces each of these topics.

1.1.1 Stacking

Modularity is widely recognized as a necessary tool in
the management of large software systems. By divid-
ing software into small, easily managed pieces, modu-
larity provides advantages in organization and verifica-
tion throughout the software life-span. The hallmark of
modularity is a set of independent software components
joined by well-defined interfaces.

When modular interfaces are carefully documented
and published, they can also serve as an important tool
for compatibility and future development. By provid-
ing a common protocol between two subsystems, such
an interface allows either or both systems to be replaced
without change to the other. Improved modules can
therefore be independently developed and added as de-
sired, improving the computing environment. Interfaces
such as POSIX.1 [IEE90] and NFS [SGK85] are ex-
amples of interfaces widely used to provide operating
system and remote filing services.

Because operating systems represent such a widely
used service, the development of modular systems in-
terfaces can have particularly wide impact. The best
example of standard systems interfaces is probably
POSIX.1. Programs based on this interface are widely
portable and can execute on a wide range of today’s hard-
ware, from personal computers to the largest supercom-
puter.

One would like to see this same level of portability
currently present for application programs in operating

1



2 CHAPTER 1. INTRODUCTION

systems themselves. Large portions of an operating sys-
tem are hardware independent and should run equally
well on any computer. Such portability has been largely
achieved, as exemplified by portable operating systems
such as Unix [RT74].

What has not been achieved to the same extent is port-
ability of major kernel subsystems. Because of the exact-
ing nature of software, and because of the lack of modu-
lar interfaces within the operating system itself, the Unix
kernel has been slow to evolve to new software tech-
nologies. While individual vendors have adopted new
kernel technologies such as STREAMS [Rit84], new vir-
tual memory approaches, and new file-systems, such ad-
ditions have only come slowly and at considerable ex-
pense.

Micro-kernel designs are one approach to kernel
modularity. Kernels such as Mach [ABG86] and
Chorus [RAA90] divide the operating system into two
parts: a core of memory management, process control,
and simple inter-process communication; and a server
(or servers) supporting the remainder of the traditional
operating system, including accounting, protection,
file-system and network services, and backwards com-
patibility. For the case of Mach and Unix, as a figure
of merit, the core is on the order of 15% of the total
operating system kernel. This intra-kernel boundary
is an important structuring tool, particularly because it
offers a platform on top of which third parties can offer
a variety of services. But this approach does not provide
a total solution, as it fails to address the modularity of
the remaining 85% of the system.

File systems, a rich portion of the remaining ker-
nel, are an active area of research. Many file-system
services have been proposed, including version man-
agement, user-customizable naming, fast log-structured
storage, replication, and large-scale distributed filing.
All of these have well-developed prototypes, but appear-
ance in commercially available systems has been both
slow and piecemeal.

Adoption of these new filing services has been slow
in part because file systems are large, monolithic pieces
of code with limited internal modularity. Although re-
cent approaches to file-system modularity (such as Sun’s
VFS interface [Kle86]) allow easy substitution of entire
file-systems, they do little to support modularity within
file systems themselves. As a result, it is not easy to re-
place or enhance separate portions of the file system; for
example, keeping the physical disk management and in-
stalling a new directory layer.

Another problem with existing approaches to file-
system modularity is that they are particularly fragile in

the face of change, one of the goals modularity is inten-
ded to facilitate. Evolution of the kernel to more efficient
mechanisms, and addition of new file-systems have re-
quired frequent changes to the interface, resulting in in-
compatibility between vendors of similar operating sys-
tems and even between different releases of the “same”
operating system. Frequent change and the resulting in-
compatibilities have largely discouraged third-party in-
novation, restricting introduction of new filing services
to the primary operating system vendors alone [Web93].
This contrasts sharply with other operating system inter-
faces such as device access and graphical user interfaces,
where standard interfaces have allowed competition and
rapid development of a wide array of services.

The problems of re-use and change are recognized by
developers. Current approaches to file-system develop-
ment begin to address these problems, but few do so sat-
isfactorily. A common approach to filing development is
to take an existing system and begin modifying it. Dir-
ect modification achieves good code re-use but greatly
hinders change as new services become bound to the li-
censing and portability constraints of the original code.
An approach common in the operating systems research
community is to develop new services as user-level NFS
servers (for example, see Deceit [SBM90], semantic fil-
ing [GJS91], and Alex [Cat92]). Because the NFS pro-
tocol is very well specified and nearly universally avail-
able, this approach is very robust to external change,
but it offers no support for internal change. Interfaces
for new services must be supplied with new protocols
in parallel to NFS, at great expense in implementation
cost and maintenance, or with modifications to the NFS
protocol, greatly reducing portability. A final approach
commonly taken is to provide a new service at the VFS-
level. A VFS can achieve some re-use, but this inter-
face provides little support to manage change. Third-
party experience developing for the VFS interface doc-
uments the burden in keeping up with inter- and intra-
vendor change [Web93].

Difficulties with current approaches suggest that a bet-
ter solution to filing service design is needed. For inspir-
ation and potential solutions we examine how these prob-
lems are managed in other large software systems which
allow third-party contribution.

Unix shell programming is one example of a success-
ful development environment. Individual programs are
easily connected by a flexible, standard interface, the
pipe [RT74]. Programs can be combined quickly and
easily in the shell with a simple programming language.
New programs are widely and independently developed
by a number of vendors. These features combine to
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provide an excellent environment for rapid prototyping
and development.

This approach to software modularity has also been
applied to kernel-level subsystems. The STREAMS sys-
tem is Ritchie’s redesign of Unix terminal and network
processing. STREAMS modules are bounded above and
below by a syntactically identical interface, allowing
very flexible module configuration. Because this in-
terface is symmetric in this way, users are encouraged
to combine a number of small modules into protocol
stacks. Furthermore, because the interface is formally
defined these modules can be independently developed
by third parties and combined to address the task at hand.
As a result, third parties have built commercial quality
layers that integrate well with other protocol modules.
This modular approach allowing multiple, independent
groups to contribute to communications facilities is one
of the reasons Unix is attractive as a base for network-
ing and distributed systems software in engineering and
commercial use.1

This dissertation seeks to apply the principles of stack-
able layering to file-system development. We envision
a situation where a user’s filing environment is com-
posed of stacks of independently developed filing lay-
ers. Like STREAMS, the interface between layers will
be symmetric to allow flexible configuration. The inter-
face must also be extensible and robust to internal and
external change. Chapter 2 explores these issues and re-
quirements in more detail. Chapter 3 examines different
ways stacking can be used to address problems unique to
filing. Finally, Chapters 4 and 5 present and evaluate our
prototype system developed at UCLA.

1.1.2 Cache coherence

Caching can be used to improve performance in a system
with stackable layers just as elsewhere: commonly used
data is kept “on the side” by an upper layer to avoid re-
peating prior work. Stackable caching is particularly im-
portant for services such as encryption and compression
since the computation these layers perform is relatively
expensive.

In addition to caching as a performance optimization,
caching is also a required filing service in modern oper-
ating systems. Many systems employ an integrated file-
system cache and virtual-memory system; such systems
require caching to implement program execution.

For these reasons caching is a required part of any
modern filing environment. Caching will also be import-

1In fact, commercial systems such as Novell’s Netware-386 have
adopted the STREAMS framework, presumably for similar reasons.

UFS

encryption

OS

user

Figure 1.1: A sample application of the stackable layers.
Each layer is connected by a standard interface.

ant in file systems constructed from stackable layers. For
best results data will be cached in the layer closest to the
user. With layering, though, a user may choose to access
a stack through different layers at different times. For
example, administrative actions can be performed more
easily at lower stack layers. Distributed filing systems
too can produce data accesses to different stack layers
(we consider one such case in detail in Section 8.4). If
data is always cached near the point-of-access, access to
multiple layers may result in the same logical data cached
in different layers.

Data caches in multiple layers raise several questions.
How can these caches be kept coordinated? If layers are
provided by different parties, how can they cooperate to
provide coherence? Consider Figure 1.1. Both layers are
likely to cache pages. However, when the same data is
cached in both the encryption and UFS layers, updates
to one cache must be coordinated with the other cache, or
reads can return stale data and multiple updates can lose
data. Some form of cache coherence is required. These
problems are not issues in a monolithic file-system where
there is only one file system and one cache. If layers are
provided by different parties, how can they cooperate to
provide coherence?

Thus far we have presented the problem of file data
coherence in a multi-layer caching system. File-system
data is only one aspect of file-system state which re-
quires consistency guarantees. The more general prob-
lem is that many assertions easy to make in a monolithic
system become difficult or impossible to make when
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state is distributed across several layers of a file-system
stack. Several such assertions are important in file sys-
tems: file data coherence, file attribute (meta-data) co-
herence, name-lookup cache-coherence, user-level file-
locking consistency, and internal concurrency-control.

Therefore, to summarize the issue of cache coherence:

1. File-system stacking, if feasible in practice, would
be very attractive.

2. Practical stacking often requires concurrent access
to multiple points in the stack.

3. Various stack layers must cache information of dif-
ferent sorts in order to provide satisfactory perform-
ance.

4. Those intra-layer caches must be kept coherent, or
the accesses implied in the second point above can
give incorrect results.

5. A general framework for cache coherence is
needed, since no individual third-party layer can
solve the problem alone.

That is, cache coherence is essential to allow stacking to
reach its full potential. Chapter 6 discusses the character-
istics required of a solution to this problem. Chapters 7
and 8 present our prototype solution and evaluate its ef-
fectiveness.

1.1.3 Featherweight layering

Code reuse is on one significant motivation for stacking.
Large layers which encompass several abstractions and
services cannot easily be reused due to their weight and
inflexibility. Thus, an ideal filing environment would be
composed of stacks of several “thin” layers.

Two tensions push against the decomposition of filing
services into multiple layers. First is the design effort re-
quired. Selection and definition of components requires
careful thought. There are often several different ways
to decompose a service; a poor selection can complicate
layer implementation and limit reusability.

Second, layering overhead also constrains service de-
composition. Our layering mechanism was designed
to minimize overhead, but full generality in a layering
mechanism implies a certain amount of overhead. Our
measurements suggest a 1–2% system-time overhead for
general-purpose layers (see Section 5.1.3 for details of
this evaluation).

Although a 1–2% system-time overhead is not signi-
ficant for a layer providing a new service to the user,

this overhead is a consideration if layering is to be used
internally to structure such services. This limitation is
unfortunate since there are several thin layers (such as
name-lookup caching, VM/file-system interaction, and
compatibility layers) that are common across a number
of filing services. These layers individually make only
minor alterations to the interface, but they still incur the
overhead of the full layering mechanism. Adding several
such layers to a stack would add noticeable overhead;
and several of these layers will often be added to each
layer of a multi-layer stack.2 A general-purpose layering
mechanism is not suitable for these lightweight services.

Featherweight layers are special “lightweight” lay-
ers designed to address the problem of layer overhead.
Featherweight layers obtain performance improvements
over general layering mechanisms by restricting the cap-
abilities they provide and by “piggy-backing” on the ad-
ministrative machinery of a “host” layer. Since feather-
weight layers provide only a subset of stacking function-
ality they cannot be used to implement all layered ser-
vices. Instead they provide the lightweight portions of a
stack in cooperation with a few general-purpose layers.

Chapters 9 and 10 present the design, implement-
ation, and evaluation of a featherweight layering ser-
vice. By placing a few limitations on layering func-
tionality they show that it becomes possible to create
featherweight layers with library-routine-like perform-
ance while retaining benefits of stackable layering design
such as third-party development and late binding.

1.2 Related Work

Modularity in systems programming has a rich his-
tory. Our work builds upon this background, inspired
by advances in symmetric module design, general file-
system structuring, distributed shared memory proto-
cols. and some recent work on stackable filing. We next
briefly summarize related work. We cover the relation-
ship between our work and others more completely in
Chapter 11.

1.2.1 Symmetric interfaces and stacking

Unix shell programming with pipes [RT74] is now
the widest use of a symmetric interface, for software
development and other applications [PK84]. Ritchie

2For example, vendors may configure compatibility layers on to all
stacks by default to insure backwards compatibility. Similarly, layers
implementing cache coherence would need to be configured into any
layer which might cache data.
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then applied these principles to kernel structure in his
STREAMS I/O system [Rit84]. Such work has since been
adopted in a number of versions of Unix.

The x-kernel [HP88] is a new kernel designed origin-
ally to provide customized network protocols. Using a
symmetric interface for all kernel services (“everything
is a protocol”), great flexibility in protocol selection and
combination is provided. They employ both run-time
protocol selection and an efficient implementation to
demonstrate that layering can be performance competit-
ive with monolithic protocol implementations.

1.2.2 File-system structure

Research in the late 1960s and early 1970s modularized
operating systems, proposing a multi-layer implementa-
tion.

To provide for multiple file-systems, several
“file-system switch” mechanisms have been de-
veloped [Kle86, RKH86, KM86]. These typically
found quick use in the support of network file ac-
cess [SGK85, RFH86] and have since been applied
to the support of other file systems [Koe87]. None of
these approaches provide explicit support for stacking
or extensibility, but all provide basic modularity.

1.2.3 Stackable filing systems

Sun Microsystems applied the vnode interface to build
two-layer file system stacks in their loopback and trans-
lucent file-systems [Hen90]. Internal to the operating
system, stacking is used to support device special files.

More recently, Rosenthal [Ros90] and later Skinner
and Wong [SW93] at SunSoft have experimented with a
modified vnode interface to provide dynamic file-system
stacking. The Spring project (at Sun Laboratories) has
also developed stackable filing technology [KN93a].

1.2.4 Cache coherence

Our cache-coherence protocols build upon two areas
of prior research. First, we draw cache-coherence al-
gorithms from research in the areas of hardware mul-
tiprocessing, distributed filing, and distributed shared
memory. We review this work in Section 11.2. Second,
we build upon the cache-coherent stacking work of the
Spring project at Sun Laboratories [KN93a].

1.2.5 Featherweight layering

Featherweight layering is inspired by the observation
that the performance of a layered system is often best
when logically independent layers share implement-
ation details. Others have suggested that perform-
ance of layered systems is improved by avoiding a
process-per-layer [Rit84, HP88] or by employing con-
tinuations [DBR91]. We improve file-system layering
performance by restricting layer state. We expand on
these issues in Section 11.3.

1.3 Road Map to the Dissertation

The thesis of this dissertation is that stackable filing with
an extensible interface improves file-system develop-
ment. We begin exploring this thesis in the next chapter
by motivating the need for stackable layering and extens-
ible interfaces. We also introduce the problem of main-
taining data coherence across layers of a stack, and we
suggest the need for very lightweight stackable layers.
The remainder of the thesis considers each of these top-
ics, discussing in turn the design, implementation, and
evaluation of stacking, cache coherence, and lightweight
layering. The dissertation concludes with an extended
discussion of related work and issues for future study.
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Chapter 2

Stacking Model

We have identified several problems that exist with cur-
rent approaches to file-system development, problems
that we believe stackable filing can address. In this
chapter we describe the characteristics which are desir-
able in an improved filing environment:

extensibility Filing must be robust to both internal and
external change.

stacking It must be possible to add new functionality to
existing services.

coherence Assertions about data consistency must be
possible across multiple layers.

In addition, several secondary goals place restrictions
on the final solution:

distributable Computers today are increasingly net-
worked with shared filing environments. Further-
more, microkernel operating systems may place the
filing service in one or more server processes, each
with a different address space. Filing must work in
each of these environments.

scalability Each requirement must meet a wide range of
demands. Extensibility must work equally well for
vendors, third parties, and independent developers.
Stacking must work both for complex services and
for small, lightweight additions. Distribution must
apply from different server processes of a micro-
kernel to multiple machines on a LAN to computers
cooperating across an internetwork.

ease-of-use If meeting these goals results in a system
which is difficult to use, the ultimate goal of an im-
proved file-system-development environment will
be defeated.

efficiency If these services impose excessive overhead,
then they will not be used. The cost of services must
be proportional to the service provided.

The remainder of this chapter discusses each of these
characteristics (extensibility, stacking, and coherence) in
light of these restrictions.

2.1 Extensibility

Webber characterizes the dilemma of third-party vendors
quite well [Web93]:

Unix kernels with a VFS architecture have
been commercially available for many years.
Sun Microsystems, for example, described
their VFS architecture in the 1986 Summer
Usenix proceedings [Kle86]. By many meas-
ures the VFS concept has been quite success-
ful, but from a third-party point of view there
are two major problems:

� Few vendors have the same VFS inter-
face.

� Few vendors provide release-to-release
source or binary compatibility for VFS
modules.

We call these two problems the VFS portabil-
ity problem and the lock-step release problem,
respectively. Together, they make VFS mod-
ules expensive to produce, expensive to port,
and expensive to maintain.

To these observations we add one additional problem:
few third parties can change and extend the interface.
We call this limitation the extension problem. If third
parties are to provide truly novel new services, then it

7
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must be possible for them to add operations to the in-
terface. These new operations must be equivalent to
vendor-supplied operations in terms of performance and
capability.

We view these problems as evidence that any file-
system interface which is successful in the long-term
must provide extensibility. We next consider evidence of
change in existing systems, ways to delay evolution, and
finally, how our secondary goals influence this design.

2.1.1 Evidence of evolution

Rosenthal has examined the gradual evolution of the
SunOS file-system interface [Ros90]. He found signific-
ant changes to the interface in every major operating sys-
tem release. Table 2.1 shows his comparison of changes.

Rosenthal’s study demonstrates the frequency of evol-
ution through one version of Unix. It is also interesting
to note that the designers of SVR4 Unix recognized the
inevitability of change and allocated space for the future
addition of 32 operations. We discuss later how space
reservation only addresses part of the problem in Sec-
tion 11.1.3.

2.1.2 Alternatives to manage change

Given the inevitability of software evolution, there are
surprisingly few ways to accommodate it in current fil-
ing interfaces. Without a formal way to manage evol-
ution, two kinds of problems quickly appear: develop-
ment without evolution, and managing change when it
does arrive.

Several approaches are possible to avoid evolution. A
common one is to require that everyone use the same
version of software; change is prohibited by fiat. While
this approach works for small groups over short peri-
ods of time, it fails as scale and duration increase. The
longer a configuration is frozen, the greater users’ de-
mands for new software. As the user population grows
from tens of machines to hundreds or thousands, the dif-
ferent goals and requirements of multiple administrative
domains mandate different software configurations.

Often, pressures to adopt new tools force their use be-
fore change can be fully accommodated. If existing in-
terfaces must remain unchanged, the only alternative is
to create an additional, parallel interface. While this ap-
proach allows support of new services, it also complic-
ates the environment. Such work needlessly duplicates
existing efforts as similar goals are accomplished in dif-
ferent ways. In the long run, this ad hoc approach to

evolution will likely cause difficulties in maintenance
and further development.

Eventually, change must occur. Barriers to evolu-
tion imply that, in practice, widely used operating sys-
tem modifications derive only from a few major systems-
software vendors and research institutes in occasional,
perhaps annual, systems software releases. While this
policy of change delays problems resulting from change
to an occasional event, eventually these difficulties must
be faced.

Because the authority of operating system change is
vested largely in the systems software vendor, potential
for third-party enhancement is greatly restricted. Un-
availability of source code, incompatibility with other
third-party changes and even vendor-supplied updates
together discourage third-party innovation. Finally, the
methods used by manufacturers to improve services are
often not available to third parties. As a result, third-
party modifications suffer delay, increased complexity,
and performance penalties compared to vendor-supplied
improvements, further handicapping independent devel-
opment.

2.1.3 Design constraints

Third-party support for software evolution is critical to
the timely development of new capabilities. The filing
interface must be able to evolve as needs and capabilit-
ies change. Our secondary goals influence this design in
several ways.

It must be easy to provide extensibility in a distributed
file-system as well as to layers on a single host. Extens-
ibility requires that each operation be formally defined.
Support for extensibility in distributed filing requires that
this definition must include information sufficient to al-
low an RPC protocol to reproduce the operation on a dif-
ferent machine or in a different address space.

Extensibility must be scalable in several ways. It must
scale in those allowed to initiate change. The process of
evolution cannot be controlled by any central authority.
Multiple organizations and individuals must be able to
contribute, and their extensions must co-exist in a single
system. Scalability also implies that there be no fixed
limit on the number of extensions provided.

Ease-of-use implies that changes can occur increment-
ally and independently, and that they must not invalidate
existing or future services. Software must gracefully ad-
apt to its environment, both as a result of the presence
of unexpected, new extensions, and the lack of expec-
ted support. Ideally, a new software module could be ad-
ded without source code changes to it or any other mod-
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release vnode fields vnode size operation count
SunOS 2.0 (1985) 11 fields 32 bytes 24 operations
SunOS 4.0 (1988) 14 40 29
SunOS 4.1 (1990) 14 40 30
SVR4 without fill (1989) 11 40 37
SVR4 with fill (1989) 19 72 69
Rosenthal’s prototype (1990) 6 20 39

Table 2.1: A slightly expanded version of Rosenthal’s evaluation of vnode interface evolution in SunOS (derived
from [Ros90]). Fill indicates space left in SVR4 for future expansion; Rosenthal’s prototype is discussed in Sec-
tion 11.6.1.

ule. Finally, ease-of-use requirements for stacking imply
that layers are configured at run-time. We discuss these
requirements more in the next section, but for the inter-
face they imply that the caller and callee must be matched
at run-time; at least this level of dynamic binding is re-
quired.

Since file-system operations are often in the tight loop
of computation, efficiency is of primary concern.

2.2 Stacking

File systems frequently implement very similar abstrac-
tions. Nearly all file systems ultimately are grounded
in disk access and file and directory allocation, for ex-
ample. This observation motivates file-system stacking.
If a complex filing service can be decomposed into sev-
eral layers, then potentially each layer can be developed
independently. Furthermore, in the future, layers can be
individually upgraded as need or desire arises. Finally, a
set of filing layers serve as building blocks for the con-
struction of future services. Together, these examples
show how stacking can reduce the cost of file-system de-
velopment.

An example of layered filing is seen in Figure 2.1. The
operating system vendor provided a standard file storage
layer (the Unix file-system, or UFS). On the left stack a
user has configured a compression layer over this basic
file service.

A key characteristic of a stackable layer is that it pos-
sess a symmetric interface; it should export an inter-
face to its clients which is syntactically the same as that
which it depends upon from layers it stacks over. Lay-
ers bounded by a symmetric interface can be inserted
between any existing stack layers (subject to semantic
constraints, of course). For example, in the right-hand
stack of Figure 2.1, the user has “pulled apart” the com-
pression layer and UFS and inserted an encryption layer
for more secure data storage.

OS

user

UFS

OS

UFS

compression

compression

encryption

user

Figure 2.1: Two file-system stacks providing encryption
and compression.
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2.2.1 Design constraints

Again, our secondary constraints of distribution, scalab-
ility, ease-of-use, and efficiency all have implications on
the design of stacking.

Distributed stacking requires that layers can bridge ad-
dress space, protection domain, and machine boundaries.
A convenient way to cross protection domains is with a
transport layer which conceptually has ends in each do-
main and a transport protocol between. It may be ad-
vantageous to have multiple transport layers, each cus-
tomized to serve a particular need (for example, trans-
port between processes on a single machine compared to
across a LAN or WAN).

Layer scalability implies that the cost of each layer is
proportional to its capabilities. Very “thin” layers should
be possible with minimal overhead, while “thick” layers
may require additional mechanism. To scale in numbers
of layers, per-layer memory requirements must be reas-
onable.

Layer ease-of-use is improved by run-time layer con-
figuration. It should be possible for a user to easily cre-
ate new layer instances as needed. In addition, dynamic
loading of new layers should be possible.

Finally, the performance cost of layering must be min-
imized. There are several aspects to layering cost (de-
scribed later in Section 9.2); the costs of providing layer
abstractions and the cost of using those abstractions must
be proportional to the services provided.

2.2.2 Stacking and extensibility

As described thus far, a conflict between stacking and ex-
tensibility is apparent. Stacking is based on the premise
that each layer is bounded (above and below) by the same
interface. Extensibility implies that layer users can inde-
pendently change and evolve the interface.

Extensibility requires that layers be robust to change.
In a non-layered environment, this means that a layer
must respond to unknown operations with an error mes-
sage. For example, in Figure 2.2a the UFS must re-
ject vop set extent size operation (returning an er-
ror code) which would be handled by an extent-based
file-system (in Figure 2.2b). Any system with extensibil-
ity must specify some (possibly configurable) default ac-
tion for unknown operations.

In a layered environment intermediate layers often act
as “filters”, providing a small service by changing a few
operations, but relying on lower layers to provide most
aspects of storage. When presented with an unknown op-
eration, intermediate layers therefore bypass that oper-

ation to a lower layer for processing. Figure 2.2c illus-
trates bypassing vop set extent size.

2.2.3 Generalized stacking

The linear file-system stacks presented thus far are really
a special case of general layering. In general, trees of
layers are possible, a single layer can stack-upon or be
stacked-upon by multiple other layers.

We distinguish between two kinds of “forked” stack-
ing. Fan-out occurs when a layer stacks “outwards” over
multiple layers. Figure 2.3 illustrates how fan-out might
be used to implement disk mirroring.

Fan-in allows multiple clients access to a particular
layer. Fan-in is useful when when different clients of a
service desire different views of the data. For example,
in Figure 2.4 the UFS has fan-in. Section 3.3 discusses
advantages and uses of fan-in.

2.2.4 Stacking and concurrency

A complete definition of stacking must consider the ef-
fects of stacking on other processes. When stack config-
uration is changed by one process, how does this affect
other processes that are actively using the stack? On one
hand, perhaps all processes should always see exactly the
same stack configuration. In this case, pushing a layer
on a stack should interpose that layer between the prior
layer and all of its clients. On the other hand, perhaps
clients should get what they asked for when they asked
for it. New clients will, of course, see the new layer, but
existing clients should continue to see the configuration
they’ve been seeing.

Different choices on this issue make sense in different
contexts. If a “lock-out” layer were placed on a stack to
deny access, it might be required to deny access to all cli-
ents (current and future), not just future clients. On the
other hand, a client in the midst of reading an encrypted
file probably does not want to see decrypted data in the
middle of the data stream as some other client changes
the stack.

We discuss alternatives to this issue in more detail
later.

2.3 Coherence

In a monolithic file-system the file-system designer has
complete control over execution. Locking and caching
are feasible because the designer has control over all data
access and execution paths, and can insure that deadlock
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OS

user

extent−fs

OS

user

(b) set_extent_size accepted

OS

user

UFS

(a) set_extent_size rejected (c) set_extent_size bypassed

extent−fs

encryption

Figure 2.2: Treatment of vop set extent size by different layers.

OS

UFS

mirror−fs

UFS

user

Figure 2.3: A tree of file-system layers to provide disk mirroring. The mirror-fs layer exhibits fan-out.
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UFS

NFS (server)

NFS (client)

OS

user

encryption

OS

user

encryption

Figure 2.4: A tree of file-system layers exhibiting fan-in.

and access to old data are not possible. In short, the de-
signer’s complete control over the situation allows him
or her to make assertions about file-system state.

The designer of a file-system layer loses this ability.
The layer may be combined at run-time with services
from other developers, each with their own views of
locking and caching. Late layer binding and distribu-
tion of functionality among layers from multiple vendors
makes it extremely difficult for the designer of any indi-
vidual layer to make assertions about the global state of
“filing”. Unfortunately, such assertions are required to
insure freedom from deadlock and coherence of cached
data.

To address the problem of state assertions in a multi-
vendor, multi-layer system, a general coherence mechan-
ism is required. An important special case of this mech-
anism is cache coherence: a protocol to keep copies of
data in different layers up-to-date.

2.3.1 Design constraints

The constraints of distribution, scalability, ease-of-use,
and efficiency affect coherence.

A number of protocols for distributed coherence exist,
yet the wide variety of performance constraints present
from sharing on a single machine to across the Internet
make it unlikely that any single solution can meet all
needs. We discuss how this observation influences cache

coherence in stacking in Section 6.5.
Scaling is of concern in several different dimensions

for coherence. Coherence solutions must adapt to sup-
port a large number of objects of several different types.
In addition, coherence protocols must adapt to meet fu-
ture needs as well as current needs.

Cache-coherence protocols in distributed shared
memory systems have become quite sophisticated, in-
volving compiler and programmer support and sporting
several policies for different data objects. Stackable fil-
ing is not frequently employed to serve as primary store
for large multiprocessor compute tasks, so a simpler,
easier-to-use solution is required for coherence in stack-
able filing. Furthermore, such complex solutions would
quickly overwhelm what should be relatively simple
filing layers such as encryption. Such a result would
defeat our goal of improving the filing development
environment.

Finally, the services provided by coherence must be
proportional to their overheads.

2.4 Model Summary

This chapter presented the three distinguishing features
of stackable layering: stacking, extensibility, and coher-
ence. In the broadest sense these characteristics have
been goals of software engineers for many years: stack-
ing is “just” modularity; extensibility, change manage-
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ment; and coherence, successful design. But truly suc-
cessful application of these principles to file-system lay-
ering add new dimensions of distribution, scaling, ease-
of-use, and efficiency. This chapter explored how these
constraints affect a solution. Following chapters will ex-
plore how stacking can be used to simplify filing devel-
opment and the details of one system implementing these
characteristics.
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Chapter 3

Stacking Techniques

This section examines in detail a number of different file-
system development techniques enabled or simplified by
stackable layering.

3.1 Layer Composition

One goal of layered file-system design is the construc-
tion of complex filing services from a number of simple,
independently developed layers. If file systems are to be
constructed from multiple layers, one must decide how
services should be decomposed to make individual com-
ponents most reusable. Our experience shows that lay-
ers are most easily reusable and composable when each
encompasses a single abstraction. This experience paral-
lels those encountered in designing composable network
protocols in the x-kernel [HPA89] and tool development
with the Unix shells [PK84].

As an example of this problem in the context of file-
system layering, consider the stack presented in Fig-
ure 3.1. A compression layer is stacked over a stand-
ard Unixfile-system (UFS); the UFS handles file services
while the compression layer periodically compresses
rarely used files.

A compression service provided above the Unix dir-
ectory abstraction has difficulty efficiently handling files
with multiple names (hard links).1 This is because the
UFS was not designed as a stackable layer; it encom-
passes several separate abstractions. Examining the UFS
in more detail, we see at least three basic abstractions: a
disk partition, arbitrary length files referenced by fixed
names (inode-level access), and a hierarchical directory
service. Instead of a single layer, the “UFS service”
should be composed of a stack of directory, file, and disk

1Consider, for example, a layer which detects compressed files by
their extension. When the file is uncompressed, the file will be renamed
to indicate its new status. It is difficult to rename all names of a file with
multiple links because some names are unknown.

UFS

OS

user

compression

Figure 3.1: A compression service stacked over a Unix
file-system.

layers. In this architecture the compression layer could
be configured directly above the file layer. Multiply-
named files would no longer be a problem because mul-
tiple names would be provided by a higher-level layer.
One could also imagine re-using the directory service
over other low-level storage implementations. Stacks of
this type are show in Figure 3.2.

3.2 Layer Substitution

Figure 3.2 also demonstrates layer substitution. Because
the log-structured file-system and the UFS are semantic-
ally similar, the compression layer can stack equally well
over either. Substitution of one for the other is possible,
allowing selection of low-level storage to be independ-
ent of higher-level services. This ability to have “plug-
compatible” layers not only supports higher-level ser-
vices across a variety of vendor-customized storage fa-

15
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directory

disk device

ufs files

compression

OS

user

directory

disk device

compression

OS

user

log−structured
       files

Figure 3.2: A compression layer configured with a mod-
ular physical storage service. Each stack also uses a dif-
ferent file storage layer (UFS and log structured layout).

  backup
program

user

OS

compression

UFS

Figure 3.3: Multiple-layer access through and beneath
a compression layer. Access through the compression
layer provides users transparently uncompressed data.
Fan-in allows a backup program to directly access the
compressed version.

cilities, but it also supports the evolution and replace-
ment of the lower layers as desired.

3.3 Multi-Layer Access

Modularity, re-use, and third-party involvement advoc-
ate the construction of filing services from a number of
layers. If these layers are stackable (each exporting the
same interface), then fan-in allows a layer to export its
services not only to a single layer above, but also to a
user or other layers. From the perspective of the stack
as a whole, this sort of multi-layer access allows a stack
to export several potentially different views of file data.

The ability to export multiple views of the same data is
useful in several different ways. The most common use
is to allow occasional access to lower stack layers for ad-
ministrative purposes such as file backup and debugging.
For example, in Figure 3.3, normal user access proceeds
through a compression layer, allowing data on disk to be
stored in a compressed format and transparently uncom-
pressed on demand. With multi-layer access a backup
program can bypass the compression layer and directly
transfer the compressed data to the backup media, sav-
ing both time and backup storage.

Multi-layer access can be directly employed by users.
Union-mounts in Plan 9 [PPT91] and 4.4BSD [McK95]
for example, create a single “unified” directory from sev-
eral underlying directories, yet users may need access to
the underlying directories to install new software. A user
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of the compression service in Figure 3.3 also may wish to
directly access the compressed data when making a copy
of the file.

Finally, sophisticated stack configurations often em-
ploy multi-layer access internally. Multi-layer access
occurs in Ficus; we describe this case in detail in Sec-
tion 8.4. Similarly, multi-layer access can be employed
with encryption layers to preserve data security over a
network as shown earlier in Figure 2.4.

3.4 Cooperating Layers

Layered design encourages the separation of file sys-
tems into small, reusable layers. Sometimes services that
could be reusable occur in the middle of an otherwise
special-purpose file-system. For example, a distributed
file-system may consist of a client and server portion,
with a remote access service in-between. One can en-
vision several possible distributed file-systems offering
simple stateless service, exact Unix semantics, or even
file replication. Each might build its particular semantics
on top of an “RPC” remote access service, but if re-
mote access is buried in the internals of each specific file-
system, it will be unavailable for reuse.

Cases such as these call for cooperating layers. A
“semantics-free” remote access service is provided as a
reusable layer, and the remainder is split into two sep-
arate, cooperating layers. When the file-system stack is
composed, the reusable layer is placed between the oth-
ers. Because the reusable portion is encapsulated as a
separate layer, it is available for use in other stacks. For
example, a new secure remote filing service could be
built by configuring encryption/decryption layers around
the basic transport service.

An example of the use of cooperating layers in the
Ficus replicated file-system [GHM90] is shown in Fig-
ure 3.4. The logical and physical layers of the Ficus stack
correspond roughly to a client and server of a replicated
service. A remote access layer is placed between them
when necessary.

3.5 Compatibility With Layers

The flexibility stacking provides promotes rapid inter-
face and layer evolution. Unfortunately, rapid change of-
ten rapidly results in precisely the incompatibility this ef-
fort is intended to address. Interface change and incom-
patibility today often prevent the use of existing filing ab-
stractions [Web93]. A goal of our design is to provide ap-

user

OS

remote
access

UFS UFS

 logical

physical physical

Figure 3.4: Cooperating Ficus layers (logical and phys-
ical) in the 1992 Ficus stack. Fan-out allows the logical
layer to identify several replicas, while a remote access
layer is inserted between cooperating Ficus layers as ne-
cessary.

proaches to cope with interface change in a binary-only
environment.

File-system interface evolution takes a number of
forms. Third parties wish to extend interfaces to provide
new services. Operating system vendors must change
interfaces to evolve the operating system, but usually
also wish to maintain backwards compatibility. Stack-
able layering provides a number of approaches to address
the problems of interface evolution.

Extensibility of the file-system interface is the primary
tool to address compatibility. Any party can add opera-
tions to the interface; such additions need not invalidat-
ing existing services. Third-party development is facil-
itated, gradual operating system evolution becomes pos-
sible, and the useful lifetime of a filing layer is greatly
increased, protecting the investment in its construction.

Layer substitution (see Section 3.2) is another ap-
proach to address simple incompatibilities. Substitution
of semantically similar layers allows easy adaption to
differences in environment. For example, a low-level
storage format tied to particular hardware can be re-
placed by an alternate base layer on other machines.

Resolution of more significant problems may employ
a compatibility layer. If two layers have similar but not
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identical views of the semantics of their shared interface,
a thin layer can easily be constructed to map between
incompatibilities. This facility could be used by third
parties to map a single service to several similar plat-
forms, or by an operating system vendor to provide back-
wards compatibility after significant changes.

A still more significant barrier is posed by different
operating systems. Although direct portability of layers
between operating systems with radically different sys-
tem services and operation sets is difficult, limited ac-
cess to remote services may be possible. Transport lay-
ers can bridge machine and operating system boundar-
ies, extending many of the benefits of stackable layer-
ing to a non-stacking computing environment. NFS can
be thought of as a widely used transport layer, available
on platforms ranging from personal computers to main-
frames. Although standard NFS provides only core fil-
ing services, imparts restrictions, and is not extensible,
it is still quite useful in this limited role. Section 5.3 de-
scribes how this approach is used to make Ficus replica-
tion available on PCs.

3.6 User-Level Development

One advantage of micro-kernel design is the ability to
move large portions of the operating system outside of
the kernel. Stackable layering fits naturally with this
approach. Each layer can be thought of as a server,
and operations are simply RPC messages between serv-
ers. In fact, new layer development usually takes this
form at UCLA (Figure 3.5). A transport layer (such as
NFS) serves as the RPC interface, moving all operations
from the kernel to a user-level file-system server. An-
other transport service (the “u-to-k layer”) allows user-
level calls on vnodes that exist inside the kernel. With
this framework layers may be developed and executed
as user code. Although inter-address space RPC has real
cost, caching may provide reasonable performance for an
out-of-kernel file-system [SS90] in some cases, particu-
larly if other characteristics of the filing service have in-
herently high latency (for example, hierarchical storage
management).

Nevertheless, many filing services will find the cost of
frequent RPCs overly expensive. Stackable layering of-
fers valuable flexibility in this case. Because file-system
layers each interact only through the layer interface, the
transport layers can be removed from this configuration
without affecting a layer’s implementation. An appropri-
ately constructed layer can then run in the kernel, avoid-
ing all RPC overhead. Layers can be moved in and out

development
      layer

lower
layer

user level

kernel level

user

system
calls

nfs
protocol

OS utok

  NFS
(server)

  NFS
(client)

Figure 3.5: User-level layer development via transport
layers.

of the kernel (or between different user-level servers) as
usage requires. By separating the concepts of modular-
ity from address space protection, stackable layering per-
mits the advantages of micro-kernel development and the
efficiency of an integrated execution environment.

3.7 Interposition

Some stacking implementations support interposition;
layers added to the top-of-stack are used not only for fu-
ture operations on the stack, but are interposed between
existing users of the stack and the old stack-top. This
capability to alter existing clients can be used effectively
in several ways.

One example of the use of interposition is illustrated
by the 1992 Ficus stack. Before the selection layer
was added, the logical layer handled replica failure and
switch-over. When a replica failure occured, we would
like to interpose “redirection vnode” on the stack-top
to transparently redirect existing clients of that vnode.2

This configuration can be seen in Figure 3.6. (This ap-
proach is now accomplished more cleanly in the selec-
tion layer.)

Interposition is useful when operations must happen at

2The UCLA stackable interface does not support interposition, so
we emulated it in this case by altering the operations vector of the vnode
for the failed replica. This approach to emulation works well when
a layer alters its own behavior but is not available when a third-party
layer is involved.
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Figure 3.6: Interposition in the 1992 Ficus stack.

run-time and be seen by all existing users. Another ex-
ample of this would be dynamic addition and removal of
a measurement layer.

A final example of the use of interposition (sugges-
ted by Rosenthal [Ros90] and Skinner [SW93]) is for at-
tachment of new file-systems into the namespace. Op-
erations directed at the interposed-upon layer are reflec-
ted up to the interposing layer. When a file system is
mounted (attached to the namespace) in Unix, actions to
the mounted-on directory must be reflected to the root of
the new file-system. (Similarly, the root of the new file-
system is also interposed upon to handle lookups on its
parent directory.)
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Chapter 4

UCLA Stacking Implementation

The UCLA stackable layers interface and its environ-
ment are the results of our efforts to tailor file-system
development to the stackable model. Sun’s vnode inter-
face is extended to provide extensibility, stacking, and
address-space independence. We describe this imple-
mentation here, beginning with a summary of the vnode
interface and then examining important differences in
our stackable interface.

4.1 Existing File-System Interfaces

Sun’s vnode interface is a good example of several “file-
system switches” developed for the Unix operating sys-
tem [Kle86, RKH86]. All have the same goal, to support
multiple file-system types in the same operating system.
The vnode interface has been quite successful in this re-
spect, providing dozens of different filing services in sev-
eral versions of Unix.

The vnode interface is a method of abstracting the de-
tails of a file-system implementation from the majority
of the kernel. The kernel views file access through two
abstract data types. A vnode identifies individual files.
A small set of file types is supported, including regular
files, which provide an uninterpreted array of bytes for
user data, and directories which list other files. Director-
ies include references to other directories, forming a hier-
archy of files. For implementation reasons, the directory
portion of this hierarchy is typically limited to a strict tree
structure.

The other major data structure is the vfs, representing
groups of files. For configuration purposes, sets of files
are grouped into subtrees (traditionally referred to as file
systems or disk partitions), each corresponding to one
vfs. Subtrees are added to the file-system namespace by
mounting.

Mounting is the process of adding new collections of
files into the global file-system namespace. Figure 4.1

/
vmunix

man

dev
usr

lib

Figure 4.1: A namespace composed of two subtrees.

shows two subtrees: the root subtree, and another at-
tached under /usr. Once a subtree is mounted, name
translation proceeds automatically across subtree bound-
aries, presenting the user with an apparently seamless
namespace.

All files within a subtree typically have similar char-
acteristics. Traditional Unix disk partitions correspond
one-to-one with subtrees. When NFS is employed, each
collection of files from a remote machine is assigned a
corresponding subtree on the local machine. Each sub-
tree is allowed a completely separate implementation.

Data encapsulation requires that these abstract data
types for files and subtrees be manipulated only by a re-
stricted set of operations. The operations supported by
vnodes, the abstract data type for “files”, vary accord-
ing to implementation (see [Kle86] and [KM86] for se-
mantics of typical operations).

To allow this generic treatment of vnodes, binding of
desired function to correct implementation is delayed un-
til kernel initialization. This is implemented by associat-
ing with each vnode type an operations vector identify-
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ing the correct implementation of each operation for that
vnode type. Operations can then be invoked on a given
vnode by looking up the correct operation in this vector
(this mechanism is analogous to typical implementations
of C++ virtual class method invocation).

Limited file-system stacking is possible with the
standard vnode interface using the mount mechanism.
Sun Microsystems’ NFS [SGK85], loopback, and trans-
lucent [Hen90] file-systems take this approach. Inform-
ation associated with the mount command identifies the
existing stack layer and where the new layer should be
attached into the filing name space.

4.2 Extensibility in the UCLA
Interface

Accommodation of interface evolution is a critical prob-
lem with existing interfaces. Incompatible change and
the lock-step release problem [Web93] are serious con-
cerns of developers today. The ability to add to the set
of filing services without disrupting existing practices is
a requirement of diverse third-party filing development
and would greatly ease vendor evolution of existing sys-
tems.

The vnode interface allows that the association of an
operation with its implementation be delayed until run-
time by fixing the formal definition of all permissible op-
erations before kernel compilation. This convention pro-
hibits the addition of new operations at kernel link time
or during execution, since file systems have no method
of insuring interface compatibility after change.

The UCLA interface addresses this problem of extens-
ibility by maintaining all interface definition information
until execution begins, and then dynamically construct-
ing the interface. Each file-system provides a list of all
the operations it supports. At kernel initialization, the
union of these operations is taken, yielding the list of all
operations supported by this kernel. This set of oper-
ations is then used to define the global operations vec-
tor dynamically, adapting it to arbitrary additions.1 Vec-
tors customized to each file-system are then constructed,
caching information sufficient to permit very rapid oper-
ation invocation. During operation these vectors select
the correct implementation of each operation for a given
vnode. Thus, each file-system may include new opera-

1For simplicity, we ignore here the problem of adding new opera-
tions at run-time. This “fully dynamic” addition of operations can be
supported with traditional approaches to run-time extensions. Either
operation vectors can reserve additional space for run-time operations
at configuration time, or vectors can be reallocated while “in-use”.

tions, and new file-systems can be added to a kernel with
a simple reconfiguration.

New operations may be added by any layer. Because
the interface does not define a fixed set of operations, a
new layer must expect “unsupported” operations and ac-
commodate them consistently. The UCLA interface re-
quires a default routine which will be invoked for all op-
erations not otherwise provided by a file system. File
systems may simply return an “unsupported operation”
error code, but we expect most layers to pass unknown
operations to a lower layer for processing.

The new structure of the operations vector also re-
quires a new method of operation invocation. The call-
ing sequence for new operations replaces the static off-
set into the operations vector of the old interface with a
dynamically computed new offset. These changes have
very little performance impact, an important considera-
tion for a service that will be as frequently employed as
an inter-layer interface. Section 5.1 discusses perform-
ance of stackable layering in detail.

4.3 Stack Creation

This section discusses how stacks are formed. In the pro-
totype interface, stacks are configured at the file-system
granularity, and constructed as required on a file-by-file
basis.

4.3.1 Stack configuration

Section 4.1 described how a Unix file-system is built
from a number of individual subtrees by mounting. Sub-
trees are the basic unit of file-system configuration; each
is either mounted making all its files accessible, or un-
mounted and unavailable. We employ this same mech-
anism for layer construction.

Fundamentally, the Unix mount mechanism has two
purposes: it creates a new “subtree object” of the reques-
ted type, and it attaches this object into the file-system
name-space for later use. Frequently, creation of sub-
trees uses other objects in the file system. An example of
this is shown in Figure 4.2 where a new UFS is instan-
tiated from a disk device (/layer/ufs/crypt.raw
from /dev/sd0g).

Configuration of layers requires the same basic steps
of layer creation and naming, so we employ the same
mount mechanism for layer construction.2 Layers are

2Although mount is typically used today to provide “expensive”
services, the mechanism is not inherently costly. Mount constructs an
object and gives it a name; when object initialization is inexpensive, so
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Figure 4.2: Instantiating a UFS with the Unix
mount mechanism. The new layer is instantiated
at /layer/ufs/crypt.raw from a disk device
/dev/sd0g.

built at the subtree granularity, a mount command cre-
ating each layer of a stack. Typically, stacks are built
bottom up. After a layer is mounted to a name, the next
higher layer’s mount command uses that name to identify
its “lower-layer neighbor” in initialization. Figure 4.3
continues the previous example by stacking an encryp-
tion layer over the UFS. In this figure, an encryption
layer is created with a new name (/usr/data) after spe-
cifying the lower layer (/layer/ufs/crypt.raw). Al-
ternatively, if no new name is necessary or desired, the
new layer can be mounted to the same place in the name-
space.3 Stacks with fan-out typically require that each
lower layer be named when constructed.

Stack construction does not necessarily proceed from
the bottom up. Sophisticated file-systems may create
lower layers on demand. The Ficus distributed file-
system takes this approach in its use of volumes. Each
volume is a subtree storing related files. To insure that
all sites maintain a consistent view about the location of
the thousands of volumes in a large-scale distributed sys-
tem, volume mount information is maintained on disk at
the mount location. When a volume mount point is en-
countered during path name translation, the correspond-
ing volume (and lower stack layers) is automatically loc-
ated and mounted.

is the corresponding mount.
3Mounts to the same name are currently possible only in 4.4BSD-

derived systems. If each layer is separately named, standard access
control mechanisms can be used to mediate access to lower layers.
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layerOS

encryption

encrypt
  layer UFS

UFS

Figure 4.3: Instantiating an encryption layer
over an existing UFS. The encryption layer
/usr/data is instantiated form an existing UFS
layer /layer/ufs/crypt.raw.

4.3.2 File-level stacking

While stacks are configured at the subtree level, most
user actions take place on individual files. Files are rep-
resented by vnodes, with one vnode per layer.

When a user opens a new file in a stack, a vnode is
constructed to represent each layer of the stack. User ac-
tions begin in the top stack layer and are then forwarded
down the stack as required. If an action requires creation
of a new vnode (such as referencing a new file), then as
the action proceeds down the stack, each layer will build
the appropriate vnode and return its reference to the layer
above. The higher layer will then store this reference in
the private data of the vnode it constructs. Should a layer
employ fan-out, each of its vnodes will reference several
lower-level vnodes similarly.

In Figure 4.4, the file stack of vnodes is shown paral-
leling the stack of file-system layers. If this file were cre-
ated (for example, by vop create), the operation would
proceed down the stack to the UFS layer, which would
construct vnode u1. As the operation returns to the en-
cryption layer, it would build and return vnode e1 to the
user.

Since vnode references are used both to bind layers
and to access files from the rest of the kernel, no special
provision need be made to perform operations between
layers. The same operations used by the general kernel
can be used between layers; layers treat all incoming op-
erations identically. In Figure 4.4 the reference binding
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Figure 4.4: File-level stacking.

the user to vnode e1 is the same as that joining vnodes e1
and u1.

Although the current implementation does not ex-
plicitly support stack configuration at a per-file gran-
ularity, there is nothing in the model which prohibits
finer configuration control. To divorce UCLA stacking
from the mount-model of configuration, a “typing” layer
would identify each file’s configuration and then con-
struct the corresponding vnode stack when the file is ac-
cessed. Kim’s object-oriented filing system (under de-
velopment at UCLA) represents approach to per-file typ-
ing [Kim95].

4.3.3 Stack data caching

When the same data is cached in different stack lay-
ers, cache incoherence becomes possible. UCLA stack-
ing employs a cache-coherence protocol described in
Chapters 6 and 7.

4.4 Stacking and Extensibility

One of the most powerful features of a stackable inter-
face is that layers can be stacked together, each adding
functionality to the whole. Often layers in the middle of a
stack will modify only a few operations, passing most to
the next lower layer unchanged. For example, although
an encryption layer would encrypt and decrypt all data
accessed by read and write requests, it may not need to
modify operations for directory manipulation. Since the

inter-layer interface is extensible and therefore new oper-
ations may always be added, an intermediate layer must
be prepared to forward arbitrary, new operations.

One way to pass operations to a lower layer is to im-
plement, for each operation, a routine that explicitly in-
vokes the same operation in the next lower layer. This
approach would fail to adapt automatically to the addi-
tion of new operations, requiring modification of all ex-
isting layers when any layer adds a new operation. The
creation of new layers and new operations would be dis-
couraged, and the use of unmodified third-party layers in
the middle of new stacks would be impossible.

What is needed is a single bypass routine which for-
wards new operations to a lower level. Default routines
(discussed in Section 4.2) provide the capability to have
a generic routine intercept unknown operations, but the
standard vnode interface provides no way to process this
operation in a general manner. To handle multiple oper-
ations, a single routine must be able to handle the vari-
ety of arguments used by different operations. It must
also be possible to identify the operation taking place,
and to map any vnode arguments to their lower level
counterparts.4

Neither of these characteristics are possible with ex-
isting interfaces where operations are implemented as
standard function calls. And, of course, support for these
characteristics must have absolutely minimal perform-
ance impact.

The UCLA interface accommodates these character-
istics by explicitly managing operations’ arguments as
collections. In addition, meta-data is associated with
each collection, providing the operation identity, argu-
ment types, and other pertinent information. Together,
this explicit management of operation invocations allows
arguments to be manipulated in a generic fashion and ef-
ficiently forwarded between layers, usually with pointer
manipulation.

These characteristics make it possible for a simple by-
pass routine to forward all operations to a lower layer
in the UCLA interface. By convention, we expect most
file-system layers to support such a bypass routine. More
importantly, these changes to the interface have minimal
impact on performance. For example, passing meta-data
requires only one additional argument to each operation.
See Section 5.1 for a detailed analysis of performance.

Appendix A.1 shows a C-based implementation of
vop create with both the Sun- and UCLA-vnode inter-

4Vnode arguments change as a call proceeds down and then back
up the stack, much as protocol headers are stripped off as network mes-
sages are processed. No other argument processing is required in order
to bypass an operation between two layers in the same address space.
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faces. Appendix A.3 shows a bypass routine.

4.5 VFS Stacking and Extensibility

Thus far we have focused on the vnode interface and how
it can be modified to support stacking and extensibility.
As the vnode interface implements the file abstraction,
the VFS interface provides an abstraction for file systems
and layers. The VFS interface provides a much smaller
set of services (shown in Table 4.1), but many of the reas-
ons which motivate extensibility of filing operations also
suggest extensibility of file-system operations.

Of these operations, the first four (mount, unmount,
mountroot, and swapvp) should not be stacked-upon.
To provide stacking for the remainder of the operations,
we re-implement them as vnode operations. When im-
plementing a VFS operation as a vnode operation, we
simply replace the vfs argument with a vnode; an vnode
from the layer can represent the vfs. New vfs operations
can be implemented as vnode operations in the same
way, and so take advantage of vnode operation extens-
ibility.

An alternative to this approach would be to provide ex-
tensibility for the VFS interface itself. The small number
of VFS operations suggests to us that in many cases the
approach taken in our prototype is preferable.

4.6 Inter-Machine Operation

A transport layer is a stackable layer that transfers opera-
tions from one address space to another. Because vnodes
for both local and remote file-systems accept the same
operations, they may be used interchangeably, provid-
ing network transparency. Sections 3.5 and 3.6 describe
some of the layer configurations which this transparency
allows.

Providing a bridge between address spaces presents
several potential problems. Different machines might
have differently configured sets of operations. Hetero-
geneity can make basic data types incompatible. Finally,
methods to support variable length and dynamically al-
located data structures for traditional kernel interfaces
do not always generalize when crossing address space
boundaries.

For two hosts to inter-operate, it must be possible to
identify each desired operation unambiguously. Well-
defined RPC protocols such as NFS insure compatibil-
ity by providing only a fixed set of operations. Since
restricting the set of operations frequently restricts and

impedes innovation, each operation in the UCLA inter-
face is assigned a universally unique identifier when it is
defined.5 Inter-machine communication of arbitrary op-
erations uses these labels to reject locally unknown op-
erations.

Transparent forwarding of operations across address
space boundaries requires not only that operations be
identified consistently, but also that arguments be com-
municated correctly in spite of machine heterogeneity.
Part of the meta-data associated with each operation
includes a complete type description of all arguments.
With this information, an RPC protocol can marshal op-
eration arguments and results between heterogeneous
machines. Thus a transport layer may be thought of as
a semantics-free RPC protocol with a stylized method of
marshaling and delivering arguments.

NFS provides a good prototype transport layer. It
stacks on top of existing local file-systems, using the
vnode interface above and below. But NFS was not de-
signed as a transport layer; its supported operations are
not extensible and its implementations define particu-
lar caching semantics. We extend NFS to automatic-
ally bypass new operations. We have also prototyped a
cache consistency layer providing a separate consistency
policy.

We have tried two approaches to export operation de-
scriptions to NFS. In our first implementation each new
operation was accompanied with a pointer to a proced-
ure which would marshal data into the canonical rep-
resentation for NFS (external data representation, or
XDR [Sun87]). This approach provides support for ma-
chine heterogeneity, but it supports only a single protocol
(XDR); protocol heterogeneity is not addressed. To relax
this constraint, our second implementation lists hierarch-
ically the type of each data object. This hierarchy is in-
terpreted as the data is marshaled. Each network protocol
can provide its own interpreter, allowing our internal data
description to service multiple networking protocols.

In addition to the use of an NFS-like inter-address
space transport layer, we employ a more efficient trans-
port layer operating between the user and the kernel
level. Such a transport layer provides “system call”
level access to the UCLA interface, allowing user-level
development of file-system layers and providing user-
level access to new file-system functionality. The de-
sire to support a system-call-like transport layer placed
one additional constraint on the interface. Traditional
system calls expect the user to provide space for all re-

5Generation schemes based on host identifier and time-stamp sup-
port fully distributed identifier creation and assignment. We therefore
employ the NCS UUID mechanism.
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operation description
vfs mount Configure a new file system or layer.
vfs unmount Remove an existing file system or layer.
vfs mountroot Configure the root file-system.
vfs swapvp Create a vnode corresponding to a file-identifying token.
vfs statfs Return statistics about the file system or layer.
vfs sync Flush any pending I/Os to backing store.
vfs rootvp Return a vnode for the file-system root.
vfs vget Create a vnode corresponding to a file-identifying token.

Table 4.1: VFS operations provided in SunOS 4.x.

turned data. We have chosen to extend this restriction to
the UCLA interface to make the user-to-kernel transport
layer universal. In practice, this restriction has not been
serious since the client can often make a good estimate of
storage requirements. If the client’s first guess is wrong,
information is returned, allowing the client to correctly
repeat the operation.

4.7 Centralized Interface
Definition

Several aspects of the UCLA interface require precise in-
formation about the characteristics of the operation tak-
ing place. Network transparency requires a complete
definition of all operation types (as described above), and
a bypass routine must be able to map vnodes from one
layer to the next (as described in Appendix A.3). The de-
signer of a file system employing new operations must
provide this information.

Detailed interface information is needed at several dif-
ferent places throughout the layers. Rather than require
that the interface designer keep this information consist-
ent in several different places, operation definitions are
combined into an interface definition. Similar to the data
description language used by RPC packages, this de-
scription lists each operation, its arguments, and the dir-
ection of data movement. An interface compiler trans-
lates this into forms convenient for automatic manipula-
tion.

Appendix A.2 shows the interface definition of
vop create.

4.8 Framework Portability

The UCLA interface has proven to be quite portable.
Initially implemented under SunOS 4.0.3, it has since
been ported to SunOS 4.1.1. In addition, the in-kernel
stacking and extensibility portions of the interface have
been ported to 4.4BSD. Although BSD’s namei approach
to pathname translation required some change, we are
largely pleased with our framework’s portability to a sys-
tem with an independently derived vnode interface. Sec-
tion 5.3 discusses portability of individual layers.

While the UCLA interface itself has proven to be port-
able, portability of individual layers is somewhat more
difficult. None of the implementations described have
identical sets of vnode operations, and pathname transla-
tion approaches differ considerably between SunOS and
BSD.

Fortunately, several aspects of the UCLA interface
provide approaches to address layer portability. Extens-
ibility allows layers with different sets of operations to
co-exist. In fact, interface additions from SunOS 4.0.3
to 4.1.1 required no changes to existing layers. When in-
terface differences are significantly greater, a compatibil-
ity layer (see Section 3.5) provides an opportunity to run
layers without change. Ultimately, adoption of a stand-
ard set of core operations (as well as other system ser-
vices) is required for effortless layer portability.



Chapter 5

UCLA Stacking Evaluation

While a stackable file-system design offers numerous ad-
vantages, file-system layering will not be widely accep-
ted if layer overhead is such that a monolithic file-system
performs significantly better than one formed from mul-
tiple layers. To verify layering performance, overhead
was evaluated from several points of view.

If stackable layering is to encourage rapid advance in
filing, it must have not only good performance, but it also
must facilitate file-system development. Here we also
examine this aspect of “performance”, first by comparing
the development of similar file-systems with and without
the UCLA interface, and then by examining the develop-
ment of layers in the new system.

Finally, compatibility problems are one of the primary
barriers to the use of current filing abstractions. We con-
clude by describing our experiences in applying stacking
to resolve filing incompatibilities.

5.1 Layer Performance

To examine the performance of the UCLA interface, we
consider several classes of benchmarks. First, we ex-
amine the costs of particular parts of this interface with
“micro-benchmarks”. We then consider how the inter-
face affects overall system performance by comparing
a stackable layers kernel to an unmodified kernel. Fi-
nally we evaluate the performance of multi-layer file-
systems by determining the overhead as the number of
layers changes.

Measurements in this chapter were collected from a
machine running a modified version of SunOS 4.0.3. All
benchmarks were run on a Sun-3/60 with 8 Mb of RAM
and two 70 Mb Maxtor XT-1085 hard disks. This ma-
chine is rated at 3 MIPS (it predates the SPEC bench-
marks). The measurements in Section 5.1.2 used the new
interface throughout the new kernel, while those in Sec-
tion 5.1.3 used it only within file systems.

5.1.1 Micro-benchmarks

The new interface changes the way every file-system op-
eration is invoked. To minimize overhead, operation
calls must be very inexpensive. Here we discuss two por-
tions of the interface: the method for calling an opera-
tion, and the bypass routine. Cost of operation invoc-
ation is key to performance, since it is an unavoidable
cost of stacking no matter how layers themselves are con-
structed.

To evaluate the performance of these portions of the
interface, we consider the number of assembly language
instructions generated in the implementation. While this
statistic is only a very rough indication of true cost, it
provides an order-of-magnitude comparison.1

We began by considering the cost of invoking an oper-
ation in the vnode and the UCLA interfaces. On a Sun-3
platform, the original vnode calling sequence translates
into four assembly language instructions, while the new
sequence requires six instructions.2 We view this over-
head as not significant with respect to most file-system
operations.

We are also interested in the cost of the bypass routine.
We envision a number of “filter” file-system layers, each
adding new abilities to the file-system stack. File com-
pression or local disk caching are examples of services
such layers might offer. These layers pass many op-
erations directly to the next layer down, modifying the
user’s actions only to uncompress a compressed file, or to
bring a remote file into the local disk cache. For such lay-
ers to be practical, the bypass routine must be inexpens-

1Factors such as machine architecture and the choice of compiler
have a significant impact on these figures. Many architectures have in-
structions which are significantly slower than others. We claim only a
rough comparison from these statistics.

2We found a similar ratio on SPARC-based architectures, where the
old sequence required five instructions, the new eight. In both cases
these calling sequences do not include code to pass arguments of the
operation.
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ive. A complete bypass routine in our design amounts to
about 54 assembly language instructions.3 About one-
third of these instructions are not in the main flow, being
used only for uncommon argument combinations, redu-
cing the cost of forwarding simple vnode operations to
34 instructions. Although this cost is significantly more
than a simple subroutine call, it is not significant with
respect to the cost of an average file-system operation.
To further investigate the effects of file-system layering,
Section 5.1.3 examines the overall performance impact
of a multi-layered file-system.

5.1.2 Interface performance

While instruction counts are useful, actual implementa-
tion performance measurements are essential for evalu-
ation. The first step compares a kernel supporting only
the UCLA interface with a standard kernel.

To do so, we consider two benchmarks: the modified
Andrew benchmark [Ous90, HKM88] and the recursive
copy and removal of large subdirectory trees. In addi-
tion, we examine the effect of adding multiple layers in
the new interface.

The Andrew benchmark has several phases, each of
which examines different file-system activities. Un-
fortunately, the brevity of the first four phases relat-
ive to granularity makes accuracy difficult. In addi-
tion, the long compile phase dominates overall bench-
mark results. Nevertheless, taken as a whole, this bench-
mark probably characterizes “normal use” better than
a file-system intensive benchmark such as a recursive
copy/remove.

The results from the benchmark can be seen in
Table 5.1. Overhead for the first four phases averages
about two percent. Coarse timing granularity and the
very short run times for these benchmarks limit their ac-
curacy. The compile phase shows only a slight overhead.
We attribute this lower overhead to the fewer number of
file system operations done per unit time by this phase of
the benchmark.

To exercise the interface more strenuously, we ex-
amined recursive copy and remove times. This bench-
mark employed two phases, the first doing a recursive
copy and the second a recursive remove. Both phases op-
erate on large amounts of data (a 4.8 Mb/usr/include
directory tree) to extend the duration of the benchmark.
Because we knew all overhead occurred in the kernel, we
measured system time (time spent in the kernel) instead

3These figures were produced by the Free Software Foundation’s
gcc compiler. Sun’s C compiler bundled with SunOS 4.0.3 produced
71 instructions.

of total elapsed time. This greatly exaggerates the impact
of layering, since all overhead is in the kernel and sys-
tem time is usually small compared to the elapsed “wall
clock” time a user actually experiences. As can be seen
in Table 5.2, system time overhead averages about 1.5%.

5.1.3 Multiple layer performance

Since the stackable layers design philosophy advocates
using several layers to implement what has tradition-
ally been provided by a monolithic module, the cost of
layer transitions must be minimal if layering is to be used
for serious file-system implementations. To examine the
overall impact of a multi-layer file-system, we analyze
the performance of a file-system stack as the number of
layers employed changes.

To perform this experiment, we began with a kernel
modified to support the UCLA interface within all file
systems and the vnode interface throughout the rest of
the kernel.4 At the base of the stack we placed a Berke-
ley fast file-system, modified to use the UCLA interface.
Above this layer we mounted from zero to six null layers,
each of which merely forwards all operations to the next
layer of the stack. We ran the benchmarks described in
the previous section upon those file-system stacks. This
test is by far the worst possible case for layering since
each added layer incurs full overhead without providing
any additional functionality.

Figure 5.1 shows the results of this study. Perform-
ance varies nearly linearly with the number of layers
used. The modified Andrew benchmark shows about
0:3% elapsed time overhead per layer. Alternate bench-
marks, such as the recursive copy and remove phases,
also show less than 0:25% overhead per layer.

To get a better feel for the costs of layering, we also
measured system time, time spent in the kernel on behalf
of the process. Figure 5.2 compares recursive copy and
remove system times (the modified Andrew benchmark
does not report system time statistics). Because all over-
head is in the kernel, and the total time spent in the kernel
is only one-tenth of elapsed time, comparisons of system
time indicate a higher overhead: about 2% per layer for
recursive copy and remove. Slightly better performance
for the case of one layer in Figure 5.2 results from a slight
caching effect of the null layer compared to the standard
UFS. Differences in benchmark overheads are the result
of differences in the ratio between the number of vnode
operations and benchmark length.

4To improve portability, we desired to modify as little of the ker-
nel as possible. Mapping between interfaces occurs automatically upon
first entry of a file-system layer.
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vnode interface UCLA interface percent
phase time %RSD time %RSD overhead
MakeDir 3.3 16.1 3.2 14.8 �3:03
Copy 18.8 4.7 19.1 5.0 1.60
ScanDir 17.3 5.1 17.8 7.9 2.89
ReadAll 28.2 1.8 28.8 2.0 2.13
Make 327.1 0.4 328.1 0.7 0.31
Overall 394.7 0.4 396.9 0.9 0.56

Table 5.1: Modified Andrew benchmark results running on kernels using the vnode and the UCLA interfaces. Time
values (in seconds, timer granularity one second) are the means of elapsed time from 29 sample runs; %RSD indicates
the percent relative standard deviation (�X=�X). Overhead is the percent overhead of the new interface. High relative
standard deviations for MakeDir are a result of poor timer granularity.

vnode interface UCLA interface percent
phase time %RSD time %RSD overhead
recursive copy 51.57 1.28 52.55 1.11 1.90
recursive remove 25.26 2.50 25.41 2.80 0.59
overall 76.83 0.87 77.96 1.11 1.47

Table 5.2: Recursive copy and remove benchmark results running on kernels using the vnode and UCLA interfaces.
Time values (in seconds, timer granularity 0:1 second) are the means of system time from twenty sample runs; %RSD
indicates the percent relative standard deviation. Overhead is the percent overhead of the new interface.

We draw two conclusions from these figures. First,
elapsed time results indicate that under normal load us-
age, a layered file-system architecture will be virtually
undetectable. Also, system time costs imply that during
heavy file-system use a small overhead will be incurred
when numerous layers are involved.

5.2 Layer Implementation Effort

An important goal of stackable file-systems and this in-
terface is to ease the job of new file-system development.
Importing functionality with existing layers saves a sig-
nificant amount of time in new development, but this sav-
ings must be compared to the effort required to employ
stackable layers. The next three sections compare devel-
opment with and without the UCLA interface, and exam-
ine how layering can be used for both large and small fil-
ing services. We conclude that layering simplifies both
small and large projects.

5.2.1 Simple layer development

A first concern when developing new file-system layers
was that the process would prove to be more complicated
than development of existing file-systems. Most other
kernel interfaces do not support extensibility; would this

facility complicate implementation?
To evaluate complexity, we choose to examine the size

of similar layers implemented both with and without the
UCLA interface. A simple “pass-through” layer was
chose for comparison: the loopback file-system under
the traditional vnode interface, and the null layer under
the UCLA interface.5 We performed this comparison for
both the SunOS 4.0.3 and the 4.4BSD implementations,
measuring complexity as numbers of lines of comment-
free C code.6

Table 5.3 compares the code length of each service
in the two operating systems. Closer examination re-
vealed that the majority of code savings occurs in the im-
plementation of individual vnode operations. The null
layer implements most operations with a bypass routine,
while the loopback file-system must explicitly forward
each operation. In spite of a smaller implementation, the
services provided by the null layer are also more general;
the same implementation will support the addition of fu-
ture operations.

For the example of a pass-through layer, use of the

5In SunOS the null layer was augmented to exactly reproduce the
semantics of the loopback layer. This was not necessary in 4.4BSD.

6While well-commented code might be a better comparison, the
null layer was quite heavily commented for pedagogical reasons, while
the loopback layer had only sparse comments. We chose to eliminate
this variable.
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Figure 5.1: Elapsed time of recursive copy/remove and modified Andrew benchmarks as layers are added to a file-
system stack. Each data point is the mean of four runs.
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Andrew benchmark does not provide system time). Each data point is the mean of four runs. Measuring system time
alone of a do-nothing layer represents the worst possible layering overhead.
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SunOS BSD
loopback-fs 743 lines 1046 lines
null layer 632 lines 578 lines
difference –111 lines –468 lines

–15% –45%

Table 5.3: Number of lines of comment-free code needed
to implement a pass-through layer or file system in
SunOS 4.0.3 and 4.4BSD.

UCLA interface enabled improved functionality with a
smaller implementation. Although the relative differ-
ence in size would be less for single layers providing
multiple services, a goal of stackable layers is to provide
sophisticated services through multiple, reusable layers.
This goal requires that minimal layers be as simple as
possible.

We are currently pursuing strategies to further re-
duce the absolute size of null layer code. We expect to
unify vnode management routines for null-derived lay-
ers, centralizing this common service.

5.2.2 Layer development experience

The best way to demonstrate the generality of a new
design technique is through its use by different parties
and in application to different problems.

To gain more perspective on this issue students were
invited to design and develop new layers as part of a
graduate class at UCLA. While all were proficient pro-
grammers, their kernel programming experience ranged
from none to considerable. Five groups of one or two
students each were provided with a null layer and a user-
level development environment.

All projects succeeded in provided functioning proto-
type layers. Prototypes include a file-versioning layer, an
encryption layer, a compression layer, second class rep-
lication as a layer, and an NFS consistency layer. Other
than the consistency layer, each was designed to stack
over a standard UFS layer, providing its service as an op-
tional enhancement. Self-estimates of development time
ranged from 40 to 60 person-hours. This figure included
time to become familiar with the development environ-
ment, as well as layer design and implementation.

Review of the development of these layers suggested
three primary contributions of stacking to this experi-
ment. First, by relying on a lower layer to provide basic
filing services, detailed understanding of these services
was unnecessary. Second, by beginning with a null layer,
new implementation required was largely focused on the
problem being solved rather than peripheral framework

issues. Finally, the out-of-kernel layer development plat-
form provided a convenient, familiar environment com-
pared to traditional kernel development.

We consider this experience a promising indication of
the ease of development offered by stackable layers. Pre-
viously, new file-system functionality required in-kernel
modification of current file-systems, and therefore know-
ledge of multi-thousand-line file-systems and low-level
kernel debugging tools. With stackable layers, students
in the class were able to investigate significant new filing
capabilities with knowledge only of the stackable inter-
face and programming methodology.

5.2.3 Large-scale example

The previous section discussed our experiences in stack-
able development of several prototype layers. This sec-
tion concludes with the the results of developing a repli-
cated file-system suitable for daily use.

Ficus is a “real” system, both in terms of size and
use. It is comparable in code size to other production
file-systems (12,000 lines for Ficus compared to 7–8,000
lines of comment-free NFS or UFS code). Ficus has seen
extensive development over its three-year existence. Its
developers’ computing environment (including Ficus de-
velopment) is completely supported in Ficus, and it is
now in use at various sites in the United States.

Stacking has been a part of Ficus from its very early
development. Ficus has provided both a fertile source of
layered development techniques, and a proving ground
for what works and what does not.

Ficus makes good use of stackable concepts such as
extensibility, cooperating layers, an extensible transport
layer, and out-of-kernel development. Extensibility is
widely used in Ficus to provide replication-specific oper-
ations. The concept of cooperating layers is fundamental
to the Ficus architecture, where some services must be
provided “close” to the user while others must be close
to data storage. Between the Ficus layers, the optional
transport layer has provided easy access to any replica,
leveraging location transparency as well. Finally, the
out-of-kernel debugging environment has proved partic-
ularly important in early development, saving significant
development time.

As a full-scale example of the use of stackable layer-
ing and the UCLA interface, Ficus illustrates the success
of these tools for file-system development. Layered file-
systems can be robust enough for daily use, and the de-
velopment process is suitable for long-term projects.
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5.3 Compatibility Experiences

Extensibility and layering are powerful tools to address
compatibility problems. Section 3.5 discusses several
different approaches to employ these tools; here we con-
sider how effective these tools have proven to be in prac-
tice. Our experiences here primarily concern the use and
evolution of the Ficus layers, the user-id mapping and
null layers, and stack-enabled versions of NFS and UFS.

Extensibility has proven quite effective in supporting
“third party”-style change. The file-system layers de-
veloped at UCLA evolve independently of each other
and of standard filing services. Operations are frequently
added to the Ficus layers with minimal consequences on
the other layers. We have encountered some cache con-
sistency problems resulting from extensibility and our
transport layer. Chapters 6 and 7 discuss our approach
to cache coherence. Without extensibility, each interface
change would require changes to all other layers, greatly
slowing progress.

We have had mixed experiences with portability
between different operating systems. On the positive
side, Ficus is currently accessible from PCs running MS-
DOS (see Figure 5.3). The PC runs an NFS implement-
ation to communicate with a Unix host running Ficus.
Ficus requires more information to identify files than will
fit in an NFS file identifier, so we employ an additional
“shrinkfid” layer to map over this difference.

Actual portability of layers between the SunOS and
BSD stacking implementations is more difficult. Each
operating system has a radically different set of core
vnode operations and related services. For this reason,
and because of licensing restrictions, we chose to reim-
plement the null and user-id mapping layers for the BSD
port. Although we expect that a compatibility layer could
mask interface differences, long-term interoperability re-
quires not only a consistent stacking framework but also
a common set of core operations and related operating
system services.

Finally, we have had quite good success employing
simple compatibility layers to map over minor interface
differences. The shrinkfid and umap layers each correct
deficiencies in interface or administrative configuration.
We have also constructed a simple layer which passes ad-
ditional state information (opens and closes) through ex-
tensible NFS as new operations.

UFS

PC user

shrinkfid
MS−DOS
    PC

Unix
host

physical

logical

  NFS
(client)

   NFS
(server)

Figure 5.3: Access to Unix-based Ficus from a PC run-
ning MS-DOS. NFS bridges operating system differ-
ences; the shrinkfid layer addresses minor internal inter-
face differences.
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5.4 Summary

This chapter evaluated the performance of file-system
layering, considering the performance of individual lay-
ers and file-system stacks. It also considered how layer-
ing can improve the file-system development by allow-
ing code reuse and out-of-kernel development. To sum-
marize the development environment, consider the com-
ments of one of the students who developed a file-system
layer [Kue91]:

For me, the really big advantage of the stack-
able layers was the ease of development. Com-
bined with the ook [out-of-kernel] develop-
ment, the testing cycle was vastly shorter than
other kernel work I’ve done. I could compile,
mount, debug, and unmount in the time that
it would have taken to just link a kernel, and
of course I had dbx available instead of strug-
gling with lousy kernel debuggers.



Chapter 6

Coherence Architecture

Nearly all file systems today provide a layer of abstrac-
tion over the raw disk geometry; it is inconceivable that
any new file system would lack such an abstraction. Sim-
ilarly, data caching has become a required filing tech-
nique. The performance improvements of caching are
well known; a well integrated cache allows efficient use
of resources. For these reasons a filing cache is part of
all modern, general-purpose operating systems.

We have already argued in Section 1.1.2 that file-
system caching becomes more difficult in a multi-layered
filing environment. To recap briefly, a first problem is
that different, independently derived layers may choose
to cache the same data, and uncoordinated updates to
these caches can result in data loss. The second and more
general problem is that the separation of filing services
into multiple layers makes it difficult for any individual
layer to make assertions about the current state of file as
a whole. Yet all too often caching must or will occur
at different stack layers due to multi-layer access (Sec-
tion 3.3).

This chapter proposes a cache-coherence protocol to
address both of these problems. We begin by out-
lining the general approach, and then discuss design con-
straints, the central problem of identifying what data is to
be cached, and other design issues.

6.1 General Approach to Cache
Coherence

Cache management is more difficult in a layered system
than in a monolithic system because state (cache contents
and restrictions) previously concentrated in a single loc-
ation is now distributed across several modules. Our ap-
proach to cache coherence is to unify this state in a cent-
ralized cache manager. The cache management service
is known to all stack layers and records the caching beha-
vior of different layers. If it detects caching requests that

UFS

encryption

  cache
manager

A

A in UFS

Figure 6.1: A sample application of the cache manager.

would violate existing coherence constraints, it revokes
caching privileges as necessary to preserve coherence.

An example of a potential stack and cache manager
configuration can be seen in Figure 6.1. When a re-
quest is made to cache an object and that request conflicts
with existing usage, existing cache holders are required
to flush their caches before the request is allowed to pro-
ceed. In this example the encryption layer might request
the cache manager to grant it exclusive caching rights to
object A. The cache manager knows this request conflicts
with the outstanding UFS cache of A, and so it will re-
quire the UFS to flush its cache before continuing. If the
encryption layer allowed shared access of A, the cache
manager would verify that this request was compatible
with the UFS’s outstanding request (breaking this request
if not) and then continue.

Several constraints influence our choice and design of
a solution. Good performance is the first constraint; sup-
port for the coherence framework should have little per-
formance impact on an otherwise unaltered system.

To manage data, the cache manager must be able
to identify it. A flexible and extensible identification
scheme is a second requirement. Extensibility is critical
because we already cache different kinds of data (names,
file data, attributes); we anticipate caching other data and
attribute types in the future. Flexible cache-object nam-
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ing is also important because logically identical data-
objects may be labeled differently in different layers. For
example, “file data bytes 15–20” has a different meaning
above and below a compression layer.

Additional design requirements include a strategy for
deadlock avoidance (an important special case of stack-
wide state) and the desire to make minimal changes to the
virtual memory (VM) system. A variety of VM systems
are in use. The applicability of our work is maximized
by focusing on the file system and its limited interactions
with the VM rather than requiring significant changes to
both systems. We comment as we proceed regarding the
impact of these constraints on our design and implement-
ation.

6.2 Data Identification

To explore the services and level of generality required
by a stackable cache management service, consider the
analogy of identifying shared memory. In a simple
shared-memory application where all processes share
identical address spaces, data can be identified by its
offset from the beginning of memory. A more soph-
isticated shared-memory application might allow inde-
pendent processes on the same host to share memory
by adding a second level of naming. Processes identify
shared data with a memory segment name and shared
data as offsets in that segment. More general still is a dis-
tributed shared memory (DSM) system where host iden-
tification must be added to segment and byte names. A
common characteristic of all of these examples is that all
active agents (threads or processes) ultimately refer to
the same thing: a particular byte of memory. Increasing
generality of agents requires more sophisticated address-
ing, but fundamentally the problem is still the same.

The problem of data identification becomes more dif-
ficult with a general stacking model. Stack layers can
arbitrarily change the semantics of the data representa-
tion above and below the layer. For example, layers may
choose to rename data obtained from below, or may dy-
namically compute new data. Because new filing layers
can be configured into the system dynamically, the scope
of data change cannot be predicted until run-time. Data
must be kept coherent in spite of these difficulties.

Our cache manager design addresses this problem in
a manner analogous to how DSM addressing was iden-
tified: layers use more sophisticated identification as in-
creasing generality is required. With the goal to “make
simple things simple and complex things possible”, the
cache manager provides significant support for the com-

mon case where layers do not change naming of cach-
able objects. Layers with more sophisticated needs are
allowed complete control over caching behavior. We ex-
amine each of these cases below.

6.2.1 Cache-object naming: simple layers

Layers cache several kinds of cache-objects, so a first
component of cache-object identification must distin-
guish different cache-objects held by a single vnode. To
identify cache-objects the cache manager uses a cache-
object type and a type-specific name. Type-specific
names are easily generated. (For example, each attrib-
ute or group of attributes is given a unique name, and file
data bytes are identified by their location in the file. Sec-
tion 7.2 discusses name selection in more detail.) Fig-
ure 6.2a shows how a single vnode might identify several
cache-objects.

The cache manager can identify a cache-object held by
a single vnode with specific names for each cache-object.
The cache manager must be able to identify when cache-
objects held by different vnodes alias one another. We
solve this problem in two ways. The next section de-
scribes a solution for the general problem, but here we
examine an important special case.

Often a layer assigns cache-object names in the same
way as the layer it is stacked upon. We optimize our
cache manager to support this kind of simply-named
layer. Since information is identified the same way by
each vnode of a simply-named file, the cache manager
can automatically identify and avoid cache aliases if it
can determine which vnodes belong to the same file.

The cache manager associates vnodes by tagging
vnodes of the same simply-named file with a special
token. The mapping h file-token, co-type, co-name i
! vnode allows the cache manager to determine that
h file-2, attrs, length i ! vp-c2 and h file-2,
attrs, length i ! vp-d2 refer to the same object and
must be kept coherent. In Figure 6.2b the cache manager
has recorded both vnodes of a two-vnode file as caching
the file length attribute.

6.2.2 Cache-object naming: general layers

Not all layers are simply-named. A layer that alters a
cache-object in a way that changes its naming violates
the simply-named restriction. Without help the cache
manager cannot insure cache coherence above and below
such a layer since it cannot anticipate how that layer al-
ters cache-objects. For example, a file’s length and the
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<attrs,length> −> a3
<attrs,mode> −> a3
<data,0−4> −> a3
<lock,0−4> −> a3

uncompr. length=5
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Figure 6.2: Levels of cache-object identification de-
scribed in Section 6.2. In (a) a single vnode identifies
cache-objects by type and name. In (b) a file-token is ad-
ded. Part (c) shows how a general layer can map between
different file tokens.

location of file data are altered by a compression layer in
a layer-specific manor.

To solve this problem, generally-named layers must
become involved in the cache-coherence process. The
cache manager supervises data above and below this
layer as if there were two separate, simply-named files
(each with a separate file-token). The generally-named
layer is responsible for this division and knows about the
two different “files”. It informs the cache manager that
it must see all caching events occurring in either simply-
named file. That layer then relays and translates cache-
coherence events as necessary.

Figure 6.2c shows the general cache management
case. Vnode b5 is cache-name-complex and divides the
stack into simply-named files 5 and 50. The cache man-
ager has a record for b5 with both of these simply-named
file-tokens, allowing b5 to map any cache actions to the
other side of the stack. The details of this mapping are
dependent on b5’s implementation. The details of one
possible implementation are discussed in Section 7.4.

We provide cache coherence in two flavors to support
simple layers with very little work while still providing
a solution for the general case. For example, addition of
coherent data page caching to a “null” layer (which uses
simple naming) required only 70 lines of code, while
support in a layer requiring general naming can easily be
5 to 10 times longer.

6.3 Cache-Object Status

A cache manager employs cache-object identification to
track which layers cache what information. Tracking
cache-objects allows the cache manager to implement a
simple coherence policy by never allowing concurrent
caching of the same object.

A better solution can be obtained if we employ know-
ledge of cache-object semantics to specify when cache-
objects require exclusive access and when they can be
safely cached in multiple layers. For example, some file
attributes are immutable and so can be cached by mul-
tiple layers without penalty, other attributes change fre-
quently enough to preclude caching, and an intermediate
policy would be suitable for still others.

We require that a layer’s cache request include not
only what object is to be cached, but also its desired
status. The status specifies if the layer intends to cache
the object and whether other layers are allowed to con-
currently cache it also. To handle a cache request the
cache manager compares the incoming request against
other outstanding cache requests, invalidating layers
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with conflicting requirements. If the new request indic-
ates that the object is to be cached, the cache manager
then records what layer will hold the data, promising to
inform that layer if future actions require invalidation.

In addition to the standard cache-object requests, a
layer can simply register interest in watching caching be-
havior for a given object. It will then be notified of all
future cache actions. This facility is used to implement
cache coherence across general layers.

Appendix B.3 lists each of the requests a layer can
make upon the cache manager and their interactions.

6.4 Deadlock Prevention

An operating system must either avoid or detect (and
break) deadlock. In operating systems, deadlock avoid-
ance is usually preferred to avoid the expense of dead-
lock detection and the difficulty of deadlock resolution.

Without cache coherence our style of stacking does not
contribute to deadlock. Locks are not held across opera-
tions and since operations proceed only down the vnodes
of a file, file vnodes form an implicit lock order. Cache-
coherence callbacks violate this implicit lock order; call-
backs can be initiated by any vnode (in any stack layer)
and can call any other vnode of that file.

To prevent deadlock from concurrent cache-
management operations we protect the whole file
with a single lock during cache manipulation. This
approach has the disadvantage of preventing multiple
concurrent caching operations on a single file, but in
many environments that event is quite unlikely. In most
cases cache operations are either already serialized by
a pre-existing lock (such as during disk I/O) or can
be processed rapidly (as with name lookup caching).
Although a single lock works well in these environ-
ments, an aggressive multiprocessor system may wish
to provide additional, finer granularity locking to reduce
lock contention.

We guarantee deadlock avoidance by insuring a one-
to-one association between stack locks and files. In Fig-
ure 6.2, for example, files 3, 4 and 5 each have a single
lock, even though file 5 requires general naming. Run-
time changes to stack configuration can violate this rule
if a new layer with fan-out merges two existing files into
a single new file. When this occurs the new layer must
acquire both locks and then replace all references of the
second lock with references to first. We describe a pro-
tocol for this procedure in Section 7.3.5.

6.5 Relationship to Distributed
Computing

Cache coherence in stacking as described so far will keep
all layers in a single operating system coherent.1 Of
course, shared filing is a useful service beyond the kernel
of a single processor or small multiprocessor. Clusters
of independent workstations and large-scale multipro-
cessors often have a shared filing environment among
independent kernels and operating systems. Cache co-
herence on a single machine must not interfere with the
overall distributed filing environment.

Cache coherence in a distributed system is subject to
a wide range of latencies and degrees of autonomy. This
range has prompted the development of a number of dif-
ferent distributed file-systems (for example, Locus, NFS,
Sprite, AFS, and Ficus). Each of these file systems are
designed for different environments and as a result have
different internal coherence algorithms; the variety of
solutions suggests that no single approach is best for all
environments.

Cache coherence in stackable files on a single node of
a distributed system must interact with the distributed fil-
ing coherence protocol, but we cannot require general-
ization of our protocol to the whole distributed system
and successfully match all environments already served.
Neither is it suitable to adopt different distributed fil-
ing semantics on a single machine where we can of-
ten provide a much better service. Instead, each partic-
ular distributed filing protocol interacts with the stack-
able coherence algorithms to maintain local consistency,
but also communicates with its peers to provide its dis-
tributed policy. Figure 6.3 illustrates this concept. The
cache manager at each site (the small ovals) maintains
local coherence, while the layers implementing different
distributed protocols (such as NFS or Sprite) implement
their own coherence protocols independently. Distrib-
uted coherence and locking issues are thus the respons-
ibility of the distributed filing protocol. Recognizing the
variety of distributed protocols suggests that this “hands-
off” distributed concurrency policy is the only one that
will permit stacking to be widely employed.

6.6 Summary

This chapter has explored the architecture of our cache
management protocol: layers cooperate with a central

1Although we expect all layers to be cache coherent, layers which
do not participate in coherence protocols are possible. Stacks involving
such layers cannot make coherence guarantees.
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   NFS
protocol

 Sprite
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Figure 6.3: Distributed cache-coherence involving dif-
ferent network protocols. Cache managers maintain co-
herence local to each machine while different protocols
are employed for inter-machine coherence.

cache manager, consistently identifying what data is to
be cached and with what constraints. The real contribu-
tion of this work is not simply the centralized cache man-
ager (which has been provided before in other environ-
ments), but a cache manager which is robust to independ-
ent layer development and semantics- and data-identity-
changing layers, and which provides good performance.
The next chapters examine and evaluate our implement-
ation of this protocol.
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Chapter 7

Coherence Implementation

Chapter 6 described our approach to cache coherence.
An implementation of this framework is an import-
ant step in validating and evaluating this design. This
chapter briefly summarizes important points of our im-
plementation, highlighting optimizations and and other
relevant implementation choices. We conclude by draw-
ing the design and implementation together in an exten-
ded example.

7.1 Implementation Overview

In general, a cache-coherent stack behaves just as any
other file-system stack. A user invokes operations upon a
layer, the operation passes down the stack and the results
are returned back up the stack.

A layer may employ cached data to service a request.
If the data already exists in the cache, that data is as-
sumed to be coherent and the layer can use it. If the data
is not in the cache, the layer will typically acquire the
data and place it in the cache.

Before acquiring data to be cached, however, a layer
must gain ownership of that data. To acquire own-
ership a layer first locks the stack and then makes a
cache-ownership call to the cache manager, providing
its simply-named stack token, the identity of the cache-
object it wishes to cache, and what restrictions it places
on concurrent use of that cache object. The cache man-
ager returns with a guarantee that the request has been
met and the layer can acquire data without fear of coher-
ence problems, and the stack is unlocked.

To make this guarantee the cache manager examines
its records. If any other layers in the same simply-named
stack have conflicting requests, the cache manager calls
them back and asks them to relinquish their cached data.
Other layers may have also registered “watch” interest
in the stack to provide cache coherence between gen-
eral layers. If so, the cache manager informs them of the

incoming cache request, allowing them to translate and
propagate the cache message throughout the whole stack.

When designing our cache manager we identified sev-
eral kinds of cache-objects in need of coherence. We
also realized that there would likely be other kinds of
cache-objects in the future. To allow cache requests to
be processed efficiently we apply three generic “classes”
of cache-objects to several situations. The next sec-
tions discuss these classes and their application to actual
cached data. In addition, Appendix B.2 presents the in-
terfaces between the cache manager and a layer.

7.2 Cache-Object Classes

For efficiency we structured our implementation around
three types of cached objects: whole files, named ob-
jects, and byte-ranges. We examine each of these classes
briefly here; we apply them in the following section.

7.2.1 Whole-file identification

Successful use of stacking in a multiprocessing con-
text requires coordination of multiple streams of con-
trol within a single file. Per-file locking provides an
approach that can achieve this goal. Key design con-
cerns are lightweight identification, support for arbitrar-
ily complex stacks (since stacks can be DAGs), and care-
ful attention to deadlock.

Whole-file identification is accomplished by recurs-
ively labeling the vnodes of the file. The lowest vnode in
the file generates a unique token to identify that file. (In
our implementation, the memory location of the vnode
is used as a token.1) As vnodes representing upper lay-
ers of the file are created, they inherit the identity of the
vnodes they stack upon As each vnode making up the file

1While suitable for our prototype, a better long-term implementa-
tion would use 32-bit counters to avoid name-reuse issues.
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is created it identifies itself as part of the same file as the
vnode it stacks upon. (Fan-out vnodes which stack over
multiple children employ general naming as described in
Section 6.2.2.)

Whole-file identification solves a unique problem.
More general services such as named-object and byte-
range identifiers discussed in the following sections
handle other stack identification needs.

7.2.2 Named-object identification

The fundamental service provided by the cache man-
ager is maintenance of a central database of cache-
object usage. Generic “names” of variable-length byte-
strings provide a general way of object naming. The
named-object subsystem implements this general model
of cached object identification.

Named-objects are identified by the layer and a short
string of bytes (the name). The cache manager uses these
names to identify when layers of the same stack are cach-
ing related information. Services with a few objects may
use fixed, pre-defined names; services that require more
general naming might use application-specific names.
Named-objects are suitable for file attribute (and exten-
ded attribute) cache management and name lookup valid-
ation. Details of name assignment for these applications
follow in the next section.

7.2.3 Byte-range identification

Byte-range identification is a more specific scheme then
named-objects. Byte-ranges support efficient associ-
ation of caching information with specific areas in a file,
identified as segments specified by file offset and length.
Byte-range identification is suitable for user-level file
locking and data cache-coherence.

7.3 Application and Optimizations

Our current system supports cache-coherent file data,
name-lookup caching, and attributes. Although applic-
ation of byte-range or named-object cache management
to each of these problems is relatively straightforward,
several important optimizations are discussed below.

7.3.1 Data-page caching

Our approach to data-page caching is influenced by the
observation that it is not necessary to provide a sophistic-
ated distributed shared memory system to support inter-
layer coherence. We adopt this view for two reasons.

First, we expect most user action to be focused on one
view of each file at a time and so concurrent sharing of
a single file between layers will be rare. We explore the
implications and the reasoning behind this assumption in
Section 8.6. Second, we assert that it is inappropriate to
provide stronger consistency than that provided by the
filing system today. Multi-file consistency is left to the
application, or to a separate layer.

An expected low rate of concurrent access to data
pages implies that a simple synchronization mechanism
is warranted. We therefore protect each page with a
single logical token and only allow a single layer to cache
that page at any instant. (With byte-range identification
we represent the logical tokens for contiguous pages ef-
ficiently.) When cache coherence requires pages to be
flushed (because of potential cache incoherence) the cur-
rent owning layer writes the pages to the bottom stack
layer, insuring that future requests anywhere in the stack
retrieve the most recent data.

Page flipping: A first optimization one might consider
is moving pages between layers by changing page iden-
tification in the VM system. (In SunOS, each page is
named and indexed by its vnode and file-offset. The most
efficient way to move a page from one layer to another
is to adjust this information.) For brevity we will term
this optimization “page flipping”. A key problem in page
flipping is recognizing between which layers the page
should be moved.

Consider the need to flip a page from vnode a1 to b1
in Figure 7.1. The minimal action required would be to
move the page down the stack to vnode c1, the “greatest
common layer” of a1 and b1, then back up to b1. Iden-
tification of the greatest common layer is difficult given
the limited knowledge a layer has of the whole stack, par-
ticularly when non-linear stacks are considered. Our im-
plementation therefore employs a simplification by ap-
proximating the greatest common layer with the bottom-
most stack layer (vnode d1 in the figure). Stacks with
fan-in will move the page to each bottom layer.

Page sharing: Allowing multiple layers to concur-
rently share the same physical page representation is a
desirable optimization to avoid page thrashing and page
duplication when two active layers have identical page
contents. This optimization requires support from the
VM system, like that provided by Spring [KN93b]. Un-
fortunately, the SunOS 4.x VM system serving as our
test-bed associates each page with a single vnode, and so
we were unable to explore this optimization.
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A: B:

C:

b1a1

c1

d1D:

Figure 7.1: A configuration of several layers. The ovals
represent layers; the figure as a whole represents a stack.
Each triangle is a vnode, while each collection of joined
triangles represents a file.

Read-only page replication Another possible optim-
ization is to coordinate page access with reader/writer
tokens instead of simple tokens. Reader/writer tokens
allow read-only copies of pages to be replicated (pos-
sibly in different formats) in different layers of the stack
concurrently, or allow a single writable page. If pages
are used primarily for read access, then this optimization
avoids needless page flipping. We chose not to imple-
ment this optimization because of our expectation that
concurrent data page sharing across multiple layers will
be rare.

Page sharing and read-only page replication optimize
for similar but not identical scenarios. For example, con-
sider caching data in vnodes c1 and d1 of Figure 7.1.
Page sharing is effective only if layer C has the same data
representation as layer D, regardless of page read or write
status. Page sharing also reduces memory usage. Read-
only page replication is effective regardless of data rep-
resentation, but only if pages are not used for updates.

7.3.2 File attribute caching

file-system layers often must alter their behavior based
on file meta-data. Current file-systems may depend on
file type or size; replicated file-systems such as Ficus
must know replica storage locations. Good performance
often requires these sorts of attributes be cached in mul-
tiple filing layers, particularly when files are accessed re-

motely. Reliable behavior requires that such attributes
be kept cache coherent. Our implementation of attrib-
ute cache-coherence is therefore based on the assumption
that multiple layers will need to cache attributes concur-
rently.

The cache manager handles coherent attributes as a
class of named-objects. Groups of related attributes are
each given a unique name when designed and are man-
aged together. Because named-object cache manage-
ment places no restrictions on the number of groups, this
system extends easily to support file-specific attributes
and potentially generic “extended attributes”. There are
many possible attribute-group naming schemes; we em-
ploy one based modeled on a h host-id, time-stamp i tuple
to allow simple distributed allocation.

Our current implementation provides coherence for
standard attributes; coherent Ficus extended attribute
support is underway. Standard attributes are broken into
three groups (frequently changing, occasionally chan-
ging, and unchanging) as an optimization to avoid unne-
cessary invalidation.

7.3.3 Directory name lookup caching

Pathname translation is one of the most frequently em-
ployed portions of the file system. The directory name
lookup cache (DNLC) is a cache of directory and path-
name component-to-object mappings which has been
found to substantially improve file-system performance.
Cached name translations must be invalidated when the
name is removed. In a multi-layer system the name may
be cached in one layer and removed through another; a
cache-coherence system must insure that a removal in
any layer invalidates any cached names in other layers.

A cache-coherent DNLC must coordinate name cach-
ing and invalidation in several layers. Several ap-
proaches are possible to solve this problem. We con-
sidered merging the DNLC with our cache manager, but
we rejected it for our research environment to keep our
code cleanly separated from the remainder of the operat-
ing system. Instead we experimented with two different
mappings between DNLC entries and the named-object
cache manager. We first recorded all names and re-
movals with the cache manager, directly using file names
as cache-object names. This initial approach did not
match typical DNLC usage (cache invalidations are rare)
and so performance suffered. Our final approach tags dir-
ectories that have any cached name translations; an in-
validation in a tagged directory is sent to all layers. We
found that occasional “broadcasts” prove more efficient
than the bookkeeping necessary for more precise inval-
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idation.

7.3.4 File data locks

User-level programs employ file-locking system calls
to manage concurrency between independent user pro-
grams. For file locks to provide effective concurrency
control they must apply to all stack layers, otherwise pro-
grams modifying a file through different layers could un-
wittingly interfere with each other. User-level file lock-
ing can be provided with the byte-range cache manager
in a manner analogous to file data cache-coherence.2

7.3.5 Whole-file locking

Just as user-level programs employ locking for concur-
rency control, the kernel employs locking internally to
keep file data structures consistent. Stacking requires
serialization of access to stack-wide data structures as
well as per-layer data. Whole-file locking provides this
serialization.

We implement whole-file locking with a streamlined
protocol separate from other forms of cache coherency.
Stack-locking calls bracket other cache-coherence mech-
anisms to avoid deadlock, so a separate protocol is re-
quired and minimal overhead is important.

As described in Section 6.4 deadlock prevention re-
quires a one-to-one relationship between files and locks.
Stack layers with fan-out can violate this relationship if
they merge several files into one. In such cases, refer-
ences to all locks must be replaced by references to a
single lock. For example, the addition of layer D in Fig-
ure 7.2a joins files 1, 2 and 3 through the common point
d4. Layer D must replace locks for files 1–3 with a single
lock, perhaps that of lock 4.

In general, the procedure for lock reallocation is layer-
specific. Reallocation itself must be done with some care
to avoid deadlock. A general protocol is to release all
lower-layer locks, re-acquire them in some canonical or-
der, and then replace each with a reference to a new lock.
For example, in Figure 7.2 we might release locks 1–3,
re-acquire them in low-to-high memory address order,
and then replace the references with lock 4. Significantly
simpler procedures are possible in many cases, such as
when a layer with general naming stacks above a single
other layer.

2Our current prototype does not yet implement cache-coherent,
user-level locking.

A: B: C:

D: d4

A: a1 B: b2 C:
c3

D: d4

(a)

(b)

a4 b4 c4

Figure 7.2: Lock merging due to layer addition.

7.4 An Extended Example

To bring together the design and implementation of
cache coherence we next consider an example. We will
examine stacks b and c in Figure 6.2 as data is cached.

Stack b represents the case of two layers with simple
naming. Consider a user reading data from the top layer.
Assuming the file’s data structures do not already exist
in memory, the pathname-translation operation is passed
down the stack. As it returns up the stack, vnodes b4
and a4 are built. Creation of vnode b5 allocates a file-
token, cache management structure, and lock for file 4,
and vnode a4 uses this same information. Name-lookup
caching may occur as a side effect of pathname transla-
tion; if so, one of the layers (typically the top) would re-
gister this fact with the cache manager of the parent dir-
ectory of the file.

After the vnodes are created, a user reads from a4.
Vnode a4 locks the stack and passes the read operation
down the stack, specifying a4 as the caching vnode. The
operation arrives at b4 (the bottom layer) which requests
that a4 be given ownership of h 40, data, 0–8k i. The
cache manager grants ownership of the entire file imme-
diately (initially pages are unowned), and b4 reads the
pages, placing them directly into a4’s cache.

The stack in Figure 6.2c presents a more difficult case
since general naming is required. Again, creation of
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c5 allocates cache management structures. Layer b is
a compression layer which requires general naming, so
it allocates a new file-token 50 to represent the “uncom-
pressed file”, and layer b registers “watch” interest in all
caching occurring to layer 50. No new lock is created
since each file must have only one lock. Finally, vnode
a5 is created and returned.

Next assume that the user writes data into bytes 0–32k
of our file through the top layer. Before the data can be
written, a5 must acquire page ownership of h 50, data, 0–
32k i. Vnode b5 watches caching operations to file-token
50, so the cache manager makes a callback and b5 trans-
lates this request and registers ownership of h 5, data, 0–
24k i (assuming 25% compression). Ownership is now
assured and the read operation can take place.

To demonstrate cache interference, another user now
will read the file back through vnode a5. Without cache
coherence the results of this request are indeterminate.
With coherence, a5 must register ownership of the data
before the read. Currently b5 has ownership of part of
file 5 so the cache manager calls back b5. Before b5 re-
leases ownership of h 5, data, 0–24k i it synchronizes
h 50, data, 0–32k i. Vnode a5 owns this data, so the
cache manager calls a5 to synchronize the pages; vnode
a5 writes the pages, calling on b5 to compress them, ul-
timately delivering them to c5.

These examples present some of the most import-
ant details of our cache-coherence protocol, both with
simple- and general-naming.
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Chapter 8

Coherence Evaluation

Performance evaluation of large software systems is dif-
ficult, and caching file systems is particularly difficult.
When examining the performance of a cache-coherence
framework, particular care must be taken to separate the
overhead of the framework from the benefits of cach-
ing. (The LADDIS NFS server benchmark, for ex-
ample, carefully exercises NFS to gain useful measure-
ments [Wit93].) We next examine components of our co-
herence approach that impact performance, the bench-
marks we use to examine that performance, and finally
several perspectives on the performance of our system.

8.1 Performance Components

A cache-coherent, layered file-system is composed of a
number of cooperating components. Some of these com-
ponents improve overall performance while others im-
pose limits. (Of course, we expect better performance
overall with caching than without.) This section exam-
ines the caching algorithms before and after our addition
of cache coherence, with the goal of identifying which
changes alter performance.

An abstract form of the algorithms used to access data
through the cache is shown in Figure 8.1. Step 1 of
both algorithms is the same, but the following steps dif-
fer and so may influence performance. Because Step 1
is identical, the cost of accessing already-cached data
should not change. This fact is critical to overall per-
formance, since a high cache hit rate significantly re-
duces average access time even if the cache miss penalty
is also high.

Step 2, cache-object registration, is a new step and
represents overhead of the cache-coherence framework.
The cost of this step is examined in Section 8.5.

Conflicting cache requests in Step 3 also represent a
cost of cache coherence. This overhead is distinct from
framework overhead, though, since it is a property of cli-

(a) non-layered caching:

1. If data is in cache, use it.
2. Read data into the cache; use it.

(b) layered caching:

1. If data is in our layer’s cache, use it.
2. Register ownership of data with the cache

manager.
3. If registration conflicts with outstanding

requests, revoke them.
4. If caching data-pages currently in another

layer’s cache, page-flip data into our layer
and use it.

5. Read data into our layer’s cache; use it.

Figure 8.1: Caching algorithms with and without layer-
ing. We use the layered caching algorithm in our system.

ent usage patterns. We therefore characterize it as client
overhead and examine it in Section 8.6.

Step 4 is an optimization to the basic cache-coherence
algorithm. For data pages the cost of servicing a cache
miss is high (because they are large and require hardware
interaction, see Section 7.3.1), so it is profitable to move
cache-objects from layer to layer rather than regenerate
them. The effects of this optimization are discussed in
Section 8.6.

On the surface the last step is identical in the two
algorithms; however their implementations differ. In
a monolithic system, the same module generates and
caches data. In a layered system one layer might gener-
ate the data, another may modify this data somehow, and
a third may cache the data. An important aspect of the
cost of layered caching is passing data between layers.
For example, if data must be copied each time it moves
between layers, bulk-data copy overhead would quickly

47
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limit layer usage. Such costs might not be present in a
monolithic implementation where there is only one kind
of buffering.

Typical vnode interfaces were not constructed with
layered filing in mind; some aspects of their interfaces re-
quire excessive copying in a multi-layered filing environ-
ment. We have extended the interface to avoid this prob-
lem. We examine the implementation and performance
costs of these changes and Step 5 in Section 8.3.

We have identified several differences between the
layered and non-layered caching algorithms. We expect
some of these differences not to significantly affect per-
formance while others may improve or limit perform-
ance. After discussing our benchmarks and methodo-
logy, we will examine each difference with several ex-
periments.

8.2 Performance Experiments and
Methodology

Benchmarks: We examined our system with several
sets of benchmarks. Our benchmarks can be divided into
three groups. First are a set of benchmarks that oper-
ate recursively over a directory hierarchy. These bench-
marks include recursive copy, find, find and grep, and re-
move. We selected this set because they intensively ex-
ercise the file system in different ways. Find accesses a
large number of files without generating much caching.
Copy accesses files and their data.

The second class of benchmarks is represented by the
Modified Andrew Benchmark [Ous90]. The Modified
Andrew Benchmark consists of five phases: four brief
file-system operations and a large-program build. In our
environment we found the first four phases too short to
allow good statistical comparisons, and all were domin-
ated by the compile phase. We therefore present only ag-
gregate performance of all phases of this benchmark.

The final set of benchmarks is employed to measure
cache interference. We describe them in Section 8.6.

Measurement times: We examined all benchmarks
with two different measurement times: elapsed time and
system time. Elapsed time represents the performance
observed by a typical workstation user. System time rep-
resents only time spent in the kernel. Since all of our
overhead is in the kernel, this measure exaggerates the
impact of our changes.

Test environment: All measurements in this
chapter were taken on a Sun SPARCstation IPC (a
13.8 SPECint92 machine) with 12 Mb of memory and
a Sun 207 Mb hard disk with 16 msec average seek
time. Our test machine runs a modified version of
SunOS 4.1.1.

All data is stored in a stack-enabled version of the
standard SunOS 4.1.1 file-system (UFS), a version of
Berkeley’s Fast Filesystem [MJL84]. For multi-layer
tests we add one or more null layers. A null layer ordin-
arily passes all filing operations down the stack for pro-
cessing; for these experiment we modified the null layer
to cache file data pages internally.

8.3 Costs of Layered Data Caching

The modularity enforced by a layered system limits in-
formation exported by a layer to that provided by its in-
terface. A minimal, clear interface is both a benefit and a
curse to a multi-layer system. A minimal interface sim-
plifies multiple service implementations, but a minimal
interface appropriate to a monolithic system may not ad-
mit efficient caching in a multi-layer system. Most cur-
rent file-system interfaces (for example, the SunOS and
SVR4 vnode interfaces) do not provide the necessary ser-
vices to allow efficient multi-layer caching.

One cost of caching in a layered system is therefore
creation of new interface operations to allow efficient
caching. This cost takes two forms: increased interface
complexity and run-time overhead due to added code.
We examine each of these issues below.

Implementation cost: Rather than engineer a com-
pletely new file-system/virtual-memory system inter-
face, we provided “stack-friendly” caching by minimal
modifications to relevant existing vnode operations. The
number of modifications required can be used as a meas-
ure of additional complexity required for efficient stack-
able caching. We currently cache three types of objects:
attributes, file name translations, and data pages. Ef-
ficient caching of the first two of these objects is pos-
sible with no interface changes. Attribute manipulation
already avoids unnecessary data copies, and name trans-
lation is internal to a each layer. Data page caching, the
final case, was the only class of operations that required
change. We next examine modifications required for this
class of operations.

Data page caching required some interface changes
to avoid repeated data copies. The caching operations
(vop putpage and vop getpage) manage caching file
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data. The process of caching file data consists logically
of two separate components; first data is read from stable
storage, then it is placed in the VM cache. In a mono-
lithic system such as the UFS, the same layer performs
both of these operations. As first noted by the Spring pro-
ject [KN93a], successful layered caching benefits from
a separation of these functions. In Spring terms, one
object will serve as the pager, performing actual data
I/O, while another object (the cacher) may be actively
caching data. Our system restructures the file-system
paging operations to allow different layers to assume
each of these functions. We modify three vnode op-
erations (vop putpage, vop getpage, and vop rdwr)
and their support code to accept vnodes representing both
the cache and pager objects, rather than a single vnode
representing both. The interfaces of these modified op-
eration are listed in Appendix B.1.

Another operation requiring slight modification was
the data read/write operation. Writing beyond the end of
a file automatically extends the file length; our modifica-
tions keep file data and length information synchronized.

Our experiences modifying SunOS to support efficient
data caching across multiple layers suggest that relat-
ively few changes are required. The other relevant aspect
of performance is the run-time cost of these changes, to
which we now turn.

Performance cost: To investigate the performance
cost of these changes we ran our benchmarks on ker-
nels using standard and stack-friendly data acquisition.
Neither case employed cache coherence; the measure-
ment results are intended to evaluate the cost of the stack-
friendly framework. Table 8.1 compares the standard
Unix file-system with and without these changes. Fig-
ure 8.2 presents these results graphically.

A comparison of individual benchmarks from these
results shows a performance difference of �4% for dif-
ferent tests, and that several of the tests show no statist-
ically significant difference. Taken as a whole the tests
suggest that there is some performance variation, but
there is no consistent bias for either type of data acquis-
ition.

8.4 Cache-Coherence Benefits

Given operations that permit efficient caching in multiple
layers, the next important issue is to examine what bene-
fits cache coherence provides. The most important be-
nefit is improved system reliability. Although instances
of cache incoherence are usually rare, even occasional
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Figure 8.2: Benchmarks comparing a UFS with and
without stack-friendly data acquisition. Error bars show
one standard deviation. (This figure illustrates the data
presented in Table 8.1.)

incoherence is not permissible in many critical applica-
tions. A related benefit is that cache coherence allows
improved structure of multi-layer filing systems. file-
system implementations often require the ability to make
assertions about data; without cache coherence these as-
sertions are more difficult and often force a less modular
structure. Finally, cache coherence and caching can im-
prove system performance. We consider these benefits in
turn, drawing on Ficus replication for illustrations.

The most important benefit of cache coherence is its
support for correct system behavior. Without coher-
ence unusual combinations of user activity can result in
cache incoherence and incorrect results. Potential cach-
ing problems would force many developers to structure
their systems in a less modular way, or prevent user ac-
cess to lower layers. An example of this problem occurs
in Ficus (see Figure 8.3 for the Ficus layer configura-
tion). Ficus caches pathname translations in the selection
layer (step 1). A file removal action by the remote user is
directed to the physical layer on the local user’s replica
(steps 2 and 3). Without cache coherence the local user
can still employ the cached name at the selection layer
(step 4). With cache coherence, step 3 would have also
removed the cached entry. Restructuring Ficus to avoid
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standard stack-friendly
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 159.0 12.67 154.2 12.18 –3.02
find 79.2 6.78 81.1 5.99 2.40
findgrep 205.2 5.90 197.7 1.22 –3.66
grep 61.6 3.60 61.9 1.68 0.487�
rm 58.0 8.35 57.9 2.49 –0.172�
mab 147.7 2.44 149.2 5.52 1.02
system time:
cp 22.9 1.66 23.1 1.85 0.873�
find 51.8 13.68 52.7 14.04 1.74�
findgrep 102.4 1.38 101.5 1.58 –0.879
grep 19.2 1.97 20.1 2.41 4.69
rm 6.3 11.93 6.1 10.62 –3.17�
mab 37.3 1.11 37.9 1.35 1.61

Table 8.1: Elapsed- and system-time performance comparisons of UFS performance with standard and stack-friendly
cache operations. %RSD is �x=�x. Differences marked with an asterisk are less than the 90% confidence interval
and so are not statistically significant. These values are derived from 25 sample runs. Section 8.3 interprets this data;
Figure 8.2 presents it graphically.

this problem would require that operations always pass
through all layers, adding overhead and artificially dis-
torting layer configuration. Although this problem oc-
curs only occasionally in daily use, it would almost cer-
tainly require a solution should Ficus be deployed in a
production setting. Moreover, fear of this sort of prob-
lem would curtail use of stacking as a structuring tech-
nique in many settings.

Another benefit of cache coherence is that by provid-
ing a rich environment within which correct behavior is
easily achieved, layer development is made easier. One
is also led into increased separation of function into sep-
arate layers, improving reusability. Two examples in
Ficus illustrate how lack of coherence altered the desired
system structure. First, without cache coherence, Ficus
cannot completely support memory-mapped data access.
We work around this problem in several ways, but in a
widely deployed system this problem may prevent the
use of layering techniques. Second, the selection layer
requires file attribute information when accessing a file.
The overhead of an attribute fetch for each file access is
significant (particularly if the file is remote), yet the se-
lection layer could not cache attributes because its cache
may have become invalid. Instead we were forced to
build an ad hoc facility to work around the problem.

Performance is another important motivation for cach-
ing. Performance can be improved when the cache-
coherence service permits caching where it could other-

UFS

physical

logical

selection

physical

logical

selection

UFS

xNFS

(2) remove F

(3) remove F

(1) lookup
    (and cache) F

(4) lookup F

OS

local user

OS

remote user

Figure 8.3: Layer configuration for Ficus replication.
Each column represents a particular host. The logical
layer controls access to different replicas, accessing re-
mote replicas through stack-enabled NFS. The sequence
of operations listed results in cache-coherence problems;
see Section 8.4 for details.
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Figure 8.4: Benchmarks comparing three null layers
stacked over a UFS with and without coherent name-
lookup caching. (This figure illustrates the data presen-
ted in Table 8.2.)

wise not be used. The degree of performance change is
highly application-dependent. For example, a software
encryption layer which could not cache decrypted pages
in memory would be unusable for executing programs
(although it might be acceptable for logged output). To
quantify the benefits of caching, we stacked three null
layers over a UFS, simulating the layering overhead in
the Ficus stack. We measured benchmark performance
with and without name-lookup caching in the top null
layer. Results were quite dependent on the pattern of use.
In some cases, improvement was insignificant. Elapsed
time of the copy case in fact showed a 10% increase;
caching is of no benefit in a single-pass copy. In other
cases overhead was cut up to 40%.

8.5 Cache-Coherence
Performance: No Interference

We have suggested that there are both performance and
structural advantages when layers employ cache coher-
ence. Even when a layer experiences substantial overall
speedup due to caching, there is still some overhead due
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Figure 8.5: Benchmarks comparing a UFS in kernels
with and without cache coherence. (This figure illus-
trates the data presented in Table 8.3.)

to the cache-coherence framework effort spent in step 2
of the layered caching algorithm (Figure 8.1b).

Measuring cache-coherence framework overhead is
crucial for several reasons. First, framework overhead
can be used as a metric to select between different cache-
coherence implementations. Second and perhaps more
importantly, framework overhead is required of all lay-
ers involved in cache coherence. Framework overhead
therefore represents an additional cost applied to exist-
ing file-system layers if they wish to participate in cache-
coherent stacks. Finally, cache coherence is an import-
ant component to a robust and general environment for
stackable filing, so its performance is critical.

To investigate the cost of the framework alone, inde-
pendent of any performance benefits of caching, we com-
pare a layer with and without the cache-coherence frame-
work. Table 8.3 compares our disk-based file-system
(UFS) with and without the framework. Since only a
single layer is employed in these tests all overhead ob-
served is due to the framework as opposed to cache inter-
ference. Figure 8.5 reproduces these results graphically.

Cache-coherence overhead on these benchmarks var-
ies but is typically about 3–5%. Of the measured bench-
marks, find exhibits the most overhead (15%) while find-
grep and grep show the least cost (1–2%).
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without DNLC with DNLC
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 170.7 8.03 188.2 19.40 10.3
find 135.8 9.63 126.8 1.31 –6.63
findgrep 202.9 3.46 198.1 0.87 –2.37
grep 81.6 2.03 64.7 13.59 –20.7
rm 64.5 9.71 60.6 1.75 –6.05
mab 156.2 6.79 150.3 1.63 –3.78
system time:
cp 27.8 1.29 25.3 1.20 –8.99
find 67.9 15.11 60.3 2.17 –11.2
findgrep 114.9 2.40 111.0 0.75 –3.39
grep 40.3 0.80 24.1 33.24 –40.2
rm 11.4 6.77 8.8 6.94 –22.8
mab 41.8 1.23 41.1 0.93 –1.67�

Table 8.2: Elapsed- and system-time performance comparisons of a stack of three null layers over a UFS without and
with name-lookup caching. Differences marked with an asterisk are less than the 90% confidence interval and so are
not statistically significant. These values are derived from 8 sample runs. Section 8.4 characterizes this data.

non-coherent coherent
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 228.1 12.81 218.9 17.61 –4.03
find 73.2 11.36 84.8 12.74 15.8
findgrep 212.0 2.19 216.7 2.14 2.22
grep 60.1 1.61 61.1 1.26 1.66
rm 73.4 1.62 79.8 17.89 8.72
mab 151.6 2.60 157.2 4.90 3.69
system time:
cp 22.5 2.36 23.2 2.02 3.11
find 46.2 7.18 53.4 9.59 15.6
findgrep 98.3 1.61 103.1 1.54 4.89
grep 18.6 1.94 19.5 2.25 4.85
rm 6.2 14.99 6.3 11.70 1.61�
mab 36.9 1.21 38.4 1.51 4.07

Table 8.3: Elapsed- and system-time performance comparisons of non-coherent and coherent caching kernels. Differ-
ences marked with an asterisk are less than the 90% confidence interval and so are not statistically significant. These
values are derived from 30 sample runs. (The data in table is shown graphically in Figure 8.5.)
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A 3–5% performance cost is not unreasonable when
providing new functionality, but it is an unfortunate
cost for existing services. This overhead represents
the cost of setting up and maintaining cache-coherence
data-structures. We expect that some of this cost can
be avoided by internally preserving partially built data
structures [Bon94]. Careful tuning and examination of
fast-path opportunities could also likely improve our pro-
totype system; we project that a production quality ser-
vice is quite feasible.

The cost of this overhead must also be weighed against
the benefits of cache coherence. Caching in a multi-layer
system can dramatically improve overall performance,
often more than accounting for cache-coherence over-
head. In addition, cache coherence is an important part
of providing a robust layered system by allowing layer
designers to accommodate caching across all layers of a
stack.

8.6 Cache-Coherence
Performance: Interference

The experiments described thus far describe the perform-
ance of cache coherence when a stack is exercised with
current styles of usage (all access through a single layer).
Cache coherence is designed for a broader environment
where access is possible through multiple layers. Shared
access to the same data through different layers results in
competition for caching this data. We next examine the
effect this competition can have on performance.

Inter-layer cache interference is highly application-
dependent and is not easily tested by standard bench-
marks. We have therefore constructed two synthetic
benchmarks to stress interference: sequential and ran-
dom updates to potentially different file layers. We relate
these benchmarks to practical applications below.

For each benchmark we stack one or two null layers on
a UFS. Once layers are configured we map the file data
into memory and exercise it according to the pseudo-
code of Figure 8.6. Files are small enough to fit into
physical memory, so all overhead measured is the effect
of cache interference.

The results of these benchmarks appear in Table 8.4.
Since the range of data is so great, some measurements
are on the order of timer granularity (one-tenth of a
second); in these cases measurement error is relatively
high (10–14%).

We draw two conclusions from Table 8.4. First, the
random-update benchmark shows that cache-coherent
access to multiple layers is extraordinarily expensive.

Random updates exhibit more than 20 times greater
elapsed time and 400 times greater system time when
cache interference is present. This performance is a dir-
ect result of the lack of locality across multiple stack lay-
ers (layer locality) in a random access reference pattern.
If this case were common, full function stacking would
not be viable. However, we are not aware of any ap-
plications that exhibit this reference pattern; we discuss
this problem in detail below. Furthermore, sequential file
access presents a much different story: elapsed time is
practically equivalent regardless of the degree of inter-
ference, although system time degrades by a factor of
five.

Poor performance of the two-null-layer case with re-
spect to the one-null-layer case is due to lack of layer loc-
ality. With one null layer the entire file is brought into
memory and updates then happen without operating sys-
tem intervention. With multiple null layers pages move
between layers; each move requires a page fault which is
several orders of magnitude more expensive than a direct
memory reference.

We can analytically determine the number of page
faults expected for each benchmark. Using file length
and access conditions specified in Figure 8.6 and assum-
ing a 4kbyte page size, any one-null-layer benchmark
will page the entire file into the null layer with 250 faults.
By comparison, the two-null-layer sequential benchmark
will require 8000 faults to move the file between layers
32 times. In the two-null-layer random access bench-
mark each access has a 50% chance of requiring a fault.1

In this case, where no layer locality is exhibited, ran-
domly updating only four-tenths of the file results in
204,800 faults on average. (We have verified this figure,
counting about 270,000 faults in a typical two-null-layer,
random-update trial.)

These benchmarks suggest that, like virtual memory,
locality is required for efficient use of cache coherence.
With stacking, the reference stream must exhibit good
layer locality to avoid cross-layer page faults. To inter-
pret the results of these synthetic benchmarks in the con-
text of real applications, we must characterize expected
layer locality.

We have proposed file-system layers as an approach
to building rich filing services from composable layers.
Currently (with the exception of direct disk access) fil-
ing environments export only one service; all user ap-
plications access this “top layer”. We expect that a

1In the n-active layer steady-state each access has a 1=n chance
of a cache hit. First access to a page are not part of steady state;
for our 1000k file with 4k pages these first 250 page accesses are not
significant.
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Random-update:
for i = 1 to random-scale(file-length)
begin

layer = random(file-layers)
offset = random(file-length)
data[layer][offset]++

end

Sequential-update:
for i = 1 to sequential-scale(file-length)
begin

layer = (i div file-length) mod file-layers
offset = i mod file-length
data[layer][offset]++

end

Constants:
random-scale(length) = (length / 10) * scale
sequential-scale(length) = (length * 8) * scale
length = 1,024,000 bytes
scale = 4

Figure 8.6: Benchmarks and parameters used to test cache interference for memory-mapped files.

one two 90% confidence
time benchmark mean %RSD mean %RSD %difference interval, % diff.
elapsed: random-update 14.67 7.92 350.53 1.2 2289.90 9.44

sequential-update 441.04 1.45 443.49 0.46 0.56 0.4
system: random-update 0.72 10.02 289.48 0.87 40291.00 134.17

sequential-update 1.42 13.74 9.13 3.38 544.10 29.96

Table 8.4: Elapsed- and system-time performance comparisons of files with and without cache contention. The
columns headed “one” show access through a single null layer stacked over a UFS; the columns headed “two” add
a second null layer to this stack. Layer accesses are distributed across all null layers according to benchmark type.
There is no contention with one null layer; contention is possible with multiple layers. These values are derived from
12 sample runs. These benchmarks exercise worst-case performance and are not representative of typical behavior;
see Section 8.6 for discussion.
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primary benefit of multi-layered filing will be to allow
users to customize and extend their filing environment.
Once configured, we believe that most user access will
be to the “top layer” representing a particular configur-
ation of a multi-layer stack. For example, most user ac-
cess to the stack in Figure 1.1 would be to the clear-text
provided through the encryption layer, not the encrypted-
text presented by the UFS. No interference would occur
in the common case of two programs reading (or memory
mapping) a file through the same layer. When all user ac-
cess occurs through a particular layer, no cache interfer-
ence occurs and we expect performance results equival-
ent to the one-null-layer case.

Nevertheless, although most applications access a
single layer, we have identified several cases where
multi-layer access is important. In these cases, access
to multiple layers may cause cache interference. Con-
tinuing our example, the user in Figure 1.1 may wish to
transmit the encrypted-text of a file, and so after updat-
ing the file via the encryption layer, the user would read
the file directly from the UFS. As in this example, we ex-
pect that the majority of such access will be sequential.
Floyd’s studies of Unix applications in an academic en-
vironment suggest that 70–90% of opened files are read
sequentially [Flo86]. For these cases, the sequential-
update benchmark is representative. Sequential-update
performance shows some system-time performance cost,
but no noticeable elapsed-time performance penalty.

The remaining random access case is exemplified by
database applications. Recall, however, that the random-
update benchmark is a stream of randomly located up-
dates to random layers. We do not expect a single data-
base application would need to access multiple layers of
the same file concurrently, or that two independent data-
bases would access the same file concurrently through
different layers, so this synthetic, worst case seems un-
likely to occur in practice.

We selected these benchmarks to push the bounds of
our system, and their worst-case results show signific-
ant overhead. Fortunately, we believe that they also sug-
gest that practical applications will not suffer significant
performance degradation with expected patterns of layer
locality.

8.7 Performance Experiences

Cache coherence in stackable filing is important to man-
age cache-coherence problems that can arise from access
to different stack layers. Both multi-layer access and
caching are required in many practical layering systems.

Administrative programs and sophisticated stack config-
urations require access to different stack layers, while
caching is required for good performance.

Our performance experiments suggest a layer actively
caching data will experience about a 3–5% overhead for
typical benchmarks, although some may be higher or
lower. Our use of stack-friendly cache access operations
does not seem to be a significant portion of this cost.
Instead we believe that the cost is primarily due to the
maintenance of additional data structures and to com-
parison of our prototype implementation with carefully
tuned file-system code.

We also investigated system performance when differ-
ent layers contend for the same cached objects. When
applications that exhibit no locality compete for cached
objects, significant overhead occurs. Common patterns
of file usage and the expected uses of cache coherence
suggest that typical applications will see minimal or no
overhead due to contention.

We find a powerful analogy between virtual memory
and cache coherence in stacking. The performance of
both is strongly dependent on the locality exhibited by
given applications; VM requires spatial locality while
stack cache-coherence requires “layer locality”. Virtual
memory frees many application designers from detailed
concerns about memory management, often allowing ap-
plications to be more naturally structured. Similarly,
stack cache-coherence frees the designer from concerns
about inter-layer consistency, providing a rich frame-
work in which each layer truly can be independently de-
veloped and employed.
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Chapter 9

Featherweight Layer Design and
Implementation

General-purpose layering has been successful at structur-
ing file-system services. For significant new services, the
1–2% system-time overhead associated with layering is
a small fraction of total costs. However, we have also
argued (in Section 1.1.3) that there are numerous “thin”
services that would also benefit from a layered struc-
ture. Unfortunately, the overhead observed for general-
purpose layering becomes quite significant when com-
pared to the services provided by a thin layer. This obser-
vation motivated the exploration of featherweight layer-
ing, a lightweight approach applicable to the structure of
simple layers.

The success of featherweight layering is based on two
assumptions: first, that there are a number of interesting
layers that can be constructed in a restricted layering en-
vironment, and second, that a restricted layering envir-
onment can allow a more efficient implementation than
a fully general system. We explore each of these assump-
tions in the next two sections.

Featherweight layers also have potential costs: they
may complicate the layering model with two different
mechanisms accomplishing a similar purpose, and the
cost of any new mechanisms required for featherweight
layering may counter the performance improvements
that would otherwise be seen. We address the layering
model in Section 9.3 and performance concerns by ex-
amining our implementation in Section 10.2.

9.1 Potential Featherweight
Layers

Ideally, one would like to have all layers be as light-
weight as possible. The key issue here is “as possible”—
some layers require complex stacking facilities while

others admit simpler solutions.
To judge the potential of a lightweight layering pro-

tocol, we examined existing file-system implementa-
tions, other work in file-system structuring, and our own
experience in development of layered filing. We found
two different areas where lightweight layering seemed
applicable: compatibility layers and miscellaneous “lib-
rary” services present in existing file-systems. Figure 9.1
lists several examples of featherweight layering in these
areas.

Later in this chapter we will show that each of the
services described in Figure 9.1 can be provided as a
featherweight layer. We have prototyped each of these
layers at UCLA. These examples validate our assump-
tion that useful services can be provided without a fully
general layering service. We next examine the second as-
sertion, that a restricted layering service can improve ef-
ficiency relative to a general service.

9.2 Costs of Fully General
Layering

Featherweight layers are beneficial only if such a restric-
ted layering environment can provide a significant per-
formance advantage. The overhead experienced by the
null layer places an upper bound on the performance
gains expected from featherweight layering. At best we
can hope to eliminate all null-layer overhead, although
this goal may not prove possible in practice.

To understand which areas of the null layer would
benefit from a different implementation we employed
several benchmarks to measure layering and cache-
coherence overheads. (These benchmarks are described
in Sections 5.1 and 8.2.) We examined these benchmarks
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Compatibility layers:

oldiftonewif Map the pre-stacking vnode interface to
the stack-enabled vnode interface. (Allows a stack-
enabled file-system to offer service to an unchanged
higher-level clients.)

pathconf Implement a default vop pathconf opera-
tion added to SunOS 4.1.

maptostackmap Convert pre-cache-coherence vnode-
operations into their cache-coherent equivalents.

Internal utilities:

vmio Implement vop rdwr by coping from memory-
mapped file data.

fdnlc Implement name-lookup caching.

fsync Implement a generic vop fsync required by the
vmio layer and the virtual memory system.

specref Construct vnodes for “special” files (devices,
pipes, and sockets) as necessary.

Miscellaneous user services:

frl Implement file/record locking.

ro Make a file system read-only.

Figure 9.1: Potential applications of featherweight-
layering technology. The dnlc, frl, specref, and ro layers
are inspired by Skinner’s work [SW93].

in a test environment identical to that described in Sec-
tion 8.2. Because these benchmarks are exploratory in
nature and are intended to show qualitative results rather
than provide controlled, quantitative results, we ran the
benchmarks several times and selected a representative
run rather than averaging successive runs. (We will val-
idate the effectiveness of featherweight layering in Sec-
tion 10.2 in a controlled experiment.)

Figure 9.2 shows the overheads of varying numbers
of null layers for these benchmarks. The top two graphs
present elapsed time, the lower two, system time. The
left two graphs represent absolute values while the right
graphs show overhead relative to the zero-additional-
layer case.

Overheads vary significantly depending on the bench-
mark employed; in particular, real-time costs of the cp
and rcp benchmarks show substantial variation. These
results are not unexpected since these measurements ex-
amine only a single run. In spite of this variation, we can
draw at least two qualitative conclusions from this data.
First, the overhead for most benchmarks is basically lin-
ear in the number of layers. Second, several benchmarks
(notably find and grep) show substantial overhead when
multiple layers are employed. The high overhead present
in these benchmarks suggests that large numbers of gen-
eral layers cannot be employed for trivial purposes. In-
stead of the performance exhibited in Figure 9.2, a pic-
ture qualitatively like that in Figure 9.3 is desired. A few
general-purpose layers are present, but much of the stack
is composed of featherweight layers, considerably redu-
cing total overhead.

9.2.1 Where is the expense of general
layering?

Figure 9.2 suggests that there is significant overhead as
the number of layers rises. To determine where this over-
head occurs, we profiled several benchmarks executing
on a stack of ten null layers. (The cumulative overhead of
ten layers emphasizes where layering overhead occurs.)
Like the measurements of Figure 9.2, these profiles are
a single representative run taken from several observa-
tions. Again, these measurements are derived in a test
environment identical to that described in Section 8.2.

Table 9.1 shows the five most expensive routines in the
null layer (ranked the in-kernel execution time spent in
that function and its descendents). The bypass routine
is called very frequently (once per layer, per operation)
and so contributes significantly to overhead. Also, for
the find benchmark vnode creation time is significant.

Bypassing is expensive for two reasons. First, it is ex-
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Figure 9.2: Layering overhead as the number of null layers vary. Please note that several of these graphs have dif-
ferent scales. Since this data consists of only one sample run and certain benchmarks exhibit high variability, these
measurements should be considered qualitative and not quantitative.
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Mab (Modified Andrew Benchmark)
self descendent call

rank %time time time count routine
30 4.0 2.70 0.11 149,662 null_bypass
100 1.1 0.05 0.70 5010 null_make_nullnode
119 0.9 0.17 0.45 17,656 null_lookup
154 0.6 0.24 0.18 18,150 null_getattr
167 0.5 0.10 0.27 3103 null_getpage

Total useful execution time: 69.55 seconds.

Find
self descendent call

rank %time time time count routine
10 20.1 3.10 34.37 263,010 null_make_nullnode
12 15.9 27.05 2.57 1,996,920 null_bypass
14 13.7 25.43 0.00 501,230 null_find_nullnode
19 7.1 12.06 1.15 237,280 null_free_nullnode
23 4.5 2.30 6.15 267,249 null_lookup

Total useful execution time: 186.09 seconds.
null_find_nullnode is called by null_make_nullnode.

Grep
self descendent call

rank %time time time count routine
7 20.1 6.64 0.35 417,555 null_bypass
18 12.3 0.48 3.81 21,400 null_rdwr
39 3.0 0.93 0.12 105,000 null_open
48 2.0 0.15 0.55 11,476 null_lookup
116 0.4 0.01 0.14 1080 null_make_nullnode

Total useful execution time: 34.81 seconds.

Table 9.1: Null-layer routine usage from three benchmarks. Rank, routine ranked in all kernel routines by %time;
%time, time spent in routine or child routine as fraction of useful time spent in the kernel; self-time, time spent in the
routine; descendent-time, time spent executing in descendent routines on behalf of this routine; call-count, total times
this routine was called. These values are taken from one profiling run of benchmarks over a stack of ten null layers.
Although they are typical, minor variation in future runs is not unlikely.
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Figure 9.3: A qualitative picture of desired featherweight
layering performance. The general layers 1 and 5 add
some overhead, while the more numerous featherweight
layers show substantially less overhead.

ecuted once per layer in the stack for all operations not
otherwise implemented by that layer. Second, the gen-
erality of a bypass routine (which must be prepared to
handle arbitrary operations and arguments) limits tuning.
Featherweight layers address the first problem by not re-
quiring bypass code for operations they do not modify.
When bypassing cannot be avoided, the second prob-
lem can be addressed by providing bypass routines cus-
tomized to particular common operations. Such a by-
pass routine would still need to map vnodes to the lower-
layer, but one customized to a particular operation would
be more efficient than the general case described in Ap-
pendix A.3.

Vnode creation is expensive because it requires ob-
ject allocation and initialization. Just as with bypassing,
vnode creation overhead is best reduced by avoiding it.
A large vnode cache addresses this problem if vnodes
are used repeatedly. Featherweight layers also avoid
vnode creation by employing vnodes of their stacked-
upon layer. Finally, when vnode allocation cannot be
avoided, costs can be minimized using techniques such
as those described by Bonwick [Bon94]. Bonwick sug-
gests caching partially deallocated data structures. If
such all cached objects share generic substructures re-
quiring initialization (for example, locks in an SMP ker-
nel), this initialization can be avoided by re-using the
substructures left by the prior owner.

Featherweight layers therefore provide steps to im-
prove performance both by eliminating unnecessary by-

passes and by reducing the amount of data structure
maintenance.

9.3 Design of Featherweight
Layering

The central goal of featherweight layering is a gain in
performance over general layering. The benefits of bet-
ter performance must be weighed against the costs of
complexity and new overhead described in the introduc-
tion, so a secondary goal must be to minimize these costs.
The primary design issue for featherweight layering is
therefore to determine the subset of functionality which
should be selected.

To avoid complicating the stacking model, feather-
weight layer code should be a subset of that employed
by a standard layer. This keeps the programmer’s view
of layering similar and allows featherweight layers to be
easily “upgradable” to general layers. Any performance
gains of featherweight layers will arise from a less gen-
eral layering mechanism.

The generality of standard layers derives by each layer
having its own representation of files in the form of
private vnodes. Private vnodes imply the capability to
have per-layer:
� operation implementations
� cached data objects
� file locks
� vnode locking
� private location in the file-system namespace
� private state
� stacked-upon vnode or vnodes (an important special

case of private state)
All featherweight layers will require some of these

features. (For example, all non-terminal layers must
identify their stacked-upon vnode.) An important design
issue is therefore which of these features should be
made available and how they should be made available.
Each unavailable feature restricts which layers can be
provided with featherweight technology, but exposing
features through new interfaces can be costly in perform-
ance, implementation, and complexity.

9.4 Implementation of
Featherweight Layers

We have outlined the design constraints of featherweight
layering above. We next discuss the implementation
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we’ve chosen and how these design constraints affected
that implementation.

9.4.1 Featherweight layer configuration

Featherweight layers are configured into a stack of the
general layer they stack upon at the mount-time.1 Each
featherweight layer is listed in the mount options of the
general layer.

A featherweight layer depends on the layer it stacks
upon for all services, except for operations it modifies.
For these operations, the featherweight layer’s imple-
mentation must take priority. This preemption is ac-
complished by building a custom operations vector for
each extant configuration of featherweight layers. At
mount-time the operations vector for the general layer is
taken as a starting point. Each featherweight layer is then
“patched in” to any operations it modifies. If the feather-
weight layer has no need to call the operation it replaces,
its implementation simply overrides the existing opera-
tion. On the other hand, some featherweight layers may
implement an operation by first invoking that operation
in the lower-level layer and then modifying the result.
Since that lower-level layer can be a general layer or an-
other featherweight layer, operation doubling (described
below) is used to preserve the stacked-upon definition.

9.4.2 Featherweight layering restrictions

Featherweight layers derive any performance improve-
ment by providing a restricted layering environment. In-
herent in featherweight layer design is the tension of ex-
pressiveness against speed and simplicity. To achieve a
reasonable balance we examined the requirements of our
list of potential featherweight layers (Figure 9.1).

operation implementations A featherweight layer can
alter any operation. Just as with a regular layer,
it can replace the operation with a completely new
implementation. This new implementation can be
self-contained, or it can invoke operations on lower
layer vnodes.

cached data objects Data protected by the cache man-
ager cannot be manipulated without obtaining that
layer’s cache name. General layers (for caching)

1In our prototype, featherweight layer configuration with its
general-purpose layer implies that addition of featherweight layers
after mount-time requires addition of another general-purpose layer.
This restriction is an artifact of our prototype; it could be relaxed if
necessary.

can have multiple cache names, so this informa-
tion is part of each layer’s private state. To allow
featherweight layers to alter cached data, simple
layers can export their cache name via a new vnode
operation. (This procedure is described below in
“Controlled export of private state”.)

file/record locks Status of user-level-lock requests are
part of the public vnode state. Access to this data
must be cache coherent and so is dependent on ac-
cess to the cache-name.

vnode locking Per-vnode locking protocols are part of
a vnode’s private state and so are not accessible to
a featherweight layer. Stack-wide locking is part of
the cache manager and therefore is available.

private state Featherweight layers have no in-memory,
private state. A number of straightforward schemes
are possible to allocate and coordinate such state,
but the overhead of such solutions is comparable
to the cost of a general-purpose layer and the com-
plexity added is significant. Barring a lightweight
state allocation mechanism, a general purpose layer
provides an appropriate mechanism for services
with private state.

An extensible-attribute storage service (such as
that described by Weidner [Wei95] or present in
OS/2 [Dun90]) might allow on-disk private state.
Full exploration of this potential is the subject of fu-
ture work.

stacked-upon vnodes A featherweight layer is required
to stack over exactly one other vnode. No fan-
out is possible (references to multiple stacked-upon
vnodes would require private state). For the kinds
of services provided by featherweight layers, this
restriction has not been significant.

portion of namespace Featherweight layers cannot
have a namespace independent of the general-
purpose layer they stack upon. A private name-
space must be represented by independent vnodes;
a featherweight layer lacks its own vnodes.

The central limitation of a featherweight layer is its
lack of private state. We employ two techniques to over-
come this limitation: export of private state and opera-
tion doubling.

Controlled export of private state

The central idea behind featherweight layering is to al-
low a lightweight service to make use of mechanisms
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provided by a general layer. The featherweight layer
makes use of the vnode and public data of a general layer.
Other aspects of layers (such as cache management) are
part of the private state of the stacked-upon layer. Of-
ten these aspects must remain part of the private state be-
cause different layers may implement them differently,
or not at all.

If a featherweight layer must make use of such facil-
ities, we export them via new vnode operations, rather
than with a completely public interface. This approach
allows controlled access to these services. Layers that do
not or cannot provide such services can gracefully return
an error.

Although this approach entails slightly higher over-
head than a completely public interface, it allows feather-
weight layer access to “private” state while allowing
the stacked-upon layer to retain control as necessary.
We examine the performance of this approach in Sec-
tion 10.2.2.

Operation doubling

Private-state export allows a featherweight layer to take
advantage of some of the private state present in the
general-purpose layer it stacks upon while avoiding
maintenance of its own state. In some cases, though,
the featherweight layer requires internal state. If a layer
overrides an existing operation and also needs to call
the old implementation of that operation, references to
both operations must be stored somewhere. This stor-
age would traditionally occur in private state, but tra-
ditional approaches to private state cannot be applied
since a featherweight layer lacks private per-mount or
per-vnode storage.

We solve this problem with operation doubling. Ob-
serving that the only private data allocated to an instance
of a featherweight layer is the vnode operations vector,
we allocate additional space in the operations vector. If
a featherweight layer overloads an operation, we alloc-
ate an additional entry in the operations vector for a ref-
erence to the stacked-upon implementation.

The three approaches to vector management are illus-
trated in Table 9.2. The general layer shows a typical op-
erations vector configuration. In the FWL without doub-
ling column we add an fsync layer to this stack. The
fsync layer does not need to call the underlying fsync op-
eration, so fsync fsync simply takes the place of the
existing fsync vnode operation. In the final column we
stack a vmio layer over the ufs. The vmio implementa-
tion of vop rdwr sometimes requires calling the under-
lying operation, so that operation is doubled. The old op-

eration is stored in the vop vmio doubled rdwr slot.
Table 9.3 shows the calling sequences of invocations

of each kind of operation.
Several observations are relevant to this approach.

First, as an optimization, the stacked-over operation need
not be saved if the featherweight layer never calls it. This
was the case with the fsync layer of Table 9.2. Second,
operation doubling is successful even if several feather-
weight layers in the same stack alter the same operation.
Each layer has its own doubling slots. Finally, space in
the operations vector could be used for other purposes,
at least in principle. The penalty is that operations vec-
tor entries are allocated in all existing operations vectors,
and the stacked-upon layer may use different vectors for
different objects.

9.4.3 Commentary on the implementation

Our implementation of featherweight layering changes
one aspect of vnode semantics. Although the operations
vector is supposed to be opaque, there are several places
in SunOS 4.x where this field is checked to determine
vnode type. Since featherweight layers allocate new op-
erations vectors for each mount-instance, the operations
vector can no longer be used to determine type.

We address this problem in two ways. First, explicit
type-checks are often not necessary in an object-oriented
system. When we can, we restructure the code to avoid
the type check. Such restructuring was not always pos-
sible, so a complimentary approach is to provide a new
“vnode-type” operation, formalizing the type-checking
interface.2

9.5 Summary

If stackable filing is to be extended to very lightweight
services, a comparable layering mechanism must be
provided. This chapter has suggested that feather-
weight layering fills that role; that by limiting per-layer
private state, substantial performance improvements can
be achieved. The next chapter validates these claims by
examining our prototype featherweight layer implement-
ation.

2Explicit type-checks are often considered bad style in an object-
oriented system. Rosenthal argues for their complete elimination to im-
prove flexibility in his design for stackable filing [Ros90]. However,
there are times when type-checks are very convenient. For example,
when the UFS is out of inodes, it attempts to free inodes in use by name-
lookup caching. To do so it scans the name-lookup cache looking for
UFS-type vnodes.
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general FWL without FWL with
slot layer doubling doubling
vop open ufs open ufs open ufs open

vop close ufs close ufs close ufs close

vop rdwr ufs rdwr ufs rdwr vmio rdwr

vop fsync ufs fsync fsync fsync vmio fsync

vop vmio doubled rdwr ufs bypass ufs bypass ufs rdwr

: : :

Table 9.2: Operations vector configurations for several layer combinations.

general layer
call ops_vector[vop_open] [ufs open]

ufs open handles operation

FWL layer without doubling
call ops_vector[vop_fsync] [vmio fsync]

fsync fsync handles operation

FWL layer with doubling
call ops_vector[vop_rdwr] [vmio rdwr]

vmio rdwr gets operation, calls vop vmio doubled rdwr (ufs rdwr)
ufs rdwr handles operation

vmio rdwr does additional work, if necessary

Table 9.3: Calling sequence of vop rdwr for different layer combinations.



Chapter 10

Evaluation of Featherweight Layering

In the prior chapter we described the need for light-
weight, layered services, and we suggested feather-
weight layering as a potential solution. In this chapter
we evaluate the proposed model and its prototype imple-
mentation. First, we examine the impact featherweight
layers have on the programming model. We then con-
sider the performance of our implementation.

10.1 Programming Model

For featherweight layering to be successful, it must be
the case that featherweight layers substantially reduce
overhead, that there are needed services which can be
provided as featherweight layers, and that featherweight
layers do not add significant complexity to the basic
programming model. A later section discusses the per-
formance characteristics of featherweight layers; here
we consider their expressive power and potential com-
plexity.

10.1.1 Expressive power

Featherweight layering is advantageous only if it can be
employed to solve useful tasks. It derives its perform-
ance improvements by restricting layering functionality;
these restrictions must not be too oppressive if beneficial
featherweight layers are to be constructed.

We have found that several classes of application are
amenable to featherweight layer solutions. There are
a number of small, internal services used by layer de-
signers, there are a few user services common to several
layers, and several simple versioning problems can be
effectively managed with featherweight layering. Fig-
ure 9.1 lists nine layers which have been prototyped at
UCLA and shows which categories they fall into. These
layers demonstrate that featherweight layering can be
particularly effective in providing these kinds of services

to multiple layers. We therefore conclude that feather-
weight layering is expressive enough to provide useful
services.

10.1.2 Programming model complexity

We have shown that featherweight layering can be ap-
plied to several different layers, and in the next section
we will show that it can significantly reduce layering
overhead. But if the cost of these improvements is a
significant increase in design complexity, then feather-
weight layering would fail the ultimate goal of improving
the filing-development environment.

Featherweight layering adds two kinds of complexity
to layer design. First, a second kind of layering requires
that the developer choose which mechanism will be em-
ployed. If this choice is difficult or if this choice is likely
to be incorrect and expensive to correct, then the choice
itself adds significant complexity. Second, featherweight
layering may be more difficult to use than regular layer-
ing.

It is difficult to quantitatively evaluate the cost of
choosing a layering strategy. A formal experiment re-
quires use of featherweight layers by a statistically signi-
ficant number of developers in a controlled setting. This
experiment has not been conducted.

Although we lack the means necessary for an experi-
mental evaluation of differences in complexity, we have
taken every step possible to minimize complexity. Good
documentation of the differences in the layering schemes
and examples of existing layers best serve to simplify
choice of layering protocols.

We have taken several steps to minimize the cost of
converting between layering structures. A featherweight
layer implementation is a strict subset of a general layer
implementation with only one exception. Like a general-
purpose layer, a featherweight layer lists all operations
it wishes to change. It lacks the vnode maintenance

65
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and layer configuration code of a general-purpose layer.
Operation invocation is largely similar between feather-
weight layers and general-purpose layers; the only major
difference is that doubled operations are invoked with a
slightly different syntax. (Invocation of non-doubled op-
erations occurs with the normal format.) This difference
is due to limitations of our current interface compiler; if
necessary it could be removed. We believe by subsetting
general-purpose layers to make featherweight layers, we
minimize the cost of transition between schemes. Choice
of layering mechanism can usually be made simply by
determining if in-memory state is required.

Finally, we believe that featherweight layers have an
very low inherent complexity. A featherweight layer
consists only of the operations it wishes to change; no ex-
ternal mechanisms are required. Figure 10.1 presents the
complete source code of the fsync featherweight layer,
for example.

10.2 Performance

There are two components to the cost of featherweight
layering: a run-time performance cost and a feather-
weight layer instantiation cost. To completely evalu-
ate run-time performance, we will examine both micro-
and macro-benchmarks. We first examine the minimal
featherweight layer instantiation costs.

10.2.1 Featherweight layer instantiation
costs

file-system instantiation (mounting) is a small compon-
ent of typical file-system operation because configura-
tion occurs only occasionally. On many systems, all file-
systems are configured at system power-up and are un-
altered thereafter. In other environments instantiation
might take place with manipulation of removable media
such as a floppy diskette or CD-ROM. In these cases
physical hardware latency dwarfs featherweight layer in-
stantiation time.

For these reasons we only briefly examine instanti-
ation costs of featherweight layers. We consider two di-
mensions of this cost: time and space.

Instantiation time

Initialization of a featherweight layer requires clon-
ing and then altering the stacked-upon, general-purpose
layer’s operations vector. To examine instantiation cost
we measured the time required to mount when mount-
ing seven featherweight layers over a single null layer.

The results of this experiment are shown in Table 10.1.
Standard deviation for the total instantiation time is quite
high because context switches resulted in four samples
that were 5–30 times higher then the rest. When these
outliers were eliminated (as shown in the right-most
column) we found an average total time fell to 20,185
�seconds with a 8.38% RSD.

These measurements suggest that instantiation time of
a single featherweight layer is about 1

3
% of the total con-

figuration time. This number is quite low and, given the
frequency of layer instantiation, it is difficult to imagine
cases where this slight overhead would be problematic.

Instantiation memory requirements

Featherweight layers are piggy-backed on existing
general-purpose layers and employ most of the services
of their stacked-upon layer. The only state unique to a
particular featherweight layer instantiation is its opera-
tions vector. This situation differs from a system without
featherweight layering where all instances of a given
layer share the same operations vector. The memory
requirements of additional operations vectors therefore
represent an additional memory cost of featherweight
layering, a cost which we examine next.

The amount of memory required is dependent upon the
number of mounted layers, operations vectors per layer,
and how many total vnode operations are configured into
the current system. The following formulae specify the
relationship:

ops vector memory � (mounted general layers)�

(ops vectors per layer)�

(ops vector size)

ops vector size = ((ops for all general layers) +

(doubled ops))�

(size of vector element)

While these formulas allow us to compute feather-
weight layer memory requirements, for several reasons
it is difficult to get good estimates for their paramet-
ers. Nearly all of them (except for the 4-byte size of a
vector element) are strongly dependent on layer config-
uration and deployment, and on local needs and prac-
tices. A user of a small laptop computer might have 1–
3 mounted general layers, 1 vector per layer, and �30
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#include <sys/param.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <i405/i405.h>

int
i405_vn_fsync(ap)

struct nvop_fsync_args *ap;
{

USES_NVOP_PUTPAGE;
return NVOP_PUTPAGE(ap->a_vp, 0, 0, 0, ap->a_cred);

}

/*
* fsync_fwl_vnodeop_entries specifies what operations
* the fsync layer overrides.
*/

struct fwl_vnodeopv_entry_desc fsync_fwl_vnodeop_entries[] = {
{ &nvop_fsync_desc, i405_vn_fsync, 0, NULL },
{ NULL, NULL, 0, NULL },

};

Figure 10.1: Annotated source code for the fsync featherweight layer.

featherweight layer total total time
instantiation time instantiation time (without outliers)

mean time:
total 468 �seconds 66,208 �seconds 20,185 �seconds
per layer 67 �seconds

% RSD 4.98% 201% 8.38%

Table 10.1: Initialization time to stack seven featherweight layers (pathconf, fsync, maptostackmap, vmio, frl, fdnlc,
and oldtonew) over a null layer. These values are the mean of 20 samples of the mount command. The right-most
column represents the same experiment as the center column with outliers (4 of the 20 samples) removed from the
data.
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parameter workstation server
systems examined 16 6
mounted file-systems 6–10 15–25
ops vectors per layer 1 1
operations in system 29–37 29–37
memory present 12–36 Mb 32–96 Mb

Table 10.2: Measurements of parameters of file-system
usage for workstations and servers in an non-stacking
academic environment. Section 10.2.1 describes how
these measurements were taken.

operations per vector. A server computer running with
multi-layer replicated filing system with compression
and backwards compatibility layers may well have�100
general-purpose layers, 5 vectors per layer, and�80 op-
erations per vector. Because of the multiplicative af-
fect of these parameters, slight errors in estimation can
significantly effect memory-usage estimates. While we
have experience with our use of featherweight layering at
UCLA, our environment is different from most because
of layer development.

As an initial estimate of these parameters, we meas-
ured a number of Unix workstations and servers cur-
rently deployed in an academic setting. We measured
the dynamic number of local and remote file-systems
employed by machines on the Ficus project and for the
UCLA computer science department. These machines
were various kinds of Sun workstations and servers run-
ning either SunOS 4.x or Solaris 2.4. To avoid the bias
of our use of Ficus replication, we factored out Ficus-
specific volumes. The results of this survey can be seen
in Figure 10.2. We recognize that these figures are de-
pendent on their environment; however, we believe they
provide order-of-magnitude figures typical to academic
environments in 1994–95.

From the values of Figure 10.2 we can calculate cur-
rent memory usage if current systems were converted to
use featherweight layering. Current systems do not yet
employ layering, and so such a calculation would under-
estimate memory requirements. A better estimate can be
determined if we extrapolate current figures to account
for layering. Table 10.3 shows the result of two such es-
timations, assuming moderate and heavy use of layering.
For “moderate” use we project three general-purpose
layers taking the place of each current file-system, each
with twice the operations vectors as currently used, and
a system with twice the number of vnode operations as
the current maximum, and 5 doubled operations. For

“heavy” use we project eight layers in place of each file-
system, three operations vector per layer, three times the
current maximum vnode operations, and ten doubled op-
erations.

Memory usage of these configurations is shown in
Table 10.3. Depending on layering use, memory re-
quirements vary substantially, but even in heaviest usage
featherweight layering consumes a fraction of a percent
of total system memory, about the memory footprint of a
small utility program. This memory usage does not seem
significant in the current computing environment, and it
will become even less significant as memory sizes con-
tinue to grow. Finally, if necessary, featherweight layer
memory usage could be reduced by having layers with
identical configurations share operations vectors.

10.2.2 Performance of featherweight layer
details

We next examine particular aspects of featherweight
layer performance. Just as with general-purpose lay-
ers, some aspects of featherweight layer construction are
critically important to overall performance. We exam-
ine two of these: the cost of a “minimal” featherweight
layer and the cost of a featherweight layer bypass opera-
tion. A combination of this detailed analysis with general
benchmarks (described in Section 10.2.3 following) give
a complete performance picture.

First let us consider the minimal featherweight layer.
A featherweight layer consists of a list of operations to
override. Since the shortest such list is empty, a “min-
imal” featherweight layer will not alter filing behavior in
any way and will have no run-time overhead. While this
example may appear contrived, it compares favorably
to the overhead of the minimal general-purpose layer
which includes scaffolding to set-up and maintain per-
layer data structures.

The minimal featherweight layer that alters filing be-
havior would replace a single filing operation. The fsync
layer does so, implementing code to allow a user to
write all file data to disk. When added to a stack, its
fsync fsync implementation of vop fsync is patched
into the operations vector and executes directly when in-
voked. There is no change in the performance of any
other operation. Again, performance is exactly as if the
fsync service had been constructed as part of the original
layer.

Featherweight layering adds overhead only when the
featherweight layer requires information present
only in the stacked-upon layer. An example of
this overhead is present in the vmio layer which
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current moderate heavy
parameter workstation server workstation server workstation server
mounted GP layers 6–10 15–25 30 75 80 200
ops vectors per layer 1 1 2 2 4 4
operations in system 29–37 29–37 74 74 111 111
doubled operations 0 0 5 5 10 10
FWL memory 0.7–1.4kbytes 1.7–3.6k 18.5k 46.3k 151.3k 378.1k

Table 10.3: Estimates of parameters for layer instantiation for memory usage in different system configurations. Sec-
tion 10.2.1 describes how these numbers and projections were determined.

static int
null_get_svcm_name(ap)

struct nvop_get_svcm_name_args *ap;
{

*ap->a_name_p =
VTONULL(ap->a_vp)->null_name;

return 0;
}

Figure 10.2: C source code for an implementation of
vop get svcm name.

maps a standard vop rdwr to a stack-friendly op-
eration (vop stackrdwr). The specification of
vop stackrdwr requires that the stack’s cache-lock
must be acquired before the call. The cache-lock is part
of the stacked-upon layer’s private state, so the vmio
layer must retrieve this information (with another vnode
operation) before locking the stack. This extra vnode
operation represents overhead due to featherweight
layering; if constructed as a monolithic layer, this
information would not then require a vnode operation.

To quantify the cost of this extra vnode operation,
we examine vop get svcm name, the routine used by
the vmio layer to access cache management information
from the stacked-upon layer’s private state. Figure 10.2
shows the C code required to implement this function.
This subroutine expands into 7 optimized SPARC in-
structions, and requires about 15 lines to set up the vnode
operation and check a potential error return. If this in-
formation were instead made publicly available, access
cost would be less than 6 instructions. This cost is small
but not insignificant; we believe that it contributes to the
few percent overhead measured in the grep benchmark
of Figure 10.6.

These examples illustrate how featherweight layering
provides very low-overhead layering. Operations which

are not modified execute as if there were no feather-
weight layer. Even when new operations are provided,
often they can be provided as efficiently as they would
have been with a monolithic implementation. While
general-purpose layers have a minimal amount of over-
head regardless of what service is provided, in feather-
weight layering overhead is proportional to the services
used even if no services are employed.

10.2.3 Macro-benchmarks

Micro-benchmarks are useful to examine particular as-
pects of featherweight layer performance, but overall
performance is often better judged through higher-level
benchmarks. To investigate overall performance we
compare three layer configurations (see Figure 10.3).
Each of these configurations represents one possible
strategy for providing lightweight services. The single-
null-layer case presents the traditional approach: all ser-
vices are hard-coded as part of a single layer. This ap-
proach is taken by most existing file-systems and layers.

The multiple-null-layer case approximates the per-
formance that would be observed if lightweight services
were built with general-purpose layers. This approxima-
tion is not perfect: we actually implement all services in
the top layer and then emulate the framework of six other
layers. Since all of the new services are provided by
the top layer, we believe that this approximation slightly
underestimates the overhead that would exist if services
were spread throughout all layers.

Finally, the third case provides these same services
with featherweight layer mechanisms. We have stripped
all lightweight services out of a null layer, creating a
“minimal” layer. We then added these services back
as seven featherweight layers stacked over that minimal
layer.

We ran our suite of benchmarks against these three
configurations. (Section 8.2 describes these benchmarks
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single null layer A single null layer stacked over a
UFS. This “null” layer includes name-lookup and
file-system data caching.

multiple null layers A stack of seven null layers over a
UFS. All null layers are configured as in the single-
null-layer case, but caching is done only at the top
layer (to avoid double-caching effectively reducing
cache size).

minimal layer with featherweight layers A minimal
layer (a null layer without name-lookup and
file-system caching) is stacked over a UFS. On
the minimal layer are added the pathconf, fsync,
maptostackmap, vmio, frl, fdnlc, and oldtonew
featherweight layers.

Figure 10.3: Layer configuration for the featherweight
layer macro-benchmarks.

and the specific hardware employed in these tests.) The
results of these experiments can be seen in Table 10.4,
and graphically in Figure 10.4.

These measurements show that the featherweight
layer case has performance comparable to the single-
null-layer case, while the multiple-null-layer case typic-
ally shows performance considerably worse than either
of the others. This observation is most apparent for
system-time measurements of these benchmarks because
all overhead occurs in the kernel. There is one main ex-
ception to this observation: elapsed time for the copy
benchmark. However, elapsed time of this benchmark
exhibits a very high standard deviation (more than 30%
for the featherweight layer case and more than 14% in
the other cases), and so measurement error many be re-
sponsible for this anomaly. Additionally, there are sev-
eral cases where the featherweight layer case performs
slightly better (0.1 or 0.2 seconds) than the single-null-
layer case. With a timer granularity of 0.1 seconds, this
behavior is not unexpected.

Rather than compare these three measurements dir-
ectly, it is helpful to compute the performance of these
benchmarks relative to some baseline and then com-
pare these relative measurements. We adopt the single-
null-layer case as a baseline; however minimal, addi-
tional code required for layering in the other cases should
add some cost to the implementation of these services.
Against this baseline we compare the multiple-null-layer
and the featherweight layer cases, as seen in Table 10.5
and Figure 10.5. Figure 10.6 presents the same data with

cp findfindgrepgrep ls mab rcp rm
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Figure 10.4: Benchmarks comparing monolithic, gen-
eral, and featherweight layer configuration of seven ser-
vices. Section 10.2.3 interprets this data; Table 10.4
presents it in tabular form.
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single-null multiple-null multiple-FWL
time benchmark mean %RSD mean %RSD mean %RSD
elapsed: cp 170.1 15.09 176.0 14.22 180.1 31.23

find 130.1 8.37 189.0 6.68 128.7 8.91
findgrep 196.3 2.60 220.1 1.81 197.1 2.19
grep 60.1 1.73 66.6 1.95 61.1 1.34
ls 62.9 1.55 63.3 1.78 62.7 1.53
mab 150.5 2.30 152.7 1.34 150.7 1.86
rcp 261.0 8.36 262.5 8.39 259.6 5.39
rm 63.0 0.99 64.3 1.22 64.1 2.32

system: cp 24.1 1.35 26.9 1.34 24.4 2.39
find 59.4 15.04 115.9 8.73 58.8 15.20
findgrep 108.8 2.79 141.2 1.52 108.9 1.85
grep 19.9 2.21 25.8 2.97 20.6 3.40
ls 39.4 1.69 39.8 2.06 39.3 2.05
mab 39.7 1.23 41.8 1.11 39.6 1.11
rcp 17.7 4.67 20.3 3.80 17.8 5.31
rm 7.9 5.70 11.3 4.31 8.5 7.26

Table 10.4: Benchmarks comparing monolithic, general, and featherweight layer configuration of seven services. Dif-
ferences marked with an asterisk are less than the 90% confidence interval and so are not statistically significant. These
values are derived from 11 sample runs of each benchmark. Section 10.2.3 interprets this data; Figure 10.4 presents
it graphically.

the find benchmark omitted since the benchmark distorts
the remainder of the graph.

There is substantial variation between the overheads
observed in these benchmarks. This behavior is expec-
ted; different benchmarks exercise the file system in dif-
ferent ways. Recall that we observed two primary con-
tributors to null-layer overhead in Section 9.2.1: vnode
creation and bypass cost. The multi-null-layer case suf-
fers from both of these penalties, while the featherweight
layer case avoids vnode creation completely and suffers
bypass overhead only from operations that are changed.
The relative prevalence of these operations in the differ-
ent benchmarks is reflected in the different overheads ob-
served in Table 10.5 and Figure 10.5. For the find bench-
mark, both are extremely common, while in the Modified
Andrew Benchmark both are fairly rare.

These benchmarks allow us to draw several conclu-
sions about how to structure lightweight services. First,
they suggest that a general purpose layering mechanism
is too expensive a delivery mechanism for very light-
weight services. Even at only 2% system-time overhead
per layer (a cost needed to maintain minimal per-layer
data structures) the overhead of layering quickly over-
whelms lightweight services. The cumulative effect of
this small overhead implies that general-purpose layers

cannot be used indiscriminately, as demonstrated by the
1–30% overheads seen in the multiple-null-layer bench-
marks.

Our second conclusion is that featherweight layer-
ing, by contrast, does allow a successful, layered im-
plementation of very lightweight services. For none of
our benchmarks does the featherweight layer case ex-
hibit more than an 8% overhead, and for most of them
the overhead is less than the amount of error inherent in
measuring the data, and therefore is statistically insigni-
ficant.

10.3 Summary

In this chapter we have evaluated featherweight layer-
ing from several perspectives. We have shown that the
programming model offered by featherweight layering
is both sufficiently powerful to allow significant feather-
weight layers to be constructed, and yet that feather-
weight layers do not introduce significant additional
complexity into the stackable programming model. We
have looked at the performanceof featherweight layering
both by a close examination of the technique and by high-
level benchmarks. We have found that featherweight
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multiple-null multiple-FWL
time benchmark absolute change % change absolute change % change
elapsed: cp 5.9 3.47 10 5.88

find 58.9 45.27 -1.4 -1.08
findgrep 23.8 12.12 0.8 0.41
grep 6.5 10.81 1 1.66
ls 0.4 0.64 -0.2 -0.32
mab 2.2 1.46 0.2 0.13
rcp 1.5 0.57 -1.4 -0.54
rm 1.3 2.06 1.1 1.75

system: cp 2.8 11.62 0.3 1.24
find 56.5 95.12 -0.6 -1.01
findgrep 32.4 29.78 0.1 0.09
grep 5.9 29.65 0.7 3.52
ls 0.4 1.02 -0.1 -0.25
mab 2.1 5.29 -0.1 -0.25
rcp 2.6 14.69 0.1 0.56
rm 3.4 43.04 0.6 7.59

Table 10.5: Benchmarks comparing the relative performance of general and featherweight layer configuration of seven
services to a single-layer implementation. These values are derived from 11 sample runs of each benchmark. Sec-
tion 10.2.3 interprets this data; Figures 10.5 and 10.6 present it graphically.

layers can provide a very low-overhead layering mech-
anism and can be used successfully to implement light-
weight services for which general-purpose layering is
prohibitively expensive. Featherweight layering extends
the applicability of UCLA layering to very “thin” layers
while preserving the characteristics of binary-only, inde-
pendent, third-party development and flexible configur-
ation and installation.
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Figure 10.5: Benchmarks comparing the performance of
general and featherweight layer configuration of seven
services to a single-layer implementation. Methodology
for these benchmarks is described in Table 10.5 and Sec-
tion 10.2.3.

cp

fi
nd

gr
ep

gr
ep ls

m
ab rc
p

rm cp

fi
nd

gr
ep

gr
ep ls

m
ab rc
p

rm

elapsed --  benchmark   -- system

0

10

20

30

40

%
 o

ve
rh

ea
d 

re
la

ti
ve

 t
o 

1 
nu

ll

7 null layers, elapsed
null layer with 7 FWLs, elapsed
7 null layers, system
null layer with 7 FWLs, system

Figure 10.6: Benchmarks comparing the performance of
general and featherweight layer configuration of seven
services to a single-layer implementation, with the find
benchmark omitted and graph scaling adjusted. Meth-
odology for these benchmarks is described in Table 10.5
and Section 10.2.3.
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Chapter 11

Related Work

File-system stacking builds on a long tradition of
operating-systems research in modularity and layering.
Our work at UCLA is derived directly from the vnode
interface developed at Sun Microsystems [Kle86] as
inspired by Ritchie’s STREAMS I/O system [Rit84].
Two other groups have worked contemporaneously in
file-system stacking. At SunSoft, Rosenthal and later
Skinner and Wang evolved the vnode interface to sup-
port stacking [Ros90, SW93]. The Spring project at Sun
Laboratories instead has created a brand-new operating
system supporting coherent, stackable filing [KN93a].

This chapter begins with a review of existing work in
stacking and operating system modularity. We then ex-
amine recent approaches to file-system stacking, invest-
igating their influences, similarities, and differences.

11.1 Stacking Fundamentals

File-system stacking is grounded in work on file-system
structure and symmetric interfaces. Cache coherence
builds upon distributed filing and distributed shared
memory. In this section we briefly review research in
these areas.

11.1.1 File-system structure

Dijkstra describes early approaches to modular oper-
ating system design [Dij67, Dij68]. Madnick and
Alsop [MA69], and later Madnick and Donovan [MD74]
discuss modular and layered approaches to file-system
design, concluding with a six-layer design. The design
of Unix adopted simpler approaches, resulting in a two-
layer design (file system and physical devices) [Bac86].

11.1.2 Modular file-systems

In the mid-1980s, pressure to add distributed filing sys-
tems prompted Unix vendors to develop several ab-

stract interfaces to filing services. The vnode inter-
face at Sun [Kle86], the generic file-system interface at
DEC [RKH86] and the file-system switch at AT&T are
all examples of these interfaces. The primary initial mo-
tivation was networked filing, but vendors also intro-
duced support for other physical and logical filing sys-
tems.

One of these interfaces, Sun’s vnode interface [Kle86],
serves as a foundation for our stackable file-systems
work. In Section 4.1 we briefly describe this interface,
our changes, and the motivations for those changes.

The standard vnode interface has been used to provide
basic file-system stacking. Sun’s loopback and translu-
cent file-systems [Hen90], and early versions of the Ficus
file-system were all built with a standard vnode interface.
These implementations highlight the primary differences
between the standard vnode interface and our stackable
environment; with support for extensibility and explicit
support for stacking, the UCLA interface is significantly
easier to employ (see Section 5.2.1). Our approaches to
cache coherence and lightweight layering also journey
beyond the original scope of the vnode interface.

11.1.3 Extensibility

The System V, Release 4 version of the vnode interface
recognized the problem of interface extensibility. To aid
future expansion of the interface, it allocates space for 32
additional operations [AT90]. (It also adds extra space
in the in-memory vnode.) While these capabilities are a
step towards a binary-interface standard for filing, they
provide no support for third-party extensions, and they
impose a significant space penalty [Ros90].

NeFS describes one proposal to provide an extens-
ible file-system interface [Sun90], focusing exclusively
on remote file access. An alternative to the NFS pro-
tocol for remote access, NeFS allows remote execution
of PostScript-like programs for file access.

75
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11.1.4 Symmetric interfaces

Unix shell programming with pipes [RT74] is an ex-
ample of a widely used symmetric interface. Pike
and Kernighan describe this work for software devel-
opment [PK84]; other applications are as rich as text
formatting [KP84] and music processing [Lan90].

Ritchie applied these principles to one kernel sub-
system with the STREAMS device I/O system [Rit84].
Ritchie’s system constructs terminal and network pro-
tocols by composing stackable modules which may be
added and removed during operation. Ritchie’s conclu-
sion is that STREAMS significantly reduces complexity
and improves maintainability of this portion of the ker-
nel. Since its development STREAMS has been widely
adopted.

The x-kernel is an operating system nucleus designed
to simplify network protocol implementation by imple-
menting all protocols as stackable layers [HPA89]. Key
features are a uniform protocol interface, allowing arbit-
rary protocol composition; run-time choice of protocol
stacks, allowing selection based on efficiency; and very
inexpensive layer transition. The x-kernel demonstrates
the effectiveness of layering in new protocol develop-
ment in the network environment, and that performance
need not suffer.

Shell programming, STREAMS, and the x-kernel are
all important examples of stackable environments. They
differ from our work in stackable file-systems primar-
ily in the richness of their services and the level of per-
formance demands. The pipe mechanism provides only a
simple byte-stream of data, leaving it to the application to
impose structure. Both STREAMS and the x-kernel also
place very few constraints or requirements on their inter-
face, effectively annotating message streams with con-
trol information. A stackable file-system, on the other
hand, must provide the complete suite of expected fil-
ing operations under reasonably extreme performance
requirements

Caching of persistent data is another major difference
between STREAMS-like approaches and stackable file-
systems. File systems store persistent data which may
be repeatedly accessed, making caching of frequently
accessed data both possible and necessary. Because of
the performance differences between cached and non-
cached data, file caching is mandatory in production sys-
tems. Network protocols operate strictly with transient
data, and so caching issues need not be addressed.

11.1.5 User-level layering with NFS

To avoid problems with kernel-level filing development
and inconsistent interfaces, a number of research pro-
jects have chosen to develop experimental services as
user-level NFS servers. Examples include replication in
Deceit [SBM90], automatic semantic indexing [GJS91],
and ftp-access through the file-system [Cat92], among
others.

NFS-servers have several advantages as a develop-
ment platform. The NFS protocol provides a well-
defined and widely available interface to build upon, and
a user-level server can build on a local disk or another
NFS server for file storage. Yet a user-level NFS server
also has several very serious disadvantages. First, NFS
servers gain portability because the interface is fixed.
Services requiring new interfaces must either overload
the existing interface, modify the basic protocol, or sup-
ply another parallel protocol. Each of these approaches
has been taken in different systems, and each has signi-
ficant expense in implementation and maintenance cost,
and can limit portability. In addition to the set of opera-
tions, NFS clients implement a particular coherence pro-
tocol which may or may not be appropriate for a new ser-
vice. Finally, communications to a user-level NFS server
can pose a significant performance bottleneck as data is
copied multiple times as it moves from disk to user-level
server and to client, all through network buffers. For
these reasons NFS-servers have limited applicability to
development of new services.

11.1.6 Object-oriented design

Strong parallels exist between “object-oriented” design
techniques and stacking. Object-oriented design is fre-
quently characterized by strong data encapsulation, late
binding, and inheritance. Each of these has a counter-
part in stacking. Strong data encapsulation is required;
without encapsulation one cannot manipulate layers as
black boxes. Late binding is analogous to run-time stack
configuration. Inheritance parallels a layer providing a
bypass routine; operations inherited in an object-oriented
system would be bypassed through a stack to the imple-
menting layer.

Stacking differs from object-oriented design in two
broad areas. Object-orientation is often associated with
a particular programming language. Such languages are
typically general purpose, while stackable filing can be
instead tuned for much more specific requirements. For
example, languages usually employ similar mechanisms
(compilers and linkers) to define a new class of objects
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and to instantiate individual objects. In a stackable fil-
ing environment, however, far more people will config-
ure (instantiate) new stacks than will design new layers.
As a result, special tools exist to simplify this process.

A second difference concerns inheritance. Simple
stackable layers can easily be described in object-
oriented terms. For example, the encryption layer of Fig-
ure 1.1 can be thought of as adding encryption after in-
heriting “files” from the UFS “base-class”. Similarly, a
remote-access layer could be described as a sub-class of
“files”. But with stacking it is not uncommon to em-
ploy multiple remote-access layers. It is less clear how to
express this characteristic in traditional object-oriented
terms.

11.2 Coherence Fundamentals

Our work on cache coherence is based on several bod-
ies of existing work, including distributed filing, hard-
ware coherence in shared-memory multiprocessors, dis-
tributed shared memory (DSM) systems, and stackable
layering. Each of these areas evolved slightly different
solutions to cache coherence, but the central problem is
determining who holds what data. We examine different
applications from this perspective, categorizing how this
information is stored and collected.

11.2.1 Distributed filing

Early distributed file-systems such as Cedar and NFS
avoid the problem of cache coherence by disallowing
file mutation [SGN85] and not providing strong coher-
ence [SGK85]. Locus provides strong coherence with
a distributed token passing algorithm [PW85], while
Sprite detects concurrent update at a central site and dis-
ables caching for coherence [NWO88]. Later systems
provide variations on the token algorithm: AFS’s call-
backs are essentially centrally-managed tokens [Kaz88];
Gray’s leases are tokens that can time-out to simplify er-
ror recovery [GC89].

Cache coherence in stacking borrows the basic coher-
ence approach used in these systems. Unlike these sys-
tems, stacking faces the unique problem of data identi-
fication across different data representations.

11.2.2 Multiprocessors and distributed
shared memory

As with distributed filing, early approaches to shared
memory multiprocessing avoid multiple caches or do

not provide strong coherence (Smith surveys such sys-
tems [Smi82]). More sophisticated systems broadcast
and multicast coherence information to some or all pro-
cessors. The constraints of a hardware implementation
limit the scale of these approaches.

In distributed shared memory systems software plays a
larger role in coherence. Li proposes strong consistency
with both centralized and distributed algorithms [LH86].
Recent work has focused on employing application-
specific knowledge to relax the consistency model and
obtain better performance [GLL90, CBZ91].

11.2.3 Networking protocols

We have already described early work concerning
stacking of network protocols (for example, the Unix
shell [PK84], the STREAMS I/O system [Rit84], and the
x-kernel [HPA89]). Cache coherence is typically not
an issue in networking systems since data that passes
through the layers of a network stack is transient and so
not suitable for caching.

Network protocols often cache routing information,
both between hosts (IP routing and ARP translation), and
between TCP/UDP and IP layers of some implementa-
tions. Occasional cache incoherence in these systems is
either tolerated, or the cache is not considered authoritat-
ive and is verified before each use. These approaches do
not generalize to filing environments where cached data
is considered authoritative and employed without verific-
ation.

11.3 Featherweight Layering
Fundamentals

Featherweight layering is inspired by the desire to “com-
pile away” layers of abstraction. Although layering is
often a useful tool to logically describe a process, an
implementation of each layer need not be fully general.
This concept appears many times in the literature in dif-
ferent forms. Several groups advocate network layer-
ing without devoting a process per layer (see, for ex-
ample, STREAMS [Rit84] and the x-kernel [HP88]). The
x-kernel can bypass protocol layers to improve perform-
ance [OP92]. A version of Mach employs continuations
to improve performance [DBR91], again discarding the
process. Proponents of such systems typically cite re-
duced overheads in memory usage and context-switch
times.

Others have suggested approaches to minimize or re-
duce the amount of state required in a layered sys-
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tem. Careful allocation techniques (for example, in
the x-kernel [HMP89] and the slab memory alloc-
ator [Bon94]) reduce the cost of state initialization and
reuse. Rosenthal [Ros90] limits the required per-vnode
state to reduce vnode allocation costs. Finally, Massalin
and others advocate run-time code generation to elimin-
ate state [Mas92, KEH93].

To our knowledge, we are the first to suggest that inter-
esting services can be provided with only restricted kinds
of state.

11.4 Extensible Databases in
Genesis

Genesis is a layered database management system de-
veloped at the University of Texas at Austin [BBG88].
Genesis decomposes the database into a number of separ-
ate services such as file storage, indexing, and data trans-
formation. With the aid of an authoring tool [BB92], a
database implementor can create a custom database by
selecting particular implementations from these services.

The parallels between stackable filing and “stackable
databases” in Genesis are strong. Both advocate the use
of layers bounded by symmetric interfaces. Because the
range of services needed for a database is so large, Gen-
esis classifies layers into different realms. A realm is
defined as all layers exporting the same interface; thus
only layers within a single realm are interchangeable.

Genesis layers are distributed and managed as source
code. This approach allows some performance optimiza-
tions. For example, binding of inter-layer operations can
be done at compile time, implementing this binding as a
standard function call [BO92]. It should be possible to
use similar techniques to avoid data structure overheads
(as we do with featherweight layering in a more restrict-
ive context); it is not clear that Genesis employs this op-
timization.

Genesis does not address the general issue of inter-
layer state coherence. Multi-layer access is prohibited so
data cache-coherence is not an issue. Concurrency con-
trol issues are addressed by locking. Locks can apply to
different granularities at different layers of the system.
As locks propagate through the system, each layer is al-
lowed to map lock ranges appropriately in a manner ana-
logous to general cache-coherence.

11.5 Hierarchical Storage
Management

Since there is no widely available hierarchical stor-
age management (HSM) system, several third parties
have developed commercial HSM solutions. Transpar-
ent HSM requires additional kernel service, often imple-
mented as a VFS, and third parties are naturally inter-
ested in making their services available across a variety
of platforms and operating system releases. Thus, HSM
systems have revealed many of the limitations of the
vnode interface. Webber cites portability and the lock-
step release problems as significant factors in the cost of
HSM solutions. (See Section 2.1 for his description of
these problems.)

Faced with the difficulties of VFS-level portability,
Webber proposes an in-kernel event detector as a hook to
a file monitor [Web93]. The set of events monitored in-
clude both system-call-class file operations (read, write,
stat, chmod, etc.) and low-level file operations (allocate
and free inode, error return). Events can be processed
in several different ways, including pass-through, deny,
and forward to the file monitor. Epoch has successfully
used this interface to implement both hierarchical storage
management and on-line backup systems.

Comparison Webber’s protocol has several advant-
ages. Portability is greatly enhanced by providing a fixed
set of filing events and constructing new services at the
user-level. The relatively limited set of kernel-changes
required to support monitoring improves chances that
this service will become widely available.

Unfortunately, these strengths are also its weaknesses.
A fixed set of events provides no mechanism to manage
future growth and change and so limits the generality of
this solution. The context switches required of the user-
level file monitor also raise significant questions of per-
formance. Webber cites overhead as about 625 micro-
seconds per event. Such overhead is not significant when
providing high-latency services such as HSM and per-
haps compression, but it would be a serious limitation for
many applications.

11.6 Stackable Filing at SunSoft

Rosenthal [Ros90] and later Skinner and Wong [SW93]
have investigated stackable filing at SunSoft. Like our
work, theirs is also inspired by Ritchie’s work with
STREAMS. However, differences in focus have resulted
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Figure 11.1: Interposition in Rosenthal’s stacking for-
wards all operations through the “v top” pointer to the
top of the stack.

in substantially different stacking models. We examine
each of these proposals below.

11.6.1 Rosenthal

Rosenthal’s revision of the vnode interface has two main
goals [Ros90]:

� To make an interface that would evolve
to meet new demands more gracefully by
supporting versioning.

� To reduce the effort needed to implement
new file-system functionality by allow-
ing vnodes to be stacked.

Rosenthal’s approach to versioning employs compat-
ibility layers (this technique is described in Section 3.5).
Rosenthal’s stacking model is based on interposition. To
implement interposition, each vnode contains a reference
to the top-of-stack (v top in Figure 11.1). Each “ex-
ternal” vnode operation indirects through this reference
to the top-of-stack. (Although not stated explicitly in his
paper, presumably there is a second kind of vnode oper-
ation employed internally to a stack to invoke operations
on the stacked-upon layer without this extra indirection.)

Rosenthal provides two new stack operations (“push”
and “pop”) to interpose layers on a stack at a file-by-file
granularity.

Finally, Rosenthal describes several applications of
stacking technology, including quotas as a layer, a “less
temporary” file-system where files remain in memory
until an explicit synchronization, user-level filing, read-
only caching, read-write caching, a “fall-back” file-

system where load is spread over several servers, and a
replication service.

Interposition As described in Section 3.7, the primary
difference between interposition and other kinds of
stacking is that a layer interposed on a stack becomes im-
mediately visible to all current and future clients of any
layer of that stack.

Interposition in Rosenthal’s stack model requires that
all users see an identical view of stack layers; dynamic
changes of the stack by one client will be perceived by all
other clients. As a result, it is possible to push a new layer
on an existing stack and have all clients immediately be-
gin using the new layer. We describe in Section 3.7 how
this feature can be employed to redirect the clients of an
existing layer, to add and remove a measurements layer
at run-time, or to implement the join of two file-systems
at a mount-point.

However, it is not clear how widely this facility is re-
quired. Section 3.7 describes different applications of in-
terposition, but often other techniques can be substituted
with little or no loss in functionality. We believe inter-
position is rarely required because stack layers typically
have semantic content. A client selects a particular com-
bination of semantics when opening a file. If the client
wants to change the semantics of its stack, it can do so
by opening the file through other layers. It is rare that a
client wishes to allow other clients’ preferences for stack
semantics to influence its own. Consider, for example,
Figure 1.1. One client is reading the encrypted data dir-
ectly from the UFS. If the encryption layer were provided
with interposition, another client opening the file through
the encryption layer would force the first to switch from
encrypted to decrypted data mid-stream. This example
argues that mid-stream change is rarely necessary, and,
to the extent that it adds complexity and overhead, it is
undesirable.

In addition, insuring that all stack clients agree on
stack construction has a number of drawbacks. As dis-
cussed in Section 3.3, access to different stack layers is
often useful for special tasks such as backup, debugging,
and remote access. Such diverse access is explicitly pro-
hibited if only one stack view is allowed. Insuring a com-
mon stack top also requires very careful locking in a mul-
tiprocessor implementation, at some performance cost.
Since the UCLA interface does not enforce atomic stack
configuration, it does not share this overhead.

The most significant problem with Rosenthal’s
method of dynamic stacking is that for many stacks
there is no well-defined notion of “top-of-stack”. Stacks
with fan-in have multiple stack tops. Encryption is one
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service requiring fan-in with multiple stack “views”
(see Section 3.3). With multiple top-of-stacks there is
no single stack view, and so interposition does not make
sense. Furthermore, with transport layers, the correct
stack top could be in another address space, making it
impossible to keep a top-of-stack pointer. For all these
reasons, our stack model explicitly permits different
clients to access the stack at different layers. Skinner
proposes extensions to Rosenthal’s model which remove
this limitation by providing two stacking mechanisms.
We examine these extensions in the next section.

Other differences Per-file configuration allows addi-
tional configuration flexibility, since arbitrary files can
be independently configured. However, this flexibility
complicates the task of maintaining this information; it
is not clear how current tools can be applied to this prob-
lem. A second concern is that these new operations are
specialized for the construction of linear stacks. Push
and pop do not support more general stack fan-in and fan-
out.

Another difference between Rosenthal’s vnode in-
terface and the UCLA interface concerns extensibility.
Rosenthal discusses the use of versioning layers to map
between different interfaces. Version-mapping layers
work well to manage differences caused by occasional
change originating from a single source, such as periodic
vendor releases of an operating system. Mapping lay-
ers provide little support for third-party-initiated change,
however, since the number and overhead of mappings
grow significantly as additional changes must be suppor-
ted. A more general solution to extensibility is prefer-
able, in our view.

Finally, Rosenthal advocates minimizing the amount
of state required of each vnode. “Cheap” vnodes encour-
age layer use. The sentiment is well-founded. However,
our experience with lightweight layering suggests that
even cheap vnodes still have noticeable overhead. In our
view a solution such as featherweight layering is required
to extend stacking to exceedingly lightweight layers.

11.6.2 Skinner and Wong

Skinner and Wong revised Rosenthal’s stacking
model [SW93] based on further experience with that
model [Ros92] and prompted by Unix International’s
Stackable File-Systems Working Group [Gro92]. The
primary innovation in their new model is to employ
two kinds of file-system “stacking”: interposition and
composition. Interposition retains the desirable features
of Rosenthal’s stacking mechanism. Composition adds

fan-out capability and is achieved with the mechanisms
similar to those used for stacking in the UCLA model
and in standard vnode environments.

To support two styles of stacking they divide the tra-
ditional functionality of the vnode into two separate ab-
stractions: cvnodes, for use in composition; and ivnodes,
for interposition.1 Cvnodes are the abstraction used by
the upper-level kernel and for composition. They are im-
plemented simply as a reference to a chain of ivnodes;
this reference is the equivalent of Rosenthal’s v top.
Ivnodes reproduce the data present in the original vnode
and are used for interposition. Figure 11.2 shows C-code
proposed for these data structures.

Decomposition of vnodes into cvnodes and invodes is
also reflected in vnode operations. Vnode operations are
permitted only one “vnode” argument; this argument is
implemented as a pair hcvnode, ivnodei. When an op-
eration is invoked on a cvnode (indicated by a NULL
ivnode field), the ivnode is automatically set to the head
of the interposition chain. As the operation moves down
the chain of interposition nodes the ivnode field is up-
dated. This approach to operation invocation allows the
two kinds of operations (those directed to the top of an
interposition chain and those intended for the next link
in the chain) to be provided with only one form of oper-
ation.

Several existing operations have multiple vnodes as
arguments. Skinner and Wong use two different mechan-
isms to meet this restriction. First, they decompose oper-
ations such as vop link and vop rename into the more
basic operations listed in Table 11.1. Second, they re-
place a second vnode in an operation by a file-identifier.

A locking protocol manages concurrency dur-
ing “plumbing” operations (such as vop pop or
vop lookup) which create new cvnodes or change
the interposition state. Their implementation supports
multiprocessing.

Skinner and Wong support vnode stacking but leave
the VFS interface unchanged. To allow changes in VFS
operation behavior, they converted several vfs operations
into vnode operations

As applications for stacking, Skinner and Wong
provide a “toolkit” of several interposition layers
implementing services such as stack configuration,
name-lookup caching, file/record locking, mount-point
management, device and special file support, and
write-prohibition (for a read-only file-system).

1In Skinner and Wong’s terminology, cvnodes are simply new
“vnodes” and ivnodes are called pvnodes. We adopt different termino-
logy here to reserve the term “vnode” to refer to the original concept.
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struct cvnode {
struct ivnode *v_chain; /* head of interposition chain */

};
struct ivnode {

struct vfs *i_vfsp; /* owning VFS */
struct vnodeops *i_op; /* the ops vector */
struct ivnode *i_link; /* next older interposer */
void *i_private; /* this interposer’s state */

};

Figure 11.2: A C implementation of cvnodes and ivnodes. (Derived from Figure 2 of Skinner and Wong [SW93].)

name purpose
vop fid get a file’s file identifier (fid)
vop mkobj create an object and return its vnode and fid
vop diraddentry add a directory entry for a fid-identified file
vop dirrmentry remove a directory entry
vop inclink increment a file’s link count
vop declink decrement a file’s link count

Table 11.1: Decomposed vnode operations. This table appears as Table 1 in Sinner and Wong [SW93].

Stacking

Provision for both layer interposition and composition
allows more flexibility than either Rosenthal’s interposi-
tion or composition alone. However, the question of the
need for interposition raised above apply here as well.
Interposition is required to implement mount-point hand-
ling through stacking, and in a few other scenarios (see
Section 3.7). Interposition can also replace composi-
tion in some instances, if desired. But support for both
composition and interposition has potential costs in both
complexity and performance.

Two mechanisms accomplishing similar tasks adds
substantial additional design complexity. A layer de-
signer now must select what kind of stacking mechanism
is to be used early in layer design. Minimizing design
complexity was of primary concern in featherweight lay-
ering; our approach to reduce complexity was to make
one service a subset of the other. This simplification does
not to apply to interposition and composition.

In addition to the complication of two stacking mech-
anisms, the requirement that each operation have only
a single vnode argument adds a substantial burden to
those employing the interface. Skinner and Wong work
around this problem by using file-identifiers to repres-
ent other vnodes and by decomposing high-level opera-
tions (such as link and rename) into a sequence of lower-

level operations (name entry, link incrementing, etc.).
Again, the use of two abstractions (vnodes for the first
file in an operation and file-identifiers for subsequent
files) adds complexity. In addition, exposing a lower-
level interface to directories complicates the implement-
ation of file systems that don’t match the traditional Unix
disk model (such as NFS and the MS-DOS FAT format).
Skinner and Wong recognize this problem in the “Imped-
ance Mismatches” section of their paper [SW93].

Finally, the costs of the protocol changes made by
Skinner and Wong are not entirely clear. They present
performance analysis of several user-level benchmarks;
their primary benchmark is simulation of a C-program
development-environment with varying levels through-
put. For this benchmark they show costs from between
2.3% improvement to 9.9% overhead (depending on
workload). Our experience suggests that overheads are
most easily detected in the system-time of file-system in-
tensive benchmarks.

Other differences Like Rosenthal, Skinner and Wong
recognize the problem of cache coherence as an area of
future work.

Skinner and Wong advocate lightweight layering and
propose layered solutions for several small services. In
fact, several of their “toolkit” layers provided inspira-
tion for individual featherweight layers in our system.
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Our experiences suggest that construction of these ser-
vices with general-purpose layering techniques would
show noticeable system-time overhead. They describe
a file-creation benchmark which shows “no significant
performance degradation” even with five of these layers.
Few details are provided about this benchmark and how
its performance was measured; however our experience
shows that file creation benchmarks can easily be dom-
inated by synchronous disk-write times rather than soft-
ware overheads.

Finally, Skinner and Wong suggest that addition of a
lightweight transaction mechanism to the vnode inter-
face would simplify error recovery. We agree with their
analysis that future work and prototyping is required be-
fore transaction support will be widely accepted at the
vnode level.

11.7 Spring

The Spring operating system is an object-based, dis-
tributed operating system developed at Sun Laborator-
ies [MGH94]. Objects in Spring implement an interface
specified by an interface-definition language [HR94].
Objects can be distributed transparently between the ker-
nel, user-level servers, and remote machines.

Notable features in Spring include a virtual memory
system supporting external pagers [KN93b] and a coher-
ent distributed filing system [NKM93] implemented with
stackable layers [KN93a].

11.7.1 Stacking

Several aspects of file-system layering in
Spring [KN93a] are similar to ours. In Spring, a
filing service is provided by a layer which implements
the Spring filing interface. An implementation of a
filing layer might build upon other filing layers. Layers
are combined and configured using the Spring naming
service [RNP93]. In the terminology of Section 11.6.2,
Spring employs composition to build layers. Section 5
of Khalidi and Nelson suggests that their object service
provides a general mechanism for run-time object in-
terposition [KN93a], but few details of this mechanism
are available. Spring also supports cache-coherence
between layers; we describe this service below in
Section 11.7.3.

The Spring approach to stacking is aided the fact
that Spring is a new operating system, built from
scratch. Spring employs an object-based interface-
definition language throughout their system, and it struc-

tures all system interfaces as necessary to support stack-
ing. However, with the exception of interposition, basic
stacking in Spring is functionally similar to that provided
by UCLA stacking.

11.7.2 Extensibility

Spring manages interface extensibility through its
object-oriented interface-definition language [HR94].
An interface is defined as a class; new versions inherit
from this class to add features. Type-checking at both
compile- and run-time can be used to insure that the
client and provider of a service communicate with
consistent interface versions. Run-time type conversion
can be used to export or employ older interfaces for
backwards compatibility.

The Spring approach to versioning makes elegant use
of object-oriented technology to address the lock-step re-
lease problem. An operating system vendor can intro-
duce new services by sub-classing existing interfaces,
yet can maintain backwards compatibility if desired us-
ing type-checking and run-time type conversion. Inter-
face inheritance doesn’t directly address the VFS portab-
ility problem; portability must be addressed by standard-
ization on a few interfaces. Interface inheritance seems
unlikely to satisfactorily address the extension problem.
Independent evolution of interfaces does not map well to
the single version-hierarchy suggested for Spring.

Finally, while the extensibility mechanisms proposed
in UCLA stacking may lack the elegance of expressing
versioning with an interface class-hierarchy, their much
simpler implementation makes broad deployment more
likely. Operation-granularity evolution and extensibil-
ity (rather than whole interface evolution as suggested in
Spring) also seems much more likely to permit change
by multiple, independent third parties.

11.7.3 Cache-coherence in Spring

Virtual memory and file systems are very closely related
in Spring. The virtual memory system includes sup-
port for distributed shared memory [KN93a]. Cache-
coherent file-system stacking is a natural result of this ar-
chitecture. The Spring cache-coherence work highlights
two important results. First, the Spring developers re-
cognize that separation of the data provider and the data
manager is necessary for efficient, layered caching. In
Spring terminology this concept is the separation of the
cacher and pager objects. Second, they recognize that
general cache-coherence can be provided if each layer
acts recursively as cacher and pager objects for the layer
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it stacks upon. Our work in cache coherence builds upon
these results.

Our work differs from the Spring work in several re-
spects. We see cache-object identification as the central
problem in cache-coherent stacking. To aid the layer de-
signer, we provide two approaches to object identifica-
tion: a fast, simple one for the dominant case and a richer
solution for the general case. Our cache manager handles
all aspects of the simple case and can directly invalidate
data in any layer. The Spring work only provides (in our
terms) the general model, potentially placing additional
burden on designers of new layers and raising perform-
ance questions.

A second difference is application of cache coher-
ence to all aspects of filing. The Spring project dis-
cusses coherent sharing of data pages and some file at-
tributes. They recommend use of Spring object-oriented
inheritance to provide coherence for other file attrib-
utes. We instead provide a cache-coherence framework
suitable for file data pages, attributes, generic extended
attributes, and name-lookup caching. We expect that
this framework will extend easily to accommodate future
data types (for example, file locks).

A third difference in our work and Spring is the de-
gree of independence or integration between stacking
and the rest of the system. Spring is a complete operating
system. Its virtual memory system, distributed shared
memory, and stackable filing share an integrated imple-
mentation. While such an approach may be attractive, it
limits portability. We instead focus on stackable filing.
We require few modifications of and limited interaction
with the VM system. Our system is designed to function
with drop-in file-systems in a binary-only kernel distri-
bution, and we are intentionally distinct from distributed
filing. We believe that a more modular approach is es-
sential to allow wider application.

A final important difference between our work and
Spring is that of performance evaluation. Performance
analysis of the Spring file-system and file-system lay-
ering has focused on the cost of layering and the bene-
fits of caching. While it is clear that caching is of sub-
stantial benefit in Spring (as in many other systems), it
is not clear what overhead is paid for cache coherence.
Because our system has evolved to support cache coher-
ence, we are able to present a “before-and-after” per-
formance analysis of cache coherence.

11.8 Meta-Descriptions of
Stacking

Most of this chapter has discussed other systems which
provide layering and stacking in some form. In-
spired by their experiences with Genesis [BBG88] and
Avoca [OP92] (a version of the x-kernel), Batory and
O’Malley describe a meta-model for hierarchical soft-
ware systems [BO92].

In their model hierarchical software systems are built
from components. Each component is a member of a
realm, a group of components which implement the same
interface. Components may be built from other compon-
ents. A component is symmetric if it builds upon com-
ponents from the same realm.

Stackable filing and UCLA stacking easily fit into this
model. All filing layers are part of a single realm. Each
layer corresponds to a component.

Batory and O’Malley’s experiences in two such differ-
ent areas suggest to us that our approaches to stackable
filing may also find wider applicability.
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Chapter 12

Conclusion

file-system development has long been an area of fruit-
ful research. Unfortunately, broad application of this re-
search has been difficult. Implementation of new filing
ideas has been slow because services were built from
scratch or modifications to existing systems added un-
desirable encumbrances to distribution. Even when com-
pleted, new services often have failed to work together,
and have failed to be robust across system changes.

Stackable file-system development offers an altern-
ative. Stacking allows new services to build on (in-
stead of re-build) well-understood filing services. Dis-
tinct layers help to confine changes and focus testing
efforts. A consistent approach to interface extension
means that vendors and third parties can provide new
services without invalidating existing work. A cache-
coherence protocol insures that designers and users can
construct and access their stacks with confidence that
they see up-to-date information. Finally, a featherweight
layering protocol allows stacking to apply to very thin
layers as well as to major new services. Together, these
capabilities offer the potential for broader acceptance
and deployment of new filing services.

Through our prototype implementation we demon-
strate the effectiveness of stacking, both as a paradigm
and as a means to provide replication and other services.
We provided a detailed performance analysis. Most im-
portant, we show that stackable layers can in many ways
offer a development environment superior to the altern-
atives.

12.1 Research Contributions

The primary contribution of this dissertation is the valid-
ation of the thesis: that a layered, stackable structure with
an extensible interface provides a better methodology for
file-system development than current approaches. Evid-
ence for this thesis is provided through the following

means:

1. Design of:

� A file-system interface supporting easy ex-
tensibility by multiple third parties.

� A bypass mechanism which allows file-
system stacking and extensibility to work
together.

� A cache-coherence protocol supporting safe
data caching in third-party filing layers.

� A lightweight subset of stacking extending
file-system layering to very low-overhead lay-
ers.

2. Description of:

� File-system structuring techniques enabled
and simplified by stacking.

� Experiences using stacking in the classroom.

3. Production-quality implementations of:

� An extensible file-system interface in use by
a community of thousands of people and dis-
tributed with several Unix implementations.

� A system for user-level layer development
used by a community of two dozen.

� Two transport-layers which transparently pass
new operations between address spaces.

� Use of file-system layering to provide a vari-
ety of services including:

– optimistic replication
– configurable replication consistency pro-

tocols
– user-identity mapping
– compatibility-mappingbetween differing

file-identifier sizes
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– namespace duplication

These layers have been used by over two
dozen people for more than four years; they
currently host the complete stacking develop-
ment environment and Ficus-project user pop-
ulation.

4. Prototype implementations of:

� Cache-coherence protocols which insure that
data can be safely cached in multiple stack
layers.

� A featherweight layering protocol providing
“thin” layers with very little overhead.

5. Verification of the following statements through
performance evaluation of our system:

� Addition of stacking to a system incurs min-
imal overhead.

� Per-layer stack costs are minimal: general
purpose layers incur about 2% system-time
overhead, featherweight layers incur negli-
gible overhead.

� Addition of cache coherence to a system in-
curs minimal overhead.

6. Substantial empirical experience suggesting that:

� Our extensible interface is portable to systems
with independently implemented vnode inter-
faces.

� Stacking makes it substantially easier to im-
plement small layers.

� Stacking can be used to significant advantage
for large, heavily used filing services.

� Cache-coherence for file-system layering can
be implemented without significant changes
to the virtual memory system.

12.2 Future Work

Work as broad as a new filing substrate borders on many
areas of related work. This section lists some of these
areas that this dissertation does not address.

12.2.1 Implementation enhancements

Over the course of this work typical memory capacit-
ies of workstations have advanced from 8 megabytes to
40 megabytes. The operating systems world has simil-
arly advanced. Our implementation must keep pace.

Nearly all operating systems today support kernel-
module dynamic loading. We anticipate that addition of
dynamic loading to stackable layers modules will be pos-
sible with the usual dynamic loading techniques (for ex-
ample, pre-reservation of table space).

The new services offered through stackable layers of-
ten need “just a little more” information stored with
the file. For example, compression might need an “is-
compressed” flag or might be aided by an uncompressed-
size field, and encryption would require space for an
encryption key and related information. A convenient
way to provide such additional storage would be through
a generic extensible-attributes service. We have proto-
typed such a system at UCLA [Wei95], and designs and
implementations for other environments exist [And90,
Dun90, Ols93]. Adoption of any one of these extended
attribute services is another way to ease file-system de-
velopment.

Finally, we would like to move our stacking environ-
ment to a kernel with symmetric multiprocessing (SMP).
We have kept SMP support in mind throughout imple-
mentation, and so we expect few problems; a prototype
SMP-based implementation is the best way to answer
this question definitively.

12.2.2 Stacking

Current mechanisms manage large-granularity file-
system stacking well. The best way to manage per-file
stack configuration is less clear. A standard “stack
composition” attribute, possibly stored in some kind
of extensible attribute system, might provide a solu-
tion. One intriguing implementation of such a system
in a slightly different context is contained in Kim’s
object-oriented filing work [Kim95]. More experience
and wider deployment of such systems is required to
evaluate the approach, however.

Current disk-based file-systems are almost exclusively
constructed as large, monolithic layers. This situation
is unfortunate because it means that several potentially
separable services are tied into one package; to take one
part requires using it all. It would be very useful to de-
compose existing storage services into separate flat-file
and directory service abstractions, and possibly others as
well. 4.4BSD takes some steps in this direction, employ-
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ing the vnode interface internally between UFS direct-
ory routines and the on-disk log-structured and fast file-
systems [McK95]. Unfortunately it is not currently pos-
sible to separate these services into independent layers.

12.2.3 Extensibility

Our approach to extensibility has worked well, both by
allowing us to add to the interface and in managing in-
terface changes from the operating-systems vendor. Un-
fortunately, there are at least three independently derived
“vnode” interfaces in use currently (SunOS [Kle86],
BSD [KM86], and Linux [Joh92]). Each system has a
substantially different operation mix and collection of
supporting services. Simple extensibility is insufficient
to bridge these differences. Compatibility layers (see
Section 3.5) offer substantial hope of addressing these
differences, but technical challenges still remain. The
best long-term solution would be migration to a set of
much more similar interfaces.

As a “third party” we have made substantial use of in-
terface extensibility for Ficus replication. Often we have
found ourselves needing an operation just like the current
one but with a small change, such as a single additional
argument. Our approach to extensibility allows new op-
erations, but there is no easy way to add arguments to ex-
isting operations. An object-oriented interface (such as
that in Spring) might allow operation addition with sub-
classing, but more work is needed in this area to support
third-party additions.

12.2.4 Cache coherence

We have explored cache-coherence across the layers of a
stack on a single system and in a distributed environment
with NFS. In Section 6.5 we argued that different distrib-
uted environments require different levels of coherence.
A closer examination of the interactions between cache-
coherence and distributed systems with stronger guaran-
tees would be interesting.

12.2.5 Lightweight layering

Featherweight layers minimize layer cost by restricting
per-layer state, thus allowing very lightweight layers to
be provided with correspondingly little overhead. An-
other approach to improve layering performance would
be to relax general-purpose layering’s prohibition on
source code. For example, source code allows Genesis
to avoid dynamic operation invocation by matching op-
eration calls with targets at compile time. While source-

code-optimized layering might not be suitable for com-
mercial distribution, it might allow a single development
organization to construct a system as several “logical”
layers which are “compiled away” to run with the best
possible performance.

12.3 Closing Remarks

This dissertation has presented stackable layering as an
approach for file-system construction. We have saved
substantial effort through the use of stacking for the
development of file-replication and other services at
UCLA, both because stacking has allowed the re-use of
existing services, and because extensibility has permit-
ted us to evolve different parts of our service at different
rates and to easily manage external change.

This dissertation has described a general approach for
file-system stacking and extensibility, and has presen-
ted solutions for the important issues of cache-coherence
and lightweight layering. We have demonstrated the ef-
fectiveness of these solutions both through our own use
and through performance analysis and experimentation.
We believe that adoption of these techniques has and
will substantially improve file-system development, and
thereby allow future filing research to be both more ef-
fective and relevant than it has been.



88 CHAPTER 12. CONCLUSION



Appendix A

Stacking Appendix

This appendix summarizes the interface changes needed
to support stacking, as described in Chapter 4.

A.1 A Sample Vnode Operation

As described in Section 4.4, we made several changes to
the vnode interface to support stacking and extensibility.
Here we summarize differences in the calling sequence.

In Figure A.1 we show the original operation invoca-
tion sequence. The operation is an indirect function call
through a vnodeops structure defined at compile time.

Figures A.2 and A.3 shows two variations of the new
calling sequence. There are three important differences
between old and new invocations. The most obvious
change is that parameters are passed in an arguments-
structure rather than on the stack. An arguments-
structure has the advantage that it avoids re-copying all
arguments each time an operation moves down a stack
layer. In addition, a pointer to an arguments-structure
serves as a generic “handle” to allow manipulation of
any set of vnode-operation arguments. A second change
is that we add an operation description as the first para-
meter of the call. This description includes the opera-
tion’s name, and information needed to marshal opera-
tion arguments for RPC and bypass operations. (A com-
plete list of this information appears in Figure A.4.) By
placing this description in a well-known location we can
identify and manipulate arguments to an arbitrary opera-
tion. In Section A.3 we describe how the argument struc-
ture and descriptive information are employed to bypass
an operation through a layer.

The final important difference in the calling sequence
is that the operation vector is managed dynamically
rather than fixed at compile time. The global variable
vop create offset is set to that operation’s posi-
tion in the operations vector when operations are con-
figured.

Figures A.2 and A.3 show two slightly different ap-
proaches to argument-structure allocation. In Figure A.2
the programmer explicitly declares information with
USES_VOP_CREATE. In Figure A.3 the compiler as-
sumes this duty in an in-lined function call. The in-line
approach provides a slightly more appealing interface to
the programmer but requires compiler support for func-
tion in-lining, a widely available but non-ANSI stand-
ard feature. Both constructs should generate comparable
code.

Finally, Figure A.5 shows old and new implementa-
tions of vop create. In the new form, parameters arrive
in an arguments-structure.

A.2 A Sample Operation
Declaration

Support for operation bypassing and transport layers re-
quires a complete definition of each operation and its
arguments. In Section 4.7 we described these require-
ments. Figure A.6 shows a sample interface definition of
vop create from our prototype.

A definition lists operation arguments and their types.
In addition, the direction of data movement must be in-
dicated with an IN, OUT, or INOUT tag. This informa-
tion is required to generate RPC code. Finally, we add a
UUID to uniquely identify the operation in communica-
tions between different address spaces.

A.3 A Sample Bypass Routine

Figure A.7 presents the bypass routine for the null layer.
For the null layer, the only requirement of the bypass
routine is that vnodes are mapped to their lower-layer
equivalents before calling the lower layer, and then re-
stored upon return. In addition, if a new vnode is re-

89



90 APPENDIX A. STACKING APPENDIX

struct vnodeops {
int (*vn_create)();
....

};
struct vnode {

struct vnodeops *v_op;
...

};
#define VOP_CREATE(VP,NM,VA,E,M,VPP,C) \

(*(VP)->v_op->vn_create) (VP,NM,VA,E,M,VPP,C)

void
call_demonstration(struct vnode *dvp,

struct vattr *va,
struct vnode **result_vp,

struct ucred *cred)
{

int error = VOP_CREATE(dvp, "file", &va, NONEXCL, 0,
&result_vp, cred);

}

Figure A.1: Old calling sequence for vop create.

struct vnode {
int (**v_op)();
...

};
#define USES_VOP_CREATE struct vop_create_args vop_create_a;
#define VOP_CREATE(VP,NM,VA,E,M,VPP,C) \

( vop_create_a.a_desc = &vop_create_desc, \
vop_create_a.a_vp = (VP), \
vop_create_a.a_nm = (NM), \
vop_create_a.a_vap = (VA), \
vop_create_a.a_exclusive = (E), \
vop_create_a.a_mode = (M), \
vop_create_a.a_vpp = (VPP), \
vop_create_a.a_cred = (C), \
(( *( (VP)->v_op [vop_create_offset] )) (&vop_create_a))

void
call_demonstration(struct vnode *dvp,

struct vattr *va,
struct vnode **result_vp,

struct ucred *cred)
{

USES_VOP_CREATE;
int error = VOP_CREATE(dvp, "file", &va, NONEXCL, 0,

&result_vp, cred);
}

Figure A.2: Macro-based new calling sequence for vop create.
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struct vnode {
int (**v_op)();
...

};
inline int
VOP_CREATE(struct vnode *VP,

char *NM,
struct vattr *VA,
enum vcexcl E,
int M,
struct vnode **VPP,
struct ucred *C)

{
struct vop_create_args vop_create_a;
vop_create_a.a_desc = &vop_create_desc;
vop_create_a.a_vp = VP;
vop_create_a.a_nm = NM;
vop_create_a.a_vap = VA;
vop_create_a.a_exclusive = E;
vop_create_a.a_mode = M;
vop_create_a.a_vpp = VPP;
vop_create_a.a_cred = C;
return (( *( VP->v_op [vop_create_offset] )) (&vop_create_a));

}

void
call_demonstration(struct vnode *dvp,

struct vattr *va,
struct vnode **result_vp,

struct ucred *cred)
{

int error = VOP_CREATE(dvp, "file", &va, NONEXCL, 0,
&result_vp, cred);

}

Figure A.3: In-line-based new calling sequences for vop create.
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struct vnodeop_desc {
int vdesc_offset; /* offset in vector */
char *vdesc_name; /* a user-readable string */
int vdesc_flags;

/*
* This information is used by bypass routines
* to map and locate arguments.
*/

int *vdesc_vp_offsets;
int vdesc_vpp_offset;
int vdesc_cred_offset;
int vdesc_proc_offset;

/*
* The following data is for transport layers aid.
* vdesc_datatype describes the arguments in detail.
* vdesc_uuid_p is a uuid that uniquely names the operation.
* (Although technically the uuid should be transport-layer
* specific, its kept here because it’s common to several
* transport layers.) Finally, vdesc_uuidhash
* is used to quickly locate operations by uuid.
*/

struct xport_datatype *vdesc_datatype;
struct nca_uuid *vdesc_uuid_p;
struct vnodeop_desc *vdesc_uuidhash;

};

Figure A.4: Descriptive information accompanying each vnode operation.
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(a) old vnode-operation implementation: int
xfs_create(struct vnode *vp,

char *name,
struct vattr *vattrs,
enum vcexcl exclusive,
int mode,
struct vnode **vpp,
struct ucred cred)

{
/*
* Do the work to create ‘‘name’’
* in directory ‘‘vp’’, returning
* ‘‘vpp’’.
*/

}

(b) new vnode-operation implementation: int
xfs_create(struct vop_create_args *ap)
{

/*
* Do the work to create
* ‘‘ap->a_name’’ in directory
* ‘‘ap->a_vp’’, returning
* ‘‘ap->a_vpp’’.
*/

}

Figure A.5: Old and new implementations of
vop create.

OPERATION
vop_create {

IN struct vnode *a_vp;
IN char *a_nm;
IN struct vattr *a_vap;
IN enum vcexcl a_exclusive;
IN int a_mode;
OUT struct vnode **a_vpp;
IN struct ucred *a_cred;

} uuid(2ac783c60000.02.83.b3.c0.45.00.00.00);

Figure A.6: An interface definition of vop create.

turned as part of the operation, we create a new null-node
to stack over it.

Three observations are important about the bypass
routine. First, it refers to the arguments through a gen-
eric pointer, so it can accept arguments for any oper-
ation. Second, it uses information obtained from the
vnode-operation description to manipulate well-known
arguments such as vnodes. Finally, more sophisticated
layers can modify other arguments in the bypass routine.
The user-identity layer, for example, maps user-ids just
before the call to the lower layer.
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int
null_bypass(ap)

struct vop_generic_args *ap;
{

int error, flags, i;
struct vnode *old_vps[VDESC_MAX_VPS];
struct vnode **vps_p[VDESC_MAX_VPS];
struct vnode ***vppp;
struct vnodeop_desc *descp = ap->a_desc;

/* Map the vnodes going in.
* Later, we’ll invoke the operation based on
* the first mapped vnode’s operation vector.
*/

flags = descp->vdesc_flags;
for (i = 0; i < VDESC_MAX_VPS; flags >>= 1, i++) {

if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
break; /* bail out at end of list */

if (flags & 1) /* skip vps that aren’t to be mapped */
continue;

vps_p[i] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
old_vps[i] = *(vps_p[i]);
*(vps_p[i]) = NULLTOLOWERV(VTONULL(*(vps_p[i])));

};

/* Call the operation on the lower layer
* with the modified argument structure.
*/

error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);

/* Maintain the illusion of call-by-value
* by restoring vnodes in the argument structure
* to their original value.
*/

flags = descp->vdesc_flags;
for (i = 0; i < VDESC_MAX_VPS; flags >>= 1, i++) {

if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
break; /* bail out at end of list */

if (flags & 1) /* skip vps that aren’t to be mapped */
continue;

*(vps_p[i]) = old_vps[i];
};

/* Map the possible out-going vpp.
*/

if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
!(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
!error) {

struct ucred **credpp = VOPARG_OFFSETTO(struct ucred**,
descp->vdesc_cred_offset, ap);

vppp = VOPARG_OFFSETTO(struct vnode***, descp->vdesc_vpp_offset, ap);
**vppp = null_make_nullnode(**vppp, VFSTONULLINFO(old_vps[0]->v_vfsp), *credpp);

};

return (error);
}

Figure A.7: The bypass routine for the null layer.
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Cache-Coherence Appendix

A goal of our work is to provide the minimal changes
to existing systems and allow a modular adoption of
cache coherence. This appendix summarizes our inter-
face changes. Considerable mechanism underlies them,
as the body of the dissertation presumably makes clear.

All new code in our implementation is freely available
under a BSD-style copyright. A complete distribution is
available to those with a SunOS 4.x source-code license.
The implementation includes modules to manage byte-
range and named-object lists, locking, and modifications
to make the UFS and null layer cache-coherent. The au-
thors welcome inquiries.

In the following sections we present interfaces with
C-like declarations. In these declarations, IN, OUT, and
INOUT denote the direction of data movement. Ordin-
arily vnodes are adjusted to refer to the current layer as
operations move down and up the stack; the NOTRANS-
LATE modifier indicates that this mapping should not
occur. (This option is required for vnodes in an inter-
face when vnodes must refer to a particular layer of the
file, rather than the “current” layer.) All operations return
“errno”-style error codes.

B.1 Stack-Friendly Interface
Changes

As described in Section 8.3, efficient data-page caching
in a multiple-layer stack requires changes to three vnode
operations. These operations are based on the corres-
ponding SunOS 4.x operations but are modified to sep-
arate pager and cacher functionality. In the interface this
change is reflected by replacing the original vp argument
(which served as both the paging and caching agent) with
three parameters: vp, the paging vnode; mapvp, the cach-
ing vnode; and name, a reference to cache-manager in-
formation.

vop stackgetpage (IN struct vnode *vp, IN struct
svcm name *name, IN NOTRANSLATE struct
vnode *mapvp, IN u int offset, IN u int length,
IN u int *protection p, INOUT struct page
**page list, IN u int page list size, IN struct seg
*segment, IN addr t address, IN enum seg rw rw,
IN struct ucred *cred)

A getpage operation is invoked to service a page
fault in memory backed by a layer. We have ex-
panded the original vp argument into vp, name, and
mapvp. Offset and length specify the required data.
The remaining arguments are employed by the VM
system.

vop stackputpage (IN struct vnode *vp, IN struct
svcm name *name, IN NOTRANSLATE struct
vnode *mapvp, IN u int offset, IN u int length, IN
int flags, IN struct ucred *cred)

The putpage operation is the opposite of getpage: it
writes dirty pages back to stable storage. We change
vp, name, and mapvp.

vop stackrdwr (IN struct vnode *vp, IN struct
svcm name *name, IN NOTRANSLATE struct
vnode *mapvp, INOUT struct uio *uiop, IN enum
uio rw rw, IN int ioflag, IN struct ucred *cred)

A rdwr operation is used to read or write data.
Again, we change vp, name, and mapvp. The uio
specifies what data will be read or written.

B.2 Cache-Coherence Interfaces

Below are the two vnode operations which have been ad-
ded to support cache coherence, and the cache-object re-
gistration interface exported by the cache manager.
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vop cachenamevp (IN struct vnode *vp, OUT NO-
TRANSLATE svcm name token *token, IN struct
ucred *cred)

Vop cachenamevp is called when an upper-layer
creates a new vnode. It returns the token represent-
ing the simply-named part of the stack. This token
is then used to build an svcm name, the data struc-
ture used by the cache manager to record caching
information.

vop cache callback (IN struct vnode *vp, IN struct
svcm name *name, IN enum svcm obj classes
obj class, IN void *obj, IN struct ucred *cred)

Vop cache callback is invoked when the cache
manager invalidates a cache-object. The obj para-
meter specifies the cache-object to be purged. For
byte-range classes, obj specifies the region’s offset
and length; for named-objects it points to a length-
counted string.

svcm register (INOUT struct svcm name *name, IN
struct vnode *own vp, IN enum svcm obj classes
obj class, IN u int obj name length, IN void
*obj name, IN enum svcm status status, IN struct
ucred *cred);

Svcm register is called by each layer implementa-
tion after it has locked the file, but before it attempts
to cache data. It informs the cache manager that
own vp wishes to cache object obj name of class
obj class with status rights in the simply-named file
name. The cache manager will consult its records
and call-back any vnodes with conflicting cache re-
quests and all vnodes with general-naming.

B.3 Cache-Coherence Storage
Options

Different data types have different caching needs. Often
data semantics and run-time behavior limit data mutab-
ility, allowing data to be duplicated in different caches
while guaranteeing coherence. In Section 6.3 we de-
scribed how knowledge about these semantics allows the
cache manager to improve performance.

In Table B.1 we summarize the five levels of service
a layer can request when caching an object. The first
four options combine two facts: will the layer invok-
ing the cache manager cache the data-object, and can
other layers which currently cache the data-object con-
tinue to cache it. This view of these states can be seen in
Table B.2. If the current layer asks for rights to cache the

option meaning
uncached I don’t cache; don’t care about others.
non-cachable I don’t cache; others can’t cache now.
shared I cache (want callback); others can too.
exclusive I alone can cache and want callback.
watch I expect to see all cache actions.

Table B.1: Cache registration options.

other layers
your layer can cache can’t cache
does cache shared exclusive
doesn’t cache uncached non-cachable

Table B.2: An alternate view of cache registration op-
tions.

object (as in the shared and exclusive cases), the cache
manager promises to call those layers back should that
cache need to be invalidated.

Independent of these options, with the “watch” re-
quest a layer will see all cache interactions for the given
data-object and file. Layers requiring general naming re-
gister a “watch” request to monitor the cache and trans-
late names as required.

In Table B.3 we enumerate the possible interactions
between an outstanding cache request (one already re-
gistered with the cache manger) and a new request. In
each case, if the new request conflicts with an existing re-
quest, a callback is made to invalidate the existing cache.
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outstanding cache request
new cache uncached/
request non-cachable shared exclusive watch
uncached — — error callback
non-cachable — callback callback callback
shared — — callback callback
exclusive — callback callback callback
watch — — — callback

Table B.3: Interactions between a new cache request and existing cached objects. Callback indicates that the old layer
has its caching privileges revoked. Error indicates an invalid state. No action is required for other states.
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Colophon

This document was produced using LATEX2e on a a
Sun IPC running SunOS 4.1.1 Unix modified to support
UCLA stacking and the Ficus replicated file-system, and
on a Dell Latitude XP portable computer running the
Linux operating system (a version of Unix). I employed
idraw for figures and jgraph for most graphs.
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