Stackable Design of File Systems

John Shelby Heidemann

University of California, Los Angeles
September, 1995

A dissertation submitted in partial satisfaction
of the requirementsfor the degree
Doctor of Philosophy in Computer Science

UCLA Computer Science Department
Technical Report UCLA-CSD-950032

Thesis committee:
Gerald J. Popek, co-chair
D. Stott Parker, co-chair

Richard Muntz

Rajive L. Bagrodia

Kirby A. Baker

(© Copyright by
John Shelby Heidemann
1995

To my family—
my mother Dorothy
and my brother Ben

Contents

Abstract Xiii
1 Introduction 1
L1 MOUVALION . . . o o e e e 1
111 Stacking e 1

112 CachecCoherence i i e e e 3

113 Featherweightlayering o 4

12 RelaedWork e 4
121 Symmetricinterfacesandstacking Lo 4

122 Filesystemstructure e e e e e e 5

123 Stackablefilingsystems 5

124 CachecConerence i i e e 5

125 Featherweightlayering o 5

1.3 Road MaptotheDissertation e 5

2 Stacking Model 7
21 Extensibility e 7
211 Evidenceof evolution 8

2.1.2 Alternativestomanagechange. 8

213 Designconstraints e e e e e e 8

22 SaCKing 9
221 DesSignconstraints e 10

222 Stackingand extensibilityo 10

223 Generalizedstacking L e e e 10

224 Stackingand CONCUITeNCY o . o v i e e e e e e e 10

23 Coherence e 10
231 Designconstraints e e 12

24 Model Summary e 12

3 Stacking Techniques 15
31 Layer Composition e 15
3.2 Layer Substitution L e e e 15
3.3 Multi-Layer ACCESS o e e 16
34 CooperatingLayers e e e 17
3.5 Compatibility WithLayers e 17
3.6 User-Level Development 18
37 Interpositiono e 18

4 UCLA Stacking Implementation

41 ExigingFile-Systeminterfaces
4.2 ExtensbilityintheUCLA Interface e
43 Stack Creation e e e

431 Stackconfiguration e e e

432 Flelevel stacking e e e

433 Stackdatacaching e
4.4 Stackingand Extensibility e
45 VFSStackingand Extensibility
4.6 Inter-MachineOperation e
4.7 Centraized Interface Definition L
4.8 Framework Portability

5 UCLA Stacking Evaluation
5.1 LayerPerformance e e e e
511 Micro-benchmarks
5.1.2 Interfaceperformance e
51.3 Multiplelayerperformance e e
5.2 Layer ImplementationEffort
521 Simplelayerdevelopment
522 Layerdevelopmentexperience. e e
523 Lagescaeexample L e e e
5.3 Compatibility EXpEriences o e e e
54 SUMmMaryo e e e e e e e e e e e

6 CoherenceArchitecture

6.1 General ApproachtoCacheCoherence i i e e e
6.2 Dataldentification

6.2.1 Cache-objectnaming: smplelayers

6.2.2 Cache-objectnaming: general layers.
6.3 Cache-Object Status e e e e e e
6.4 Deadlock Prevention e e e
6.5 RdationshiptoDistributed Computing. e
6.6 SUMMAY e e e e e e e e e e

7 Coherence lmplementation
7.1 Implementation OVErVIEW L . e
7.2 Cache-Object Classes
721 Wholefileidentification
7.2.2 Named-objectidentification
7.2.3 Byterangeidentificationo
7.3 Applicationand Optimizations
731 Datapagecaching e
7.3.2 Fileattributecaching. e
7.3.3 Directory namelookupcaching
734 Filedatalocks
735 Wholefilelocking
74 AnExtendedExample L

8

10

11

Coherence Evaluation

8.1 PeformanceComponents L
8.2 PerformanceExperimentsand Methodology
83 Cossof LayeredDataCaching
84 Cache-CoherenceBenefits
8.5 Cache-CoherencePerformance: NoInterference
8.6 Cache-CoherencePerformance: Interference.
8.7 Performance Experiences

Featherweight Layer Design and I mplementation

9.1 Potential Featherweight Layers. e e e

9.2 Costsof Fully General Layering i i e e e e
9.21 Whereistheexpenseof general layering? L.

9.3 Designof Featherweight Layering e

9.4 Implementation of Featherweight Layers.
9.4.1 Featherweight layer configuration
9.4.2 Featherweight layeringrestrictions. e
9.4.3 Commentary ontheimplementation,

95 Summaryo e

Evaluation of Featherweight Layering

10.1 ProgrammingModel e e
10.1.1 EXPresSVEPOWEN o o it e e e e e e e e
10.1.2 Programming model complexity

10.2 Performance e e e
10.2.1 Featherweight layer instantiationcosts o
10.2.2 Performance of featherweight layerdetails.
10.2.3 Macro-benchmarks. L

10.3 SUMMANY . . . o o e e e e e e e e e e e e e

Related Work
111 Stacking Fundamentals. L L
11.1.1 Filesystemstructure o o e e e e e
11.1.2 Modularfile-systems
11.1.3 Extensibility
11.1.4 Symmetricinterfaces. e e e e
1115 User-level layeringwithNFS o . o oo
11.1.6 Object-orienteddesign o
11.2 CoherenceFundamentals. e
11.2.1 Digtributedfiling e e
11.2.2 Multiprocessorsand distributed sharedmemory oL
11.2.3 Networkingprotocols e e
11.3 Featherweight LayeringFundamentals
11.4 ExtensibleDatabasesinGenesis
11.5 Hierarchical StorageManagement e
11.6 StackableFilingat SUnSoft. e
11.6.1 Rosenthal e
11.6.2 SkinnerandWong e
117 SPring . . o o o e e e e e e e e
1171 Stacking o e
11.7.2 Extensibility

11.7.3 Cache-coherenceinSpring. e
11.8 Meta-Descriptionsof Stackingo

12 Conclusion

12.1 Research Contributions. e e e
12.2 Future Work

12.2.1 Implementation enhancements

1222 Stacking e e
12.2.3 Extensibility
1224 Cachecoherence e
1225 Lightweightlayering o
123 ClosingRemarks o e

A Stacking Appendix

Al A SampleVnodeOperation
A.2 A SampleOperationDeclaration
A3 ASampleBypassRoutine e

B Cache-Coherence Appendix

B.1 Stack-Friendly InterfaceChanges L
B.2 Cache-Coherencelnterfaces
B.3 Cache-CoherenceStorage Options o i i i et e e e

References

viii

85
85
86
86
86
87
87
87
87

89
89
89
89

95
95
95
96

99

List of Figures

11

21
2.2
2.3
24

31
3.2
3.3
34
3.5
3.6

41
4.2
43
44

51
52
53

6.1
6.2
6.3

7.1
7.2

8.1
8.2
8.3
8.4

85
8.6

9.1
9.2
9.3

A sample application of the stackable layers. Each layer is connected by a standard interface. . . . 3
Two file-system stacks providing encryptionand compression. 9
Treatment of vop_set _ext ent _si ze by differentlayers. 11
A fan-out tree of file system layersto providedisk mirroring. 11
A treeof file-system layersexhibitingfan-in. 12
A compression service stacked over aUnix file-system.o 0oL 15
A compression layer configured with amodular physical storageservice. 16
Multiple-layer access through and beneath acompressionlayer. 16
Cooperating Ficuslayers. e 17
User-level layer development viatransportlayers. o oo 18
Interpositioninthe 1992 Ficusstack. e 19
A namespacecomposed of twosubtrees. L L 21
Instantiating aUFSwiththe Unix mountmechanism. 23
Instantiating an encryption layer over anexistingUFS., 23
Filellevel stacking. L e 24
Elapsedtimeaslayersareadded. 30
Systemtimeaslayersareadded. oL 31
Accessto Unix-based FicusfromaPC runningMS-DOS. 33
A sampleapplication of thecachemanager. L. 35
Levelsof cache-object identification. 37
Distributed cache-coherenceinvolving different network protocols. 39
A configurationof several layers. e 43
Lock mergingdueto layer addition. 44
Caching algorithmswith and without layering. 47
Benchmarks comparing a UFS with and without stack-friendly dataacquisition. 49
Layer configurationfor Ficusreplication. 50
Benchmarks comparing three null layers stacked over a UFS with and without coherent name-lookup

CaChing. e e e e e 51
Benchmarks comparing a UFS in kernelswith and without cachecoherence. 51
Benchmarks and parameters used to test cache interference for memory-mappedfiles. 54
Potential applications of featherweight-layeringtechnology. 58
Layering overhead asthe number of null layersvary. 59
A qualitative picture of desired featherweight layering performance. 61

iX

10.1
10.2
10.3
10.4
105

10.6

111
11.2

A.l
A.2
A3
A4
A5
A.6
A7

Annotated source code for the fsync featherweightlayer.
C source code for an implementation of vop_get .svemnanme. L.
Layer configuration for the featherweight layer macro-benchmarks.
Benchmarks comparing monolithic, general, and featherweight layer configuration of seven services.
Benchmarks comparing the performance of general and featherweight layer configuration of seven
servicesto asingle-layerimplementation. e
Benchmarks comparing the performance of general and featherweight layer configuration of seven
services to asingle-layer implementation (find benchmark omitted).

Interpositionwithv_t op inRosenthal-stacking.,
A Cimplementation of cvnodesandivnodes.

Oldcaling sequenceforvop.create. o o i i i e e e e
Macro-based new calling sequenceforvop_create.
In-line-based new calling sequencesfor vopcreate.
Descriptive information accompanying each vnode operation.
Old and new implementationsof vop_create.,
Aninterfacedefinitionof vop_create.
Thebypassroutineforthenull layer.

67
69
70
70

73

List of Tables

21

41

51
52
53

8.1

8.2

8.3
8.4

9.1
9.2
9.3

10.1
10.2
10.3
104
105

111

B.1

Vnodeinterfaceevolutionin SunOS.
VFESoperationsprovidedin SUNOS4.X. o o o i e e e e

Modified Andrew benchmark comparison of thevnodeand UCLA interfaces.
Recursive copy and remove comparison of thevnodeand UCLA interfaces.

Elapsed- and system-time performance comparisons of UFS performance with standard and stack-
friendly cacheoperations.
Elapsed- and system-time performance comparisons of astack of three null layers over aUFS without
andwithname-lookupcaching. e e
Elapsed- and system-time performance comparisons of non-coherent and coherent caching kernels.
Elapsed- and system-time performance comparisons of files with and without cache contention.

Profiles of the five most expensive null-layer subroutinesfor threebenchmarks.
Operations vector configurationsfor several layer combinations..
Calling sequence of vop._r dwr for different layer combinations.

Initialization time to stack seven featherweight layersover anull layer.
File-system usage for non-stacking computersin an academic environment.
Estimates of parametersfor layer instantiation for memory usage in different system configurations.

Benchmarks comparing monolithic, general, and featherweight layer configuration of seven services.
Benchmarks comparing the relative performance of general and featherweight layer configuration of
seven servicesto asingle-layer implementation. o L.

Decomposed vnode Operations. oo e e e e e e e e e

Cacheregistration Options. L

B.2 Anadternateview of cacheregistrationoptions.

B.3

Interactions between anew cacherequest and existing cachedobjects.

Xi

50

52
52

60

67
68
69
71

72

8l

96
96
97

Xii

ABSTRACT OF THE DISSERTATION

Stackable Design of File Systems

by

John Shelby Heidemann
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1995

Professor Gerald J. Popek, Co-chair
Professor D. Stott Parker, Co-chair

This dissertation presents the design, implementation and evaluation of file-system
design with stackable layers. Stackable layering addresses two significant problems
in file-system development. First, existing services are difficult both to extend incre-
mentally and to re-use in new work. Stacking addresses this problem by constructing
sophisticated new services as astack of new and existing layers. Layerswork together
since each layer is bounded above and bel ow by the same (symmetric) interface; layer
configurationislimited only by semantic constraints. Layers can be independently de-
veloped and distributed as binary-only modulesto protect theinvestment in their devel -
opment. Incremental improvementsto existing services can be provided through new,
thin layers.

Second, evolution of filing interfaces presentsa problem to devel opment and main-
tenance of services. In some respects, evolution is often too fast, as when vendor
changes to interfaces invalidate existing third-party layers, greatly adding to their de-
velopment and maintenance costs. At the sametime, evolutionistoo limited and slow,
as when developers and especially third parties cannot provide new services because
of the constraints of old, centrally-managed interfaces. We address these problems by
providing an extensible layering interface which supports managed interface evolution
by both vendors and third parties. When interface changes are too large or are incom-
patible with existing practice, acompatibility layer can smooth over the changes. With
an extensible interface, alayer may be confronted by an operation it does not under-
stand. A standard mechanism allows layers to handle these operations by sending the
operation to alower layer for processing.

Stacking enables and simplifies several design techniques. A transport layer may
move operations between machines and allows user-level layer development. Our
stacking solution also includes a cache-coherence protocol to synchronize state across
stack layers and a lightweight layering protocol allowing the benefits of independent
development to extend even to very “thin” layers. We have constructed several layers
using our stacking facilities.

This dissertation describes both the implementation of these services and their
measurement and evaluation. We examinethe performance of the stacking framework,
cache-coherenceprotocols, and lightweight layers, concluding that stacking often adds
little or no cost to user-observed performance and minimal additional kernel overhead.
Finally, our experiences using stacking to develop and deploy several layers suggest
that new services can be provided significantly easier with stacking than with traditional
methods.

Xiii

Xiv

Acknowledgments

| first would like to thank my advisor, Jerry Popek, for
his advice and support during this research. His encour-
agement has helped take this work further than it other-
wise might have gone. | would also like to acknowledge
his contributions, both to the direction and focus of this
research and particularly to its presentation.

| have been very fortunate that this work has taken
place in the context of alarger research effort, the Ficus
project. | amindebtedto Richard Guy, David Ratner, and
Ashvin Goel for their discussionsand support throughout
this research. | would aso like to thank the other mem-
bers of the Ficus project. Chronologicaly, the project
hasincluded Ted Kim, Dieter Rothmeier, Wai Mak, Tom
Page, Yu Guang Wu, Jeff Weidner, Greg Skinner, Mi-
chial Gunter, Steven Stovall, Geoff Kuenning, John Sa-
lomone, Andrew Louie, Qian Qin, Noah Haskell, Mark
Yarvis, Alexy Rudenko, and Andy Wang. Each of these
people contributed to the project in a different way. |
would like to highlight Yu Guang Wu for his early work
on the null layer, Jeff Weidner, Ashvin Goel and Ted
Kim for implementing other layers, and Dieter Roth-
meier, Wai Mak, and David Ratner for being early users
of the new interface. | would especially like to thank
Janice Martin for a careful proofreading of the disserta-
tion (quotation placement and any remaining errors are
my responsibility). Finally, | would like to thank Alta
Stauffer for keeping Jerry’s life organized and parts of
this thesis on his plate, and Monique Bennarosh and
Janice Martin for keeping things together at UCLA.

As apart of thiswork | added a subset of the UCLA
stacking interface into the 4.4BSD operating system. |
am grateful to Kirk McKusick for this opportunity (as
well as some constructive criticism). | would aso like
to thank Jan-Simon Pendry for his loopback file-system,
upon which the 4.4BSD null layer was based.

This dissertation draws upon two papers for some
of its material, one published in ACM Transactions on
Computing [HP94], and the other in the ACM Sym-
posium on Operating Systems Principles [HP95]. In ad-
dition to those already mentioned, | am indebted to the
Greg Minshall, SOSP paper shepherd, and anonymous
reviewers of these papersfor their comments which im-

XV

proved those papers and, indirectly, this dissertation.

Systems performance analysis is greatly aided
by widely available tools and benchmarks. In this
work | have employed both kitrace, by Geoff Kuen-
ning [Kueds], and the Andrew benchmark from the
Andrew File-System project [HKM88], as modified by
John Ousterhout [Ous90].

| gratefully acknowledge the financial support of the
Advanced Research Projects Agency and the USENIX
Association toward thisresearch. Development of stack-
ing at UCLA would have been impossible without their
aid. In the course of this research | was supported
by ARPA contracts F29601-87-C-0072 and N00174-91-
C-0107, and the 1990-91 USENIX Graduate Research
Scholarship.

All trade-marked terms which appear in this docu-
ment, including Unix, SunOS, NFS, and PostScript, are
held by their respective owners.

Finally, | would like to thank Karen Schulz for her ad-
vice and encouragement during this work.

| welcome comments about this dissertation. | can be
reached by e-mail at (johnh@ficus.cs.ucla.edu).

Further information about his work can be
found on the World-Wide Web at (http://ficus-
www.cs.ucl a.edu/ficus-members/johnh/work.html).

XVi

Chapter 1

| ntroduction

Filing services are one of the most user-visible parts of
the operating system, so it is not surprising that many
new services are proposed by researchers and that a
variety of third parties are interested in providing these
solutions. Of the many innovations which have been
proposed, very few have become widely available in a
timely fashion. We believe this delay results from two
deficiencies in practices of current file-system develop-
ment. First, file systems are large and difficult to im-
plement. This problem is compounded because no good
mechanism existsto allow new servicesto build on those
which already exist. Second, file systemstoday are built
around a few fixed interfaces which fail to accommod-
ate the change and evolution inherent in operating sys-
tems development. Today’s filing interfaces vary from
system to system, and even between point releases of a
single operating system. These differencesgreatly com-
plicate and therefore discourage third-party devel opment
and adoption of filing extensions.

These problems raise barriers to the widespread de-
velopment, deployment, and maintenance of new filing
services. Thethesis of this dissertation is that alayered,
stackable structure with an extensible interface provides
amuch better methodology for file-system devel opment.
We propose construction of filing services from a num-
ber of potentially independently developed modules. By
stackable, we mean that these modules are bounded by
identical, or symmetric, interfaces above and below. By
extensible, we mean that these interfaces can be inde-
pendently changed by multiple parties, without invalid-
ating existing or future work.

To validate thisthesis we devel oped aframework sup-
porting stackable file-systems and used that framework
to construct several different filing services. This disser-
tation describes the design, implementation, and evalu-
ation of this system.

1.1 Motivation

This dissertation explores stackable layering in three
stages. First we discuss the issues and approaches in-
volved in stacking. We then explore issues in cache-
coherence and lightweight layering which follow from
this model. This section introduces each of these topics.

111 Stacking

Modularity is widely recognized as a necessary tool in
the management of large software systems. By divid-
ing software into small, easily managed pieces, modu-
larity provides advantages in organization and verifica-
tion throughout the software life-span. The hallmark of
modularity is a set of independent software components
joined by well-defined interfaces.

When modular interfaces are carefully documented
and published, they can also serve as an important tool
for compatibility and future development. By provid-
ing a common protocol between two subsystems, such
an interface allows either or both systems to be replaced
without change to the other. Improved modules can
therefore be independently developed and added as de-
sired, improving the computing environment. Interfaces
such as Posix.1 [IEE9Q0] and NFS [SGK85] are ex-
amples of interfaces widely used to provide operating
system and remotefiling services.

Because operating systems represent such a widely
used service, the development of modular systems in-
terfaces can have particularly wide impact. The best
example of standard systems interfaces is probably
Posix.1. Programs based on this interface are widely
portableand can execute on awide rangeof today’shard-
ware, from personal computersto the largest supercom-
puter.

One would like to see this same level of portability
currently present for application programs in operating

systems themselves. Large portions of an operating sys-
tem are hardware independent and should run equally
well on any computer. Such portability has been largely
achieved, as exemplified by portable operating systems
such as Unix [RT74].

What has not been achieved to the same extent is port-
ability of major kernel subsystems. Because of the exact-
ing nature of software, and because of the lack of modu-
lar interfaceswithin the operating system itself, the Unix
kernel has been slow to evolve to new software tech-
nologies. While individual vendors have adopted new
kernel technologies such as STREAMS [Rit84], new vir-
tual memory approaches, and new file-systems, such ad-
ditions have only come sowly and at considerable ex-
pense.

Micro-kernel designs are one approach to kernel
modularity. Kernels such as Mach [ABG86] and
Chorus [RAA9Q] divide the operating system into two
parts. a core of memory management, process control,
and simple inter-process communication; and a server
(or servers) supporting the remainder of the traditional
operating system, including accounting, protection,
file-system and network services, and backwards com-
patibility. For the case of Mach and Unix, as a figure
of merit, the core is on the order of 15% of the total
operating system kernel. This intra-kernel boundary
is an important structuring tool, particularly because it
offers a platform on top of which third parties can offer
avariety of services. But this approach does not provide
a total solution, as it fails to address the modularity of
the remaining 85% of the system.

File systems, a rich portion of the remaining ker-
nel, are an active area of research. Many file-system
services have been proposed, including version man-
agement, user-customizable naming, fast log-structured
storage, replication, and large-scale distributed filing.
All of these have well-devel oped prototypes, but appear-
ance in commercialy available systems has been both
dow and piecemeal.

Adoption of these new filing services has been slow
in part because file systems are large, monoalithic pieces
of code with limited internal modularity. Although re-
cent approachesto file-system modularity (such as Sun’'s
VFSinterface [K|e86]) allow easy substitution of entire
file-systems, they do little to support modularity within
file systems themselves. Asaresult, it is not easy to re-
place or enhance separate portions of the file system; for
example, keeping the physical disk management and in-
stalling a new directory layer.

Another problem with existing approaches to file-
system modularity is that they are particularly fragilein

CHAPTER 1. INTRODUCTION

the face of change, one of the goals modularity is inten-
dedtofacilitate. Evolution of thekernel to moreefficient
mechanisms, and addition of new file-systems have re-
quired frequent changes to the interface, resulting in in-
compatibility between vendors of similar operating sys-
tems and even between different releases of the “same”
operating system. Frequent change and the resulting in-
compatibilities have largely discouraged third-party in-
novation, restricting introduction of new filing services
to the primary operating system vendors alone [Web93].
This contrasts sharply with other operating system inter-
faces such as device access and graphical user interfaces,
where standard interfaces have allowed competition and
rapid devel opment of awide array of services.

The problems of re-use and change are recognized by
developers. Current approaches to file-system develop-
ment begin to address these problems, but few do so sat-
isfactorily. A common approach to filing development is
to take an existing system and begin modifying it. Dir-
ect modification achieves good code re-use but greatly
hinders change as new services become bound to the li-
censing and portability constraints of the original code.
An approach common in the operating systems research
community isto develop new services as user-level NFS
servers (for example, see Deceit [SBM90], semantic fil-
ing [GJS91], and Alex [Cat92]). Because the NFS pro-
tocol is very well specified and nearly universally avail-
able, this approach is very robust to external change,
but it offers no support for internal change. Interfaces
for new services must be supplied with new protocols
in paralel to NFS, at great expense in implementation
cost and maintenance, or with modifications to the NFS
protocol, greatly reducing portability. A final approach
commonly taken isto providea new service at the VFS-
level. A VFS can achieve some re-use, but this inter-
face provides little support to manage change. Third-
party experience developing for the VFS interface doc-
uments the burden in keeping up with inter- and intra-
vendor change [Web93].

Difficultieswith current approaches suggest that a bet-
ter solution to filing service design is needed. For inspir-
ation and potential solutionswe examine how these prob-
lems are managed in other large software systems which
allow third-party contribution.

Unix shell programming is one example of a success-
ful development environment. Individual programs are
easily connected by a flexible, standard interface, the
pipe [RT74]. Programs can be combined quickly and
easily in the shell with a simple programming language.
New programs are widely and independently devel oped
by a number of vendors. These features combine to

1.1. MOTIVATION

provide an excellent environment for rapid prototyping
and devel opment.

This approach to software modularity has also been
applied to kernel-level subsystems. The STREAMS sys-
tem is Ritchie's redesign of Unix terminal and network
processing. STREAMS modules are bounded above and
below by a syntactically identical interface, allowing
very flexible module configuration. Because this in-
terface is symmetric in this way, users are encouraged
to combine a number of small modules into protocol
stacks. Furthermore, because the interface is formally
defined these modules can be independently developed
by third partiesand combined to addressthetask at hand.
As aresult, third parties have built commercia quality
layers that integrate well with other protocol modules.
This modular approach allowing multiple, independent
groups to contribute to communications facilities is one
of the reasons Unix is attractive as a base for network-
ing and distributed systems software in engineering and
commercial use.!

Thisdissertation seeksto apply the principlesof stack-
able layering to file-system development. We envision
a situation where a user’s filing environment is com-
posed of stacks of independently developed filing lay-
ers. Like STREAMS, the interface between layers will
be symmetric to allow flexible configuration. The inter-
face must also be extensible and robust to internal and
external change. Chapter 2 exploresthese issues and re-
quirementsin more detail. Chapter 3 examines different
way's stacking can be used to address problemsuniqueto
filing. Finally, Chapters4 and 5 present and eval uate our
prototype system developed at UCLA.

1.1.2 Cachecoherence

Caching can be used to improve performancein asystem
with stackable layers just as elsewhere: commonly used
datais kept “on the side” by an upper layer to avoid re-
peating prior work. Stackablecachingisparticularly im-
portant for services such as encryption and compression
since the computation these layers perform is relatively
expensive.

In addition to caching as a performance optimization,
caching is also arequired filing service in modern oper-
ating systems. Many systems employ an integrated file-
system cache and virtual-memory system; such systems
reguire caching to implement program execution.

For these reasons caching is a required part of any
modernfiling environment. Cachingwill also beimport-

LIn fact, commercial systems such as Novell’s Netware-386 have
adopted the STREAMSS framework, presumably for similar reasons.

user

Y

\85/\

N

encryption

UFS
K
O

Figure 1.1: A sample application of the stackablelayers.
Each layer is connected by a standard interface.

ant infile systems constructed from stackablelayers. For
best results datawill be cached in the layer closest to the
user. With layering, though, auser may chooseto access
a stack through different layers at different times. For
example, administrative actions can be performed more
easily at lower stack layers. Distributed filing systems
too can produce data accesses to different stack layers
(we consider one such case in detail in Section 8.4). If
datais always cached near the point-of-access, access to
multiplelayersmay result inthe samelogical datacached
in different layers.

Data cachesin multiplelayersraise severa questions.
How can these caches be kept coordinated? If layersare
provided by different parties, how can they cooperateto
providecoherence? Consider Figure 1.1. Both layersare
likely to cache pages. However, when the same data is
cached in both the encryption and UFS layers, updates
to one cache must be coordinated with the other cache, or
reads can return stale data and multiple updates can lose
data. Some form of cache coherenceis required. These
problemsarenot issuesin amonolithicfile-systemwhere
thereis only one file system and one cache. If layersare
provided by different parties, how can they cooperateto
provide coherence?

Thus far we have presented the problem of file data
coherence in a multi-layer caching system. File-system
data is only one aspect of file-system state which re-
quires consistency guarantees. The more general prob-
lem isthat many assertions easy to makein amonolithic
system become difficult or impossible to make when

state is distributed across several layers of afile-system
stack. Several such assertions are important in file sys-
tems: file data coherence, file attribute (meta-data) co-
herence, name-lookup cache-coherence, user-level file-
locking consistency, and internal concurrency-control.
Therefore, to summarizetheissue of cache coherence:

1. File-system stacking, if feasible in practice, would
be very attractive.

2. Practical stacking often requires concurrent access
to multiple pointsin the stack.

3. Various stack layers must cache information of dif-
ferent sortsin order to provide satisfactory perform-
ance.

4. Thoseintra-layer caches must be kept coherent, or
the accesses implied in the second point above can
giveincorrect results.

5. A general framework for cache coherence is
needed, since no individual third-party layer can
solve the problem alone.

That is, cache coherenceis essential to allow stacking to
reachitsfull potential. Chapter 6 discussesthe character-
istics required of a solution to this problem. Chapters 7
and 8 present our prototype solution and evaluate its ef-
fectiveness.

1.1.3 Featherweight layering

Codereuseis on one significant motivation for stacking.
Large layers which encompass several abstractions and
services cannot easily be reused due to their weight and
inflexibility. Thus, an ideal filing environment would be
composed of stacks of several “thin” layers.

Two tensions push against the decomposition of filing
servicesinto multiplelayers. Firstisthe design effort re-
quired. Selection and definition of components requires
careful thought. There are often several different ways
to decompose a service; a poor selection can complicate
layer implementation and limit reusability.

Second, layering overhead also constrains service de-
composition. Our layering mechanism was designed
to minimize overhead, but full generality in a layering
mechanism implies a certain amount of overhead. Our
measurements suggest a 1-2% system-time overhead for
general-purpose layers (see Section 5.1.3 for details of
this evaluation).

Although a 1-2% system-time overhead is not signi-
ficant for a layer providing a new service to the user,

CHAPTER 1. INTRODUCTION

this overhead is a consideration if layering is to be used
internally to structure such services. This limitation is
unfortunate since there are several thin layers (such as
name-lookup caching, VM/file-system interaction, and
compatibility layers) that are common across a number
of filing services. These layers individually make only
minor alterationsto the interface, but they still incur the
overhead of thefull layering mechanism. Adding several
such layers to a stack would add noticeable overhead;
and several of these layers will often be added to each
layer of amulti-layer stack.? A general-purposelayering
mechanism s not suitablefor these lightweight services.

Featherweight layers are specia “lightweight” lay-
ers designed to address the problem of layer overhead.
Featherweight layers obtain performance improvements
over general layering mechanismsby restricting the cap-
abilitiesthey provide and by “piggy-backing” on the ad-
ministrative machinery of a“host” layer. Since feather-
weight layers provide only a subset of stacking function-
ality they cannot be used to implement all layered ser-
vices. Instead they provide the lightweight portions of a
stack in cooperation with afew general-purpose layers.

Chapters 9 and 10 present the design, implement-
ation, and evaluation of a featherweight layering ser-
vice. By placing a few limitations on layering func-
tionality they show that it becomes possible to create
featherweight layers with library-routine-like perform-
ancewhileretaining benefits of stackablelayering design
such as third-party development and late binding.

1.2 Related Work

Modularity in systems programming has a rich his-
tory. Our work builds upon this background, inspired
by advances in symmetric module design, general file-
system structuring, distributed shared memory proto-
cols. and some recent work on stackable filing. We next
briefly summarize related work. We cover the relation-
ship between our work and others more completely in
Chapter 11.

1.2.1 Symmetricinterfacesand stacking

Unix shell programming with pipes [RT74] is now
the widest use of a symmetric interface, for software
development and other applications [PK84]. Ritchie

2For example, vendors may configure compatibility layers onto all
stacks by default to insure backwards compatibility. Similarly, layers
implementing cache coherence would need to be configured into any
layer which might cache data.

1.3. ROAD MAP TO THE DISSERTATION

then applied these principles to kernel structure in his
STREAMS /O system [Rit84]. Suchwork hassince been
adopted in a number of versions of Unix.

The z-kernel [HP88] isanew kernel designed origin-
ally to provide customized network protocols. Using a
symmetric interface for al kernel services (“everything
isaprotocol”), great flexibility in protocol selection and
combination is provided. They employ both run-time
protocol selection and an efficient implementation to
demonstrate that layering can be performance competit-
ive with monolithic protocol implementations.

1.2.2 File-system structure

Research in the late 1960s and early 1970s modularized
operating systems, proposing a multi-layer implementa-
tion.

To provide for multiple filesystems, severa
“file-system switch” mechanisms have been de
veloped [Kle86, RKH86, KM86]. These typically
found quick use in the support of network file ac-
cess [SGK85, RFH86] and have since been applied
to the support of other file systems [Koe87]. None of
these approaches provide explicit support for stacking
or extensibility, but al provide basic modularity.

1.2.3 Stackablefiling systems

Sun Microsystems applied the vnode interface to build
two-layer file system stacks in their loopback and trans-
lucent file-systems [Hen90]. Internal to the operating
system, stacking is used to support device speciadl files.

More recently, Rosenthal [Ros90] and later Skinner
and Wong [SW93] at SunSoft have experimented with a
modified vnodeinterfaceto provide dynamic file-system
stacking. The Spring project (at Sun Laboratories) has
also developed stackable filing technology [KN934].

1.2.4 Cachecoherence

Our cache-coherence protocols build upon two areas
of prior research. First, we draw cache-coherence al-
gorithms from research in the areas of hardware mul-
tiprocessing, distributed filing, and distributed shared
memory. We review thiswork in Section 11.2. Second,
we build upon the cache-coherent stacking work of the
Spring project at Sun Laboratories [KN934].

1.2.5 Featherweight layering

Featherweight layering is inspired by the observation
that the performance of a layered system is often best
when logicaly independent layers share implement-
ation details. Others have suggested that perform-
ance of layered systems is improved by avoiding a
process-per-layer [Rit84, HP88] or by employing con-
tinuations [DBR91]. We improve file-system layering
performance by restricting layer state. We expand on
theseissuesin Section 11.3.

1.3 Road Map to the Dissertation

Thethesis of this dissertation isthat stackablefiling with
an extensible interface improves file-system develop-
ment. We begin exploring this thesis in the next chapter
by motivating the need for stackablelayering and extens-
ible interfaces. We also introduce the problem of main-
taining data coherence across layers of a stack, and we
suggest the need for very lightweight stackable layers.
The remainder of the thesis considers each of these top-
ics, discussing in turn the design, implementation, and
evaluation of stacking, cache coherence, and lightweight
layering. The dissertation concludes with an extended
discussion of related work and issues for future study.

CHAPTER 1. INTRODUCTION

Chapter 2

Stacking M odel

We have identified several problems that exist with cur-
rent approaches to file-system development, problems
that we believe stackable filing can address. In this
chapter we describe the characteristics which are desir-
able in an improved filing environment:

extensibility Filing must be robust to both internal and
external change.

stacking It must be possible to add new functionality to
existing services.

coherence Assertions about data consistency must be
possible across multiple layers.

In addition, several secondary goals place restrictions
on the final solution:

distributable Computers today are increasingly net-
worked with shared filing environments. Further-
more, microkernel operating systems may placethe
filing service in one or more server processes, each
with a different address space. Filing must work in
each of these environments.

scalability Each requirement must meet awide range of
demands. Extensibility must work equally well for
vendors, third parties, and independent devel opers.
Stacking must work both for complex services and
for small, lightweight additions. Distribution must
apply from different server processes of a micro-
kernel to multiplemachinesonaL AN to computers
cooperating across an internetwork.

ease-of-use If meeting these goals results in a system
which isdifficult to use, the ultimate goal of anim-
proved file-system-devel opment environment will
be defeated.

efficiency If these servicesimpose excessive overhead,
thenthey will not beused. The cost of servicesmust
be proportional to the service provided.

The remainder of this chapter discusses each of these
characteristics (extensibility, stacking, and coherence) in
light of these restrictions.

2.1 Extensbility

Webber characterizesthe dilemmaof third-party vendors
quite well [Web93]:

Unix kernels with a VFS architecture have
been commercially available for many years.
Sun Microsystems, for example, described
their VFS architecture in the 1986 Summer
Usenix proceedings [K1e86]. By many meas-
ures the VS concept has been quite success-
ful, but from a third-party point of view there
are two major problems:

e Few vendors have the same VFS inter-
face.

e Few vendors provide release-to-release
source or binary compatibility for VFS
modules.

We call these two problems the VFS portabil -
ity problem and the lock-step rel ease problem,
respectively. Together, they make VFS mod-
ules expensive to produce, expensive to port,
and expensiveto maintain.

To these observationswe add one additional problem:
few third parties can change and extend the interface.
We cadll this limitation the extension problem. If third
parties are to provide truly novel new services, then it

must be possible for them to add operations to the in-
terface. These new operations must be equivalent to
vendor-supplied operationsin terms of performance and
capability.

We view these problems as evidence that any file-
system interface which is successful in the long-term
must provideextensibility. We next consider evidence of
changein existing systems, waysto delay evolution, and
finally, how our secondary goalsinfluence this design.

2.1.1 Evidence of evolution

Rosenthal has examined the gradua evolution of the
SunOSfile-system interface [Ros90]. He found signific-
ant changesto theinterfacein every major operating sys-
tem release. Table 2.1 shows his comparison of changes.

Rosenthal’s study demonstratesthe frequency of evol-
ution through one version of Unix. It is aso interesting
to note that the designers of SVR4 Unix recognized the
inevitability of change and allocated space for the future
addition of 32 operations. We discuss later how space
reservation only addresses part of the problem in Sec-
tion 11.1.3.

2.1.2 Alternativesto manage change

Given the inevitability of software evolution, there are
surprisingly few ways to accommodate it in current fil-
ing interfaces. Without a formal way to manage evol-
ution, two kinds of problems quickly appear: develop-
ment without evolution, and managing change when it
does arrive.

Several approachesare possibleto avoid evolution. A
common one is to require that everyone use the same
version of software; change is prohibited by fiat. While
this approach works for small groups over short peri-
ods of time, it fails as scale and duration increase. The
longer a configuration is frozen, the greater users de-
mands for new software. As the user population grows
from tens of machinesto hundreds or thousands, the dif-
ferent goals and requirements of multiple administrative
domains mandate different software configurations.

Often, pressuresto adopt new toolsforce their use be-
fore change can be fully accommodated. If existing in-
terfaces must remain unchanged, the only aternative is
to create an additional, parallel interface. While this ap-
proach allows support of new services, it also complic-
ates the environment. Such work needlessly duplicates
existing efforts as similar goals are accomplished in dif-
ferent ways. In the long run, this ad hoc approach to

CHAPTER 2. STACKING MODEL

evolution will likely cause difficulties in maintenance
and further development.

Eventually, change must occur. Barriers to evolu-
tion imply that, in practice, widely used operating sys-
tem modificationsderive only from afew major systems-
software vendors and research ingtitutes in occasional,
perhaps annual, systems software releases. While this
policy of change delays problemsresulting from change
to an occasional event, eventually these difficulties must
be faced.

Because the authority of operating system change is
vested largely in the systems software vendor, potential
for third-party enhancement is greatly restricted. Un-
availability of source code, incompatibility with other
third-party changes and even vendor-supplied updates
together discourage third-party innovation. Finaly, the
methods used by manufacturersto improve services are
often not available to third parties. As a result, third-
party modifications suffer delay, increased complexity,
and performance penalties compared to vendor-supplied
improvements, further handicapping independent devel-
opment.

2.1.3 Design constraints

Third-party support for software evolution is critical to
the timely development of new capabilities. The filing
interface must be able to evolve as needs and capabilit-
ies change. Our secondary goalsinfluencethisdesignin
several ways.

It must be easy to provide extensibility in adistributed
file-system aswell asto layerson asingle host. Extens-
ibility requires that each operation be formally defined.
Support for extensibility in distributed filing requiresthat
this definition must include information sufficient to al-
low an RPC protocol to reproducethe operation on adif-
ferent machine or in a different address space.

Extensibility must be scalablein several ways. It must
scale in those allowed to initiate change. The process of
evolution cannot be controlled by any central authority.
Multiple organizations and individuals must be able to
contribute, and their extensions must co-exist in asingle
system. Scalahility also implies that there be no fixed
limit on the number of extensions provided.

Ease-of -useimpliesthat changescan occur increment-
ally and independently, and that they must not invalidate
existing or future services. Software must gracefully ad-
apt to its environment, both as a result of the presence
of unexpected, new extensions, and the lack of expec-
ted support. Ideally, anew software module could be ad-
ded without source code changesto it or any other mod-

2.2. STACKING 9

release vnodefields vnodesize operation count

SunOS 2.0 (1985) 11 fields 32 bytes 24 operations

SunOS 4.0 (1988) 14 40 29

SunOS 4.1 (1990) 14 40 30

SVR4 without fill (1989) 11 40 37

SVR4 with fill (1989) 19 72 69

Rosenthal’s prototype (1990) 6 20 39

Table 2.1: A dlightly expanded version of Rosenthal’s evaluation of vnode interface evolution in SunOS (derived
from [Ros90]). Fill indicates space left in SVR4 for future expansion; Rosenthal’s prototype is discussed in Sec-

tion 11.6.1.

ule. Finally, ease-of-userequirementsfor stacking imply
that layers are configured at run-time. We discuss these
requirements more in the next section, but for the inter-
facethey imply that thecaller and callee must be matched
at run-time; at least thislevel of dynamic bindingis re-
quired.

Since file-system operations are often in the tight loop
of computation, efficiency is of primary concern.

2.2 Stacking

File systems frequently implement very similar abstrac-
tions. Nearly all file systems ultimately are grounded
in disk access and file and directory allocation, for ex-
ample. This observation motivates file-system stacking.
If acomplex filing service can be decomposed into sev-
era layers, then potentially each layer can be devel oped
independently. Furthermore, in the future, layers can be
individually upgraded as need or desire arises. Finally, a
set of filing layers serve as building blocks for the con-
struction of future services. Together, these examples
show how stacking can reduce the cost of file-system de-
velopment.

Anexampleof layeredfilingisseeninFigure2.1. The
operating system vendor provided a standard file storage
layer (the Unix file-system, or UFS). On the left stack a
user has configured a compression layer over this basic
file service.

A key characteristic of a stackable layer isthat it pos-
sess a symmetric interface; it should export an inter-
facetoits clients which is syntactically the same as that
which it depends upon from layers it stacks over. Lay-
ers bounded by a symmetric interface can be inserted
between any existing stack layers (subject to semantic
congtraints, of course). For example, in the right-hand
stack of Figure 2.1, the user has “pulled apart” the com-
pression layer and UFS and inserted an encryption layer
for more secure data storage.

user
user *
* QS/\
QS/\ \

N

compression

compression

encryption

UFS

=

UFS
K
O

Figure 2.1: Two file-system stacks providing encryption
and compression.

10

2.2.1 Design constraints

Again, our secondary constraints of distribution, scalab-
ility, ease-of-use, and efficiency all have implicationson
the design of stacking.

Distributed stacking requiresthat layers can bridge ad-
dress space, protection domain, and machineboundaries.
A convenient way to cross protection domainsiswith a
transport layer which conceptually has endsin each do-
main and a transport protocol between. It may be ad-
vantageous to have multiple transport layers, each cus-
tomized to serve a particular need (for example, trans-
port between processes on a single machine compared to
acrossaLAN or WAN).

Layer scalability implies that the cost of each layer is
proportional to its capabilities. Very “thin” layersshould
be possible with minimal overhead, while “thick” layers
may require additional mechanism. To scale in numbers
of layers, per-layer memory requirements must be reas-
onable.

Layer ease-of-useisimproved by run-timelayer con-
figuration. It should be possible for a user to easily cre-
ate new layer instances as needed. In addition, dynamic
loading of new layers should be possible.

Finally, the performance cost of layering must be min-
imized. There are several aspects to layering cost (de-
scribed later in Section 9.2); the costs of providing layer
abstractionsand the cost of using those abstractions must
be proportional to the services provided.

2.2.2 Stacking and extensibility

Asdescribed thusfar, aconflict between stacking and ex-
tensibility is apparent. Stacking is based on the premise
that each layer isbounded (above and bel ow) by the same
interface. Extensibility impliesthat layer users caninde-
pendently change and evolve the interface.

Extensibility requiresthat layers be robust to change.
In a non-layered environment, this means that a layer
must respond to unknown operations with an error mes-
sage. For example, in Figure 2.2a the UFS must re-
ject vop_set _ext ent _si ze operation (returning an er-
ror code) which would be handled by an extent-based
file-system (in Figure 2.2b). Any system with extensibil-
ity must specify some (possibly configurable) default ac-
tion for unknown operations.

In alayered environment intermediate layers often act
as“filters’, providing asmall service by changing afew
operations, but relying on lower layers to provide most
aspectsof storage. When presented with an unknown op-
eration, intermediate layers therefore bypass that oper-

CHAPTER 2. STACKING MODEL

ation to a lower layer for processing. Figure 2.2c illus-
trates bypassing vop_set _ext ent _si ze.

2.2.3 Generalized stacking

Thelinear file-system stacks presented thus far arereally
a special case of genera layering. In general, trees of
layers are possible, a single layer can stack-upon or be
stacked-upon by multiple other layers.

We distinguish between two kinds of “forked” stack-
ing. Fan-out occurswhen alayer stacks* outwards’ over
multiple layers. Figure 2.3 illustrates how fan-out might
be used to implement disk mirroring.

Fan-in allows multiple clients access to a particular
layer. Fan-in is useful when when different clients of a
service desire different views of the data. For example,
in Figure 2.4 the UFS has fan-in. Section 3.3 discusses
advantages and uses of fan-in.

2.2.4 Stacking and concurrency

A complete definition of stacking must consider the ef-
fects of stacking on other processes. When stack config-
uration is changed by one process, how does this affect
other processesthat are actively using the stack? On one
hand, perhapsall processes should always see exactly the
same stack configuration. In this case, pushing a layer
on a stack should interpose that layer between the prior
layer and al of its clients. On the other hand, perhaps
clients should get what they asked for when they asked
for it. New clientswill, of course, see the new layer, but
existing clients should continue to see the configuration
they’ ve been seeing.

Different choices on thisissue make sense in different
contexts. If a“lock-out” layer were placed on a stack to
deny access, it might berequired to deny accessto all cli-
ents (current and future), not just future clients. On the
other hand, a client in the midst of reading an encrypted
file probably does not want to see decrypted data in the
middle of the data stream as some other client changes
the stack.

We discuss aternatives to this issue in more detall
later.

2.3 Coherence

In a monolithic file-system the file-system designer has
complete control over execution. Locking and caching
arefeasiblebecausethe designer has control over all data
access and execution paths, and can insure that deadlock

2.3. COHERENCE 11

user
* N\
\
\C_)S/\\
user user \ |
"y Yy !
encryption
o8 N e
Ny Ny ¢
UFS extent—fs extent—fs
(& (& (&
(a) set_extent_size rejected (b) set_extent_size accepted (c) set_extent_size bypassed

Figure 2.2: Treatment of vop_set _ext ent _si ze by different layers.

user

Y

\98/\

N

mirror—fs
UFS UFS
L \
O [

Figure 2.3: A tree of file-system layersto provide disk mirroring. The mirror-fslayer exhibits fan-out.

12

CHAPTER 2. STACKING MODEL

user
&\
user \
* encryption
\88/\ /
\ NFS (client)
encryption —
NFS (server)
UFS

Figure 2.4: A tree of file-system layers exhibiting fan-in.

and access to old data are not possible. In short, the de-
signer’s complete control over the situation allows him
or her to make assertions about file-system state.

The designer of a file-system layer loses this ability.
The layer may be combined at run-time with services
from other developers, each with their own views of
locking and caching. Late layer binding and distribu-
tion of functionality among layersfrom multiple vendors
makesit extremely difficult for the designer of any indi-
vidual layer to make assertions about the global state of
“filing”. Unfortunately, such assertions are required to
insure freedom from deadlock and coherence of cached
data.

To address the problem of state assertionsin a multi-
vendor, multi-layer system, ageneral coherencemechan-
ismisrequired. Animportant specia case of this mech-
anism is cache coherence: a protocol to keep copies of
datain different layers up-to-date.

2.3.1 Design constraints

The constraints of distribution, scalability, ease-of-use,
and efficiency affect coherence.

A number of protocolsfor distributed coherenceexist,
yet the wide variety of performance constraints present
from sharing on a single machine to across the Internet
make it unlikely that any single solution can meet all
needs. We discuss how this observation influences cache

coherencein stacking in Section 6.5.

Scaling is of concern in several different dimensions
for coherence. Coherence solutions must adapt to sup-
port alarge number of objects of several different types.
In addition, coherence protocols must adapt to meet fu-
ture needs as well as current needs.

Cache-coherence protocols in distributed shared
memory systems have become quite sophisticated, in-
volving compiler and programmer support and sporting
several policiesfor different data objects. Stackable fil-
ing is not frequently employed to serve as primary store
for large multiprocessor compute tasks, so a simpler,
easier-to-use solution is required for coherencein stack-
ablefiling. Furthermore, such complex solutions would
quickly overwhelm what should be relatively simple
filing layers such as encryption. Such a result would
defeat our goa of improving the filing development
environment.

Finally, the services provided by coherence must be
proportional to their overheads.

24 Mode Summary

This chapter presented the three distinguishing features
of stackable layering: stacking, extensibility, and coher-
ence. In the broadest sense these characteristics have
been goals of software engineersfor many years: stack-
ing is “just” modularity; extensibility, change manage-

2.4. MODEL SUMMARY

ment; and coherence, successful design. But truly suc-
cessful application of these principlesto file-system lay-
ering add new dimensions of distribution, scaling, ease-
of-use, and efficiency. This chapter explored how these
constraints affect a solution. Following chapterswill ex-
plore how stacking can be used to simplify filing devel-
opment and the details of one system implementing these
characteristics.

13

14

CHAPTER 2. STACKING MODEL

Chapter 3

Stacking Techniques

Thissection examinesin detail anumber of differentfile-
system devel opment techniques enabled or ssimplified by
stackable layering.

3.1 Layer Composition

One goal of layered file-system design is the construc-
tion of complex filing services from anumber of smple,
independently developed layers. If file systemsareto be
constructed from multiple layers, one must decide how
services should be decomposed to make individual com-
ponents most reusable. Our experience shows that lay-
ers are most easily reusable and composable when each
encompassesasingle abstraction. Thisexperienceparal-
lelsthose encountered in designing composabl e network
protocolsin the z-kernel [HPA89] and tool development
with the Unix shells [PK84].

As an example of this problem in the context of file-
system layering, consider the stack presented in Fig-
ure 3.1. A compression layer is stacked over a stand-
ard Unixfile-system (UFS); the UFS handlesfile services
while the compression layer periodically compresses
rarely used files.

A compression service provided above the Unix dir-
ectory abstraction has difficulty efficiently handling files
with multiple names (hard links).! This is because the
UFS was not designed as a stackable layer; it encom-
passes several separate abstractions. Examiningthe UFS
in more detail, we see at least three basic abstractions. a
disk partition, arbitrary length files referenced by fixed
names (inode-level access), and a hierarchical directory
service. Instead of a single layer, the “UFS service”
should be composed of a stack of directory, file, and disk

L Consider, for example, alayer which detects compressed files by
their extension. When thefileisuncompressed, thefilewill berenamed
toindicateitsnew status. Itisdifficult to renameall namesof afilewith
multiple links because some names are unknown.

15

user

|

\(_)S/\

N

compression

UFS
|
D

Figure 3.1: A compression service stacked over a Unix
file-system.

layers. In this architecture the compression layer could
be configured directly above the file layer. Multiply-
named files would no longer be a problem because mul-
tiple names would be provided by a higher-level layer.
One could also imagine re-using the directory service
over other low-level storageimplementations. Stacks of
thistype are show in Figure 3.2.

3.2 Layer Substitution

Figure 3.2 also demonstrates|ayer substitution. Because
the log-structured file-system and the UFS are semantic-
ally similar, the compression layer can stack equally well
over either. Substitution of one for the other is possible,
allowing selection of low-level storage to be independ-
ent of higher-level services. This ability to have “plug-
compatible”’ layers not only supports higher-level ser-
vices across a variety of vendor-customized storage fa-

16

user user
\ \
0s 0s

directory directory

compression compression

log-structured

ufs files >
files

disk device disk device

Figure 3.2: A compression layer configured with amod-
ular physical storage service. Each stack aso uses a dif-
ferent file storage layer (UFS and log structured layout).

CHAPTER 3. STACKING TECHNIQUES

USer packup
| program

oy

(ON)

compression

N

UFS

Figure 3.3; Multiple-layer access through and beneath
a compression layer. Access through the compression
layer provides users transparently uncompressed data.
Fan-in alows a backup program to directly access the
compressed version.

cilities, but it also supports the evolution and replace-
ment of the lower layers as desired.

3.3 Multi-Layer Access

Modularity, re-use, and third-party involvement advoc-
ate the construction of filing services from a number of
layers. If these layers are stackable (each exporting the
same interface), then fan-in allows a layer to export its
services not only to a single layer above, but aso to a
user or other layers. From the perspective of the stack
as awhole, this sort of multi-layer access allows a stack
to export several potentially different views of file data.

Theability to export multiple views of the same datais
useful in several different ways. The most common use
isto allow occasional accessto lower stack layersfor ad-
ministrative purposes such asfile backup and debugging.
For example, in Figure 3.3, normal user access proceeds
through a compression layer, allowing data on disk to be
stored in acompressed format and transparently uncom-
pressed on demand. With multi-layer access a backup
program can bypass the compression layer and directly
transfer the compressed data to the backup media, sav-
ing both time and backup storage.

Multi-layer access can be directly employed by users.
Union-mountsin Plan 9 [PPT91] and 4.4BSD [McK95]
for example, createasingle“unified” directory from sev-
eral underlying directories, yet users may need accessto
theunderlying directoriesto install new software. A user

3.5. COMPATIBILITY WITH LAYERS

of thecompression servicein Figure 3.3 also may wish to
directly access the compressed datawhen making a copy
of thefile.

Finally, sophisticated stack configurations often em-
ploy multi-layer access internally. Multi-layer access
occurs in Ficus; we describe this case in detail in Sec-
tion 8.4. Similarly, multi-layer access can be employed
with encryption layers to preserve data security over a
network as shown earlier in Figure 2.4.

3.4 Cooperating Layers

Layered design encourages the separation of file sys-
temsinto small, reusablelayers. Sometimesservicesthat
could be reusable occur in the middle of an otherwise
special-purpose file-system. For example, a distributed
file-system may consist of a client and server portion,
with a remote access service in-between. One can en-
vision severa possible distributed file-systems offering
simple stateless service, exact Unix semantics, or even
filereplication. Each might build its particular semantics
on top of an “RPC” remote access service, but if re-
moteaccessishuriedin theinternalsof each specificfile-
system, it will be unavailable for reuse.

Cases such as these call for cooperating layers. A
“semantics-free” remote access service is provided as a
reusable layer, and the remainder is split into two sep-
arate, cooperating layers. When the file-system stack is
composed, the reusable layer is placed between the oth-
ers. Because the reusable portion is encapsulated as a
separate layer, it is available for use in other stacks. For
example, a new secure remote filing service could be
built by configuring encryption/decryptionlayersaround
the basic transport service.

An example of the use of cooperating layers in the
Ficus replicated file-system [GHM90] is shown in Fig-
ure3.4. Thelogical and physical layersof the Ficusstack
correspond roughly to aclient and server of areplicated
service. A remote access layer is placed between them
when necessary.

3.5 Compatibility With Layers

The flexibility stacking provides promotes rapid inter-
faceand layer evolution. Unfortunately, rapid change of -
ten rapidly resultsin precisely theincompatibility thisef-
fort isintended to address. Interface change and incom-
patibility today often prevent the use of existingfiling ab-
stractions[Web93]. A goal of our designisto provideap-

17

user
\Aolté\A
logical
S

remote
access

physical p:‘ysical

Y
UFS UItS

Figure 3.4: Cooperating Ficus layers (logical and phys-
ical) in the 1992 Ficus stack. Fan-out allows the logical
layer to identify severa replicas, while a remote access
layer isinserted between cooperating Ficus layers as ne-
cessary.

proaches to cope with interface change in a binary-only
environment.

File-system interface evolution takes a number of
forms. Third parties wish to extend interfacesto provide
new services. Operating system vendors must change
interfaces to evolve the operating system, but usually
also wish to maintain backwards compatibility. Stack-
ablelayering providesanumber of approachesto address
the problems of interface evolution.

Extensibility of thefile-systeminterfaceisthe primary
tool to address compatibility. Any party can add opera-
tions to the interface; such additions need not invalidat-
ing existing services. Third-party development is facil-
itated, gradual operating system evol ution becomes pos-
sible, and the useful lifetime of afiling layer is greatly
increased, protecting the investment in its construction.

Layer substitution (see Section 3.2) is another ap-
proach to address simple incompatibilities. Substitution
of semantically similar layers allows easy adaption to
differences in environment. For example, a low-level
storage format tied to particular hardware can be re-
placed by an alternate base layer on other machines.

Resolution of more significant problems may employ
a compatibility layer. If two layers have similar but not

18

identical viewsof the semantics of their shared interface,
a thin layer can easily be constructed to map between
incompatibilities. This facility could be used by third
parties to map a single service to several similar plat-
forms, or by an operating system vendor to provide back-
wards compatibility after significant changes.

A still more significant barrier is posed by different
operating systems. Although direct portability of layers
between operating systems with radically different sys-
tem services and operation sets is difficult, limited ac-
cess to remote services may be possible. Transport lay-
ers can bridge machine and operating system boundar-
ies, extending many of the benefits of stackable layer-
ing to a non-stacking computing environment. NFS can
be thought of as awidely used transport layer, available
on platforms ranging from personal computersto main-
frames. Although standard NFS provides only core fil-
ing services, imparts restrictions, and is not extensible,
itisstill quite useful in thislimited role. Section 5.3 de-
scribes how this approach is used to make Ficus replica-
tion available on PCs.

3.6 User-Level Development

One advantage of micro-kernel design is the ability to
move large portions of the operating system outside of
the kernel. Stackable layering fits naturally with this
approach. Each layer can be thought of as a server,
and operations are smply RPC messages between serv-
ers. In fact, new layer development usually takes this
form at UCLA (Figure 3.5). A transport layer (such as
NFS) serves asthe RPC interface, moving all operations
from the kernel to a user-level file-system server. An-
other transport service (the “u-to-k layer”) allows user-
level calls on vnodes that exist inside the kernel. With
this framework layers may be developed and executed
as user code. Although inter-address space RPC has real
cost, caching may providereasonableperformancefor an
out-of-kernel file-system [SS90] in some cases, particu-
larly if other characteristics of thefiling service havein-
herently high latency (for example, hierarchical storage
management).

Nevertheless, many filing serviceswill find the cost of
frequent RPCs overly expensive. Stackable layering of-
fersvaluableflexibility in this case. Because file-system
layers each interact only through the layer interface, the
transport layers can be removed from this configuration
without affecting alayer’simplementation. Anappropri-
ately constructed layer can then run in the kernel, avoid-
ing all RPC overhead. Layers can be moved in and out

CHAPTER 3. STACKING TECHNIQUES

—

/

/
p (server)

user | |development
| layer
| system
* calls l
user level |
------------------------ OS"------------------ . utok
kernel level |
/
NFS /
(client) lower
/nfs layer

— -~ protocol

Figure 3.5: User-level layer development via transport
layers.

of the kernel (or between different user-level servers) as
usage requires. By separating the concepts of modular-
ity from address space protection, stackablelayering per-
mitsthe advantagesof micro-kernel developmentandthe
efficiency of an integrated execution environment.

3.7 Interposition

Some stacking implementations support interposition;
layers added to the top-of-stack are used not only for fu-
ture operations on the stack, but are interposed between
existing users of the stack and the old stack-top. This
capability to alter existing clients can be used effectively
in several ways.

One example of the use of interposition is illustrated
by the 1992 Ficus stack. Before the selection layer
was added, the logical layer handled replica failure and
switch-over. When areplica failure occured, we would
like to interpose “redirection vnode” on the stack-top
to transparently redirect existing clients of that vnode.2
This configuration can be seen in Figure 3.6. (This ap-
proach is now accomplished more cleanly in the selec-
tion layer.)

Interpositionisuseful when operationsmust happen at

2The UCLA stackable interface does not support interposition, so
weemulated it inthis case by altering the operations vector of the vnode
for the failed replica. This approach to emulation works well when
alayer dtersits own behavior but is not available when a third-party
layer isinvolved.

3.7. INTERPOSITION

user
(0N
NN
L redirection
logical [logical
|
(failed)
Y
physical physical
UFS UFS

Figure 3.6: Interposition in the 1992 Ficus stack.

run-time and be seen by all existing users. Another ex-
ample of thiswould be dynamic addition and removal of
ameasurement layer.

A final example of the use of interposition (sugges-
ted by Rosenthal [Ros90] and Skinner [SW93]) isfor at-
tachment of new file-systems into the namespace. Op-
erations directed at the interposed-upon layer are reflec-
ted up to the interposing layer. When a file system is
mounted (attached to the namespace) in Unix, actionsto
the mounted-on directory must be reflected to the root of
the new file-system. (Similarly, the root of the new file-
system is also interposed upon to handle lookups on its
parent directory.)

19

20

CHAPTER 3. STACKING TECHNIQUES

Chapter 4

UCLA Stacking Implementation

The UCLA stackable layers interface and its environ-
ment are the results of our efforts to tailor file-system
development to the stackable model. Sun’s vnode inter-
face is extended to provide extensibility, stacking, and
address-space independence. We describe this imple-
mentation here, beginning with a summary of the vnode
interface and then examining important differences in
our stackable interface.

4.1 Existing File-System Interfaces

Sun’svnodeinterfaceis agood example of several “file-
system switches’ developed for the Unix operating sys-
tem [Kle86, RKHB86]. All havethe samegoal, to support
multiple file-system types in the same operating system.
The vnode interface has been quite successful in thisre-
spect, providing dozensof different filing servicesin sev-
eral versions of Unix.

Thevnodeinterfaceis amethod of abstracting the de-
tails of afile-system implementation from the majority
of the kernel. The kernel views file access through two
abstract data types. A vnode identifies individual files.
A small set of file types is supported, including regular
files, which provide an uninterpreted array of bytes for
user data, and directorieswhich list other files. Director-
iesincludereferencesto other directories, forming ahier-
archy of files. For implementation reasons, the directory
portion of thishierarchy istypically limited to astrict tree
structure.

The other mgjor data structure is the vfs, representing
groups of files. For configuration purposes, sets of files
are grouped into subtrees (traditionally referred to asfile
systems or disk partitions), each corresponding to one
vfs. Subtrees are added to the file-system namespace by
mounting.

Mounting is the process of adding new collections of
files into the global file-system namespace. Figure 4.1

21

7/ \
//usr vmunix
2 dev AN
ya

—_—— — — —

Figure 4.1: A namespace composed of two subtrees.

shows two subtrees. the root subtree, and another at-
tached under / usr. Once a subtree is mounted, name
tranglation proceedsautomatically across subtree bound-
aries, presenting the user with an apparently seamless
namespace.

All files within a subtree typically have similar char-
acteristics. Traditional Unix disk partitions correspond
one-to-one with subtrees. When NFS is employed, each
collection of files from a remote machineis assigned a
corresponding subtree on the local machine. Each sub-
treeis allowed a completely separate implementation.

Data encapsulation requires that these abstract data
types for files and subtrees be manipulated only by are-
stricted set of operations. The operations supported by
vnodes, the abstract data type for “files’, vary accord-
ing to implementation (see [KIe86] and [KM86] for se-
mantics of typical operations).

To alow this generic treatment of vnodes, binding of
desired function to correct implementation isdelayed un-
til kernel initialization. Thisisimplemented by associat-
ing with each vnode type an operations vector identify-

22

ing the correct implementation of each operation for that
vnode type. Operations can then be invoked on a given
vnode by looking up the correct operation in this vector
(thismechanism is analogousto typical implementations
of C++ virtual class method invocation).

Limited file-system stacking is possible with the
standard vnode interface using the mount mechanism.
Sun Microsystems NFS [SGK85], loopback, and trans-
lucent [Hen90] file-systems take this approach. Inform-
ation associated with the mount command identifies the
existing stack layer and where the new layer should be
attached into the filing name space.

4.2 Extensbility in the UCLA
Interface

Accommodation of interface evolutionisacritical prob-
lem with existing interfaces. Incompatible change and
the lock-step release problem [Web93] are serious con-
cerns of developerstoday. The ability to add to the set
of filing services without disrupting existing practicesis
arequirement of diverse third-party filing development
and would greatly ease vendor evolution of existing sys-
tems.

The vnode interface allows that the association of an
operation with its implementation be delayed until run-
time by fixing theformal definition of all permissible op-
erationsbeforekernel compilation. Thisconvention pro-
hibits the addition of new operations at kernel link time
or during execution, since file systems have no method
of insuring interface compatibility after change.

The UCLA interface addressesthisproblem of extens-
ibility by maintaining al interface definition information
until execution begins, and then dynamically construct-
ing the interface. Each file-system providesalist of all
the operations it supports. At kernd initiaization, the
union of these operationsis taken, yielding the list of all
operations supported by this kernel. This set of oper-
ations is then used to define the global operations vec-
tor dynamically, adapting it to arbitrary additions.! Vec-
tors customi zed to each file-system are then constructed,
caching information sufficient to permit very rapid oper-
ation invocation. During operation these vectors select
the correct implementation of each operationfor agiven
vnode. Thus, each file-system may include new opera-

LFor simplicity, we ignore here the problem of adding new opera-
tions at run-time. This “fully dynamic” addition of operations can be
supported with traditional approaches to run-time extensions. Either
operation vectors can reserve additional space for run-time operations
a configuration time, or vectors can be reallocated while “in-use”.

CHAPTER 4. UCLA STACKING IMPLEMENTATION

tions, and new file-systems can be added to akernel with
a simple reconfiguration.

New operations may be added by any layer. Because
the interface does not define a fixed set of operations, a
new layer must expect “unsupported” operationsand ac-
commodate them consistently. The UCLA interface re-
quires a default routinewhich will beinvoked for all op-
erations not otherwise provided by a file system. File
systems may simply return an “unsupported operation”
error code, but we expect most layers to pass unknown
operationsto a lower layer for processing.

The new structure of the operations vector also re-
quires a new method of operation invocation. The call-
ing sequence for new operations replaces the static off-
set into the operations vector of the old interface with a
dynamically computed new offset. These changes have
very little performance impact, an important considera-
tion for a service that will be as frequently employed as
an inter-layer interface. Section 5.1 discusses perform-
ance of stackable layering in detail.

4.3 Stack Creation

Thissection discusseshow stacksareformed. Inthepro-
totype interface, stacks are configured at the file-system
granularity, and constructed as required on a file-by-file
basis.

4.3.1 Stack configuration

Section 4.1 described how a Unix file-system is built
from anumber of individual subtrees by mounting. Sub-
trees are the basic unit of file-system configuration; each
is either mounted making all its files accessible, or un-
mounted and unavailable. We employ this same mech-
anism for layer construction.

Fundamentally, the Unix mount mechanism has two
purposes. it createsanew “ subtree object” of the reques-
ted type, and it attaches this object into the file-system
name-space for later use. Frequently, creation of sub-
trees uses other objectsin thefile system. An exampleof
this is shown in Figure 4.2 where anew UFS is instan-
tiated from a disk device (/1 ayer/ ufs/crypt.raw
from/ dev/ sdOg).

Configuration of layers requires the same basic steps
of layer creation and naming, so we employ the same
mount mechanism for layer construction.? Layers are

2 Although mount is typically used today to provide “expensive’
services, the mechanism is not inherently costly. Mount constructs an
object and gives it aname; when object initialization isinexpensive, so

4.3. STACK CREATION

user

Figure 4.2: Instantiating a UFS with the Unix
mount mechanism. The new layer is instantiated
a /layer/ufs/crypt.raw from a disk device
/ dev/ sd0Og.

built at the subtree granularity, a mount command cre-
ating each layer of a stack. Typically, stacks are built
bottom up. After alayer is mounted to a name, the next
higher layer’smount command usesthat nameto identify
its “lower-layer neighbor” in initialization. Figure 4.3
continues the previous example by stacking an encryp-
tion layer over the UFS. In this figure, an encryption
layer iscreated withanew name(/ usr / dat a) after spe-
cifyingthelower layer (/ | ayer/ uf s/ crypt. raw). Al-
ternatively, if no new name is necessary or desired, the
new layer can be mounted to the same placein the name-
space.? Stacks with fan-out typically require that each
lower layer be named when constructed.

Stack construction does not necessarily proceed from
the bottom up. Sophisticated file-systems may create
lower layers on demand. The Ficus distributed file-
system takes this approach in its use of volumes. Each
volume is a subtree storing related files. To insure that
all sites maintain a consistent view about the location of
thethousandsof volumesin alarge-scaledistributed sys-
tem, volume mount information is maintained on disk at
the mount location. When a volume mount point is en-
countered during path name trand ation, the correspond-
ing volume (and lower stack layers) isautomatically loc-
ated and mounted.

is the corresponding mount.

3Mounts to the same name are currently possible only in 4.4BSD-
derived systems. If each layer is separately named, standard access
control mechanisms can be used to mediate access to lower layers.

23

user
| /
0s
\ﬁw ufs
encryption
crypt.raw
UFS I\
encrypt / \

I layer / UFs\\
= Lo
Figure 4.3 Instantiating an encryption layer
over an exiting UFS. The encryption layer

/usr/data is instantiated form an exising UFS
layer /1 ayer/uf s/ crypt.raw.

4.3.2 Filelevel stacking

While stacks are configured at the subtree level, most
user actions take place on individua files. Files are rep-
resented by vnodes, with one vhode per layer.

When a user opens a new file in a stack, a vnode is
constructed to represent each layer of the stack. User ac-
tionsbegin in the top stack layer and are then forwarded
down the stack asrequired. If an action requirescreation
of anew vnode (such as referencing a new file), then as
the action proceeds down the stack, each layer will build
theappropriatevnodeand returnitsreferenceto thelayer
above. The higher layer will then store thisreferencein
the privatedata of the vnodeit constructs. Should alayer
employ fan-out, each of itsvnodeswill reference severa
lower-level vnodes similarly.

In Figure 4.4, the file stack of vnodesis shown paral-
leling the stack of file-system layers. If thisfilewere cre-
ated (for example, by vop_cr eat e), the operation would
proceed down the stack to the UFS layer, which would
construct vnode ul. As the operation returns to the en-
cryption layer, it would build and return vnode el to the
user.

Since vnode references are used both to bind layers
and to access files from the rest of the kernel, no special
provision need be made to perform operations between
layers. The same operations used by the general kernel
can be used between layers; layerstreat all incoming op-
erationsidentically. In Figure 4.4 the reference binding

24

user user
Y Y
@%‘\ oS
encryption A
UFS A\

=
Figure 4.4: File-level stacking.

theuser to vnode el isthe same asthat joining vnodes el
and ul.

Although the current implementation does not ex-
plicitly support stack configuration at a per-file gran-
ularity, there is nothing in the model which prohibits
finer configuration control. To divorce UCLA stacking
from the mount-model of configuration, a“typing” layer
would identify each file's configuration and then con-
struct the corresponding vnode stack when thefileis ac-
cessed. Kim’s object-oriented filing system (under de-
velopment at UCLA) represents approach to per-filetyp-
ing [Kim95].

4.3.3 Stack data caching

When the same data is cached in different stack lay-
ers, cache incoherence becomes possible. UCLA stack-
ing employs a cache-coherence protocol described in
Chapters6 and 7.

4.4 Stacking and Extensibility

One of the most powerful features of a stackable inter-
face is that layers can be stacked together, each adding
functionality tothewhole. Oftenlayersinthemiddleof a
stack will modify only afew operations, passing most to
the next lower layer unchanged. For example, although
an encryption layer would encrypt and decrypt al data
accessed by read and write requests, it may not need to
modify operationsfor directory manipulation. Since the

CHAPTER 4. UCLA STACKING IMPLEMENTATION

inter-layer interfaceis extensible and therefore new oper-
ations may always be added, an intermediate layer must
be prepared to forward arbitrary, new operations.

One way to pass operations to a lower layer isto im-
plement, for each operation, a routine that explicitly in-
vokes the same operation in the next lower layer. This
approach would fail to adapt automatically to the addi-
tion of new operations, requiring modification of all ex-
isting layers when any layer adds a new operation. The
creation of new layers and new operationswould be dis-
couraged, and the use of unmodified third-party layersin
the middle of new stacks would be impossible.

What is needed is a single bypass routine which for-
wards new operationsto alower level. Default routines
(discussed in Section 4.2) provide the capability to have
a generic routine intercept unknown operations, but the
standard vnodeinterface provides no way to processthis
operation in ageneral manner. To handle multiple oper-
ations, a single routine must be able to handle the vari-
ety of arguments used by different operations. 1t must
also be possible to identify the operation taking place,
and to map any vnode arguments to their lower level
counterparts.*

Neither of these characteristics are possible with ex-
isting interfaces where operations are implemented as
standard function calls. And, of course, support for these
characteristics must have absolutely minimal perform-
ance impact.

The UCLA interface accommodates these character-
istics by explicitly managing operations' arguments as
collections. In addition, meta-data is associated with
each collection, providing the operation identity, argu-
ment types, and other pertinent information. Together,
thisexplicit management of operationinvocationsallows
argumentsto be manipulated in a generic fashion and ef-
ficiently forwarded between layers, usually with pointer
manipulation.

These characteristics makeit possible for asimple by-
pass routine to forward all operations to a lower layer
in the UCLA interface. By convention, we expect most
file-system layersto support such abypassroutine. More
importantly, these changesto the interface have minimal
impact on performance. For example, passing meta-data
requires only one additional argument to each operation.
See Section 5.1 for adetailed analysis of performance.

Appendix A.1 shows a C-based implementation of
vop_cr eat e with both the Sun- and UCLA-vnodeinter-

4Vnode arguments change as a call proceeds down and then back
up the stack, much as protocol headers are stripped off as network mes-
sages are processed. No other argument processing is required in order
to bypass an operation between two layers in the same address space.

4.6. INTER-MACHINE OPERATION

faces. Appendix A.3 shows a bypass routine.

45 VFS Stacking and Extensibility

Thusfar we havefocused onthevnodeinterface and how
it can be modified to support stacking and extensibility.
As the vnode interface implements the file abstraction,
the VFSinterface providesan abstractionfor file systems
and layers. The VFS interface provides a much smaller
set of services(shownin Table4.1), but many of thereas-
onswhich motivate extensibility of filing operationsalso
suggest extensibility of file-system operations.

Of these operations, the first four (mount, unmount,
mountroot, and swapvp) should not be stacked-upon.
To provide stacking for the remainder of the operations,
we re-implement them as vnode operations. When im-
plementing a VFS operation as a vhode operation, we
simply replace the vfs argument with a vnode; an vnode
from the layer can represent the vfs. New vfs operations
can be implemented as vnode operations in the same
way, and so take advantage of vnode operation extens-
ibility.

Analternativeto thisapproach would beto provideex-
tensibility for the VFSinterfaceitself. The small number
of VS operations suggests to us that in many cases the
approach taken in our prototypeis preferable.

4.6 Inter-Machine Operation

A transport layer isastackablelayer that transfersopera-
tionsfrom one address space to another. Because vnodes
for both local and remote file-systems accept the same
operations, they may be used interchangeably, provid-
ing network transparency. Sections 3.5 and 3.6 describe
some of the layer configurationswhich thistransparency
alows.

Providing a bridge between address spaces presents
several potential problems. Different machines might
have differently configured sets of operations. Hetero-
geneity can make basic datatypesincompatible. Finally,
methods to support variable length and dynamically al-
located data structures for traditiona kernel interfaces
do not always generalize when crossing address space
boundaries.

For two hosts to inter-operate, it must be possible to
identify each desired operation unambiguously. Well-
defined RPC protocols such as NFS insure compatibil-
ity by providing only a fixed set of operations. Since
restricting the set of operations frequently restricts and

25

impedes innovation, each operation in the UCLA inter-
faceisassigned a universally uniqueidentifier whenitis
defined.> Inter-machine communication of arbitrary op-
erations uses these labels to reject locally unknown op-
erations.

Transparent forwarding of operations across address
space boundaries requires not only that operations be
identified consistently, but also that arguments be com-
municated correctly in spite of machine heterogeneity.
Part of the meta-data associated with each operation
includes a complete type description of all arguments.
With this information, an RPC protocol can marshal op-
eration arguments and results between heterogeneous
machines. Thus a transport layer may be thought of as
asemantics-free RPC protocol with a stylized method of
marshaling and delivering arguments.

NFS provides a good prototype transport layer. It
stacks on top of existing local file-systems, using the
vnode interface above and below. But NFS was not de-
signed as a transport layer; its supported operations are
not extensible and its implementations define particu-
lar caching semantics. We extend NFS to automatic-
ally bypass new operations. We have also prototyped a
cache consistency layer providing a separate consistency
policy.

We have tried two approachesto export operation de-
scriptionsto NFS. In our first implementation each new
operation was accompanied with a pointer to a proced-
ure which would marshal data into the canonical rep-
resentation for NFS (external data representation, or
XDR [Sun87]). This approach provides support for ma-
chineheterogeneity, but it supportsonly asingle protocol
(XDR); protocol heterogeneity isnot addressed. To relax
thisconstraint, our second implementation listshierarch-
ically the type of each data object. This hierarchy isin-
terpreted asthe datais marshaled. Each network protocol
canprovideitsowninterpreter, allowing our internal data
description to service multiple networking protocols.

In addition to the use of an NFS-like inter-address
space transport layer, we employ a more efficient trans-
port layer operating between the user and the kernel
level. Such a transport layer provides “system call”
level access to the UCLA interface, allowing user-level
development of file-system layers and providing user-
level access to new file-system functionality. The de-
sire to support a system-call-like transport layer placed
one additional constraint on the interface. Traditional
system calls expect the user to provide space for all re-

5Generation schemes based on host identifier and time-stamp sup-
port fully distributed identifier creation and assignment. We therefore
employ the NCS UUID mechanism.

26

operation

vf s_nmount

vf s_unnount
vf s_nount r oot
vf s_swapvp
visstatfs
vfs_sync
vfs_rootvp
vfs_vget

description

CHAPTER 4. UCLA STACKING IMPLEMENTATION

Configure anew file system or layer.

Remove an existing file system or layer.

Configure the root file-system.

Create a vnode corresponding to a file-identifying token.
Return statistics about the file system or layer.

Flush any pending 1/Os to backing store.

Return avnode for the file-system root.

Create a vnode corresponding to a file-identifying token.

Table 4.1: VFS operations provided in SunOS 4.x.

turned data. We have chosen to extend this restriction to
the UCLA interface to make the user-to-kernel transport
layer universal. In practice, this restriction has not been
serious sincetheclient can often makeagood estimate of
storage requirements. If the client’sfirst guessiswrong,
information is returned, alowing the client to correctly
repeat the operation.

4.7 Centralized Interface
Definition

Several aspectsof the UCLA interfacerequireprecisein-
formation about the characteristics of the operation tak-
ing place. Network transparency requires a complete
definition of all operationtypes (asdescribed above), and
a bypass routine must be able to map vnodes from one
layer to the next (as described in Appendix A.3). Thede-
signer of a file system employing new operations must
provide this information.

Detailed interfaceinformationisneeded at several dif-
ferent places throughout the layers. Rather than require
that the interface designer keep thisinformation consist-
ent in several different places, operation definitions are
combined into an interface definition. Similar to the data
description language used by RPC packages, this de-
scription lists each operation, its arguments, and the dir-
ection of data movement. An interface compiler trans-
lates thisinto forms convenient for automatic manipula-
tion.

Appendix A.2 shows the interface definition of
vop-create.

4.8 Framework Portability

The UCLA interface has proven to be quite portable.
Initially implemented under SunOS 4.0.3, it has since
been ported to SunOS 4.1.1. In addition, the in-kernel
stacking and extensibility portions of the interface have
been portedto 4.4BSD. Although BSD’snamei approach
to pathname trandation required some change, we are
largely pleased with our framework’ sportability to asys-
tem with an independently derived vnodeinterface. Sec-
tion 5.3 discusses portability of individual layers.

Whilethe UCLA interfaceitself has proven to be port-
able, portability of individual layers is somewhat more
difficult. None of the implementations described have
identical setsof vnode operations, and pathnametransla-
tion approaches differ considerably between SunOS and
BSD.

Fortunately, several aspects of the UCLA interface
provide approachesto address layer portability. Extens-
ibility allows layers with different sets of operations to
co-exist. In fact, interface additions from SunOS 4.0.3
to 4.1.1 required no changesto existing layers. Whenin-
terfacedifferencesare significantly greater, acompatibil-
ity layer (see Section 3.5) provides an opportunity to run
layers without change. Ultimately, adoption of a stand-
ard set of core operations (as well as other system ser-
vices) isrequired for effortlesslayer portability.

Chapter 5

UCLA Stacking Evaluation

Whileastackablefile-system design offersnumerousad-
vantages, file-system layering will not be widely accep-
ted if layer overhead is such that amonolithicfile-system
performs significantly better than one formed from mul-
tiple layers. To verify layering performance, overhead
was evaluated from several points of view.

If stackable layering is to encourage rapid advancein
filing, it must have not only good performance, but it also
must facilitate file-system development. Here we also
examinethisaspect of “performance”, first by comparing
the devel opment of similar file-systemswith and without
the UCLA interface, and then by examining the devel op-
ment of layersin the new system.

Finally, compatibility problemsare one of the primary
barriersto the use of current filing abstractions. We con-
clude by describing our experiencesin applying stacking
to resolve filing incompatibilities.

5.1 Layer Performance

To examine the performance of the UCLA interface, we
consider severa classes of benchmarks. First, we ex-
amine the costs of particular parts of this interface with
“micro-benchmarks’. We then consider how the inter-
face affects overall system performance by comparing
a stackable layers kernel to an unmodified kernel. Fi-
nally we evaluate the performance of multi-layer file-
systems by determining the overhead as the number of
layers changes.

Measurements in this chapter were collected from a
machinerunning amodified version of Sun0S4.0.3. All
benchmarkswere run on a Sun-3/60 with 8 Mb of RAM
and two 70 Mb Maxtor XT-1085 hard disks. This ma-
chine is rated at 3 MIPS (it predates the SPEC bench-
marks). Themeasurementsin Section 5.1.2 used the new
interface throughout the new kernel, while those in Sec-
tion 5.1.3 used it only within file systems.

27

5.1.1 Micro-benchmarks

Thenew interface changestheway every file-system op-
eration is invoked. To minimize overhead, operation
callsmust bevery inexpensive. Herewediscusstwo por-
tions of the interface: the method for calling an opera-
tion, and the bypass routine. Cost of operation invoc-
ation is key to performance, since it is an unavoidable
cost of stacking no matter how layersthemselvesarecon-
structed.

To evaluate the performance of these portions of the
interface, we consider the number of assembly language
instructions generated in the implementation. Whilethis
statistic is only a very rough indication of true cost, it
provides an order-of-magnitude comparison.!

We began by considering the cost of invoking an oper-
ation in the vnode and the UCL A interfaces. On a Sun-3
platform, the original vnode calling sequence trand ates
into four assembly language instructions, while the new
sequence requires six instructions.? We view this over-
head as not significant with respect to most file-system
operations.

We are alsointerested in the cost of the bypassroutine.
We envision anumber of “filter” file-system layers, each
adding new ahilities to the file-system stack. File com-
pression or local disk caching are examples of services
such layers might offer. These layers pass many op-
erations directly to the next layer down, modifying the
user’sactionsonly to uncompressacompressedfile, or to
bring aremotefileintothelocal disk cache. For suchlay-
ersto be practical, the bypass routine must be inexpens-

I Factors such as machine architecture and the choice of compiler
have asignificant impact on these figures. Many architectures havein-
structions which are significantly slower than others. We claim only a
rough comparison from these statistics.

2Wefound asimilar ratio on SPARC-based architectures, where the
old sequence required five instructions, the new eight. In both cases
these calling sequences do not include code to pass arguments of the
operation.

28

ive. A complete bypassroutinein our design amountsto
about 54 assembly language instructions.? About one-
third of theseinstructionsare not in the main flow, being
used only for uncommon argument combinations, redu-
cing the cost of forwarding simple vnode operations to
34 ingructions. Although this cost is significantly more
than a simple subroutine cal, it is not significant with
respect to the cost of an average file-system operation.
To further investigate the effects of file-system layering,
Section 5.1.3 examines the overall performance impact
of amulti-layered file-system.

512

While instruction counts are useful, actual implementa-
tion performance measurements are essential for evalu-
ation. The first step compares a kernel supporting only
the UCLA interface with a standard kernel.

To do so, we consider two benchmarks: the modified
Andrew benchmark [Ous90, HKM88] and the recursive
copy and removal of large subdirectory trees. In addi-
tion, we examine the effect of adding multiple layersin
the new interface.

The Andrew benchmark has several phases, each of
which examines different file-system activities. Un-
fortunately, the brevity of the first four phases relat-
ive to granularity makes accuracy difficult. In addi-
tion, the long compile phase dominates overall bench-
mark results. Nevertheless, taken asawhole, this bench-
mark probably characterizes “normal use” better than
a file-system intensive benchmark such as a recursive
copy/remove.

The results from the benchmark can be seen in
Table 5.1. Overhead for the first four phases averages
about two percent. Coarse timing granularity and the
very short run times for these benchmarkslimit their ac-
curacy. Thecompile phase showsonly aslight overhead.
We attribute this lower overhead to the fewer number of
file system operationsdone per unit time by this phase of
the benchmark.

To exercise the interface more strenuously, we ex-
amined recursive copy and remove times. This bench-
mark employed two phases, the first doing a recursive
copy and the second arecursiveremove. Both phasesop-
erateon largeamountsof data(a4.8Mb/ usr/i ncl ude
directory tree) to extend the duration of the benchmark.
Becauseweknew all overhead occurredinthe kernel, we
measured system time (time spent in the kernel) instead

I nterface performance

3These figures were produced by the Free Software Foundation's
gcc compiler. Sun's C compiler bundled with SunOS 4.0.3 produced
71 instructions.

CHAPTER 5. UCLA STACKING EVALUATION

of total elapsedtime. Thisgreatly exaggeratestheimpact
of layering, since al overhead isin the kernel and sys-
tem timeis usually small compared to the elapsed “wall
clock” time a user actually experiences. As can be seen
in Table 5.2, system time overhead averages about 1.5%.

5.1.3 Multiplelayer performance

Since the stackable layers design philosophy advocates
using severa layers to implement what has tradition-
ally been provided by a monolithic module, the cost of
layer transitions must beminimal if layeringisto beused
for seriousfile-system implementations. To examinethe
overall impact of a multi-layer file-system, we analyze
the performance of a file-system stack as the number of
layers employed changes.

To perform this experiment, we began with a kernel
modified to support the UCLA interface within al file
systems and the vnode interface throughout the rest of
the kernel.* At the base of the stack we placed a Berke-
ley fast file-system, modified to usethe UCLA interface.
Abovethislayer we mounted from zeroto six null layers,
each of which merely forwards all operationsto the next
layer of the stack. We ran the benchmarks described in
the previous section upon those file-system stacks. This
test is by far the worst possible case for layering since
each added layer incurs full overhead without providing
any additional functionality.

Figure 5.1 shows the results of this study. Perform-
ance varies nearly linearly with the number of layers
used. The modified Andrew benchmark shows about
0.3% elapsed time overhead per layer. Alternate bench-
marks, such as the recursive copy and remove phases,
also show less than 0.25% overhead per layer.

To get a better feel for the costs of layering, we also
measured system time, time spent in the kernel on behal f
of the process. Figure 5.2 compares recursive copy and
remove system times (the modified Andrew benchmark
does not report system time statistics). Because all over-
headisinthekernel, and thetotal timespentinthekernel
isonly one-tenth of elapsed time, comparisonsof system
time indicate a higher overhead: about 2% per layer for
recursive copy and remove. Slightly better performance
for the case of onelayer in Figure 5.2 resultsfromasdlight
caching effect of the null layer compared to the standard
UFS. Differencesin benchmark overheads are the result
of differencesin the ratio between the number of vnode
operations and benchmark length.

4To improve portability, we desired to modify as little of the ker-
nel aspossible. Mapping between interfaces occurs automatically upon
first entry of afile-system layer.

52 LAYERIMPLEMENTATION EFFORT

29

vnodeinterface UCLA interface per cent
phase time %RSD time %RSD overhead
M akeDir 33 16.1 3.2 14.8 -3.03
Copy 18.8 47 191 5.0 1.60
ScanDir 17.3 51 178 79 2.89
ReadAll 28.2 18 288 2.0 213
Make 327.1 04 3281 0.7 0.31
Overall 394.7 04 3969 0.9 0.56

Table 5.1: Modified Andrew benchmark results running on kernels using the vnode and the UCLA interfaces. Time
values (in seconds, timer granularity one second) are the means of elapsed time from 29 sample runs; %RSD indicates
the percent relative standard deviation (o x / 1x). Overhead isthe percent overhead of the new interface. Highrelative
standard deviations for MakeDir are aresult of poor timer granularity.

vhodeinterface UCLA interface per cent
phase time 9%RSD time %RSD overhead
recur sive copy 51.57 128 5255 111 1.90
recursiveremove 25.26 250 2541 2.80 0.59
overall 76.83 0.87 77.96 111 1.47

Table 5.2: Recursive copy and remove benchmark results running on kernels using the vnode and UCLA interfaces.
Timevalues (in seconds, timer granularity 0.1 second) are the means of system time from twenty sample runs; %6RSD
indicates the percent relative standard deviation. Overhead is the percent overhead of the new interface.

We draw two conclusions from these figures. First,
elapsed time results indicate that under normal load us-
age, alayered file-system architecture will be virtually
undetectable. Also, system time costs imply that during
heavy file-system use a small overhead will be incurred
when numerous layers are involved.

5.2 Layer Implementation Effort

An important goal of stackable file-systems and thisin-
terfaceisto easethejob of new file-system devel opment.
Importing functionality with existing layers saves asig-
nificant amount of timein new development, but thissav-
ings must be compared to the effort required to employ
stackablelayers. The next three sections compare devel -
opment with and without the UCLA interface, and exam-
ine how layering can be used for both large and small fil-
ing services. We conclude that layering simplifies both
small and large projects.

521 Simplelayer development

A first concern when developing new file-system layers
wasthat the processwould proveto be more complicated
than development of existing file-systems. Most other
kernel interfaces do not support extensibility; would this

facility complicate implementation?

To evaluate compl exity, we chooseto examinethesize
of similar layersimplemented both with and without the
UCLA interface. A simple “pass-through” layer was
chose for comparison: the loopback file-system under
the traditional vnode interface, and the null layer under
the UCLA interface.> We performed this comparison for
both the SUNOS 4.0.3 and the 4.4BSD implementations,
measuring complexity as numbers of lines of comment-
free C code.®

Table 5.3 compares the code length of each service
in the two operating systems. Closer examination re-
vealed that the majority of code savingsoccursintheim-
plementation of individual vnode operations. The null
layer implements most operationswith a bypass routine,
while the loopback file-system must explicitly forward
each operation. In spite of asmaller implementation, the
servicesprovided by the null layer are also more general;
the same implementation will support the addition of fu-
ture operations.

For the example of a pass-through layer, use of the

5In SunOS the null layer was augmented to exactly reproduce the
semantics of the loopback layer. Thiswas not necessary in 4.4BSD.

SWhile well-commented code might be a better comparison, the
null layer was quite heavily commented for pedagogical reasons, while
the loopback layer had only sparse comments. We chose to eliminate
this variable.

30

15

10

Percent Overhead (elapsed time)

CHAPTER 5. UCLA STACKING EVALUATION

MAB Overall =—
cpreal —
rmreal —-—

Number of layers

Figure 5.1: Elapsed time of recursive copy/remove and modified Andrew benchmarks as layers are added to afile-
system stack. Each data point isthe mean of four runs.

52 LAYERIMPLEMENTATION EFFORT 31

Percent Overhead (system time)

Number of layers

Figure5.2: System time of recursive copy/remove benchmarksaslayersare added to afile-system stack (the modified
Andrew benchmark does not provide system time). Each data point isthe mean of four runs. Measuring system time
alone of a do-nothing layer represents the worst possible layering overhead.

32

SunOS BSD
loopback-fs 743 lines 1046 lines
null layer 632 lines 578 lines
difference 111 lines —468 lines

-15% —45%

Table5.3: Number of linesof comment-freecodeneeded
to implement a pass-through layer or file system in
Sun0S 4.0.3 and 4.4BSD.

UCLA interface enabled improved functionality with a
smaller implementation. Although the relative differ-
ence in size would be less for single layers providing
multiple services, agoa of stackablelayersisto provide
sophisticated services through multiple, reusable layers.
This goal requires that minimal layers be as smple as
possible.

We are currently pursuing strategies to further re-
duce the absolute size of null layer code. We expect to
unify vnode management routines for null-derived lay-
ers, centralizing this common service.

5.2.2 Layer development experience

The best way to demonstrate the generality of a new
design technique is through its use by different parties
and in application to different problems.

To gain more perspective on this issue students were
invited to design and develop new layers as part of a
graduate class at UCLA. While all were proficient pro-
grammers, their kernel programming experience ranged
from none to considerable. Five groups of one or two
students each were provided with anull layer and auser-
level development environment.

All projects succeeded in provided functioning proto-
typelayers. Prototypesincludeafile-versioninglayer, an
encryption layer, a compression layer, second class rep-
lication as a layer, and an NFS consistency layer. Other
than the consistency layer, each was designed to stack
over astandard UFSlayer, providing its service as an op-
tional enhancement. Self-estimates of development time
ranged from 40 to 60 person-hours. Thisfigureincluded
time to become familiar with the development environ-
ment, aswell as layer design and implementation.

Review of the development of these layers suggested
three primary contributions of stacking to this experi-
ment. First, by relying on alower layer to provide basic
filing services, detailed understanding of these services
was unnecessary. Second, by beginningwithanull layer,
new implementation required was largely focused on the
problem being solved rather than peripheral framework

CHAPTER 5. UCLA STACKING EVALUATION

issues. Finally, the out-of-kernel layer devel opment plat-
form provided a convenient, familiar environment com-
pared to traditional kernel development.

We consider this experience a promising indication of
the ease of devel opment offered by stackablelayers. Pre-
vioudly, new file-system functionality required in-kernel
modification of current file-systems, and theref oreknow-
ledge of multi-thousand-line file-systems and low-level
kernel debugging tools. With stackable layers, students
inthe classwere ableto investigate significant new filing
capabilities with knowledge only of the stackable inter-
face and programming methodol ogy.

5.2.3 Large-scaleexample

The previous section discussed our experiencesin stack-
able development of several prototype layers. This sec-
tion concludes with the the results of developing arepli-
cated file-system suitable for daily use.

Ficus is a “read” system, both in terms of size and
use. It is comparable in code size to other production
file-systems (12,000 linesfor Ficus compared to 7-8,000
lines of comment-free NFS or UFS code). Ficushasseen
extensive development over its three-year existence. Its
developers’ computing environment (including Ficusde-
velopment) is completely supported in Ficus, and it is
now in use at various sites in the United States.

Stacking has been a part of Ficus from its very early
development. Ficus has provided both afertile source of
layered development techniques, and a proving ground
for what works and what does not.

Ficus makes good use of stackable concepts such as
extensibility, cooperating layers, an extensible transport
layer, and out-of-kernel development. Extensibility is
widely used in Ficusto providereplication-specific oper-
ations. The concept of cooperating layersisfundamental
to the Ficus architecture, where some services must be
provided “close” to the user while others must be close
to data storage. Between the Ficus layers, the optiona
transport layer has provided easy access to any replica,
leveraging location transparency as well. Finaly, the
out-of-kernel debugging environment has proved partic-
ularly important in early development, saving significant
development time.

As afull-scale example of the use of stackable layer-
ing and the UCLA interface, Ficusillustrates the success
of these toolsfor file-system development. Layered file-
systems can be robust enough for daily use, and the de-
velopment processis suitable for long-term projects.

5.3. COMPATIBILITY EXPERIENCES

5.3 Compatibility Experiences

Extensibility and layering are powerful tools to address
compatibility problems. Section 3.5 discusses several
different approachesto employ these tools; here we con-
sider how effectivethesetools have provento bein prac-
tice. Our experiences here primarily concernthe useand
evolution of the Ficus layers, the user-id mapping and
null layers, and stack-enabled versions of NFS and UFS.

Extensibility has proven quite effectivein supporting
“third party”-style change. The file-system layers de-
veloped at UCLA evolve independently of each other
and of standard filing services. Operationsarefrequently
added to the Ficuslayers with minimal consequenceson
the other layers. We have encountered some cache con-
sistency problems resulting from extensibility and our
transport layer. Chapters 6 and 7 discuss our approach
to cache coherence. Without extensibility, each interface
changewould require changesto all other layers, greatly
slowing progress.

We have had mixed experiences with portability
between different operating systems. On the positive
side, Ficusiscurrently accessiblefrom PCsrunningMS-
DOS (see Figure 5.3). The PC runs an NFS implement-
ation to communicate with a Unix host running Ficus.
Ficusrequiresmoreinformationto identify filesthanwill
fit in an NFSfile identifier, so we employ an additional
“shrinkfid” layer to map over this difference.

Actual portability of layers between the SunOS and
BSD stacking implementations is more difficult. Each
operating system has a radically different set of core
vnode operations and related services. For this reason,
and because of licensing restrictions, we chose to reim-
plement the null and user-id mapping layersfor the BSD
port. Althoughweexpect that acompatibility layer could
mask interfacedifferences, long-terminteroperability re-
quires not only a consistent stacking framework but also
a common set of core operations and related operating
system services.

Finally, we have had quite good success employing
simple compatibility layersto map over minor interface
differences. The shrinkfid and umap layers each correct
deficienciesin interface or administrative configuration.
We have a so constructed asimplelayer which passes ad-
ditional stateinformation (opensand closes) through ex-
tensible NFS as new operations.

33

. : PCuser
Unix : |
host :

NFS

1| (client)

=

P~ —

NFS ~ |
(server) |:

{ Ms-DOS
shrinkfid : PC
logical

physical
UFS

Figure 5.3: Access to Unix-based Ficus from a PC run-
ning MS-DOS. NFS bridges operating system differ-
ences, the shrinkfid layer addresses minor internal inter-
face differences.

34

5.4 Summary

This chapter evaluated the performance of file-system
layering, considering the performance of individual lay-
ers and file-system stacks. It also considered how layer-
ing can improve the file-system development by allow-
ing code reuse and out-of-kernel development. To sum-
marize the development environment, consider the com-
ments of one of the studentswho devel oped afile-system
layer [Kue9l]:

For me, the really big advantage of the stack-
ablelayerswastheease of development. Com-
bined with the ook [out-of-kernel] develop-
ment, the testing cycle was vastly shorter than
other kernel work I’ ve done. | could compile,
mount, debug, and unmount in the time that
it would have taken to just link a kernel, and
of coursel had dbx availableinstead of strug-
gling with lousy kernel debuggers.

CHAPTER 5. UCLA STACKING EVALUATION

Chapter 6

Coherence Architecture

Nearly al file systems today provide a layer of abstrac-
tion over the raw disk geometry; it is inconceivable that
any new file systemwould lack such an abstraction. Sim-
ilarly, data caching has become a required filing tech-
nique. The performance improvements of caching are
well known; awell integrated cache allows efficient use
of resources. For these reasons a filing cache is part of
all modern, general-purpose operating systems.

We have already argued in Section 1.1.2 that file-
system caching becomesmoredifficultinamulti-layered
filing environment. To recap briefly, a first problem is
that different, independently derived layers may choose
to cache the same data, and uncoordinated updates to
these cachescan result in dataloss. The second and more
general problem is that the separation of filing services
into multiple layers makes it difficult for any individual
layer to make assertions about the current state of file as
awhole. Yet al too often caching must or will occur
at different stack layers due to multi-layer access (Sec-
tion 3.3).

This chapter proposes a cache-coherence protocol to
address both of these problems. We begin by out-
lining the general approach, and then discuss design con-
straints, the central problem of identifying what dataisto
be cached, and other design issues.

6.1 General Approach to Cache
Coherence

Cache management is more difficult in alayered system
thaninamonolithic system because state (cache contents
and restrictions) previously concentrated in asingle loc-
ation is now distributed across several modules. Our ap-
proach to cache coherenceisto unify this state in a cent-
ralized cache manager. The cache management service
isknowntoall stack layersand recordsthe caching beha-
vior of different layers. If it detects caching requeststhat

35

encryption
cache
manager
UFS

Figure 6.1: A sample application of the cache manager.

would violate existing coherence constraints, it revokes
caching privileges as necessary to preserve coherence.

An example of a potentia stack and cache manager
configuration can be seen in Figure 6.1. When a re-
guest ismadeto cache an object and that request conflicts
with existing usage, existing cache holders are required
to flush their caches before the request is allowed to pro-
ceed. In thisexample the encryption layer might request
the cache manager to grant it exclusive caching rightsto
object A. The cache manager knowsthisrequest conflicts
with the outstanding UFS cache of A, and so it will re-
quire the UFSto flush its cache before continuing. If the
encryption layer allowed shared access of A, the cache
manager would verify that this request was compatible
with the UFS s outstanding request (breaking this request
if not) and then continue.

Several constraintsinfluence our choice and design of
asolution. Good performanceisthefirst constraint; sup-
port for the coherence framework should havelittle per-
formance impact on an otherwise unaltered system.

To manage data, the cache manager must be able
to identify it. A flexible and extensible identification
scheme is a second requirement. Extensibility is critical
because we already cache different kinds of data (names,
filedata, attributes); we anticipate caching other dataand
attribute types in the future. Flexible cache-object nam-

36

ing is also important because logically identical data-
objectsmay belabeled differently indifferent layers. For
example, “file databytes 15-20" has a different meaning
above and below a compression layer.

Additional design requirementsinclude a strategy for
deadlock avoidance (an important special case of stack-
widestate) and thedesireto makeminimal changestothe
virtual memory (VM) system. A variety of VM systems
arein use. The applicability of our work is maximized
by focusing on thefile system and itslimited interactions
with the VM rather than requiring significant changesto
both systems. We comment as we proceed regarding the
impact of these constraintson our design and implement-
ation.

6.2 Dataldentification

To explore the services and level of generality required
by a stackable cache management service, consider the
analogy of identifying shared memory. In a simple
shared-memory application where all processes share
identical address spaces, data can be identified by its
offset from the beginning of memory. A more soph-
isticated shared-memory application might allow inde-
pendent processes on the same host to share memory
by adding a second level of naming. Processes identify
shared data with a memory segment name and shared
dataas offsetsin that segment. Moregenera still isadis-
tributed shared memory (DSM) system where host iden-
tification must be added to segment and byte names. A
common characteristic of all of these examplesisthat all
active agents (threads or processes) ultimately refer to
the same thing: a particular byte of memory. Increasing
generality of agentsrequiresmore sophisticated address-
ing, but fundamentally the problem is still the same.

The problem of data identification becomes more dif-
ficult with a general stacking model. Stack layers can
arbitrarily change the semantics of the data representa-
tion above and below the layer. For example, layers may
choose to rename data obtained from below, or may dy-
namically compute new data. Because new filing layers
can be configured into the system dynamically, the scope
of data change cannot be predicted until run-time. Data
must be kept coherent in spite of these difficulties.

Our cache manager design addresses this problem in
a manner analogous to how DSM addressing was iden-
tified: layers use more sophisticated identification asin-
creasing generality is required. With the goal to “make
simple things simple and complex things possible”, the
cache manager provides significant support for the com-

CHAPTER 6. COHERENCE ARCHITECTURE

mon case where layers do not change naming of cach-
able objects. Layers with more sophisticated needs are
allowed complete control over caching behavior. We ex-
amine each of these cases below.

6.2.1 Cache-object naming: simplelayers

Layers cache several kinds of cache-objects, so a first
component of cache-object identification must distin-
guish different cache-objects held by a single vhode. To
identify cache-objects the cache manager uses a cache-
object type and a type-specific name. Type-specific
names are easily generated. (For example, each attrib-
ute or group of attributesisgiven aunique name, andfile
databytesare identified by their locationin thefile. Sec-
tion 7.2 discusses name selection in more detail.) Fig-
ure 6.2ashowshow asinglevnodemight identify several
cache-objects.

Thecachemanager canidentify acache-object held by
asinglevnodewith specific namesfor each cache-object.
The cache manager must be ableto identify when cache-
objects held by different vnodes alias one another. We
solve this problem in two ways. The next section de-
scribes a solution for the general problem, but here we
examine an important special case.

Often alayer assigns cache-object namesin the same
way as the layer it is stacked upon. We optimize our
cache manager to support this kind of simply-named
layer. Since information is identified the same way by
each vnode of a simply-named file, the cache manager
can automatically identify and avoid cache aliases if it
can determine which vnodes belong to the same file.

The cache manager associates vnodes by tagging
vnodes of the same simply-named file with a special
token. The mapping (file-token, co-type, co-name)
— vnode alows the cache manager to determine that
(file-2,attrs,length) — vp-c2and (file-2,
attrs, | ength) — vp-d2 refer to the same object and
must be kept coherent. In Figure 6.2b the cache manager
has recorded both vnodes of atwo-vnodefile as caching
thefile length attribute.

6.2.2 Cache-object naming: general layers

Not all layers are smply-named. A layer that aters a
cache-object in a way that changes its naming violates
the simply-named restriction. Without help the cache
manager cannot i nsure cache coherenceabove and below
such alayer since it cannot anticipate how that layer al-
ters cache-objects. For example, afile's length and the

6.3. CACHE-OBJECT STATUS

@)
a3 Cache
length=5 Manager
mode=0777 <attrs,length> —> a3
data=aaaab <attrs,mode> —> a3
<data,0—-4> —> a3
<lock,0-4> —> a3
(b)
ad
length=5
9 Cache
Manager
<file-4,attrs,length> —> a4
<file-4,attrs,length> —> b4
b4
length=5
(c)
ab
length=5
9 Cache

Manager
<file-5',attrs,length> —> a5
<file-5',attrs,length> —> b5
b5 <file-5,attrs,length> —> b5

<file-5,attrs,length> —> c5

uncompr. length=5
compr. length=3

c5

length=3

Figure 6.2: Levels of cache-object identification de-
scribed in Section 6.2. In (a) a single vhode identifies
cache-objectsby typeand name. In (b) afile-tokenisad-
ded. Part (c) showshow ageneral layer can map between
different file tokens.

37

location of file data are altered by acompression layer in
alayer-specific manor.

To solve this problem, generally-named layers must
become involved in the cache-coherence process. The
cache manager supervises data above and below this
layer as if there were two separate, smply-named files
(each with a separate file-token). The generally-named
layer isresponsiblefor thisdivision and knows about the
two different “files’. It informs the cache manager that
it must see all caching events occurringin either smply-
named file. That layer then relays and translates cache-
coherence events as necessary.

Figure 6.2c shows the general cache management
case. Vnode b5 is cache-name-complex and divides the
stack into simply-named files 5 and 5. The cache man-
ager hasarecord for b5 with both of these simply-named
file-tokens, allowing b5 to map any cache actionsto the
other side of the stack. The details of this mapping are
dependent on b5’'s implementation. The details of one
possible implementation are discussed in Section 7.4.

We provide cache coherencein two flavorsto support
simple layers with very little work while still providing
asolution for the general case. For example, addition of
coherent data page caching to a“null” layer (which uses
simple naming) required only 70 lines of code, while
support in alayer requiring general naming can easily be
5to 10 times longer.

6.3 Cache-Object Status

A cache manager employs cache-object identification to
track which layers cache what information. Tracking
cache-objects alows the cache manager to implement a
simple coherence policy by never allowing concurrent
caching of the same object.

A better solution can be obtained if we employ know-
ledge of cache-object semantics to specify when cache-
objects require exclusive access and when they can be
safely cached in multiple layers. For example, somefile
attributes are immutable and so can be cached by mul-
tiple layers without penalty, other attributes change fre-
guently enough to preclude caching, and an intermediate
policy would be suitable for till others.

We require that a layer’s cache request include not
only what object is to be cached, but also its desired
status. The status specifiesif the layer intends to cache
the object and whether other layers are alowed to con-
currently cache it also. To handle a cache reguest the
cache manager compares the incoming request against
other outstanding cache requests, invalidating layers

38

with conflicting requirements. If the new request indic-
ates that the object is to be cached, the cache manager
then records what layer will hold the data, promising to
inform that layer if future actions requireinvalidation.

In addition to the standard cache-object requests, a
layer can simply register interest in watching caching be-
havior for a given object. It will then be notified of all
future cache actions. This facility is used to implement
cache coherence across general layers.

Appendix B.3 lists each of the requests a layer can
make upon the cache manager and their interactions.

6.4 Deadlock Prevention

An operating system must either avoid or detect (and
break) deadlock. In operating systems, deadlock avoid-
ance is usually preferred to avoid the expense of dead-
lock detection and the difficulty of deadlock resolution.

Without cache coherenceour styleof stacking doesnot
contribute to deadlock. Locks are not held across opera-
tionsand since operations proceed only down the vnodes
of afile, file vnodes form an implicit lock order. Cache-
coherence callbacksviolate thisimplicit lock order; call-
backs can be initiated by any vnode (in any stack layer)
and can call any other vnode of that file.

To prevent deadlock from concurrent cache-
management operations we protect the whole file
with a single lock during cache manipulation. This
approach has the disadvantage of preventing multiple
concurrent caching operations on a single file, but in
many environmentsthat event is quite unlikely. In most
cases cache operations are either already serialized by
a pre-existing lock (such as during disk 1/O) or can
be processed rapidly (as with name lookup caching).
Although a single lock works well in these environ-
ments, an aggressive multiprocessor system may wish
to provide additional, finer granularity locking to reduce
lock contention.

We guarantee deadlock avoidance by insuring a one-
to-one association between stack locks and files. In Fig-
ure 6.2, for example, files 3, 4 and 5 each have asingle
lock, even though file 5 requires general naming. Run-
time changes to stack configuration can violate this rule
if anew layer with fan-out mergestwo existing filesinto
asingle new file. When this occurs the new layer must
acquire both locks and then replace all references of the
second lock with references to first. We describe a pro-
tocol for this procedurein Section 7.3.5.

CHAPTER 6. COHERENCE ARCHITECTURE

6.5 Relationship to Distributed
Computing

Cache coherencein stacking asdescribed so far will keep
al layers in a single operating system coherent.! Of
course, sharedfiling isauseful service beyond the kernel
of a single processor or small multiprocessor. Clusters
of independent workstations and large-scale multipro-
cessors often have a shared filing environment among
independent kernels and operating systems. Cache co-
herence on a single machine must not interfere with the
overall distributed filing environment.

Cache coherence in a distributed system is subject to
awide range of latencies and degrees of autonomy. This
range has prompted the devel opment of anumber of dif-
ferent distributed file-systems (for example, Locus, NFS,
Sprite, AFS, and Ficus). Each of these file systems are
designed for different environments and as aresult have
different internal coherence agorithms; the variety of
solutions suggests that no single approach is best for al
environments.

Cache coherencein stackablefiles on a single node of
adistributed system must interact with the distributed fil -
ing coherence protocol, but we cannot require general-
ization of our protocol to the whole distributed system
and successfully match all environmentsalready served.
Neither is it suitable to adopt different distributed fil-
ing semantics on a single machine where we can of-
ten provide a much better service. Instead, each partic-
ular distributed filing protocol interacts with the stack-
able coherence algorithmsto maintain local consistency,
but also communicates with its peers to provide its dis-
tributed policy. Figure 6.3 illustrates this concept. The
cache manager at each site (the small ovals) maintains
local coherence, while the layersimplementing different
distributed protocols (such as NFS or Sprite) implement
their own coherence protocols independently. Distrib-
uted coherence and locking issues are thus the respons-
ibility of the distributed filing protocol. Recognizing the
variety of distributed protocolssuggeststhat this“hands-
off” distributed concurrency policy is the only one that
will permit stacking to be widely employed.

6.6 Summary

This chapter has explored the architecture of our cache
management protocol: layers cooperate with a central

L Although we expect al layers to be cache coherent, layers which
do not participate in coherence protocols are possible. Stacksinvolving
such layers cannot make coherence guarantees.

6.6. SUMMARY

—O
@ O— - prlc\)ltlf)gol "’E;EE Q@
E—— /
/

Sprite
protocol
I’

Sy

Figure 6.3: Distributed cache-coherence involving dif-
ferent network protocols. Cache managers maintain co-
herence local to each machine while different protocols
are employed for inter-machine coherence.

cache manager, consistently identifying what data is to
be cached and with what constraints. The real contribu-
tion of thiswork isnot simply the centralized cache man-
ager (which has been provided before in other environ-
ments), but acache manager which isrobust to independ-
ent layer development and semantics- and data-identity-
changing layers, and which provides good performance.
The next chapters examine and evaluate our implement-
ation of this protocol.

39

40

CHAPTER 6. COHERENCE ARCHITECTURE

Chapter 7

Coherence | mplementation

Chapter 6 described our approach to cache coherence.
An implementation of this framework is an import-
ant step in validating and evaluating this design. This
chapter briefly summarizes important points of our im-
plementation, highlighting optimizations and and other
relevant implementation choices. We conclude by draw-
ing the design and implementation together in an exten-
ded example.

7.1 Implementation Overview

In general, a cache-coherent stack behaves just as any
other file-system stack. A user invokesoperationsupona
layer, the operation passes down the stack and theresults
are returned back up the stack.

A layer may employ cached data to service areguest.
If the data already exists in the cache, that data is as-
sumed to be coherent and the layer can use it. If the data
is not in the cache, the layer will typically acquire the
data and placeit in the cache.

Before acquiring data to be cached, however, a layer
must gain ownership of that data. To acquire own-
ership a layer first locks the stack and then makes a
cache-ownership call to the cache manager, providing
its simply-named stack token, the identity of the cache-
object it wishes to cache, and what restrictionsit places
on concurrent use of that cache object. The cache man-
ager returns with a guarantee that the request has been
met and the layer can acquire datawithout fear of coher-
ence problems, and the stack is unlocked.

To make this guarantee the cache manager examines
itsrecords. If any other layersin the same simply-named
stack have conflicting requests, the cache manager calls
them back and asks them to relinquish their cached data.
Other layers may have also registered “watch” interest
in the stack to provide cache coherence between gen-
era layers. If so, the cache manager informsthem of the

41

incoming cache request, allowing them to translate and
propagatethe cache message throughout the whol e stack.
When designing our cache manager we identified sev-
eral kinds of cache-objects in need of coherence. We
also realized that there would likely be other kinds of
cache-objects in the future. To allow cache requests to
be processed efficiently we apply three generic “ classes’
of cache-objects to several situations. The next sec-
tions discuss these classes and their application to actual
cached data. In addition, Appendix B.2 presents the in-
terfaces between the cache manager and alayer.

7.2 Cache-Object Classes

For efficiency we structured our implementation around
three types of cached objects. whole files, named ob-
jects, and byte-ranges. We examine each of these classes
briefly here; we apply them in the following section.

7.2.1 Whole-fileidentification

Successful use of stacking in a multiprocessing con-
text requires coordination of multiple streams of con-
trol within a single file. Per-file locking provides an
approach that can achieve this goal. Key design con-
cerns are lightweight identification, support for arbitrar-
ily complex stacks (since stackscan be DAGs), and care-
ful attention to deadlock.

Whole-file identification is accomplished by recurs-
ively labeling the vnodesof thefile. Thelowest vhodein
the file generates a unique token to identify that file. (In
our implementation, the memory location of the vnode
is used as atoken.!) Asvnodes representing upper lay-
ers of the file are created, they inherit the identity of the
vnodesthey stack upon As each vnode making up thefile

Lwhile suitable for our prototype, a better long-term implementa-
tion would use 32-bit counters to avoid name-reuse issues.

42

iscreated it identifiesitself as part of the samefile asthe
vnodeit stacks upon. (Fan-out vnodes which stack over
multiple children employ general naming as describedin
Section 6.2.2.)

Whole-file identification solves a unique problem.
More general services such as named-object and byte-
range identifiers discussed in the following sections
handle other stack identification needs.

7.2.2 Named-object identification

The fundamental service provided by the cache man-
ager is maintenance of a central database of cache-
object usage. Generic “names’ of variable-length byte-
strings provide a general way of object naming. The
named-object subsystem implements this general model
of cached object identification.

Named-objects are identified by the layer and a short
string of bytes (thename). Thecache manager usesthese
namesto identify when layersof the same stack are cach-
ing related information. Serviceswith afew objects may
use fixed, pre-defined names; services that require more
general naming might use application-specific names.
Named-objects are suitable for file attribute (and exten-
ded attribute) cache management and namelookup valid-
ation. Details of name assignment for these applications
follow in the next section.

7.2.3 Byterangeidentification

Byte-range identification is a more specific scheme then
named-objects. Byte-ranges support efficient associ-
ation of caching information with specific areasin afile,
identified as segments specified by file offset and length.
Byte-range identification is suitable for user-level file
locking and data cache-coherence.

7.3 Application and Optimizations

Our current system supports cache-coherent file data,
name-lookup caching, and attributes. Although applic-
ation of byte-range or named-object cache management
to each of these problemsis relatively straightforward,
several important optimizations are discussed below.

7.3.1 Data-page caching

Our approach to data-page caching is influenced by the
observationthat it isnot necessary to provideasophistic-
ated distributed shared memory system to support inter-
layer coherence. We adopt this view for two reasons.

CHAPTER 7. COHERENCE IMPLEMENTATION

First, we expect most user action to be focused on one
view of each file at atime and so concurrent sharing of
asinglefile between layers will be rare. We explorethe
implicationsand the reasoning behind this assumptionin
Section 8.6. Second, we assert that it is inappropriate to
provide stronger consistency than that provided by the
filing system today. Multi-file consistency is left to the
application, or to a separate layer.

An expected low rate of concurrent access to data
pages implies that a simple synchronization mechanism
is warranted. We therefore protect each page with a
singlelogical tokenand only allow asinglelayer to cache
that page at any instant. (With byte-range identification
we represent the logical tokensfor contiguous pages ef-
ficiently.) When cache coherence requires pages to be
flushed (because of potential cacheincoherence) the cur-
rent owning layer writes the pages to the bottom stack
layer, insuring that future requests anywherein the stack
retrieve the most recent data.

Pageflipping: A first optimization one might consider
is moving pages between layers by changing page iden-
tification in the VM system. (In SunOS, each page is
named and indexed by itsvnodeand file-offset. Themost
efficient way to move a page from one layer to another
is to adjust this information.) For brevity we will term
thisoptimization“pageflipping”. A key problemin page
flipping is recognizing between which layers the page
should be moved.

Consider the need to flip a page from vnode al to bl
in Figure 7.1. The minimal action required would be to
move the page down the stack to vnode c1, the “ greatest
common layer” of al and b1, then back up to bl. Iden-
tification of the greatest common layer is difficult given
thelimited knowledgealayer has of thewhole stack, par-
ticularly when non-linear stacks are considered. Our im-
plementation therefore employs a ssimplification by ap-
proximating the greatest common layer with the bottom-
most stack layer (vnode d1 in the figure). Stacks with
fan-in will move the page to each bottom layer.

Page sharing: Allowing multiple layers to concur-
rently share the same physical page representation is a
desirable optimization to avoid page thrashing and page
duplication when two active layers have identical page
contents. This optimization requires support from the
VM system, like that provided by Spring [KN93b]. Un-
fortunately, the SUnOS 4.x VM system serving as our
test-bed associates each page with asinglevnode, and so
we were unable to explore this optimization.

7.3. APPLICATION AND OPTIMIZATIONS

a A e A

o [&

Figure 7.1: A configuration of several layers. The ovals
represent layers; the figure as awhol e represents a stack.
Each triangleis a vnode, while each collection of joined
triangles represents afile.

Read-only page replication Another possible optim-
ization is to coordinate page access with reader/writer
tokens instead of simple tokens. Reader/writer tokens
allow read-only copies of pages to be replicated (pos-
sibly in different formats) in different layers of the stack
concurrently, or allow a single writable page. If pages
are used primarily for read access, then this optimization
avoids needless page flipping. We chose not to imple-
ment this optimization because of our expectation that
concurrent data page sharing across multiple layers will
berare.

Page sharing and read-only page replication optimize
for similar but not identical scenarios. For example, con-
sider caching data in vnodes cl1 and d1 of Figure 7.1.
Page sharingiseffectiveonly if layer C hasthe samedata
representationaslayer D, regardlessof pageread or write
status. Page sharing also reduces memory usage. Read-
only page replication is effective regardless of data rep-
resentation, but only if pages are not used for updates.

7.3.2 Fileattribute caching

file-system layers often must alter their behavior based
on file meta-data. Current file-systems may depend on
file type or size; replicated file-systems such as Ficus
must know replica storage locations. Good performance
often requires these sorts of attributes be cached in mul-
tiplefiling layers, particularly when files are accessed re-

43

motely. Reliable behavior requires that such attributes
be kept cache coherent. Our implementation of attrib-
ute cache-coherenceistherefore based on theassumption
that multiple layers will need to cache attributes concur-
rently.

The cache manager handles coherent attributes as a
class of named-objects. Groups of related attributes are
each given a unique name when designed and are man-
aged together. Because named-object cache manage-
ment places no restrictions on the number of groups, this
system extends easily to support file-specific attributes
and potentially generic “extended attributes’. There are
many possible attribute-group naming schemes; we em-
ploy onebased modeled ona (host-id, time-stamp) tuple
to allow simple distributed allocation.

Our current implementation provides coherence for
standard attributes; coherent Ficus extended attribute
support is underway. Standard attributes are broken into
three groups (frequently changing, occasionally chan-
ging, and unchanging) as an optimization to avoid unne-
cessary invalidation.

7.3.3 Directory name lookup caching

Pathname trandation is one of the most frequently em-
ployed portions of the file system. The directory name
lookup cache (DNLC) is a cache of directory and path-
name component-to-object mappings which has been
found to substantially improve file-system performance.
Cached name translations must be invalidated when the
nameisremoved. In amulti-layer system the name may
be cached in one layer and removed through another; a
cache-coherence system must insure that a removal in
any layer invalidates any cached namesin other layers.
A cache-coherent DNL C must coordinate name cach-
ing and invalidation in several layers. Severa ap-
proaches are possible to solve this problem. We con-
sidered merging the DNL C with our cache manager, but
we rejected it for our research environment to keep our
code cleanly separated from the remainder of the operat-
ing system. Instead we experimented with two different
mappings between DNLC entries and the named-object
cache manager. We first recorded all names and re-
moval swith the cache manager, directly using file names
as cache-object names. This initial approach did not
match typical DNLC usage (cacheinvalidationsarerare)
and so performancesuffered. Our final approachtagsdir-
ectories that have any cached name trandations; an in-
validation in atagged directory is sent to al layers. We
found that occasional “broadcasts’ prove more efficient
than the bookkeeping necessary for more precise inval-

44

idation.

7.3.4 Filedatalocks

User-level programs employ file-locking system calls
to manage concurrency between independent user pro-
grams. For file locks to provide effective concurrency
control they must apply to al stack layers, otherwise pro-
gramsmodifying afile through different layers could un-
wittingly interfere with each other. User-levd file lock-
ing can be provided with the byte-range cache manager
in amanner analogous to file data cache-coherence.?

7.3.5 Whole-filelocking

Just as user-level programs employ locking for concur-
rency control, the kernel employs locking internally to
keep file data structures consistent. Stacking requires
serialization of access to stack-wide data structures as
well as per-layer data. Whole-file locking provides this
seridization.

We implement whole-file locking with a streamlined
protocol separate from other forms of cache coherency.
Stack-locking calls bracket other cache-coherencemech-
anisms to avoid deadlock, so a separate protocol is re-
quired and minimal overhead isimportant.

As described in Section 6.4 deadlock prevention re-
quires aone-to-one rel ationship between files and locks.
Stack layers with fan-out can violate this relationship if
they merge severd files into one. In such cases, refer-
ences to al locks must be replaced by references to a
singlelock. For example, the addition of layer D in Fig-
ure 7.2ajoinsfiles 1, 2 and 3 through the common point
d4. Layer D must replacelocksfor files1-3withasingle
lock, perhaps that of lock 4.

Ingeneral, the procedurefor lock reallocationislayer-
specific. Reallocation itself must be donewith somecare
to avoid deadlock. A general protocol is to release all
lower-layer locks, re-acquirethem in some canonical or-
der, and then replace each with areferenceto anew lock.
For example, in Figure 7.2 we might release locks 1-3,
re-acquire them in low-to-high memory address order,
and then replacethereferenceswith lock 4. Significantly
simpler procedures are possible in many cases, such as
when alayer with general naming stacks above a single
other layer.

20ur current prototype does not yet implement cache-coherent,
user-level locking.

CHAPTER 7. COHERENCE IMPLEMENTATION

(@ r
! |
el

(b)

\
A: A/ B: A c: 4

Figure 7.2: Lock merging due to layer addition.

7.4 An Extended Example

To bring together the design and implementation of
cache coherence we next consider an example. We will
examine stacks b and cin Figure 6.2 as datais cached.

Stack b represents the case of two layers with ssmple
naming. Consider a user reading datafrom the top layer.
Assuming the file's data structures do not already exist
in memory, the pathname-trandl ation operation is passed
down the stack. As it returns up the stack, vnodes b4
and &4 are built. Creation of vnode b5 allocates a file-
token, cache management structure, and lock for file 4,
and vnode a4 uses this same information. Name-lookup
caching may occur as a side effect of pathname transla-
tion; if so, one of the layers (typically the top) would re-
gister this fact with the cache manager of the parent dir-
ectory of thefile.

After the vnodes are created, a user reads from a4.
Vnode a4 locks the stack and passes the read operation
down the stack, specifying a4 asthe caching vnode. The
operation arrives at b4 (the bottom layer) which requests
that a4 be given ownership of (4, data, 0-8k). The
cache manager grants ownership of the entire file imme-
diately (initially pages are unowned), and b4 reads the
pages, placing them directly into a4's cache.

The stack in Figure 6.2c presents amore difficult case
since general naming is required. Again, creation of

7.4. AN EXTENDED EXAMPLE

c5 allocates cache management structures. Layer b is
a compression layer which requires general naming, so
it allocates a new file-token 5' to represent the “uncom-
pressed file”, and layer b registers “watch” interest in all
caching occurring to layer 5. No new lock is created
since each file must have only one lock. Finally, vhode
abiscreated and returned.

Next assume that the user writes datainto bytes 0-32k
of our file through the top layer. Before the data can be
written, ab must acquire pageownership of (5, dat a, 0—
32k). Vnodeb5 watches caching operationsto file-token
5', so the cache manager makes a callback and b5 trans-
latesthisrequest and registersownership of (5, dat a, 0—
24k) (assuming 25% compression). Ownership is now
assured and the read operation can take place.

To demonstrate cache interference, another user now
will read the file back through vnode a5. Without cache
coherence the results of this request are indeterminate.
With coherence, a5 must register ownership of the data
before the read. Currently b5 has ownership of part of
file 5 so the cache manager calls back b5. Before b5 re-
leases ownership of (5, dat a, 0-24k) it synchronizes
(5, data, 0-32k). Vnode a5 owns this data, so the
cache manager calls a5 to synchronize the pages; vhode
ab writes the pages, calling on b5 to compress them, ul-
timately delivering them to c5.

These examples present some of the most import-
ant details of our cache-coherence protocol, both with
simple- and general-naming.

45

46

CHAPTER 7. COHERENCE IMPLEMENTATION

Chapter 8

Coherence Evaluation

Performance evaluation of large software systemsis dif-
ficult, and caching file systems is particularly difficult.
When examining the performance of a cache-coherence
framework, particular care must be taken to separate the
overhead of the framework from the benefits of cach-
ing. (The LADDIS NFS server benchmark, for ex-
ample, carefully exercises NFS to gain useful measure-
ments[Wit93].) We next examine componentsof our co-
herence approach that impact performance, the bench-
marks we use to examine that performance, and finally
several perspectives on the performance of our system.

8.1 Performance Components

A cache-coherent, layered file-system is composed of a
number of cooperating components. Some of these com-
ponents improve overall performance while others im-
pose limits. (Of course, we expect better performance
overall with caching than without.) This section exam-
ines the caching algorithms before and after our addition
of cache coherence, with the goal of identifying which
changes alter performance.

An abstract form of the algorithms used to access data
through the cache is shown in Figure 8.1. Step 1 of
both algorithmsis the same, but the following steps dif-
fer and so may influence performance. Because Step 1
is identical, the cost of accessing aready-cached data
should not change. This fact is critical to overal per-
formance, since a high cache hit rate significantly re-
duces average access time even if the cache miss penalty
isalso high.

Step 2, cache-object registration, is a new step and
represents overhead of the cache-coherence framework.
The cost of this step is examined in Section 8.5.

Conflicting cache requests in Step 3 also represent a
cost of cache coherence. This overhead is distinct from
framework overhead, though, sinceitisaproperty of cli-

a7

(a) non-layered caching:

1. If dataisin cache, useit.
2. Read datainto the cache; useit.

(b) layered caching:

1
2.

If dataisin our layer’s cache, useit.
Register ownership of datawith the cache
manager.

If registration conflicts with outstanding
reguests, revoke them.

If caching data-pages currently in another
layer’s cache, page-flip datainto our layer
and useit.

Read datainto our layer’s cache; use it.

3.

Figure 8.1: Caching algorithmswith and without layer-
ing. We usethe layered caching algorithmin our system.

ent usage patterns. We therefore characterize it as client
overhead and examineit in Section 8.6.

Step 4 is an optimization to the basic cache-coherence
algorithm. For data pages the cost of servicing a cache
missishigh (becausethey arelarge and require hardware
interaction, see Section 7.3.1), so it is profitable to move
cache-objects from layer to layer rather than regenerate
them. The effects of this optimization are discussed in
Section 8.6.

On the surface the last step is identical in the two
algorithms; however their implementations differ. In
a monolithic system, the same module generates and
caches data. In alayered system one layer might gener-
ate the data, another may modify this data somehow, and
athird may cache the data. An important aspect of the
cost of layered caching is passing data between layers.
For example, if data must be copied each time it moves
between layers, bulk-data copy overhead would quickly

48

limit layer usage. Such costs might not be present in a
monolithic implementation where thereis only one kind
of buffering.

Typica vnode interfaces were not constructed with
layeredfiling in mind; some aspectsof their interfacesre-
guireexcessive copyinginamulti-layeredfiling environ-
ment. We have extended the interface to avoid this prob-
lem. We examine the implementation and performance
costs of these changes and Step 5 in Section 8.3.

We have identified severa differences between the
layered and non-layered caching algorithms. We expect
some of these differences not to significantly affect per-
formance while others may improve or limit perform-
ance. After discussing our benchmarks and methodo-
logy, we will examine each difference with several ex-
periments.

8.2 Performance Experimentsand
M ethodology

Benchmarks: We examined our system with severa
sets of benchmarks. Our benchmarkscan be divided into
three groups. First are a set of benchmarks that oper-
ate recursively over adirectory hierarchy. These bench-
marksincluderecursive copy, find, find and grep, and re-
move. We selected this set because they intensively ex-
ercise the file system in different ways. Find accesses a
large number of files without generating much caching.
Copy accesses files and their data.

The second class of benchmarksis represented by the
Modified Andrew Benchmark [Ous90]. The Modified
Andrew Benchmark consists of five phases: four brief
file-system operations and alarge-program build. In our
environment we found the first four phases too short to
allow good statistical comparisons, and all were domin-
ated by the compile phase. We therefore present only ag-
gregate performance of all phases of this benchmark.

The final set of benchmarks is employed to measure
cache interference. We describe them in Section 8.6.

Measurement times: We examined al benchmarks
with two different measurement times:. elapsed time and
system time. Elapsed time represents the performance
observed by atypical workstation user. System timerep-
resents only time spent in the kernel. Since all of our
overhead is in the kernel, this measure exaggerates the
impact of our changes.

CHAPTER 8. COHERENCE EVALUATION

Test environment: All measurements in this
chapter were taken on a Sun SPARCstation IPC (a
13.8 SPECint92 machine) with 12 Mb of memory and
a Sun 207 Mb hard disk with 16 msec average seek
time. Our test machine runs a modified version of
Sun0S4.1.1.

All data is stored in a stack-enabled version of the
standard SunOS 4.1.1 file-system (UFS), a version of
Berkeley’'s Fast Filesystem [MJL84]. For multi-layer
tests we add one or more null layers. A null layer ordin-
arily passes dl filing operations down the stack for pro-
cessing; for these experiment we modified the null layer
to cache file data pages internally.

8.3 Costsof Layered Data Caching

The modularity enforced by a layered system limits in-
formation exported by alayer to that provided by itsin-
terface. A minimal, clear interfaceisboth abenefitand a
curse to a multi-layer system. A minimal interface sm-
plifies multiple service implementations, but a minimal
interface appropriate to amonolithic system may not ad-
mit efficient caching in a multi-layer system. Most cur-
rent file-system interfaces (for example, the SunOS and
SVR4 vnodeinterfaces) do not providethe necessary ser-
vicesto allow efficient multi-layer caching.

One cost of caching in a layered system is therefore
creation of new interface operations to allow efficient
caching. This cost takes two forms; increased interface
complexity and run-time overhead due to added code.
We examine each of these issues below.

Implementation cost: Rather than engineer a com-
pletely new file-system/virtual-memory system inter-
face, we provided “stack-friendly” caching by minimal
modificationsto relevant existing vnode operations. The
number of modificationsrequired can be used asameas-
ure of additional complexity required for efficient stack-
able caching. We currently cache three types of objects:
attributes, file name trandations, and data pages. Ef-
ficient caching of the first two of these objects is pos-
sible with no interface changes. Attribute manipulation
already avoids unnecessary data copies, and name trans-
lation isinternal to a each layer. Data page caching, the
final case, was the only class of operationsthat required
change. We next examine modificationsrequired for this
class of operations.

Data page caching required some interface changes
to avoid repeated data copies. The caching operations
(vop_put page and vop_get page) manage caching file

84. CACHE-COHERENCE BENEFITS

data. The process of caching file data consists logically
of two separate components, first dataisread from stable
storage, then it is placed in the VM cache. In a mono-
lithic system such as the UFS, the same layer performs
both of these operations. Asfirst noted by the Spring pro-
ject [KN93al, successful layered caching benefits from
a separation of these functions. In Spring terms, one
object will serve as the pager, performing actual data
I/0, while another object (the cacher) may be actively
caching data. Our system restructures the file-system
paging operations to alow different layers to assume
each of these functions. We modify three vnode op-
erations (vop_put page, vop_get page, and vop_r dwr)
andtheir support codeto accept vnodesrepresenting both
the cache and pager objects, rather than a single vnode
representing both. The interfaces of these modified op-
eration are listed in Appendix B.1.

Another operation requiring slight modification was
the data read/write operation. Writing beyond the end of
afile automatically extendsthe file length; our modifica-
tionskeep file dataand length information synchronized.

Our experiencesmodifying SunOS to support efficient
data caching across multiple layers suggest that relat-
ively few changesarerequired. Theother relevant aspect
of performanceis the run-time cost of these changes, to
which we now turn.

Performance cost: To invegtigate the performance
cost of these changes we ran our benchmarks on ker-
nels using standard and stack-friendly data acquisition.
Neither case employed cache coherence; the measure-
ment resultsareintended to evaluatethe cost of the stack-
friendly framework. Table 8.1 compares the standard
Unix file-system with and without these changes. Fig-
ure 8.2 presents these results graphically.

A comparison of individual benchmarks from these
results shows a performance difference of +4% for dif-
ferent tests, and that several of the tests show no statist-
ically significant difference. Taken as a whole the tests
suggest that there is some performance variation, but
there is no consistent bias for either type of data acquis-
ition.

8.4 Cache-Coherence Benefits

Given operationsthat permit efficient cachingin multiple
layers, the next important issue isto examine what bene-
fits cache coherence provides. The most important be-
nefit is improved system reliability. Although instances
of cache incoherence are usually rare, even occasional

49
250
200 -}
%)]
g i
o] i T
§ 150 i
£]
©]
£ 100
50 -}
S | |
cp find findgrep grep rm mab

benchmark

1 non-stack-friendly operations, elapsed time
m stack-friendly operations, elapsed time
m systemtime

Figure 8.2: Benchmarks comparing a UFS with and
without stack-friendly data acquisition. Error bars show
one standard deviation. (This figure illustrates the data
presented in Table 8.1.)

incoherence is not permissible in many critical applica-
tions. A related benefit is that cache coherence alows
improved structure of multi-layer filing systems. file-
system implementationsoften requirethe ability to make
assertions about data; without cache coherence these as-
sertions are more difficult and often force aless modular
structure. Finally, cache coherence and caching can im-
provesystem performance. We consider these benefitsin
turn, drawing on Ficus replication for illustrations.

The most important benefit of cache coherenceiis its
support for correct system behavior. Without coher-
ence unusual combinations of user activity can result in
cache incoherence and incorrect results. Potential cach-
ing problems would force many developersto structure
their systems in aless modular way, or prevent user ac-
cessto lower layers. An example of this problem occurs
in Ficus (see Figure 8.3 for the Ficus layer configura-
tion). Ficuscachespathnametranglationsin the selection
layer (step 1). A fileremoval action by theremoteuser is
directed to the physical layer on the local user’s replica
(steps 2 and 3). Without cache coherence the local user
can still employ the cached name at the selection layer
(step 4). With cache coherence, step 3 would have also
removed the cached entry. Restructuring Ficus to avoid

50

CHAPTER 8. COHERENCE EVALUATION

standard stack-friendly

benchmark mean %RSD mean %RSD % difference
elapsed time:

cp 1590 1267 1542 12.18 -3.02
find 79.2 6.78 81.1 5.99 240
findgrep 205.2 590 1977 122 -3.66
grep 61.6 3.60 61.9 1.68 0.487x
rm 58.0 8.35 57.9 2.49 —0.172x
mab 147.7 244 1492 5.52 1.02
system time:

cp 229 1.66 231 1.85 0.873x
find 51.8 13.68 527 14.04 1.74%
findgrep 102.4 138 1015 1.58 -0.879
grep 19.2 1.97 20.1 241 4.69
rm 6.3 1193 6.1 10.62 —3.17%
mab 37.3 1.11 37.9 135 161

Table 8.1: Elapsed- and system-time performance comparisons of UFS performancewith standard and stack-friendly
cache operations. %RSD is o, /u.. Differences marked with an asterisk are less than the 90% confidence interval
and so are not statistically significant. These values are derived from 25 sample runs. Section 8.3 interprets this data;

Figure 8.2 presents it graphically.

this problem would require that operations always pass
through all layers, adding overhead and artificially dis-
torting layer configuration. Although this problem oc-
curs only occasionally in daily use, it would almost cer-
tainly require a solution should Ficus be deployed in a
production setting. Moreover, fear of this sort of prob-
lem would curtail use of stacking as a structuring tech-
nigue in many settings.

Another benefit of cache coherenceis that by provid-
ing arich environment within which correct behavior is
easily achieved, layer development is made easier. One
isalso led into increased separation of function into sep-
arate layers, improving reusability. Two examples in
Ficusillustrate how lack of coherencealtered thedesired
system structure. First, without cache coherence, Ficus
cannot completely support memory-mapped data access.
We work around this problem in several ways, but in a
widely deployed system this problem may prevent the
use of layering techniques. Second, the selection layer
requires file attribute information when accessing afile.
The overhead of an attribute fetch for each file accessis
significant (particularly if the file is remote), yet the se-
lection layer could not cache attributes becauseits cache
may have become invalid. Instead we were forced to
build an ad hoc facility to work around the problem.

Performanceisanother important motivation for cach-
ing. Performance can be improved when the cache-
coherence service permits caching where it could other-

local user remote user
os oS
N N
(1) lookup (2) remove F
\ (and cache) F \
selection (4) lookup F selection
logical logical
xNFS [+
o
physical (3) remove F physical
UFS UFS

Figure 8.3: Layer configuration for Ficus replication.
Each column represents a particular host. The logical
layer controls access to different replicas, accessing re-
mote replicas through stack-enabled NFS. The sequence
of operationslisted resultsin cache-coherence problems;
see Section 8.4 for details.

8.5. CACHE-COHERENCE PERFORMANCE: NO INTERFERENCE 51

250

200 - I

150

timein seconds

100

50

o1 Wl W | N

cp find findgrep grep rm mab
benchmark

1 no DNLC, elapsed time
= DNLC, elapsed time
m systemtime

Figure 8.4: Benchmarks comparing three null layers
stacked over a UFS with and without coherent name-
lookup caching. (Thisfigure illustrates the data presen-
tedin Table 8.2.)

wise not be used. The degree of performance change is
highly application-dependent. For example, a software
encryption layer which could not cache decrypted pages
in memory would be unusable for executing programs
(although it might be acceptable for logged output). To
quantify the benefits of caching, we stacked three null
layers over a UFS, simulating the layering overhead in
the Ficus stack. We measured benchmark performance
with and without name-lookup caching in the top null
layer. Resultswere quite dependent on the pattern of use.
In some cases, improvement was insignificant. Elapsed
time of the copy case in fact showed a 10% increase;
caching is of no benefit in a single-pass copy. In other
cases overhead was cut up to 40%.

8.5 Cache-Coherence
Performance: No Interference

We have suggested that there are both performance and
structural advantages when layers employ cache coher-
ence. Even when alayer experiences substantial overall
speedup dueto caching, thereis still some overhead due

250
200 -

150

timein seconds

100

50

el | u
cp find findgrep grep rm mab
benchmark

1 non-cache coherent, elapsed time
= cache coherent, elapsed time
m systemtime

Figure 8.5: Benchmarks comparing a UFS in kernels
with and without cache coherence. (This figure illus-
trates the data presented in Table 8.3.)

to the cache-coherence framework effort spent in step 2
of the layered caching algorithm (Figure 8.1b).

Measuring cache-coherence framework overhead is
crucia for several reasons. First, framework overhead
can be used asametric to select between different cache-
coherence implementations. Second and perhaps more
importantly, framework overhead is required of all lay-
ersinvolved in cache coherence. Framework overhead
therefore represents an additional cost applied to exist-
ing file-system layersif they wish to participatein cache-
coherent stacks. Finally, cache coherenceis an import-
ant component to a robust and general environment for
stackablefiling, so its performanceis critical.

To investigate the cost of the framework alone, inde-
pendent of any performancebenefits of caching, we com-
parealayer with and without the cache-coherenceframe-
work. Table 8.3 compares our disk-based file-system
(UFS) with and without the framework. Since only a
single layer is employed in these tests all overhead ob-
served isdueto the framework as opposed to cacheinter-
ference. Figure 8.5 reproducesthese results graphically.

Cache-coherence overhead on these benchmarks var-
iesbut istypically about 3-5%. Of the measured bench-
marks, find exhibitsthe most overhead (15%) whilefind-
grep and grep show the least cost (1-2%).

52 CHAPTER 8. COHERENCE EVALUATION

without DNLC with DNLC
benchmark mean %RSD mean %RSD % difference

elapsed time:

cp 170.7 8.03 1882 19.40 10.3
find 135.8 9.63 126.8 131 —6.63
findgrep 202.9 346 198.1 0.87 —2.37
grep 81.6 2.03 64.7 1359 -20.7
rm 64.5 9.71 60.6 1.75 —6.05
mab 156.2 6.79 150.3 1.63 -3.78
system time:

cp 27.8 1.29 25.3 1.20 -8.99
find 67.9 15.11 60.3 2.17 -11.2
findgrep 114.9 240 1110 0.75 -3.39
grep 40.3 0.80 241 3324 —-40.2
rm 11.4 6.77 8.8 6.94 -22.8
mab 41.8 1.23 41.1 0.93 —1.67x

Table 8.2: Elapsed- and system-time performance comparisons of a stack of three null layers over a UFS without and
with name-lookup caching. Differences marked with an asterisk are less than the 90% confidence interval and so are
not statistically significant. These values are derived from 8 sample runs. Section 8.4 characterizesthis data.

non-coherent coherent
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 228.1 1281 2189 17.61 —4.03
find 73.2 11.36 84.8 12.74 15.8
findgrep 212.0 219 2167 2.14 2.22
grep 60.1 1.61 61.1 1.26 1.66
rm 73.4 1.62 79.8 17.89 8.72
mab 151.6 260 157.2 4,90 3.69
system time:
cp 225 2.36 23.2 2.02 311
find 46.2 7.18 53.4 9.59 15.6
findgrep 98.3 161 1031 154 4.89
grep 186 194 195 225 4.85
rm 6.2 14.99 6.3 1170 1.61x
mab 36.9 1.21 38.4 151 407

Table 8.3: Elapsed- and system-time performance comparisonsof non-coherent and coherent caching kernels. Differ-
ences marked with an asterisk are less than the 90% confidence interval and so are not statistically significant. These
values are derived from 30 sample runs. (The datain tableis shown graphically in Figure 8.5.)

8.6. CACHE-COHERENCE PERFORMANCE: INTERFERENCE 53

A 3-5% performance cost is not unreasonable when
providing new functionality, but it is an unfortunate
cost for existing services. This overhead represents
the cost of setting up and maintaining cache-coherence
data-structures. We expect that some of this cost can
be avoided by internally preserving partially built data
structures [Bon94]. Careful tuning and examination of
fast-path opportunitiescould also likely improveour pro-
totype system; we project that a production quality ser-
viceis quite feasible.

The cost of thisoverhead must al so be weighed against
the benefits of cache coherence. Caching inamulti-layer
system can dramatically improve overall performance,
often more than accounting for cache-coherence over-
head. In addition, cache coherence is an important part
of providing a robust layered system by allowing layer
designers to accommodate caching across all layers of a
stack.

8.6 Cache-Coherence
Performance: Interference

The experimentsdescribed thusfar describethe perform-
ance of cache coherence when a stack is exercised with
current styles of usage (all accessthrough asinglelayer).
Cache coherenceis designed for a broader environment
where accessis possible through multiple layers. Shared
accessto the same datathrough different layersresultsin
competition for caching this data. We next examine the
effect this competition can have on performance.

Inter-layer cache interference is highly application-
dependent and is not easily tested by standard bench-
marks. We have therefore constructed two synthetic
benchmarks to stress interference: sequential and ran-
domupdatesto potentially different filelayers. Werelate
these benchmarksto practical applications below.

For each benchmark we stack oneor two null layerson
a UFS. Once layers are configured we map the file data
into memory and exercise it according to the pseudo-
code of Figure 8.6. Files are small enough to fit into
physical memory, so all overhead measured is the effect
of cacheinterference.

The results of these benchmarks appear in Table 8.4.
Since the range of data is so great, some measurements
are on the order of timer granularity (one-tenth of a
second); in these cases measurement error is relatively
high (10-14%).

We draw two conclusions from Table 8.4. First, the
random-update benchmark shows that cache-coherent
access to multiple layers is extraordinarily expensive.

Random updates exhibit more than 20 times greater
elapsed time and 400 times greater system time when
cacheinterferenceis present. This performanceisadir-
ect result of thelack of locality across multiple stack lay-
ers (layer locality) in arandom access reference pattern.
If this case were common, full function stacking would
not be viable. However, we are not aware of any ap-
plications that exhibit this reference pattern; we discuss
thisproblemin detail below. Furthermore, sequential file
access presents a much different story: elapsed time is
practically equivalent regardless of the degree of inter-
ference, although system time degrades by a factor of
five.

Poor performance of the two-null-layer case with re-
spect to theone-null-layer caseis dueto lack of layer loc-
ality. With one null layer the entire file is brought into
memory and updates then happen without operating sys-
tem intervention. With multiple null layers pages move
between layers; each moverequiresapagefault whichis
several ordersof magnitudemore expensivethanadirect
memory reference.

We can analytically determine the number of page
faults expected for each benchmark. Using file length
and access conditions specified in Figure 8.6 and assum-
ing a 4kbyte page size, any one-null-layer benchmark
will pagetheentirefileinto the null layer with 250 faults.
By comparison, thetwo-null-layer sequential benchmark
will require 8000 faults to move the file between layers
32 times. In the two-null-layer random access bench-
mark each access has a 50% chance of requiring afault.!
In this case, where no layer locality is exhibited, ran-
domly updating only four-tenths of the file results in
204,800 faults on average. (We have verified thisfigure,
counting about 270,000 faultsin atypical two-null-layer,
random-updatetrial.)

These benchmarks suggest that, like virtual memory,
locality is required for efficient use of cache coherence.
With stacking, the reference stream must exhibit good
layer locality to avoid cross-layer page faults. To inter-
pret the results of these synthetic benchmarksin the con-
text of real applications, we must characterize expected
layer locality.

We have proposed file-system layers as an approach
to building rich filing services from composable layers.
Currently (with the exception of direct disk access) fil-
ing environments export only one service; all user ap-
plications access this “top layer”. We expect that a

LIn the n-active layer steady-state each access has a 1/n chance
of a cache hit. First access to a page are not part of steady state;
for our 1000k file with 4k pages these first 250 page accesses are not
significant.

54

CHAPTER 8. COHERENCE EVALUATION

Random-update:
for i 1 to randomscal e(file-1ength)
begin
| ayer random(fil e-1ayers)
of f set randon(fil e-1ength)
data[| ayer][of fset] ++

end

Sequential-update:

for i = 1 to sequential-scale(file-Iength)
begi n
layer = (i div file-length) nod file-Ilayers
offset =i nmod file-length
data[| ayer][of fset] ++
end
Constants:

random scal e(l ength) = (length / 10) * scale
sequential -scal e(length) = (length * 8) * scale
I ength 1, 024, 000 bytes

scale = 4

Figure 8.6: Benchmarks and parameters used to test cache interference for memory-mapped files.

one two 90% confidence
time benchmark mean %RSD mean %RSD %difference interval, % diff.
elapsed: random-update 14.67 7.92 350.53 12 2289.90 9.44
sequential-update 441.04 1.45 443.49 0.46 0.56 04
system: random-update 0.72 10.02 289.48 0.87 40291.00 134.17
sequential-update 1.42 13.74 9.13 3.38 544.10 29.96

Table 8.4: Elapsed- and system-time performance comparisons of files with and without cache contention. The
columns headed “one”’ show access through a single null layer stacked over a UFS; the columns headed “two” add
a second null layer to this stack. Layer accesses are distributed across al null layers according to benchmark type.
Thereis no contention with one null layer; contention is possible with multiple layers. These values are derived from
12 sample runs. These benchmarks exercise worst-case performance and are not representative of typical behavior;

see Section 8.6 for discussion.

8.7. PERFORMANCE EXPERIENCES

primary benefit of multi-layered filing will be to alow
users to customize and extend their filing environment.
Once configured, we believe that most user access will
be to the “top layer” representing a particular configur-
ation of amulti-layer stack. For example, most user ac-
cess to the stack in Figure 1.1 would be to the clear-text
provided through the encryption layer, not the encrypted-
text presented by the UFS. No interference would occur
inthe common case of two programsreading (or memory
mapping) afilethroughthe samelayer. When all user ac-
cess occurs through a particular layer, no cache interfer-
ence occurs and we expect performance results equival-
ent to the one-null-layer case.

Nevertheless, although most applications access a
single layer, we have identified several cases where
multi-layer access is important. In these cases, access
to multiple layers may cause cache interference. Con-
tinuing our example, the user in Figure 1.1 may wish to
transmit the encrypted-text of afile, and so after updat-
ing the file via the encryption layer, the user would read
thefiledirectly fromthe UFS. Asin thisexample, we ex-
pect that the majority of such access will be sequential.
Floyd's studies of Unix applicationsin an academic en-
vironment suggest that 70-90% of opened files are read
sequentially [Flo86]. For these cases, the sequential-
update benchmark is representative. Sequential-update
performance shows some system-time performance cost,
but no noticeabl e el apsed-time performance penalty.

The remaining random access case is exemplified by
database applications. Recall, however, that the random-
update benchmark is a stream of randomly located up-
dates to random layers. We do not expect a single data-
base application would need to access multiple layers of
the same file concurrently, or that two independent data-
bases would access the same file concurrently through
different layers, so this synthetic, worst case seems un-
likely to occur in practice.

We selected these benchmarks to push the bounds of
our system, and their worst-case results show signific-
ant overhead. Fortunately, we believe that they a so sug-
gest that practical applicationswill not suffer significant
performance degradation with expected patterns of layer
locality.

8.7 Performance Experiences

Cache coherencein stackable filing isimportant to man-
age cache-coherence problemsthat can arisefrom access
to different stack layers. Both multi-layer access and
caching are required in many practical layering systems.

55

Administrative programs and sophisticated stack config-
urations reguire access to different stack layers, while
caching isrequired for good performance.

Our performance experimentssuggest alayer actively
caching datawill experience about a 3-5% overhead for
typical benchmarks, although some may be higher or
lower. Our use of stack-friendly cache access operations
does not seem to be a significant portion of this cost.
Instead we believe that the cost is primarily due to the
maintenance of additional data structures and to com-
parison of our prototype implementation with carefully
tuned file-system code.

We d soinvestigated system performancewhen differ-
ent layers contend for the same cached objects. When
applications that exhibit no locality compete for cached
objects, significant overhead occurs. Common patterns
of file usage and the expected uses of cache coherence
suggest that typical applications will see minimal or no
overhead due to contention.

We find a powerful analogy between virtual memory
and cache coherence in stacking. The performance of
both is strongly dependent on the locality exhibited by
given applications;, VM requires spatia locality while
stack cache-coherence requires “layer locality”. Virtual
memory frees many application designers from detailed
concernsabout memory management, often allowing ap-
plications to be more naturally structured. Similarly,
stack cache-coherence frees the designer from concerns
about inter-layer consistency, providing a rich frame-
work in which each layer truly can be independently de-
veloped and employed.

56

CHAPTER 8. COHERENCE EVALUATION

Chapter 9

Featherweight Layer Design and

| mplementation

General-purposelayering hasbeen successful at structur-
ing file-system services. For significant new services, the
1-2% system-time overhead associated with layering is
a small fraction of total costs. However, we have also
argued (in Section 1.1.3) that there are numerous “thin”
services that would also benefit from a layered struc-
ture. Unfortunately, the overhead observed for general-
purpose layering becomes quite significant when com-
pared tothe services provided by athinlayer. Thisobser-
vation motivated the exploration of featherweight layer-
ing, alightweight approach applicableto the structure of
simple layers.

The success of featherweight layering is based on two
assumptions: first, that there are a number of interesting
layersthat can be constructed in arestricted layering en-
vironment, and second, that a restricted layering envir-
onment can allow a more efficient implementation than
afully general system. We explore each of these assump-
tionsin the next two sections.

Featherweight layers also have potential costs: they
may complicate the layering model with two different
mechanisms accomplishing a similar purpose, and the
cost of any new mechanisms required for featherweight
layering may counter the performance improvements
that would otherwise be seen. We address the layering
model in Section 9.3 and performance concerns by ex-
amining our implementation in Section 10.2.

9.1 Potential Featherweight
Layers
Idedlly, one would like to have all layers be as light-

weight aspossible. Thekey issue hereis*aspossible”—
some layers require complex stacking facilities while

57

others admit simpler solutions.

To judge the potential of a lightweight layering pro-
tocol, we examined existing file-system implementa
tions, other work in file-system structuring, and our own
experience in development of layered filing. We found
two different areas where lightweight layering seemed
applicable: compatibility layers and miscellaneous “lib-
rary” servicespresentin existing file-systems. Figure9.1
lists several examples of featherweight layering in these
areas.

Later in this chapter we will show that each of the
services described in Figure 9.1 can be provided as a
featherweight layer. We have prototyped each of these
layers at UCLA. These examples validate our assump-
tion that useful services can be provided without a fully
general layering service. We next examinethe second as-
sertion, that arestricted layering service can improve ef-
ficiency relativeto ageneral service.

9.2 Costsof Fully General
Layering

Featherweight layersare beneficial only if such arestric-
ted layering environment can provide a significant per-
formance advantage. The overhead experienced by the
null layer places an upper bound on the performance
gains expected from featherweight layering. At best we
can hope to eliminate all null-layer overhead, athough
this goal may not prove possiblein practice.

To understand which areas of the null layer would
benefit from a different implementation we employed
several benchmarks to measure layering and cache-
coherence overheads. (These benchmarks are described
in Sections5.1and 8.2.) We examined these benchmarks

58 CHAPTER 9. FEATHERWEIGHT LAYER DESIGN AND IMPLEMENTATION

Compatibility layers:

oldiftonewif Map the pre-stacking vnode interface to
the stack-enabled vnode interface. (Allows a stack-
enabled file-systemto offer serviceto an unchanged
higher-level clients.)

pathconf Implement a default vop_pat hconf opera-
tion added to SunOS 4.1.

maptostackmap Convert pre-cache-coherence vnode-
operations into their cache-coherent equivalents.

Internal utilities:

vmio Implement vop_r dw by coping from memory-
mapped file data.

fdnlc Implement name-lookup caching.

fsync Implement a generic vop_f sync required by the
vmio layer and the virtual memory system.

specref Construct vnodes for “special” files (devices,
pipes, and sockets) as necessary.

Miscellaneous user services:
frl Implement file/record locking.

ro Make afile system read-only.

Figure 9.1:. Potential applications of featherweight-
layering technology. Thednlc, frl, specref, and ro layers
areinspired by Skinner’swork [SW93].

in atest environment identical to that described in Sec-
tion 8.2. Because these benchmarks are exploratory in
nature and areintended to show qualitative resultsrather
than provide controlled, quantitative results, we ran the
benchmarks severa times and selected a representative
run rather than averaging successive runs. (We will val-
idate the effectiveness of featherweight layering in Sec-
tion 10.2 in a controlled experiment.)

Figure 9.2 shows the overheads of varying numbers
of null layersfor these benchmarks. The top two graphs
present elapsed time, the lower two, system time. The
left two graphs represent absolute values while the right
graphs show overhead relative to the zero-additional-
layer case.

Overheadsvary significantly depending on the bench-
mark employed; in particular, real-time costs of the cp
and rcp benchmarks show substantial variation. These
results are not unexpected since these measurements ex-
amineonly asinglerun. In spite of thisvariation, we can
draw at least two qualitative conclusions from this data.
First, the overhead for most benchmarksis basically lin-
ear inthe number of layers. Second, several benchmarks
(notably find and grep) show substantial overhead when
multiplelayersareemployed. The high overhead present
in these benchmarks suggests that large numbers of gen-
era layers cannot be employed for trivial purposes. In-
stead of the performance exhibited in Figure 9.2, a pic-
turequalitatively likethat in Figure 9.3 isdesired. A few
general-purposelayersare present, but much of the stack
is composed of featherweight layers, considerably redu-
cing total overhead.

9.21 Whereisthe expense of general
layering?

Figure 9.2 suggests that there is significant overhead as
thenumber of layersrises. To determinewherethisover-
head occurs, we profiled several benchmarks executing
onastack of tennull layers. (Thecumulativeoverhead of
ten layers emphasizes where layering overhead occurs.)
Like the measurements of Figure 9.2, these profiles are
a single representative run taken from several observa-
tions. Again, these measurements are derived in a test
environment identical to that described in Section 8.2.
Table 9.1 showsthefivemost expensiveroutinesin the
null layer (ranked the in-kernel execution time spent in
that function and its descendents). The bypass routine
is called very frequently (once per layer, per operation)
and so contributes significantly to overhead. Also, for
the find benchmark vnode creation time is significant.
Bypassing is expensivefor two reasons. First, itisex-

9.2. COSTSOF FULLY GENERAL LAYERING 59

—o— Cp
—a— find
—e— findgrep
—&— grep
—x—Is
—+— mab
- -e—-rcp
300
§ 150
2] e
2 250]
100
= 200 §]
IS o
=1 () |
g 150 E 50
5 g |
100 _§']
0
1 i T T T T
0 2 4 6 8 10 0 2 4 6 8 10
number of layers number of layers
ie]
8
(2] <
2 o
5 >
g 3
£ g
(]
£ 2
- ()
£ E
z g
® 1
&
0 2 4 6 8 10
number of layers number of layers

Figure 9.2: Layering overhead as the number of null layers vary. Please note that several of these graphs have dif-
ferent scales. Since this data consists of only one sample run and certain benchmarks exhibit high variahility, these
measurements should be considered qualitative and not quantitative.

60 CHAPTER 9. FEATHERWEIGHT LAYER DESIGN AND IMPLEMENTATION

Mab (M odified Andrew Benchmark)
self descendent call

rank %time time time count routine
30 4.0 270 011 149,662 nul | _bypass
100 11 0.05 0.70 5010 nul | _nmake_nul | node
119 09 0.17 045 17,656 nul |l _| ookup
154 0.6 0.24 0.18 18,150 null _getattr
167 05 0.10 027 3103 nul | _get page
Total useful execution time: 69.55 seconds.
Find
salf descendent call
rank %time time time count routine
10 20.1 3.10 34.37 263,010 nul | _make_nul | node
12 15.9 27.05 257 1,996,920 nul | _bypass
14 13.7 25.43 0.00 501,230 nul | _find null node
19 7.1 12.06 1.15 237,280 nul |l _free_nul |l node
23 45 230 6.5 267,249 nul I _| ookup

Total useful execution time: 186.09 seconds.
nul | _find_null nodeiscaledbynul |l _make nul | node.

Grep
self descendent call
rank %time time time count routine
7 20.1 6.64 0.35 417,555 nul | _bypass
18 12.3 048 381 21,400 null _rdw
39 3.0 093 0.12 105,000 nul | _open
48 2.0 0.15 0.55 11,476 nul | _| ookup
116 04 0.01 014 1080 nul I _make_nul | node

Total useful execution time: 34.81 seconds.

Table 9.1: Null-layer routine usage from three benchmarks. Rank, routine ranked in all kernel routines by %time;
%time, time spent in routine or child routine as fraction of useful time spent in the kernel; self-time, time spent in the
routine; descendent-time, time spent executing in descendent routines on behalf of thisroutine; call-count, total times
this routine was called. These values are taken from one profiling run of benchmarks over a stack of ten null layers.
Although they aretypical, minor variation in future runsis not unlikely.

9.3. DESIGN OF FEATHERWEIGHT LAYERING

overhead

0 2 4 6 8 10
number of layers

Figure9.3: A qualitative pictureof desired featherweight
layering performance. The general layers 1 and 5 add
some overhead, while the more numerous featherweight
layers show substantially less overhead.

ecuted once per layer in the stack for all operations not
otherwise implemented by that layer. Second, the gen-
erality of a bypass routine (which must be prepared to
handlearbitrary operationsand arguments) limitstuning.
Featherweight layers addressthefirst problem by not re-
quiring bypass code for operations they do not modify.
When bypassing cannot be avoided, the second prob-
lem can be addressed by providing bypass routines cus-
tomized to particular common operations. Such a by-
pass routinewould still need to map vnodesto the lower-
layer, but one customized to aparticular operationwould
be more efficient than the general case described in Ap-
pendix A.3.

Vnode creation is expensive because it requires ob-
ject alocation and initialization. Just as with bypassing,
vnode creation overhead is best reduced by avoiding it.
A large vnode cache addresses this problem if vnodes
are used repeatedly. Featherweight layers also avoid
vnode creation by employing vnodes of their stacked-
upon layer. Finally, when vnode allocation cannot be
avoided, costs can be minimized using techniques such
as those described by Bonwick [Bon94]. Bonwick sug-
gests caching partialy deallocated data structures. |If
such al cached objects share generic substructures re-
quiring initialization (for example, locksin an SMP ker-
nel), this initialization can be avoided by re-using the
substructures | eft by the prior owner.

Featherweight layers therefore provide steps to im-
prove performance both by eliminating unnecessary by-

61

passes and by reducing the amount of data structure
maintenance.

9.3 Design of Featherweight
Layering

The central goal of featherweight layering is a gain in
performance over general layering. The benefits of bet-
ter performance must be weighed against the costs of
complexity and new overhead described in the introduc-
tion, so asecondary goal must beto minimizethesecosts.
The primary design issue for featherweight layering is
therefore to determine the subset of functionality which
should be selected.

To avoid complicating the stacking model, feather-
weight layer code should be a subset of that employed
by a standard layer. This keeps the programmer’s view
of layering similar and allows featherweight layersto be
easily “upgradable” to general layers. Any performance
gains of featherweight layers will arise from a less gen-
eral layering mechanism.

Thegenerality of standard layersderivesby each layer
having its own representation of files in the form of
private vnodes. Private vnodes imply the capability to
have per-layer:

e operation implementations
cached data objects
filelocks
vnode locking
private location in the file-system namespace
private state
stacked-uponvnodeor vnodes (animportant special
case of private state)

All featherweight layers will require some of these
features. (For example, all non-terminal layers must
identify their stacked-uponvnode.) Animportant design
issue is therefore which of these features should be
made available and how they should be made available.
Each unavailable feature restricts which layers can be
provided with featherweight technology, but exposing
featuresthrough new interfacescan be costly in perform-
ance, implementation, and complexity.

9.4 Implementation of

Featherweight Layers

We haveoutlined the design constraints of featherweight
layering above. We next discuss the implementation

62 CHAPTER 9. FEATHERWEIGHT LAYER DESIGN AND IMPLEMENTATION

we' ve chosen and how these design constraints affected
that implementation.

9.4.1 Featherweight layer configuration

Featherweight layers are configured into a stack of the
general layer they stack upon at the mount-time.! Each
featherweight layer is listed in the mount options of the
general layer.

A featherweight layer depends on the layer it stacks
upon for all services, except for operations it modifies.
For these operations, the featherweight layer’s imple-
mentation must take priority. This preemption is ac-
complished by building a custom operations vector for
each extant configuration of featherweight layers. At
mount-time the operations vector for the general layer is
taken asastarting point. Each featherweight layer isthen
“patchedin” to any operationsit modifies. If the feather-
weight layer hasno need to call the operationit replaces,
its implementation ssimply overrides the existing opera-
tion. On the other hand, some featherweight layers may
implement an operation by first invoking that operation
in the lower-level layer and then modifying the result.
Since that lower-level layer can be ageneral layer or an-
other featherweight layer, operation doubling (described
below) is used to preserve the stacked-upon definition.

9.4.2 Featherweight layering restrictions

Featherweight layers derive any performance improve-
ment by providing arestricted layering environment. In-
herent in featherweight layer design is the tension of ex-
pressiveness against speed and simplicity. To achieve a
reasonabl e bal ance we examined the requirements of our
list of potential featherweight layers (Figure 9.1).

operation implementations A featherweight layer can
alter any operation. Just as with a regular layer,
it can replace the operation with a completely new
implementation. This new implementation can be
self-contained, or it can invoke operationson lower
layer vnodes.

cached data objects Data protected by the cache man-
ager cannot be manipulated without obtaining that
layer's cache name. General layers (for caching)

LIn our prototype, featherweight layer configuration with its
general-purpose layer implies that addition of featherweight layers
after mount-time requires addition of another general-purpose layer.
This restriction is an artifact of our prototype; it could be relaxed if
necessary.

can have multiple cache names, so this informa-
tion is part of each layer’s private state. To allow
featherweight layers to alter cached data, simple
layers can export their cache name viaanew vnode
operation. (This procedure is described below in
“Controlled export of private state”.)

filefrecord locks Status of user-level-lock requests are
part of the public vnode state. Access to this data
must be cache coherent and so is dependent on ac-
cess to the cache-name.

vnode locking Per-vnode locking protocols are part of
avnode's private state and so are not accessible to
afeatherweight layer. Stack-widelockingis part of
the cache manager and thereforeis available.

private state Featherweight layers have no in-memory,
private state. A number of straightforward schemes
are possible to allocate and coordinate such state,
but the overhead of such solutions is comparable
to the cost of a general-purpose layer and the com-
plexity added is significant. Barring a lightweight
state allocation mechanism, ageneral purposelayer
provides an appropriate mechanism for services
with private state.

An extensible-attribute storage service (such as
that described by Weidner [Wei95] or present in
0S/2 [Dun9Q]) might allow on-disk private state.
Full exploration of this potential isthe subject of fu-
ture work.

stacked-upon vnodes A featherweight layerisrequired
to stack over exactly one other vnode. No fan-
out is possible (referencesto multiple stacked-upon
vnodes would require private state). For the kinds
of services provided by featherweight layers, this
restriction has not been significant.

portion of namespace Featherweight layers cannot
have a namespace independent of the general-
purpose layer they stack upon. A private name-
space must be represented by independent vnodes;
afeatherweight layer lacks its own vnodes.

The central limitation of a featherweight layer is its
lack of private state. We employ two techniquesto over-
come this limitation: export of private state and opera-
tion doubling.

Controlled export of private state

The central idea behind featherweight layering is to al-
low a lightweight service to make use of mechanisms

9.5. SUMMARY

provided by a general layer. The featherweight layer
makes use of thevnode and public dataof ageneral layer.
Other aspects of layers (such as cache management) are
part of the private state of the stacked-upon layer. Of-
ten these aspects must remain part of the private state be-
cause different layers may implement them differently,
or not at all.

If afeatherweight layer must make use of such facil-
ities, we export them via new vnode operations, rather
than with a completely public interface. This approach
allowscontrolled accessto these services. Layersthat do
not or cannot provide such services can gracefully return
an error.

Although this approach entails dlightly higher over-
head than acompletely publicinterface, it allowsfeather-
weight layer access to “private” state while alowing
the stacked-upon layer to retain control as necessary.
We examine the performance of this approach in Sec-
tion 10.2.2.

Operation doubling

Private-state export allows a featherweight layer to take
advantage of some of the private state present in the
general-purpose layer it stacks upon while avoiding
maintenance of its own state. In some cases, though,
the featherweight layer requiresinterna state. If alayer
overrides an existing operation and also needs to call
the old implementation of that operation, references to
both operations must be stored somewhere. This stor-
age would traditionally occur in private state, but tra-
ditional approaches to private state cannot be applied
since a featherweight layer lacks private per-mount or
per-vhode storage.

We solve this problem with operation doubling. Ob-
serving that the only private data all ocated to an instance
of afeatherweight layer is the vnode operations vector,
we allocate additional space in the operations vector. |If
a featherweight layer overloads an operation, we alloc-
ate an additional entry in the operations vector for aref-
erence to the stacked-upon implementation.

Thethree approachesto vector management areillus-
tratedin Table 9.2. Thegeneral layer showsatypical op-
erations vector configuration. In the FWL without doub-
ling column we add an fsync layer to this stack. The
fsynclayer does not need to call the underlying fsync op-
eration, so f sync_f sync simply takes the place of the
existing fsync vnode operation. In the final column we
stack avmio layer over the ufs. The vmio implementa-
tion of vop_r dw sometimes requires calling the under-
lying operation, so that operationisdoubled. Theold op-

63

eration is stored in the vop_vmi o_doubl ed_r dwr sot.

Table 9.3 shows the calling sequences of invocations
of each kind of operation.

Several observations are relevant to this approach.
First, asan optimization, the stacked-over operation need
not be saved if thefeatherweight layer never callsit. This
was the case with the fsync layer of Table 9.2. Second,
operation doubling is successful even if several feather-
weight layersin the same stack alter the same operation.
Each layer hasits own doubling dots. Finally, spacein
the operations vector could be used for other purposes,
at least in principle. The penalty is that operations vec-
tor entriesare allocated in all existing operationsvectors,
and the stacked-upon layer may use different vectorsfor
different objects.

9.4.3 Commentary on the implementation

Our implementation of featherweight layering changes
one aspect of vnode semantics. Although the operations
vector is supposed to be opaque, there are several places
in SUnOS 4.x where this field is checked to determine
vnodetype. Sincefeatherweight layers allocate new op-
erations vectors for each mount-instance, the operations
vector can no longer be used to determine type.

We address this problem in two ways. First, explicit
type-checksare often not necessary in an object-oriented
system. When we can, we restructure the code to avoid
the type check. Such restructuring was not always pos-
sible, so a complimentary approach is to provide a new
“vnode-type” operation, formalizing the type-checking
interface.?

9.5 Summary

If stackable filing is to be extended to very lightweight
services, a comparable layering mechanism must be
provided. This chapter has suggested that feather-
weight layering fills that role; that by limiting per-layer
private state, substantial performanceimprovementscan
be achieved. The next chapter validates these claims by
examining our prototypefeatherweight layer implement-
ation.

2Explicit type-checks are often considered bad style in an object-
oriented system. Rosenthal arguesfor their complete elimination toim-
prove flexibility in his design for stackable filing [Ros90]. However,
there are times when type-checks are very convenient. For example,
when the UFSisout of inodes, it attemptsto freeinodesin use by name-
lookup caching. To do so it scans the name-lookup cache looking for
UFS-type vnodes.

64

CHAPTER 9. FEATHERWEIGHT LAYER DESIGN AND IMPLEMENTATION

general FWL without FWL with
dot layer doubling doubling
vop-open uf s_open uf s_open uf s_open
vop-cl ose uf s_cl ose uf s_cl ose uf s_cl ose
vop-r dwr uf s_rdwr uf s_rdwr vm o_r dwr
vop_fsync uf s_fsync fsyncfsync vmo_fsync

vop_vm o_doubl edrdw ufs_bypass ufs_bypass uf s_rdwr

Table 9.2: Operationsvector configurationsfor several layer combinations.

general layer
cal ops_vector[vop_open] [uf s_open]
uf s_open handles operation

FWL layer without doubling
cal ops_vector[vop_fsync] [vm o_fsync]
f sync_f sync handles operation

FWL layer with doubling
call ops_vector[vop_rdw] [vri ordw]
vmi o_r dwr gets operation, callsvop_vm o_doubl ed.r dw (uf s_rdwr)
uf s_r dwr handles operation
v o_r dw does additional work, if necessary

Table 9.3: Calling sequence of vop.r dw for different layer combinations.

Chapter 10

Evaluation of Featherweight Layering

In the prior chapter we described the need for light-
weight, layered services, and we suggested feather-
weight layering as a potential solution. In this chapter
we eval uate the proposed model and its prototypeimple-
mentation. First, we examine the impact featherweight
layers have on the programming model. We then con-
sider the performance of our implementation.

10.1 Programming Mode€l

For featherweight layering to be successful, it must be
the case that featherweight layers substantially reduce
overhead, that there are needed services which can be
provided as featherweight layers, and that featherweight
layers do not add significant complexity to the basic
programming model. A later section discusses the per-
formance characteristics of featherweight layers; here
we consider their expressive power and potential com-
plexity.

10.1.1 Expressive power

Featherweight layering is advantageousonly if it can be
employed to solve useful tasks. It derives its perform-
ance improvements by restricting layering functionality;
these restrictions must not be too oppressiveif beneficial
featherweight layers are to be constructed.

We have found that several classes of application are
amenable to featherweight layer solutions. There are
a number of small, internal services used by layer de-
signers, there are afew user services common to several
layers, and several smple versioning problems can be
effectively managed with featherweight layering. Fig-
ure 9.1 lists nine layers which have been prototyped at
UCLA and shows which categoriesthey fall into. These
layers demonstrate that featherweight layering can be
particularly effectivein providing these kinds of services

65

to multiple layers. We therefore conclude that feather-
weight layering is expressive enough to provide useful
services.

10.1.2 Programming model complexity

We have shown that featherweight layering can be ap-
plied to several different layers, and in the next section
we will show that it can significantly reduce layering
overhead. But if the cost of these improvements is a
significant increase in design complexity, then feather-
weight layering wouldfail the ultimate goal of improving
the filing-devel opment environment.

Featherweight layering adds two kinds of complexity
to layer design. First, a second kind of layering requires
that the devel oper choose which mechanism will be em-
ployed. If thischoiceisdifficult or if thischoiceislikely
to be incorrect and expensive to correct, then the choice
itself addssignificant complexity. Second, featherweight
layering may be more difficult to use than regular layer-
ing.

It is difficult to quantitatively evaluate the cost of
choosing a layering strategy. A formal experiment re-
quiresuse of featherweight layersby astatistically signi-
ficant number of developersin a controlled setting. This
experiment has not been conducted.

Although we lack the means necessary for an experi-
mental evaluation of differencesin complexity, we have
taken every step possibleto minimize complexity. Good
documentation of the differencesin thelayering schemes
and examples of existing layers best serve to simplify
choice of layering protocols.

We have taken severa steps to minimize the cost of
converting between layering structures. A featherweight
layer implementation is a strict subset of a general layer
implementation with only oneexception. Likeageneral-
purpose layer, a featherweight layer lists all operations
it wishes to change. It lacks the vnode maintenance

66 CHAPTER 10. EVALUATION OF FEATHERWEIGHT LAYERING

and layer configuration code of a general-purpose layer.
Operation invocation is largely similar between feather-
weight layersand general -purposelayers; the only major
differenceis that doubled operations are invoked with a
dightly different syntax. (Invocation of non-doubled op-
erations occurs with the normal format.) This difference
is due to limitations of our current interface compiler; if
necessary it could be removed. We believe by subsetting
general-purposelayersto make featherweight layers, we
minimizethe cost of transition between schemes. Choice
of layering mechanism can usually be made smply by
determining if in-memory state is required.

Finally, we believe that featherweight layers have an
very low inherent complexity. A featherweight layer
consistsonly of the operationsit wishesto change; no ex-
ternal mechanismsarerequired. Figure 10.1 presentsthe
complete source code of the fsync featherweight layer,
for example.

10.2 Performance

There are two components to the cost of featherweight
layering: a run-time performance cost and a feather-
weight layer instantiation cost. To completely evalu-
ate run-time performance, we will examine both micro-
and macro-benchmarks. We first examine the minimal
featherweight layer instantiation costs.

10.2.1 Featherweight layer instantiation
costs

file-system instantiation (mounting) is a small compon-
ent of typical file-system operation because configura-
tion occursonly occasionally. On many systems, al file-
systems are configured at system power-up and are un-
atered thereafter. In other environments instantiation
might take place with manipulation of removable media
such as a floppy diskette or CD-ROM. In these cases
physical hardwarelatency dwarfsfeatherweight layer in-
stantiation time.

For these reasons we only briefly examine instanti-
ation costs of featherweight layers. We consider two di-
mensions of this cost: time and space.

Instantiation time

Initialization of a featherweight layer requires clon-
ing and then altering the stacked-upon, general-purpose
layer’s operations vector. To examine instantiation cost
we measured the time required to mount when mount-
ing seven featherweight layers over a single null layer.

The results of this experiment are shown in Table 10.1.
Standard deviation for thetotal instantiation timeis quite
high because context switches resulted in four samples
that were 5-30 times higher then the rest. When these
outliers were eliminated (as shown in the right-most
column) we found an average total time fell to 20,185
pseconds with a 8.38% RSD.

These measurements suggest that instantiation time of
asinglefeatherweight layer is about %% of thetotal con-
figuration time. This number is quite low and, given the
frequency of layer instantiation, it is difficult to imagine
cases where this dight overhead would be problematic.

I nstantiation memory requirements

Featherweight layers are piggy-backed on existing
general-purpose layers and employ most of the services
of their stacked-upon layer. The only state unique to a
particular featherweight layer instantiation is its opera-
tionsvector. Thissituation differsfrom asystem without
featherweight layering where all instances of a given
layer share the same operations vector. The memory
requirements of additional operations vectors therefore
represent an additional memory cost of featherweight
layering, a cost which we examine next.

Theamount of memory required isdependent uponthe
number of mounted layers, operations vectors per layer,
and how many total vnode operationsare configured into
the current system. The following formulae specify the
relationship:

opsvector memory < (mounted general layers) x

(ops vectors per layer) x
(ops vector size)

opsvectorsize = ((opsfor al genera layers) +

(doubled ops)) x
(size of vector element)

While these formulas alow us to compute feather-
weight layer memory requirements, for several reasons
it is difficult to get good estimates for their paramet-
ers. Nearly all of them (except for the 4-byte size of a
vector element) are strongly dependent on layer config-
uration and deployment, and on local needs and prac-
tices. A user of a small laptop computer might have 1—
3 mounted general layers, 1 vector per layer, and ~30

10.2. PERFORMANCE 67

#i ncl ude <sys/param h>
#i ncl ude <sys/time. h>

#i ncl ude <sys/vnode. h>
#i ncl ude <i 405/i 405. h>

int
i 405_vn_f sync(ap)
struct nvop_fsync_args *ap;

{

USES NVOP_PUTPAGE;

return NVOP_PUTPAGE(ap->a_vp, 0, 0, 0, ap->a_cred);
}
/*

* fsync_fw _vnodeop_entries specifies what operations

* the fsync | ayer overrides.

*/

struct fw _vnodeopv_entry_desc fsync_fw _vnodeop_entries[] = {
{ &nvop_fsync_desc, i405_vn_fsync, 0, NULL },
{ NULL, NULL, 0, NULL },

b

Figure 10.1: Annotated source code for the fsync featherweight layer.

featherweight layer total total time
instantiation time instantiation time (without outliers)
mean time:
total 468 piseconds 66,208 useconds 20,185 useconds
per layer 67 pseconds
% RSD 4.98% 201% 8.38%

Table 10.1: Initialization time to stack seven featherweight layers (pathconf, fsync, maptostackmap, vmio, frl, fdnic,
and oldtonew) over a null layer. These values are the mean of 20 samples of the mount command. The right-most
column represents the same experiment as the center column with outliers (4 of the 20 samples) removed from the
data.

68 CHAPTER 10. EVALUATION OF FEATHERWEIGHT LAYERING

parameter workstation server
systems examined 16 6
mounted file-systems 6-10 15-25
opsvectorsper layer 1 1
operationsin system 29-37 29-37
memory present 12-36 Mb 32-96 Mb

Table 10.2: Measurements of parameters of file-system
usage for workstations and servers in an non-stacking
academic environment. Section 10.2.1 describes how
these measurements were taken.

operations per vector. A server computer running with
multi-layer replicated filing system with compression
and backwards compatibility layersmay well have ~100
general-purposelayers, 5 vectors per layer, and ~80 op-
erations per vector. Because of the multiplicative af-
fect of these parameters, dight errorsin estimation can
significantly effect memory-usage estimates. While we
have experiencewith our use of featherweight layering at
UCLA, our environment is different from most because
of layer development.

As an initia estimate of these parameters, we meas-
ured a number of Unix workstations and servers cur-
rently deployed in an academic setting. We measured
the dynamic number of local and remote file-systems
employed by machines on the Ficus project and for the
UCLA computer science department. These machines
were various kinds of Sun workstations and serversrun-
ning either SUNOS 4.x or Solaris 2.4. To avoid the bias
of our use of Ficus replication, we factored out Ficus-
specific volumes. The results of this survey can be seen
in Figure 10.2. We recognize that these figures are de-
pendent on their environment; however, we believe they
provide order-of-magnitude figures typical to academic
environmentsin 1994-95.

From the values of Figure 10.2 we can calculate cur-
rent memory usageif current systems were converted to
use featherweight layering. Current systems do not yet
employ layering, and so such a cal culation would under-
estimate memory requirements. A better estimate can be
determined if we extrapolate current figures to account
for layering. Table 10.3 shows the result of two such es-
timations, assuming moderate and heavy use of layering.
For “moderate” use we project three genera-purpose
layers taking the place of each current file-system, each
with twice the operations vectors as currently used, and
a system with twice the number of vnode operations as
the current maximum, and 5 doubled operations. For

“heavy” use we project eight layersin place of each file-
system, three operationsvector per layer, three times the
current maximum vnode operations, and ten doubled op-
erations.

Memory usage of these configurations is shown in
Table 10.3. Depending on layering use, memory re-
guirementsvary substantially, but evenin heaviest usage
featherweight layering consumes a fraction of a percent
of total system memory, about the memory footprint of a
small utility program. Thismemory usage doesnot seem
significant in the current computing environment, and it
will become even less significant as memory sizes con-
tinue to grow. Finaly, if necessary, featherweight layer
memory usage could be reduced by having layers with
identical configurations share operations vectors.

10.2.2 Performance of featherweight layer
details

We next examine particular aspects of featherweight
layer performance. Just as with genera-purpose lay-
ers, some aspects of featherweight layer construction are
critically important to overall performance. We exam-
ine two of these: the cost of a“minimal” featherweight
layer and the cost of afeatherweight layer bypass opera-
tion. A combination of thisdetailed analysiswith general
benchmarks (describedin Section 10.2.3following) give
a complete performance picture.

First let us consider the minimal featherweight layer.
A featherweight layer consists of alist of operationsto
override. Since the shortest such list is empty, a “min-
imal” featherweight layer will not alter filing behavior in
any way and will have no run-time overhead. While this
example may appear contrived, it compares favorably
to the overhead of the minimal general-purpose layer
which includes scaffolding to set-up and maintain per-
layer data structures.

The minimal featherweight layer that altersfiling be-
havior would replace asinglefiling operation. Thefsync
layer does so, implementing code to allow a user to
write al file data to disk. When added to a stack, its
f sync_f sync implementation of vop_f sync is patched
into the operationsvector and executes directly whenin-
voked. There is no change in the performance of any
other operation. Again, performanceis exactly asif the
fsync service had been constructed as part of the original
layer.

Featherweight layering adds overhead only when the
featherweight layer requires information present
only in the stacked-upon layer. An example of
this overhead is present in the vmio layer which

10.2. PERFORMANCE

69

current moder ate heavy
parameter workstation server workstation server workstation server
mounted GP layers 6-10 15-25 30 75 80 200
opsvectors per layer 1 1 2 2 4 4
operationsin system 29-37 29-37 74 74 111 111
doubled operations 0 0 5 5 10 10
FWL memory 0.7-1.4kbytes 1.7-3.6k 18.5k 46.3k 151.3k 378.1k

Table 10.3: Estimates of parametersfor layer instantiation for memory usage in different system configurations. Sec-
tion 10.2.1 describes how these numbers and projections were determined.

static int
nul | _get _svcm nane(ap)
struct nvop_get_svcm nane_args *ap;

{
*ap->a_nanme_p =
VTONULL(ap- >a_vp) - >nul | _nane;
return O;
}

Figure 10.2: C source code for an implementation of
vop_get _svcmnane.

maps a standard voprdw to a stack-friendly op-
eration (vop_st ackrdwr). The specification of
vop_st ackr dw requires that the stack’s cache-lock
must be acquired before the call. The cache-lock is part
of the stacked-upon layer’s private state, so the vmio
layer must retrieve thisinformation (with another vnode
operation) before locking the stack. This extra vnode
operation represents overhead due to featherweight
layering; if constructed as a monolithic layer, this
information would not then require a vnode operation.

To quantify the cost of this extra vnode operation,
we examine vop_get _svemnane, the routine used by
the vmio layer to access cache management information
from the stacked-upon layer’s private state. Figure 10.2
shows the C code required to implement this function.
This subroutine expands into 7 optimized SPARC in-
structions, and requiresabout 15 linesto set up thevnode
operation and check a potential error return. If thisin-
formation were instead made publicly available, access
cost would be less than 6 instructions. This cost is small
but not insignificant; we believethat it contributesto the
few percent overhead measured in the grep benchmark
of Figure 10.6.

These examplesillustrate how featherweight layering
provides very low-overhead layering. Operations which

are not modified execute as if there were no feather-
weight layer. Even when new operations are provided,
often they can be provided as efficiently as they would
have been with a monolithic implementation. While
general-purpose layers have a minimal amount of over-
head regardless of what service is provided, in feather-
weight layering overhead is proportional to the services
used even if no services are employed.

10.2.3 Macro-benchmarks

Micro-benchmarks are useful to examine particular as-
pects of featherweight layer performance, but overall
performanceis often better judged through higher-level
benchmarks. To investigate overal performance we
compare three layer configurations (see Figure 10.3).
Each of these configurations represents one possible
strategy for providing lightweight services. The single-
null-layer case presents the traditional approach: all ser-
vices are hard-coded as part of a single layer. This ap-
proach istaken by most existing file-systems and layers.

The multiple-null-layer case approximates the per-
formance that would be observed if lightweight services
were built with general-purposelayers. Thisapproxima-
tion is not perfect: we actually implement all servicesin
thetop layer and then emulate the framework of six other
layers. Since all of the new services are provided by
the top layer, we believe that this approximation slightly
underestimates the overhead that would exist if services
were spread throughout all layers.

Finally, the third case provides these same services
with featherweight layer mechanisms. We have stripped
all lightweight services out of a null layer, creating a
“minimal” layer. We then added these services back
as seven featherweight layers stacked over that minimal
layer.

We ran our suite of benchmarks against these three
configurations. (Section 8.2 describes these benchmarks

70 CHAPTER 10. EVALUATION OF FEATHERWEIGHT LAYERING

singlenull layer A single null layer stacked over a
UFS. This “null” layer includes name-lookup and
file-system data caching.

multiple null layers A stack of seven null layersover a
UFS. All null layers are configured asin the single-
null-layer case, but caching is done only at the top
layer (to avoid double-caching effectively reducing
cache size).

minimal layer with featherweight layers A minimal
layer (a null layer without name-lookup and
file-system caching) is stacked over a UFS. On
the minimal layer are added the pathconf, fsync,
maptostackmap, vmio, frl, fdnlc, and oldtonew
featherweight layers.

Figure 10.3: Layer configuration for the featherweight
layer macro-benchmarks.

and the specific hardware employed in these tests.) The
results of these experiments can be seen in Table 10.4,
and graphically in Figure 10.4.

These measurements show that the featherweight
layer case has performance comparable to the single-
null-layer case, while the multiple-null-layer case typic-
ally shows performance considerably worse than either
of the others. This observation is most apparent for
system-time measurementsof these benchmarksbecause
all overhead occursin the kernel. There isone main ex-
ception to this observation: elapsed time for the copy
benchmark. However, elapsed time of this benchmark
exhibits a very high standard deviation (more than 30%
for the featherweight layer case and more than 14% in
the other cases), and so measurement error many be re-
sponsible for this anomaly. Additionaly, there are sev-
eral cases where the featherweight layer case performs
dightly better (0.1 or 0.2 seconds) than the single-null-
layer case. With atimer granularity of 0.1 seconds, this
behavior is not unexpected.

Rather than compare these three measurements dir-
ectly, it is helpful to compute the performance of these
benchmarks relative to some baseline and then com-
pare these relative measurements. We adopt the single-
null-layer case as a baseline; however minimal, addi-
tional coderequired for layering inthe other cases should
add some cost to the implementation of these services.
Againgt thisbaseline we comparethe multiple-null-layer
and the featherweight layer cases, as seen in Table 10.5
and Figure 10.5. Figure 10.6 presentsthe same datawith

timein seconds
[
(6]
o
i

cp findfindgrepgrep Is mab rcp rm
benchmark

O single null layer, elapsed

O 7 null layers, elapsed

@ null layer with FWLs, elapsed
m single null layer, system

Figure 10.4: Benchmarks comparing monolithic, gen-
eral, and featherweight layer configuration of seven ser-
vices. Section 10.2.3 interprets this data; Table 10.4
presentsit in tabular form.

10.3. SUMMARY

71

single-null multiple-null multiple-FWL
time benchmark | mean %RSD mean %RSD mean %RSD
elapsed: cp 170.1 1509 176.0 1422 180.1 31.23
find 130.1 8.37 189.0 6.68 128.7 8.91
findgrep 196.3 2.60 220.1 181 197.1 2.19
grep 60.1 173 66.6 1.95 61.1 1.34
Is 62.9 1.55 63.3 1.78 62.7 1.53
mab 150.5 2.30 152.7 1.34 150.7 1.86
rcp 261.0 8.36 262.5 8.39 259.6 5.39
rm 63.0 0.99 64.3 1.22 64.1 2.32
system: cp 24.1 1.35 26.9 1.34 24.4 2.39
find 59.4 15.04 115.9 8.73 58.8 15.20
findgrep 108.8 2.79 141.2 1.52 108.9 1.85
grep 19.9 221 25.8 2.97 20.6 3.40
Is 394 1.69 39.8 2.06 39.3 2.05
mab 39.7 1.23 41.8 111 39.6 111
rcp 17.7 4.67 20.3 3.80 17.8 531
rm 79 5.70 11.3 431 8.5 7.26

Table 10.4: Benchmarks comparing monolithic, general, and featherweight layer configuration of seven services. Dif-
ferencesmarked with an asterisk arelessthan the 90% confidenceinterval and so arenot statistically significant. These
values are derived from 11 sample runs of each benchmark. Section 10.2.3 interprets this data; Figure 10.4 presents

it graphically.

thefind benchmark omitted since the benchmark distorts
the remainder of the graph.

There is substantia variation between the overheads
observed in these benchmarks. This behavior is expec-
ted; different benchmarks exercise thefile system in dif-
ferent ways. Recall that we observed two primary con-
tributors to null-layer overhead in Section 9.2.1: vnode
creation and bypass cost. The multi-null-layer case suf-
fersfrom both of these penalties, whilethe featherweight
layer case avoids vnode creation completely and suffers
bypass overhead only from operations that are changed.
The relative prevalence of these operationsin the differ-
ent benchmarksisreflected in the different overheadsob-
servedin Table 10.5 and Figure 10.5. For thefind bench-
mark, both are extremely common, whileinthe Modified
Andrew Benchmark both are fairly rare.

These benchmarks allow us to draw several conclu-
sions about how to structure lightweight services. Firdt,
they suggest that a general purpose layering mechanism
is too expensive a delivery mechanism for very light-
weight services. Even at only 2% system-time overhead
per layer (a cost needed to maintain minimal per-layer
data structures) the overhead of layering quickly over-
whelms lightweight services. The cumulative effect of
this small overhead implies that general-purpose layers

cannot be used indiscriminately, as demonstrated by the
1-30% overheads seen in the multiple-null-layer bench-
marks.

Our second conclusion is that featherweight layer-
ing, by contrast, does alow a successful, layered im-
plementation of very lightweight services. For none of
our benchmarks does the featherweight layer case ex-
hibit more than an 8% overhead, and for most of them
the overhead is less than the amount of error inherent in
measuring the data, and therefore is statistically insigni-
ficant.

10.3 Summary

In this chapter we have evaluated featherweight layer-
ing from several perspectives. We have shown that the
programming model offered by featherweight layering
is both sufficiently powerful to alow significant feather-
weight layers to be constructed, and yet that feather-
weight layers do not introduce significant additional
complexity into the stackable programming model. We
havelooked at the performanceof featherweight layering
both by aclose examination of thetechniqueand by high-
level benchmarks. We have found that featherweight

72 CHAPTER 10. EVALUATION OF FEATHERWEIGHT LAYERING

multiple-null multiple-FWL
time benchmark | absolutechange % change absolutechange % change
elapsed: cp 5.9 3.47 10 5.88
find 58.9 45.27 -14 -1.08
findgrep 238 12.12 0.8 0.41
grep 6.5 10.81 1 1.66
Is 0.4 0.64 -0.2 -0.32
mab 2.2 1.46 0.2 0.13
rcp 15 0.57 -14 -0.54
rm 13 2.06 11 175
system: cp 28 11.62 0.3 1.24
find 56.5 95.12 -0.6 -1.01
findgrep 324 29.78 0.1 0.09
grep 59 29.65 0.7 3.52
Is 0.4 1.02 -0.1 -0.25
mab 21 5.29 -0.1 -0.25
rcp 2.6 14.69 0.1 0.56
rm 34 43.04 0.6 7.59

Table10.5: Benchmarkscomparing therelative performanceof general and featherweight layer configuration of seven
services to a single-layer implementation. These values are derived from 11 sample runs of each benchmark. Sec-
tion 10.2.3 interpretsthis data; Figures 10.5 and 10.6 present it graphically.

layers can provide a very low-overhead layering mech-
anism and can be used successfully to implement light-
weight services for which general-purpose layering is
prohibitively expensive. Featherweight layering extends
the applicability of UCLA layering to very “thin” layers
while preserving the characteristics of binary-only, inde-
pendent, third-party development and flexible configur-
ation and installation.

10.3. SUMMARY

S 80

[y

— i

=)

.g 60 —

T _

T _

'§40—

- i

o}

3 20

N _

O I'I-l H|-L=m m
S BBL2B88E B28BL288E
=55 & =55 £
2 2

elapsed -- benchmark -- system

O 7 null layers, elapsed
o null layer with 7 FWLs, elapsed
@ 7 null layers, system
m null layer with 7 FWLs, system

Figure 10.5: Benchmarks comparing the performance of
genera and featherweight layer configuration of seven
services to a single-layer implementation. Methodology
for these benchmarksis described in Table 10.5 and Sec-
tion 10.2.3.

73
403
= 3
c]
—]
o 304
(O]]
=]
8 3
T 20
B
O]
3 107
N "H
0: nl'l_nm
S BFL2B8BE g BFLBEBE
55 & - 55 E -
2 e

elapsed -- benchmark -- system

O 7 null layers, elapsed
o null layer with 7 FWLs, elapsed
@ 7 null layers, system
m null layer with 7 FWLSs, system

Figure 10.6: Benchmarks comparing the performance of
general and featherweight layer configuration of seven
services to a single-layer implementation, with the find
benchmark omitted and graph scaling adjusted. Meth-
odology for these benchmarksis described in Table 10.5
and Section 10.2.3.

74

CHAPTER 10. EVALUATION OF FEATHERWEIGHT LAYERING

Chapter 11

Related Work

File-system stacking builds on a long tradition of
operating-systems research in modularity and layering.
Our work at UCLA is derived directly from the vnode
interface developed at Sun Microsystems [Kle86] as
inspired by Ritchie's STREAMS 1/O system [Rit84].
Two other groups have worked contemporaneoudly in
file-system stacking. At SunSoft, Rosenthal and later
Skinner and Wang evolved the vnode interface to sup-
port stacking [Ros90, SW93]. The Spring project at Sun
Laboratories instead has created a brand-new operating
system supporting coherent, stackablefiling [KN93a].
This chapter begins with areview of existing work in
stacking and operating system modularity. We then ex-
amine recent approaches to file-system stacking, invest-
igating their influences, similarities, and differences.

11.1 Stacking Fundamentals

File-system stacking is grounded in work on file-system
structure and symmetric interfaces. Cache coherence
builds upon distributed filing and distributed shared
memory. In this section we briefly review research in
these areas.

11.1.1 Filesystem structure

Dijkstra describes early approaches to modular oper-
ating system design [Dij67, Dij68]. Madnick and
Alsop[MAB9], and later Madnick and Donovan [MD74]
discuss modular and layered approaches to file-system
design, concluding with a six-layer design. The design
of Unix adopted ssimpler approaches, resulting in atwo-
layer design (file system and physical devices) [Bac86].

11.1.2 Modular file-systems

In the mid-1980s, pressure to add distributed filing sys-
tems prompted Unix vendors to develop severa ab-

75

stract interfaces to filing services. The vnode inter-
face at Sun [Kle86], the generic file-system interface at
DEC [RKH86] and the file-system switch at AT&T are
all examples of these interfaces. The primary initial mo-
tivation was networked filing, but vendors aso intro-
duced support for other physical and logical filing sys-
tems.

Oneof theseinterfaces, Sun’svnodeinterface[KIe86],
serves as a foundation for our stackable file-systems
work. In Section 4.1 we briefly describe this interface,
our changes, and the motivations for those changes.

The standard vnode interface has been used to provide
basic file-system stacking. Sun’s loopback and translu-
cent file-systems[Hen90], and early versionsof the Ficus
file-systemwereall built with astandard vnodeinterface.
Theseimplementationshighlight the primary differences
between the standard vnode interface and our stackable
environment; with support for extensibility and explicit
support for stacking, the UCLA interfaceis significantly
easier to employ (see Section 5.2.1). Our approachesto
cache coherence and lightweight layering also journey
beyond the original scope of the vnode interface.

11.1.3 Extensibility

The System V, Release 4 version of the vnode interface
recognized the problem of interface extensibility. To aid
futureexpansion of theinterface, it allocates spacefor 32
additional operations [AT90]. (It also adds extra space
in the in-memory vnode.) While these capahilitiesare a
step towards a binary-interface standard for filing, they
provide no support for third-party extensions, and they
impose a significant space penalty [Ros90].

NeFS describes one proposal to provide an extens-
ible file-system interface [Sun90], focusing exclusively
on remote file access. An alternative to the NFS pro-
tocol for remote access, NeFS allows remote execution
of PostScript-like programsfor file access.

76

11.1.4 Symmetric interfaces

Unix shell programming with pipes [RT74] is an ex-
ample of a widely used symmetric interface. Pike
and Kernighan describe this work for software devel-
opment [PK84]; other applications are as rich as text
formatting [KP84] and music processing [Lan90].

Ritchie applied these principles to one kernel sub-
system with the STREAMS device 1/0O system [Rit84].
Ritchie's system constructs terminal and network pro-
tocols by composing stackable modules which may be
added and removed during operation. Ritchie's conclu-
sion is that STREAMS significantly reduces complexity
and improves maintainability of this portion of the ker-
nel. Since its development STREAMS has been widely
adopted.

The z-kernel is an operating system nucleus designed
to simplify network protocol implementation by imple-
menting all protocols as stackable layers [HPA89]. Key
features are auniform protocol interface, allowing arbit-
rary protocol composition; run-time choice of protocol
stacks, allowing selection based on efficiency; and very
inexpensive layer transition. The z-kernel demonstrates
the effectiveness of layering in new protocol develop-
ment in the network environment, and that performance
need not suffer.

Shell programming, STREAMS, and the z-kernel are
all important examples of stackable environments. They
differ from our work in stackable file-systems primar-
ily in the richness of their services and the level of per-
formancedemands. The pipe mechanism providesonly a
simplebyte-stream of data, leaving it to theapplicationto
impose structure. Both STREAMS and the z-kernel also
placevery few constraintsor requirementson their inter-
face, effectively annotating message streams with con-
trol information. A stackable file-system, on the other
hand, must provide the complete suite of expected fil-
ing operations under reasonably extreme performance
reguirements

Caching of persistent datais another major difference
between STREAMS-like approaches and stackable file-
systems. File systems store persistent data which may
be repeatedly accessed, making caching of frequently
accessed data both possible and necessary. Because of
the performance differences between cached and non-
cached data, file caching is mandatory in production sys-
tems. Network protocols operate strictly with transient
data, and so caching issues need not be addressed.

CHAPTER 11. RELATED WORK

11.1.5 User-leve layering with NFS

To avoid problems with kernel-level filing development
and inconsistent interfaces, a number of research pro-
jects have chosen to develop experimental services as
user-level NFS servers. Examplesincludereplicationin
Deceit [SBM90], automatic semantic indexing [GJS91],
and ftp-access through the file-system [Cat92], among
others.

NFS-servers have several advantages as a develop-
ment platform. The NFS protocol provides a well-
defined and widely availableinterfaceto build upon, and
a user-level server can build on alocal disk or another
NFS server for file storage. Yet auser-level NFS server
also has several very serious disadvantages. First, NFS
servers gain portability because the interface is fixed.
Services requiring new interfaces must either overload
the existing interface, modify the basic protocol, or sup-
ply another parallel protocol. Each of these approaches
has been taken in different systems, and each has signi-
ficant expense in implementation and maintenance cost,
and can limit portability. In addition to the set of opera-
tions, NFS clientsimplement a particular coherence pro-
tocol which may or may not be appropriatefor anew ser-
vice. Finally, communicationsto auser-level NFS server
can pose a significant performance bottleneck as datais
copied multipletimes asit moves from disk to user-level
server and to client, all through network buffers. For
these reasons NFS-servers have limited applicability to
development of new services.

11.1.6 Object-oriented design

Strong parallels exist between “object-oriented” design
techniques and stacking. Object-oriented design is fre-
guently characterized by strong data encapsulation, late
binding, and inheritance. Each of these has a counter-
part in stacking. Strong data encapsulation is required;
without encapsulation one cannot manipulate layers as
black boxes. Late binding isanalogousto run-time stack
configuration. Inheritance parallels a layer providing a
bypassroutine; operationsinherited in an object-oriented
system would be bypassed through a stack to the imple-
menting layer.

Stacking differs from object-oriented design in two
broad areas. Object-orientation is often associated with
a particular programming language. Such languages are
typically general purpose, while stackable filing can be
instead tuned for much more specific requirements. For
example, languages usually employ similar mechanisms
(compilers and linkers) to define a new class of objects

11.3. FEATHERWEIGHT LAYERING FUNDAMENTALS 77

and to instantiate individual objects. In a stackable fil-
ing environment, however, far more people will config-
ure (instantiate) new stacks than will design new layers.
As aresult, special tools exist to simplify this process.

A second difference concerns inheritance. Simple
stackable layers can easily be described in object-
orientedterms. For example, the encryptionlayer of Fig-
ure 1.1 can be thought of as adding encryption after in-
heriting “files” from the UFS “base-class’. Similarly, a
remote-access layer could be described as a sub-class of
“files’. But with stacking it is not uncommon to em-
ploy multipleremote-accesslayers. Itislessclear howto
express this characteristic in traditional object-oriented
terms.

11.2 Coherence Fundamentals

Our work on cache coherence is based on severa bod-
ies of existing work, including distributed filing, hard-
ware coherencein shared-memory multiprocessors, dis-
tributed shared memory (DSM) systems, and stackable
layering. Each of these areas evolved dightly different
solutions to cache coherence, but the central problemis
determining who holdswhat data. We examine different
applicationsfrom this perspective, categorizing how this
information is stored and collected.

11.2.1 Distributed filing

Early distributed file-systems such as Cedar and NFS
avoid the problem of cache coherence by disallowing
file mutation [SGN85] and not providing strong coher-
ence [SGK85]. Locus provides strong coherence with
a distributed token passing algorithm [PW85], while
Sprite detects concurrent update at a central site and dis-
ables caching for coherence [NWO88]. Later systems
provide variations on the token algorithm: AFS's call-
backs are essentially centrally-managed tokens [Kaz88];
Gray’sleases are tokens that can time-out to simplify er-
ror recovery [GC89].

Cache coherencein stacking borrowsthe basic coher-
ence approach used in these systems. Unlike these sys-
tems, stacking faces the unique problem of data identi-
fication across different data representations.

11.2.2 Multiprocessors and distributed
shared memory

As with distributed filing, early approaches to shared
memory multiprocessing avoid multiple caches or do

not provide strong coherence (Smith surveys such sys-
tems [Smi82]). More sophisticated systems broadcast
and multicast coherence information to some or al pro-
cessors. The constraints of a hardware implementation
limit the scale of these approaches.

Indistributed shared memory systemssoftwareplaysa
larger role in coherence. Li proposes strong consistency
with both centralized and distributed algorithms[LH86].
Recent work has focused on employing application-
specific knowledge to relax the consistency model and
obtain better performance [GLL90, CBZ91].

11.2.3 Networking protocols

We have dready described early work concerning
stacking of network protocols (for example, the Unix
shell [PK84], the STREAMS I/O system [Rit84], and the
z-kernel [HPA89]). Cache coherence is typically not
an issue in networking systems since data that passes
through the layers of a network stack is transient and so
not suitable for caching.

Network protocols often cache routing information,
both between hosts (1P routing and ARP trand ation), and
between TCP/UDP and IP layers of some implementa-
tions. Occasional cache incoherencein these systemsis
either tolerated, or the cacheisnot considered authoritat-
iveand is verified before each use. These approachesdo
not generalize to filing environments where cached data
isconsidered authoritativeand employed without verific-
ation.

11.3 Featherweight Layering
Fundamentals

Featherweight layering isinspired by the desireto “ com-
pile away” layers of abstraction. Although layering is
often a useful tool to logically describe a process, an
implementation of each layer need not be fully general.
This concept appears many timesin the literature in dif-
ferent forms. Severa groups advocate network layer-
ing without devoting a process per layer (see, for ex-
ample, STREAMS [Rit84] and the z-kernel [HP88]). The
x-kernel can bypass protocol layersto improve perform-
ance [OP92]. A version of Mach employs continuations
to improve performance [DBR91], again discarding the
process. Proponents of such systems typically cite re-
duced overheads in memory usage and context-switch
times.

Others have suggested approaches to minimize or re-
duce the amount of state required in a layered sys

78

tem. Careful allocation techniques (for example, in
the z-kernel [HMP89] and the slab memory aloc-
ator [Bon94]) reduce the cost of state initialization and
reuse. Rosenthal [Ros90] limits the required per-vnode
state to reduce vnode all ocation costs. Finally, Massalin
and others advocate run-time code generation to elimin-
ate state [Mas92, KEH93].

To our knowledge, we arethefirst to suggest that inter-
esting servicescan beprovided with only restricted kinds
of state.

11.4 Extensible Databasesin
Genesis

Genesis is a layered database management system de-
veloped at the University of Texas at Austin [BBG88].
Genesisdecomposesthe databaseinto anumber of separ-
ate services such asfile storage, indexing, and datatrans-
formation. With the aid of an authoring tool [BB92], a
database implementor can create a custom database by
selecting parti cular implementationsfrom these services.

The parallels between stackable filing and “ stackable
databases’ in Genesis are strong. Both advocate the use
of layers bounded by symmetric interfaces. Because the
range of services needed for a databaseis so large, Gen-
esis classifies layers into different realms. A ream is
defined as all layers exporting the same interface; thus
only layerswithin a single realm are interchangeable.

Genesis layers are distributed and managed as source
code. Thisapproachallows some performanceoptimiza-
tions. For example, binding of inter-layer operations can
be done at compiletime, implementing thisbinding asa
standard function call [BO92]. It should be possible to
use similar techniques to avoid data structure overheads
(aswe do with featherweight layering in a more restrict-
ive context); it isnot clear that Genesis employsthis op-
timization.

Genesis does not address the general issue of inter-
layer state coherence. Multi-layer accessis prohibited so
data cache-coherenceis not an issue. Concurrency con-
trol issues are addressed by locking. Locks can apply to
different granularities at different layers of the system.
As locks propagate through the system, each layer isal-
lowed to map lock ranges appropriately in amanner ana-
logousto general cache-coherence.

CHAPTER 11. RELATED WORK

11.5 Hierarchical Storage
M anagement

Since there is no widely available hierarchical stor-
age management (HSM) system, severa third parties
have developed commercial HSM solutions. Transpar-
ent HSM requires additional kernel service, oftenimple-
mented as a VFS, and third parties are naturally inter-
ested in making their services available across a variety
of platforms and operating system releases. Thus, HSM
systems have revealed many of the limitations of the
vnode interface. Webber cites portability and the lock-
step release problems as significant factorsin the cost of
HSM solutions. (See Section 2.1 for his description of
these problems.)

Faced with the difficulties of VFS-level portability,
Webber proposesan in-kernel event detector asahook to
afile monitor [Web93]. The set of events monitored in-
clude both system-call-class file operations (read, write,
stat, chmod, etc.) and low-level file operations (allocate
and free inode, error return). Events can be processed
in several different ways, including pass-through, deny,
and forward to the file monitor. Epoch has successfully
used thisinterfacetoimplement both hierarchical storage
management and on-line backup systems.

Comparison Webber’s protocol has several advant-
ages. Portability isgreatly enhanced by providing afixed
set of filing events and constructing new services at the
user-level. The relatively limited set of kernel-changes
required to support monitoring improves chances that
this service will become widely available.

Unfortunately, these strengths are al so its weaknesses.
A fixed set of events provides no mechanism to manage
future growth and change and so limits the generality of
this solution. The context switches required of the user-
level file monitor also raise significant questions of per-
formance. Webber cites overhead as about 625 micro-
seconds per event. Such overhead isnot significant when
providing high-latency services such as HSM and per-
haps compression, but it would beaseriouslimitation for
many applications.

11.6 Stackable Filing at SunSoft

Rosenthal [Ros90] and later Skinner and Wong [SW93]
have investigated stackable filing at SunSoft. Like our
work, theirs is also inspired by Ritchie's work with
STREAMS. However, differencesin focus have resulted

11.6. STACKABLE FILING AT SUNSOFT

user’'s
vhode
reference

Figure 11.1: Interposition in Rosenthal’s stacking for-
wards all operationsthroughthe “v_t op” pointer to the
top of the stack.

in substantially different stacking models. We examine
each of these proposal s bel ow.

11.6.1 Rosenthal

Rosenthal’ srevision of the vnodeinterface hastwo main
goals [Ros90]:

e To make an interface that would evolve
to meet new demandsmoregracefully by
supporting versioning.

¢ Toreducetheeffort needed to implement
new file-system functionality by allow-
ing vnodesto be stacked.

Rosenthal’s approach to versioning employs compat-
ibility layers (thistechniqueis described in Section 3.5).
Rosenthal’s stacking model is based on interposition. To
implement interposition, each vhodecontainsareference
to the top-of-stack (v_t op in Figure 11.1). Each “ex-
ternal” vnode operation indirects through this reference
to the top-of-stack. (Although not stated explicitly in his
paper, presumably thereis a second kind of vnode oper-
ation employed internally to a stack to invoke operations
on the stacked-upon layer without this extraindirection.)

Rosenthal providestwo new stack operations (“push”
and “pop”) to interpose layers on astack at afile-by-file
granularity.

Finally, Rosenthal describes several applications of
stacking technology, including quotas as a layer, a“less
temporary” file-system where files remain in memory
until an explicit synchronization, user-level filing, read-
only caching, read-write caching, a “fall-back” file-

79

system where load is spread over several servers, and a
replication service.

Interposition Asdescribedin Section 3.7, the primary
difference between interposition and other kinds of
stackingisthat alayer interposed on astack becomesim-
mediately visible to all current and future clients of any
layer of that stack.

Interposition in Rosenthal’s stack model requires that
all users see an identical view of stack layers; dynamic
changesof the stack by oneclient will be perceived by all
other clients. Asaresult, itispossibleto push anew layer
on an existing stack and haveall clientsimmediately be-
gin using the new layer. We describein Section 3.7 how
this feature can be employed to redirect the clients of an
existing layer, to add and remove a measurements layer
at run-time, or to implement the join of two file-systems
at amount-point.

However, it is not clear how widely thisfacility isre-
quired. Section 3.7 describesdifferent applicationsof in-
terposition, but often other techniques can be substituted
with little or no loss in functionality. We believe inter-
positionisrarely required because stack layerstypically
have semantic content. A client selects aparticular com-
bination of semantics when opening afile. If the client
wants to change the semantics of its stack, it can do so
by opening the file through other layers. It israrethat a
client wishesto allow other clients' preferencesfor stack
semantics to influence its own. Consider, for example,
Figure 1.1. One client is reading the encrypted data dir-
ectly fromthe UFS. If theencryptionlayer were provided
withinterposition, another client opening thefilethrough
the encryption layer would force the first to switch from
encrypted to decrypted data mid-stream. This example
argues that mid-stream change is rarely necessary, and,
to the extent that it adds complexity and overhead, it is
undesirable.

In addition, insuring that all stack clients agree on
stack construction has a number of drawbacks. Asdis-
cussed in Section 3.3, access to different stack layersis
often useful for special tasks such as backup, debugging,
and remote access. Such diverse accessisexplicitly pro-
hibitedif only onestack view isallowed. Insuringacom-
mon stack top also requiresvery careful lockinginamul-
tiprocessor implementation, at some performance cost.
Since the UCLA interface does not enforce atomic stack
configuration, it does not share this overhead.

The most significant problem with Rosentha’s
method of dynamic stacking is that for many stacks
thereis no well-defined notion of “top-of-stack”. Stacks
with fan-in have multiple stack tops. Encryptionis one

80

service requiring fan-in with multiple stack “views”
(see Section 3.3). With multiple top-of-stacks there is
no single stack view, and so interposition does not make
sense. Furthermore, with transport layers, the correct
stack top could be in another address space, making it
impossible to keep a top-of-stack pointer. For al these
reasons, our stack model explicitly permits different
clients to access the stack at different layers. Skinner
proposes extensionsto Rosenthal’s model which remove
this limitation by providing two stacking mechanisms.
We examine these extensions in the next section.

Other differences Per-file configuration allows addi-
tional configuration flexibility, since arbitrary files can
be independently configured. However, this flexibility
complicates the task of maintaining this information; it
isnot clear how current tools can be applied to this prob-
lem. A second concern is that these new operations are
specialized for the construction of linear stacks. Push
and pop do not support moregeneral stack fan-inand fan-
out.

Another difference between Rosenthal’s vnode in-
terface and the UCLA interface concerns extensibility.
Rosenthal discusses the use of versioning layers to map
between different interfaces. Version-mapping layers
work well to manage differences caused by occasional
change originating from asingle source, such as periodic
vendor releases of an operating system. Mapping lay-
ersprovidelittle support for third-party-initiated change,
however, since the number and overhead of mappings
grow significantly as additional changesmust be suppor-
ted. A more genera solution to extensibility is prefer-
able, in our view.

Finally, Rosenthal advocates minimizing the amount
of state required of each vnode. “Cheap” vnodesencour-
agelayer use. The sentiment is well-founded. However,
our experience with lightweight layering suggests that
even cheap vnodes till have noticeable overhead. In our
view asolution such asfeatherweight layeringisrequired
to extend stacking to exceedingly lightweight layers.

11.6.2 Skinner and Wong

Skinner and Wong revised Rosenthal’s stacking
model [SW93] based on further experience with that
model [Ros92] and prompted by Unix International’s
Stackable File-Systems Working Group [Gro92]. The
primary innovation in their new model is to employ
two kinds of file-system “stacking”: interposition and
composition. Interposition retains the desirable features
of Rosenthal’s stacking mechanism. Composition adds

CHAPTER 11. RELATED WORK

fan-out capability and is achieved with the mechanisms
similar to those used for stacking in the UCLA model
and in standard vnode environments.

To support two styles of stacking they divide the tra-
ditional functionality of the vnode into two separate ab-
stractions: cvnodes, for usein composition; and ivnodes,
for interposition.! Cvnodes are the abstraction used by
the upper-level kernel and for composition. They areim-
plemented simply as a reference to a chain of ivnodes,
this reference is the equivalent of Rosenthal’s v_t op.
Ivnodes reproduce the data present in the original vnode
and are used for interposition. Figure 11.2 shows C-code
proposed for these data structures.

Decomposition of vnodesinto cvnodesand invodesis
also reflected in vnode operations. Vnode operationsare
permitted only one “vnode” argument; this argument is
implemented as a pair (cvnode, ivnode). When an op-
eration is invoked on a cvnode (indicated by a NULL
ivnode field), the ivnode is automatically set to the head
of theinterposition chain. Asthe operation moves down
the chain of interposition nodes the ivnode field is up-
dated. This approach to operation invocation allows the
two kinds of operations (those directed to the top of an
interposition chain and those intended for the next link
in the chain) to be provided with only one form of oper-
ation.

Several existing operations have multiple vnodes as
arguments. Skinner and Wong usetwo different mechan-
ismsto meet thisrestriction. First, they decompose oper-
ationssuch asvop_l i nk andvop_r ename into the more
basic operations listed in Table 11.1. Second, they re-
place a second vnode in an operation by afile-identifier.

A locking protocol manages concurrency dur-
ing “plumbing” operations (such as vop_pop or
vop_l ookup) which create new cvnodes or change
the interposition state. Their implementation supports
multiprocessing.

Skinner and Wong support vnode stacking but leave
the VFS interface unchanged. To allow changesin VFS
operation behavior, they converted several vfsoperations
into vnode operations

As applications for stacking, Skinner and Wong
provide a “toolkit” of severa interposition layers
implementing services such as stack configuration,
name-lookup caching, file/record locking, mount-point
management, device and special file support, and
write-prohibition (for aread-only file-system).

LIn Skinner and Wong's terminology, cvnodes are simply new
“vnodes’ and ivhodes are called pvnodes. We adopt different termino-
logy here to reserve the term “vnode” to refer to the original concept.

11.6. STACKABLE FILING AT SUNSOFT

81

struct cvnode {
struct ivnode *v_chain;

/* head of interposition chain */

b
struct ivnode {
struct vfs *i_vfsp; /* owning VFS */
struct vnodeops *i_op; /* the ops vector */
struct ivnode *i_link; /* next older interposer */
void *i_private; /* this interposer’s state */

}s

Figure 11.2: A C implementation of cvnodes and ivnodes. (Derived from Figure 2 of Skinner and Wong [SW93].)

name

vopfid
vop._nkobj

vop._di raddentry
vopdirrmentry
vop. ncl i nk
vop_decl i nk

purpose
get afile'sfileidentifier (fid)

create an object and return its vnode and fid
add a directory entry for afid-identified file
remove adirectory entry

increment afile'slink count

decrement afile’slink count

Table 11.1: Decomposed vnode operations. This table appearsas Table 1 in Sinner and Wong [SW93].

Stacking

Provision for both layer interposition and composition
allows more flexihility than either Rosenthal’s interposi-
tion or composition alone. However, the question of the
need for interposition raised above apply here as well.
Interpositionisrequiredto implement mount-point hand-
ling through stacking, and in a few other scenarios (see
Section 3.7). Interposition can also replace composi-
tion in some instances, if desired. But support for both
composition and interposition has potential costsin both
complexity and performance.

Two mechanisms accomplishing similar tasks adds
substantial additional design complexity. A layer de-
signer now must select what kind of stacking mechanism
is to be used early in layer design. Minimizing design
complexity was of primary concernin featherweight lay-
ering; our approach to reduce complexity was to make
oneserviceasubset of the other. Thissimplification does
not to apply to interposition and composition.

In addition to the complication of two stacking mech-
anisms, the requirement that each operation have only
a single vnode argument adds a substantial burden to
those employing the interface. Skinner and Wong work
around this problem by using file-identifiers to repres-
ent other vnodes and by decomposing high-level opera-
tions (such aslink and rename) into a sequence of lower-

level operations (name entry, link incrementing, etc.).
Again, the use of two abstractions (vnodes for the first
file in an operation and file-identifiers for subsequent
files) adds complexity. In addition, exposing a lower-
level interfaceto directories complicatesthe implement-
ation of file systemsthat don’t match thetraditional Unix
disk model (such as NFS and the MS-DOS FAT format).
Skinner and Wong recognizethisproblemin the* |mped-
ance Mismatches” section of their paper [SW93].

Finally, the costs of the protocol changes made by
Skinner and Wong are not entirely clear. They present
performance analysis of several user-level benchmarks;
their primary benchmark is simulation of a C-program
development-environment with varying levels through-
put. For this benchmark they show costs from between
2.3% improvement to 9.9% overhead (depending on
workload). Our experience suggests that overheads are
most easily detected in the system-time of file-systemin-
tensive benchmarks.

Other differences Like Rosenthal, Skinner and Wong
recognize the problem of cache coherence as an area of
future work.

Skinner and Wong advocate lightweight layering and
propose layered solutions for several small services. In
fact, several of their “toolkit” layers provided inspira-
tion for individual featherweight layers in our system.

82

Our experiences suggest that construction of these ser-
vices with general-purpose layering techniques would
show noticeable system-time overhead. They describe
a file-creation benchmark which shows “no significant
performance degradation” even with five of these layers.
Few details are provided about this benchmark and how
its performance was measured; however our experience
shows that file creation benchmarks can easily be dom-
inated by synchronous disk-write times rather than soft-
ware overheads.

Finally, Skinner and Wong suggest that addition of a
lightweight transaction mechanism to the vnode inter-
face would smplify error recovery. We agree with their
analysisthat future work and prototyping is required be-
fore transaction support will be widely accepted at the
vnode level.

11.7 Spring

The Spring operating system is an object-based, dis-
tributed operating system developed at Sun Laborator-
ies[MGH94]. Objectsin Spring implement an interface
specified by an interface-definition language [HR94].
Objects can be distributed transparently between the ker-
nel, user-level servers, and remote machines.

Notable features in Spring include a virtual memory
system supporting external pagers[KN93b] and a coher-
ent distributed filing system [NKM 93] implemented with
stackable layers [KN934].

11.7.1 Stacking

Several aspects of filesystem layering in
Spring [KN93a] are similar to ours. In Spring, a
filing service is provided by a layer which implements
the Spring filing interface. An implementation of a
filing layer might build upon other filing layers. Layers
are combined and configured using the Spring naming
service [RNP93]. In the terminology of Section 11.6.2,
Spring employs composition to build layers. Section 5
of Khalidi and Nelson suggests that their object service
provides a general mechanism for run-time object in-
terposition [KN934], but few details of this mechanism
are available. Spring also supports cache-coherence
between layers;, we describe this service below in
Section 11.7.3.

The Spring approach to stacking is aided the fact
that Spring is a new operating system, built from
scratch. Spring employs an object-based interface-
definition language throughout their system, and it struc-

CHAPTER 11. RELATED WORK

turesall system interfaces as necessary to support stack-
ing. However, with the exception of interposition, basic
stacking in Springisfunctionally similar to that provided
by UCLA stacking.

11.7.2 Extensibility

Spring manages interface extensibility through its
object-oriented interface-definition language [HR94].
An interface is defined as a class; new versions inherit
from this class to add features. Type-checking at both
compile- and run-time can be used to insure that the
client and provider of a service communicate with
consistent interface versions. Run-time type conversion
can be used to export or employ older interfaces for
backwards compatibility.

The Spring approach to versioning makes elegant use
of object-oriented technol ogy to addressthelock-step re-
lease problem. An operating system vendor can intro-
duce new services by sub-classing existing interfaces,
yet can maintain backwards compatibility if desired us-
ing type-checking and run-time type conversion. Inter-
faceinheritance doesn't directly addressthe VFS portab-
ility problem; portability must be addressed by standard-
ization on afew interfaces. Interface inheritance seems
unlikely to satisfactorily address the extension problem.
Independent evol ution of interfaces does not map well to
the single version-hierarchy suggested for Spring.

Finally, while the extensibility mechanisms proposed
in UCLA stacking may lack the elegance of expressing
versioning with an interface class-hierarchy, their much
simpler implementation makes broad deployment more
likely. Operation-granularity evolution and extensibil-
ity (rather than wholeinterface evolution as suggested in
Spring) also seems much more likely to permit change
by multiple, independent third parties.

11.7.3 Cache-coherencein Spring

Virtual memory and file systems are very closely related
in Spring. The virtual memory system includes sup-
port for distributed shared memory [KN93a]. Cache-
coherent file-system stacking isanatural result of thisar-
chitecture. The Spring cache-coherencework highlights
two important results. First, the Spring developers re-
cognize that separation of the data provider and the data
manager is necessary for efficient, layered caching. In
Spring terminology this concept is the separation of the
cacher and pager objects. Second, they recognize that
general cache-coherence can be provided if each layer
actsrecursively as cacher and pager objectsfor the layer

11.8. META-DESCRIPTIONS OF STACKING

it stacks upon. Our work in cache coherence builds upon
these resullts.

Our work differs from the Spring work in several re-
spects. We see cache-object identification as the central
problem in cache-coherent stacking. To aid the layer de-
signer, we provide two approaches to object identifica-
tion: afast, smple onefor the dominant case and aricher
solution for the general case. Our cache manager handles
all aspects of the simple case and can directly invalidate
datain any layer. The Spring work only provides (in our
terms) the general model, potentially placing additional
burden on designers of new layers and raising perform-
ance questions.

A second difference is application of cache coher-
ence to all aspects of filing. The Spring project dis-
cusses coherent sharing of data pages and some file at-
tributes. They recommend use of Spring object-oriented
inheritance to provide coherence for other file attrib-
utes. We instead provide a cache-coherence framework
suitable for file data pages, attributes, generic extended
attributes, and name-lookup caching. We expect that
thisframework will extend easily to accommodatefuture
data types (for example, file locks).

A third difference in our work and Spring is the de-
gree of independence or integration between stacking
and therest of the system. Springisacompleteoperating
system. Its virtual memory system, distributed shared
memory, and stackable filing share an integrated imple-
mentation. While such an approach may be attractive, it
limits portability. We instead focus on stackable filing.
We reguire few modifications of and limited interaction
withthe VM system. Our system is designed to function
with drop-in file-systems in a binary-only kernel distri-
bution, and we areintentionally distinct from distributed
filing. We believe that a more modular approach is es-
sential to allow wider application.

A final important difference between our work and
Spring is that of performance evaluation. Performance
analysis of the Spring file-system and file-system lay-
ering has focused on the cost of layering and the bene-
fits of caching. While it is clear that caching is of sub-
stantial benefit in Spring (as in many other systems), it
is not clear what overhead is paid for cache coherence.
Because our system has evolved to support cache coher-
ence, we are able to present a “before-and-after” per-
formance analysis of cache coherence.

83

11.8 Meta-Descriptions of
Stacking

Most of this chapter has discussed other systems which
provide layering and stacking in some form. In-
spired by their experiences with Genesis [BBG88] and
Avoca [OP92] (a version of the z-kernel), Batory and
O’'Malley describe a meta-model for hierarchical soft-
ware systems [BO92].

In their model hierarchical software systems are built
from components. Each component is a member of a
realm, agroup of componentswhich implement the same
interface. Componentsmay be built from other compon-
ents. A component is symmetric if it builds upon com-
ponents from the same realm.

Stackablefiling and UCLA stacking easily fit into this
model. All filing layers are part of asingle realm. Each
layer correspondsto a component.

Batory and O’ Malley’sexperiencesin two such differ-
ent areas suggest to us that our approaches to stackable
filing may also find wider applicability.

84

CHAPTER 11. RELATED WORK

Chapter 12

Conclusion

file-system development has long been an area of fruit-
ful research. Unfortunately, broad application of thisre-
search has been difficult. Implementation of new filing
ideas has been dlow because services were built from
scratch or modifications to existing systems added un-
desirable encumbrancesto distribution. Evenwhen com-
pleted, new services often have failed to work together,
and have failed to be robust across system changes.

Stackable file-system development offers an altern-
ative. Stacking allows new services to build on (in-
stead of re-build) well-understood filing services. Dis-
tinct layers help to confine changes and focus testing
efforts. A consistent approach to interface extension
means that vendors and third parties can provide new
services without invalidating existing work. A cache-
coherence protocol insures that designers and users can
construct and access their stacks with confidence that
they see up-to-dateinformation. Finally, afeatherweight
layering protocol allows stacking to apply to very thin
layers as well asto major new services. Together, these
capabilities offer the potential for broader acceptance
and deployment of new filing services.

Through our prototype implementation we demon-
strate the effectiveness of stacking, both as a paradigm
and as ameansto provide replication and other services.
We provided a detailed performance analysis. Most im-
portant, we show that stackable layers can in many ways
offer a development environment superior to the altern-
atives.

12.1 Research Contributions

The primary contribution of thisdissertation isthevalid-
ation of thethesis: that alayered, stackablestructurewith
an extensibleinterface providesabetter methodol ogy for
file-system development than current approaches. Evid-
ence for this thesis is provided through the following

85

means:
1. Design of:

e A file-system interface supporting easy ex-
tensibility by multiple third parties.

e A bypass mechanism which alows file-
system stacking and extensibility to work
together.

e A cache-coherence protocol supporting safe
data caching in third-party filing layers.

e A lightweight subset of stacking extending
file-system layering to very low-overheadlay-
ers.

2. Description of:

e File-system structuring techniques enabled
and simplified by stacking.
e Experiencesusing stacking in the classroom.

3. Production-quality implementations of :

e An extensible file-system interface in use by
a community of thousands of people and dis-
tributed with several Unix implementations.

e A system for user-level layer development
used by a community of two dozen.

e Two transport-layerswhich transparently pass
new operations between address spaces.

e Use of file-system layering to provide a vari-
ety of servicesincluding:

— optimistic replication

— configurable replication consistency pro-
tocols

— user-identity mapping

— compatibility-mapping between differing
file-identifier sizes

86

— namespace duplication

These layers have been used by over two
dozen people for more than four years; they
currently host the compl ete stacking devel op-
ment environment and Ficus-project user pop-
ulation.

4. Prototype implementations of :

e Cache-coherence protocols which insure that
data can be safely cached in multiple stack
layers.

e A featherweight layering protocol providing
“thin” layerswith very little overhead.

5. Verification of the following statements through
performance evaluation of our system:

¢ Addition of stacking to a system incurs min-
imal overhead.

e Per-layer stack costs are minimal: general
purpose layers incur about 2% system-time
overhead, featherweight layers incur negli-
gible overhead.

e Addition of cache coherence to a system in-
curs minimal overhead.

6. Substantial empirical experience suggesting that:

¢ Our extensibleinterfaceis portableto systems
with independently implemented vhode inter-
faces.

e Stacking makes it substantially easier to im-
plement small layers.

e Stacking can be used to significant advantage
for large, heavily used filing services.

e Cache-coherencefor file-system layering can
be implemented without significant changes
to the virtual memory system.

12.2 Future Work

Work as broad as a new filing substrate borders on many
areas of related work. This section lists some of these
areas that this dissertation does not address.

CHAPTER 12. CONCLUSION

12.2.1 Implementation enhancements

Over the course of this work typical memory capacit-
ies of workstations have advanced from 8 megabytes to
40 megabytes. The operating systems world has simil-
arly advanced. Our implementation must keep pace.

Nearly all operating systems today support kernel-
module dynamic loading. We anticipate that addition of
dynamicloading to stackablelayersmoduleswill be pos-
sible with the usual dynamic loading techniques (for ex-
ample, pre-reservation of table space).

The new services offered through stackable layers of -
ten need “just a little more” information stored with
the file. For example, compression might need an “is-
compressed” flag or might be aided by an uncompressed-
size field, and encryption would require space for an
encryption key and related information. A convenient
way to provide such additional storage would be through
a generic extensible-attributes service. We have proto-
typed such asystem at UCLA [Wei95], and designs and
implementations for other environments exist [And90,
Dun90, OIs93]. Adoption of any one of these extended
attribute services is another way to ease file-system de-
velopment.

Finally, we would like to move our stacking environ-
ment to akernel with symmetric multiprocessing (SMP).
We have kept SMP support in mind throughout imple-
mentation, and so we expect few problems; a prototype
SMP-based implementation is the best way to answer
this question definitively.

12.2.2 Stacking

Current mechanisms manage large-granularity file-
system stacking well. The best way to manage per-file
stack configuration is less clear. A standard “stack
composition” attribute, possibly stored in some kind
of extensible attribute system, might provide a solu-
tion. One intriguing implementation of such a system
in a dightly different context is contained in Kim's
object-oriented filing work [Kim95]. More experience
and wider deployment of such systems is required to
evaluate the approach, however.

Current disk-basedfile-systemsarea most exclusively
constructed as large, monolithic layers. This situation
is unfortunate because it means that several potentially
separable services are tied into one package; to take one
part requires using it all. It would be very useful to de-
compose existing storage services into separate flat-file
and directory service abstractions, and possibly othersas
well. 4.4BSD takes some stepsin thisdirection, employ-

12.3. CLOSING REMARKS

ing the vnode interface internally between UFS direct-
ory routines and the on-disk log-structured and fast file-
systems [McK95]. Unfortunately it is not currently pos-
sible to separate these servicesinto independent layers.

12.2.3 Extensibility

Our approach to extensibility has worked well, both by
allowing us to add to the interface and in managing in-
terface changes from the operating-systems vendor. Un-
fortunately, there are at east three independently derived
“vnode” interfaces in use currently (SunOS [Kle86],
BSD [KM86], and Linux [Joh92]). Each system has a
substantially different operation mix and collection of
supporting services. Simple extensibility is insufficient
to bridge these differences. Compatibility layers (see
Section 3.5) offer substantial hope of addressing these
differences, but technical challenges still remain. The
best long-term solution would be migration to a set of
much more similar interfaces.

Asa*“third party” we have made substantial use of in-
terface extensibility for Ficusreplication. Often we have
found oursel ves needing an operationjust likethe current
one but with a small change, such as a single additional
argument. Our approach to extensibility allows new op-
erations, but thereisno easy way to add argumentsto ex-
isting operations. An object-oriented interface (such as
that in Spring) might allow operation addition with sub-
classing, but more work is heeded in this areato support
third-party additions.

12.2.4 Cache coherence

We have explored cache-coherence acrossthe layersof a
stack onasingle system and in adistributed environment
with NFS. In Section 6.5 we argued that different distrib-
uted environments require different levels of coherence.
A closer examination of the interactions between cache-
coherence and distributed systems with stronger guaran-
teeswould be interesting.

12.2.5 Lightweight layering

Featherweight layers minimize layer cost by restricting
per-layer state, thus allowing very lightweight layersto
be provided with correspondingly little overhead. An-
other approach to improve layering performance would
be to relax general-purpose layering’s prohibition on
source code. For example, source code alows Genesis
to avoid dynamic operation invocation by matching op-
eration calls with targets at compile time. While source-

87

code-optimized layering might not be suitable for com-
mercial distribution, it might allow asingle development
organization to construct a system as several “logical”
layers which are “compiled away” to run with the best
possible performance.

12.3 Closing Remarks

This dissertation has presented stackable layering as an
approach for file-system construction. We have saved
substantial effort through the use of stacking for the
development of file-replication and other services at
UCLA, both because stacking has allowed the re-use of
existing services, and because extensibility has permit-
ted usto evolve different parts of our service at different
rates and to easily manage external change.

This dissertation has described a general approach for
file-system stacking and extensibility, and has presen-
ted solutionsfor theimportant i ssues of cache-coherence
and lightweight layering. We have demonstrated the ef-
fectiveness of these solutions both through our own use
and through performance analysis and experimentation.
We believe that adoption of these techniques has and
will substantially improve file-system development, and
thereby allow future filing research to be both more ef-
fective and relevant than it has been.

88

CHAPTER 12. CONCLUSION

Appendix A

Stacking Appendix

This appendix summarizes the interface changes needed
to support stacking, as described in Chapter 4.

A.1 A SampleVnode Operation

Asdescribed in Section 4.4, we made severa changesto
the vnode interface to support stacking and extensibility.
Here we summarize differencesin the calling sequence.

In Figure A.1 we show the original operation invoca
tion sequence. The operation is an indirect function call
through a vnodeops structure defined at compiletime.

Figures A.2 and A.3 shows two variations of the new
calling sequence. There are three important differences
between old and new invocations. The most obvious
change is that parameters are passed in an arguments-
structure rather than on the stack. An arguments
structure has the advantage that it avoids re-copying all
arguments each time an operation moves down a stack
layer. In addition, a pointer to an arguments-structure
serves as a generic “handle” to allow manipulation of
any set of vnode-operation arguments. A second change
is that we add an operation description as the first para-
meter of the call. This description includes the opera-
tion’s name, and information needed to marshal opera-
tion argumentsfor RPC and bypass operations. (A com-
plete list of thisinformation appearsin Figure A.4.) By
placing this description in awell-known location we can
identify and manipulate argumentsto an arbitrary opera-
tion. In Section A.3 wedescribe how the argument struc-
ture and descriptive information are employed to bypass
an operation through a layer.

Thefinal important differencein the calling sequence
is that the operation vector is managed dynamically
rather than fixed at compile time. The global variable
vop_creat e_of f set is set to that operation’s posi-
tion in the operations vector when operations are con-
figured.

89

Figures A.2 and A.3 show two dlightly different ap-
proachesto argument-structureallocation. In Figure A.2
the programmer explicitly declares information with
USES VOP_CREATE. In Figure A.3 the compiler as-
sumes this duty in an in-lined function call. Thein-line
approach providesa dightly more appealing interfaceto
the programmer but requires compiler support for func-
tion in-lining, a widely available but non-ANSI stand-
ard feature. Both constructs should generate comparable
code.

Finally, Figure A.5 shows old and new implementa-
tionsof vop_cr eat e. Inthenew form, parametersarrive
in an arguments-structure.

A.2 A Sample Operation
Declaration

Support for operation bypassing and transport layers re-
quires a complete definition of each operation and its
arguments. In Section 4.7 we described these require-
ments. Figure A.6 shows asampleinterface definition of
vop_cr eat e from our prototype.

A definition lists operation arguments and their types.
In addition, the direction of data movement must be in-
dicated with an IN, OUT, or INOUT tag. Thisinforma
tionisrequired to generate RPC code. Finally, we add a
UUID to uniquely identify the operation in communica-
tions between different address spaces.

A.3 A Sample Bypass Routine

Figure A.7 presents the bypass routine for the null layer.
For the null layer, the only requirement of the bypass
routine is that vnodes are mapped to their lower-layer
equivalents before calling the lower layer, and then re-
stored upon return. In addition, if a new vnode is re-

90 APPENDIX A. STACKING APPENDIX

struct vnodeops {
int (*vn_create)();

b
struct vnode {
struct vnodeops *v_op;

b
#def i ne VOP_CREATE(VP, NM VA, E, M VPP, C) \
(*(VP)->v_op->vn_create) (VP, NM VA E, M VPP, C)

voi d

call _denmonstration(struct vnode *dvp,
struct vattr *va,
struct vnode **result_vp,
struct ucred *cred)

int error = VOP_CREATE(dvp, "file", &a, NONEXCL, O,
& esult_vp, cred);

Figure A.1: Old calling sequencefor vop_cr eat e.

struct vnode {
int (**v_op)();

b
#defi ne USES _VOP_CREATE struct vop_create_args vop_create_a;
#defi ne VOP_CREATE(VP, NM VA, E, M VPP, C) \
(vop_create_a.a_desc = &op_create_desc, \
vop_create_a.a vp = (VP), \
vop_create_a.a_nm= (NM, \
vop_create_a.a_vap = (VA), \
vop_create_a.a_exclusive = (E), \
vop_create_a.a_node = (M, \
vop_create_a.a_vpp = (VPP), \
vop_create_a.a_cred = (Q, \
(C *((VP)->v_op [vop_create_offset])) (&op_create_a))

voi d

call _denmonstration(struct vnode *dvp,
struct vattr *va,
struct vnode **result_vp,
struct ucred *cred)

USES_VOP_CREATE;
int error = VOP_CREATE(dvp, "file", &a, NONEXCL, O,
& esult_vp, cred);

Figure A.2: Macro-based new calling sequencefor vop_cr eat e.

A.3. A SAMPLE BYPASS ROUTINE

91

struct vnode {
int (**v_op)();

s

inline int

VOP_CREATE(st ruct vnode *VP,
char *NM
struct vattr *VA
enum vcexcl E,
int M
struct vnode **VPP,
struct ucred *C

{
struct vop_create_args vop_create_a;
vop_create_a.a_desc = &op_create_desc;
vop_create_a.a_vp = VP;
vop_create_a.a_nm= NM
vop_create_a.a_vap = VA
vop_create_a. a_exclusive = E;
vop_create_a.a_node = M
vop_create_a.a_vpp = VPP;
vop_create_a.a_cred = C
return ((*(VP->v_op [vop_create_offset])) (&vop_create_a));

}

voi d

call _denmonstration(struct vnode *dvp,
struct vattr *va,
struct vnode **result_vp,
struct ucred *cred)

int error = VOP_CREATE(dvp, "file", &a, NONEXCL, O,
& esult_vp, cred);

Figure A.3: In-line-based new calling sequencesfor vop_cr eat e.

92 APPENDIX A. STACKING APPENDIX

struct vnodeop_desc {
int vdesc_of fset; /* offset in vector */
char *vdesc_nane; /* a user-readable string */
int vdesc_fI ags;

/*

* This information is used by bypass routines
* to map and | ocate argunents

*/

int *vdesc_vp_offsets;

int vdesc_vpp_offset;

int vdesc_cred_offset;

int vdesc_proc_offset;

/*

* The following data is for transport |ayers aid.

* vdesc_dat at ype describes the argunents in detail

* vdesc_uuid_p is a uuid that uniquely names the operation.
* (Al'though technically the uuid should be transport-|ayer
*

specific, its kept here because it’'s comon to several
* transport layers.) Finally, vdesc_uui dhash

* is used to quickly | ocate operations by uuid.

*/

struct xport_datatype *vdesc_dat at ype;

struct nca_uuid *vdesc_uui d_p;

struct vnodeop_desc *vdesc_uui dhash;

Figure A.4: Descriptive information accompanying each vnode operation.

A.3. A SAMPLE BYPASS ROUTINE

(a) old vnode-oper ation implementation: i nt
xfs_create(struct vnode *vp,
char *nane,
struct vattr *vattrs,
enum vcexcl excl usive,
i nt node,
struct vnode **vpp,
struct ucred cred)

{
/*
* Do the work to create ‘‘nane’’
* in directory '‘vp'’', returning
* ttvpp't
*/
}

(b) new vnode-operation implementation: i nt
xfs_create(struct vop_create_args *ap)

{

/*

* Do the work to create

* ‘‘ap->a_nane’’ in directory
* ‘‘ap->a_vp'’', returning

* ‘‘ap->a_vpp .

*/

Figure A5: Old and new implementations of
vop-create.

OPERATI ON
vop_create {
IN struct vnode *a_vp;
IN char *a_nm
IN struct vattr *a_vap;
I N enum vcexcl a_excl usive;
INint a node;
QUT struct vnode **a_vpp;
IN struct ucred *a_cred,;
} uui d(2ac783c60000. 02. 83. b3. c0. 45. 00. 00. 00) ;

Figure A.6: An interface definition of vop_cr eat e.

93

turned as part of the operation, we create anew null-node
to stack over it.

Three observations are important about the bypass
routine. First, it refers to the arguments through a gen-
eric pointer, so it can accept arguments for any oper-
ation. Second, it uses information obtained from the
vnode-operation description to manipulate well-known
arguments such as vnodes. Finally, more sophisticated
layers can modify other argumentsin the bypassroutine.
The user-identity layer, for example, maps user-ids just
before the call to the lower layer.

94 APPENDIX A. STACKING APPENDIX

int
nul | _bypass(ap)
struct vop_generic_args *ap;

{
int error, flags, i;
struct vnode *ol d_vps[VDESC_MAX_VPS] ;
struct vnode **vps_p[VDESC MAX_ VPS];
struct vnode ***vppp;
struct vnodeop_desc *descp = ap->a_desc;
/* Map the vnodes going in.
* Later, we'll invoke the operation based on
* the first mapped vnode’s operation vector.
*/
flags = descp->vdesc_fI ags;
for (i = 0; i < VDESC_ MAX_VPS; flags >>= 1, i++) {
if (descp->vdesc_vp_offsets[i] == VDESC NO OFFSET)
br eak; /* bail out at end of list */
if (flags & 1) /* skip vps that aren’t to be napped */
conti nue;
vps_p[i] = VOPARG OFFSETTQ(struct vnode**, descp->vdesc_vp_offsets[i], ap);
old_vps[i] = *(vps_p[i]);
(vps_p[i]) = NULLTOLONERV(VTONULL((vps_p[i])));
b
/* Call the operation on the |ower |ayer
* with the nodified argunent structure.
*/
error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
/* Maintain the illusion of call-by-val ue
* by restoring vnodes in the argument structure
* to their original value.
*/
flags = descp->vdesc_fI ags;
for (i = 0; i < VDESC_MAX_VPS; flags >>= 1, i++) {
if (descp->vdesc_vp_offsets[i] == VDESC _NO OFFSET)
br eak; /* bail out at end of list */
if (flags & 1) /* skip vps that aren’t to be napped */
continue;
*(vps_p[i]) = old_vps[i];
b
/* Map the possible out-going vpp.
*/
i f (descp->vdesc_vpp_offset != VDESC NO OFFSET &&
| (descp->vdesc_fl ags & VDESC_NOVAP_VPP) &&
lerror) {
struct ucred **credpp = VOPARG OFFSETTQ(struct ucred**,
descp- >vdesc_cred_of fset, ap);
vppp = VOPARG OFFSETTQ(struct vnode***, descp->vdesc_vpp_offset, ap);
yppp = nul |l _make_nul | node(vppp, VFSTONULLI NFQ(ol d_vps[O0]->v_vfsp), *credpp);
return (error);
}

Figure A.7: The bypass routine for the null layer.

Appendix B

Cache-Coherence Appendix

A goal of our work is to provide the minimal changes
to existing systems and alow a modular adoption of
cache coherence. This appendix summarizes our inter-
face changes. Considerable mechanism underlies them,
as the body of the dissertation presumably makes clear.

All new codein our implementationisfreely available
under aBSD-style copyright. A completedistributionis
availableto those with a SunOS 4.x source-codelicense.
The implementation includes modules to manage byte-
range and named-object lists, locking, and modifications
to make the UFS and null layer cache-coherent. The au-
thorswelcome inquiries.

In the following sections we present interfaces with
C-like declarations. In these declarations, IN, OUT, and
INOUT denote the direction of data movement. Ordin-
arily vnodes are adjusted to refer to the current layer as
operationsmove down and up the stack; the NOTRANS-
LATE modifier indicates that this mapping should not
occur. (This option is required for vnodes in an inter-
face when vnodes must refer to a particular layer of the
file, rather thanthe“ current” layer.) All operationsreturn
“errno” -style error codes.

B.1 Stack-Friendly Interface
Changes

As described in Section 8.3, efficient data-page caching
inamultiple-layer stack requires changesto three vnode
operations. These operations are based on the corres-
ponding SUNOS 4.x operations but are modified to sep-
arate pager and cacher functionality. Intheinterfacethis
changeisreflected by replacing the original vp argument
(which served as both the paging and caching agent) with
three parameters: vp, the paging vhode; mapvp, the cach-
ing vnode; and name, a reference to cache-manager in-
formation.

95

vop_stackgetpage (IN struct vnode *vp, IN struct
svem_name *name, IN NOTRANSLATE struct
vnode *mapvp, IN u.int offset, IN u.int length,
IN u.int *protection.p, INOUT struct page
**page list, IN u.int page_list_size, IN struct seg
*segment, IN addr_t address, IN enum seg_rw rw,
IN struct ucred * cred)

A getpage operation is invoked to service a page
fault in memory backed by a layer. We have ex-
panded the original vp argument into vp, name, and
mapvp. Offset and length specify the required data.
The remaining arguments are employed by the VM
system.

vop_stackputpage (IN struct vnode *vp, IN struct
svem_name *name, IN NOTRANSLATE struct
vnode *mapvp, IN u_int offset, IN u_int length, IN
int flags, IN struct ucred * cred)

The putpage operationisthe opposite of getpage: it
writesdirty pageshback to stable storage. We change
vp, name, and mapvp.

vop_stackrdwr (IN struct vnode *vp, IN struct
svcm_name *name, IN NOTRANSLATE struct
vnode * mapvp, INOUT struct uio *uiop, IN enum
uio_rw rw, IN intioflag, IN struct ucred * cred)

A rdwr operation is used to read or write data
Again, we change vp, name, and mapvp. The uio
specifieswhat datawill be read or written.

B.2 Cache-Coherence Interfaces

Below arethe two vnode operationswhich have been ad-
ded to support cache coherence, and the cache-object re-
gistration interface exported by the cache manager.

96

vop_cachenamevp (IN struct vnode *vp, OUT NO-
TRANSLATE svem_name_token *token, IN struct
ucred * cred)

\op_cachenamevp is called when an upper-layer
creates anew vnode. It returns the token represent-
ing the simply-named part of the stack. This token
is then used to build an svcm_name, the data struc-
ture used by the cache manager to record caching
information.

vop_cache_callback (IN struct vnode *vp, IN struct
svcm_name *name, IN enum svcm_obj_classes
obj_class, IN void *obj, IN struct ucred * cred)

Vop_cache_callback is invoked when the cache
manager invalidates a cache-object. The obj para-
meter specifies the cache-object to be purged. For
byte-range classes, obj specifies the region’s offset
and length; for named-abjectsit pointsto alength-
counted string.

svem_register (INOUT struct svcm_name *name, IN
struct vnode *own_vp, IN enum svcm_obj_classes
obj_class, IN u.int obj_namelength, IN void
*obj_name, IN enum svem_status status, IN struct
ucred * cred);

Svemoregister is called by each layer implementa-
tion after it haslocked thefile, but beforeit attempts
to cache data. It informs the cache manager that
own_vp wishes to cache object obj_name of class
obj_classwith statusrightsin the simply-namedfile
name. The cache manager will consult its records
and call-back any vnodeswith conflicting cachere-
guests and all vnodes with general-naming.

B.3 Cache-Coherence Storage
Options

Different data types have different caching needs. Often
data semantics and run-time behavior limit data mutab-
ility, allowing data to be duplicated in different caches
while guaranteeing coherence. In Section 6.3 we de-
scribed how knowledge about these semanticsallowsthe
cache manager to improve performance.

In Table B.1 we summarize the five levels of service
a layer can request when caching an object. The first
four options combine two facts: will the layer invok-
ing the cache manager cache the data-object, and can
other layers which currently cache the data-object con-
tinueto cacheit. Thisview of these states can be seenin
TableB.2. If the current layer asksfor rightsto cachethe

APPENDIX B. CACHE-COHERENCE APPENDIX

option meaning

uncached | don't cache; don't care about others.
non-cachable | don't cache; others can’t cache now.
shared | cache (want callback); others can too.
exclusive | alone can cache and want callback.
watch | expect to see all cache actions.

Table B.1: Cache registration options.

other layers
your layer can cache can't cache
does cache shared exclusive
doesn’'t cache uncached non-cachable

Table B.2: An dternate view of cache registration op-
tions.

object (as in the shared and exclusive cases), the cache
manager promises to call those layers back should that
cache need to be invalidated.

Independent of these options, with the “watch” re-
quest alayer will see al cacheinteractionsfor the given
data-object and file. Layersrequiring general naming re-
gister a“watch” request to monitor the cache and trans-
late names as required.

In Table B.3 we enumerate the possible interactions
between an outstanding cache request (one already re-
gistered with the cache manger) and a new request. In
each caseg, if the new request conflictswith an existing re-
quest, acallback ismadeto invalidate the existing cache.

B.3. CACHE-COHERENCE STORAGE OPTIONS 97

outstanding cache request

new cache uncached/

request non-cachable shared exclusive watch
uncached — — error callback
non-cachable — callback callback callback
shared — — callback callback
exclusive — callback callback callback
watch — — — callback

TableB.3: Interactions between anew cache request and existing cached objects. Callback indicatesthat the old layer
hasits caching privilegesrevoked. Error indicates an invalid state. No actionis required for other states.

98

APPENDIX B. CACHE-COHERENCE APPENDIX

References

[ABGS6]

[And90]

[ATOO]

[Bacs6]

[BBY2]

[BBGSS]

[BOYZ]

[Bon94]

Mike Accetta, Robert Baron, David Golub,
Richard Rashid, Avadis Tevanian, and Mi-
chael Young. “Mach: A New Kernel
Foundation for UNIX Development.” In
USENIX Conference Proceedings, pp. 93—
113. USENIX, June 9-13 1986.

Curtis Anderson. “UNIX System V Exten-
ded File Attributes Feature Requirements—
Filesystem Dependent Attributes— Issue 1
(Draft3).” Unix International Memorandum,
October 1990.

AT&T. “Design of the Virtual File System
Featuresfor UNIX SystemV Release4.” In-
ternal memorandum, January 1990.

MauriceJ. Bach. The Design of the Unix Op-
erating System. Prentice-Hall, 1986.

D. S. Batory and J. R. Barnett. “DaTE: The
Genesis DBMS Software Layout Editor.” In
PericlesL oucopoul osand Roberto Zicari, ed-
itors, Conceptual modeling, databases, and
CASE: anintegrated view of information sys-
tems development, chapter 8, pp. 201-221.
John Wiley & Sons, Inc., 1992.

D. S. Batory, J. R. Barnett, J. F. Garza, K. P.
Smith, K. Tsukuda, B. C. Twichell, and T. E.
Wise. “GENESIS:. An Extensible Data
base Management System.” |EEE Transac-
tions on Software Engineering, 14(11):1711—
1730, November 1988.

Don Batory and Seam O'Malley. “The
Design and Implementation of Hierarchical
Software Systems with Reusable Compon-
ents.” ACM Transactionson Software Engin-
eering and Methodology, 1(4):355-398, Oc-
tober 1992. Also available as University of
Texas TR-91-22.

Jeff Bonwick. “The Slab Allocator: An
Object-Caching Kernel Memory Allocator.”

99

[Cat92]

[CBZ91]

[DBR91]

[Dij67]

[Dij68]

[Dun90]

[Flog6]

[GC8Y]

In USENIX Conference Proceedings, pp. 87—
98. USENIX, June 1994,

Vincent Cate. “Alex—aGlobal Filesystem.”
In Proceedings of the Usenix File Systems
Workshop, pp. 1-11, May 1992.

John B. Carter, John K. Bennett, and Willy
Zwaenepoel. “Implementation and Per-
formance of Munin.” In Proceedings of
the Thirteenth Symposiumon Operating Sys-
temsPrinciples, pp. 152—164. ACM, October
1991.

Richard P. Draves, Brian N. Bershad, Rich-
ard F. Rashid, and Randall W. Dean. “Using
Continuationsto | mplement Thread Manage-
ment and Communication in Operating Sys-
tems.” In Proceedingsof the Thirteenth Sym-
posiumon Operating Systems Principles, pp.
122-136. ACM, October 1991.

Edsger W. Dijkstra. “The structure of the
THE multiprogramming system.” In Pro-
ceedingsof the Symposiumon Operating Sys-
tems Principles. ACM, October 1967.

Edsger W. Dijkstra. “ Complexity controlled
by hierarchical ordering of function and vari-
ability.” Working paper for the NATO con-
ference on computer software engineering at
Garmisch, Germany, October 1968.

Ray Duncan. “Power Programming: Us
ing Long Filenamesand Extended Attributes,
Part 1.” PC Magazine, (April 24):317-328,
1990.

Rick Floyd. “ Short-Term File Reference Pat-
terns in a UNIX Environment.” Technical
Report TR-177, University of Rochester,
March 1986.

Cary Gray and David Cheriton. “Leases:
An Efficient Fault-Tolerant Mechanism for

100

[GHM90]

[GJSO1]

[GLLOO]

[Gro92]

[Hen90]

[HKM88]

[HMP89]

[HPSS]

Distributed File Cache Consistency.” In
Proceedings of the Twelfth Symposium on
Operating Systems Principles, pp. 202—210.
ACM, December 1989.

Richard G. Guy, John S. Heidemann, Wai
Mak, Thomas W. Page, Jr., Gerald J. Popek,
and Dieter Rothmeier. “Implementation
of the Ficus Replicated File System.” In
USENIX Conference Proceedings, pp. 63—
71. USENIX, June 1990.

David K. Gifford, Pierre Jouvelot, Mark A.
Sheldon, and Jr. James W. O’ Toole. “Se-
mantic File Systems.” In Proceedings of the
Thirteenth Symposium on Operating Systems
Principles, pp. 16-25. ACM, October 1991.

Kourosh Gharachorloo, Daniel Lenoski,
James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. “Memory
Consistency and Event Ordering in Scal-
able Shared-Memory Multiprocessors.”
In Proceedings of the 17th International
Symposium on Computer Architecture, pp.
15-26. |EEE, May 1990.

Unix International Stackable Files Working
Group. Requirements for Sackable Files.
Unix International, Parsippany, New Jersey,
October 1992.

David Hendricks. “A Filesystem for Soft-
ware Development.” In USENIX Conference
Proceedings, pp. 333-340. USENIX, June
1990.

John Howard, Michael Kazar, Sherri Men-
ees, David NicholsandM ahadev Satyanaray-
ananand Robert Sidebotham, and Michael
West. “Scale and Performance in a Dis-
tributed File System.” ACM Transactions
on Computer Systems, 6(1):51-81, February
1988.

Norman C. Hutchinson, Shivakant Mishra,
Larry L. Peterson, and Vicrg T. Thomas.
“Tools for Implementing Network Proto-
cols” Software—Practice and Experience,
19(9):895-916, September 1989.

Norman C. Hutchinson and Larry L.
Peterson. “Design of the z-Kernel.” In
Proceedings of the 1988 Symposium on

APPENDIX B. CACHE-COHERENCE APPENDIX

[HP94]

[HP95]

[HPASY]

[HR94]

[IEE90]

[Joh92]

[K az88]

[KEHO3]

Communications Architectures and Proto-
cols, pp. 65-75. ACM, August 1988.

John S. Heidemann and Gerald J. Popek.
“File-System Development with Stackable
Layers” ACM Transactions on Computer
Systems, 12(1):58-89, 1994. Preliminary
version available as UCLA technical report
CSD-930019.

John Heidemann and Gerald Popek. “Per-
formance of Cache Coherence in Stackable
Filing.” In Proceedings of the 15th Sym-
posium on Operating Systems Principles.
ACM, December 1995.

Norman C. Hutchinson, Larry L. Peterson,
Mark B. Abbott, and Sean O'Malley.
“RPC in the z-Kernel: Evaluating New
Design Techniques.” In Proceedings of the
Twelfth Symposium on Operating Systems
Principles, pp. 91-101. ACM, December
1989.

Graham Hamilton and Sanjay Radia. “Using
Interface Inheritance to Address Problemsin
System Software Evolution.” In Proceed-
ings of the AC Workshop on I nterface Defini-
tion Languages. ACM, January 1994. Also
available as Sun Laboratories technical re-
port SMLI TR-93-21.

IEEE. “Standard for Information
technology—Portable Operating System
Interface (POSIX)—Part 1. System Ap-
plication Programming Interface (API).”
Technical Report |IEEE Std. 1003.1-1990,
IEEE, 1990. Also available as ISO/IEC
9945-1: 1990s.

Michael K. Johnson. “The Linux Ker-
nel Hackers Guide.” Anonymous ftp as
ftp://sunsite.unc.edu/pub/Linux/docs/linux-
doc-project/kernel-hackers-guide/khg-
0.6.ps.gz, 1992.

Michael Leon Kazar. “Synchronization and
Caching Issues in the Andrew File System.”
In USENIX Conference Proceedings, pp. 31—
43. USENIX, February 1988.

David Keppel, Susan J. Eggers, and Rob-
ert R. Henry. “Evaluating Runtime-
Compiled Value-Specific Optimizations.”

B.3. CACHE-COHERENCE STORAGE OPTIONS

[Kimo5]

[Kles6]

[KM86]

[KN934]

[KN93b]

[Koe87]

[KP84]

[Kue9l]

[Kue9s]

[Lan90]

[LH86]

Technical Report 93-11-02, University of
Washington, November 1993.

Ted Kim. “Frigate: An Object-oriented
File-System.” . Master’sthesis, University of
California, Los Angeles, 1995. To appear.

S. R. Kleiman. “Vnodes: An Architec-
ture for Multiple File System Types in Sun
Unix.” In USENIX Conference Proceedings,
pp. 238-247. USENIX, June 1986.

Michael J. Karels and Marshall Kirk McK-
usick. “Toward a Compatible Filesystem In-
terface.” In Proceedings of the European
Unix User’s Group, p. 15. EUUG, September
1986.

Yousef A. Khalidi and Michael N. Nelson.
“Extensible File Systemsin Spring.” In Pro-
ceedings of the 14th Symposium on Oper-
ating Systems Principles. ACM, Dec 1993.
Also available as Sun Laboratories technical
report SMLI TR-93-18.

Yousef A. Khalidi and Michael N. Nelson.
“The Spring Virtual Memory System.” Tech-
nical Report SMLI TR-93-9, Sun Microsys-
tems, February 1993.

Matt Koehler. “GFS Revisited or How |
Lived with Four Different Local File Sys-
tems.” In USENIX Conference Proceedings,
pp. 291-305. USENIX, June 1987.

Brian W. Kernighan and Rob Pike. The Unix
Programming Environment. Prentice-Hall,
1984.

“Comments on CS239
Personal communication,

Geoff Kuenning.
Class Projects.”
June 1991.

Geoffrey H. Kuenning. “Kitrace: Precise In-
teractive M easurement of Operating Systems
Kernels” Software—Practice and Experi-
ence, 25(1):1-22, January 1995.

Peter S. Langston. “Unix Music Tools at
Bellcore.” Software—Practice and Experi-
ence, 20(S1):47-61, June 1990.

Kai Li and Paul Hudak. “Memory Coher-
encein Shared Virtual Memory Systems.” In

[MAB9]

[Mas92]

[McK95]

[MD74]

[MGH94]

[MJL84]

[NKM93]

[NWOS8S]

[O1593]

[OP92]

101

Proceedings of the Fifth Annual ACM Sym-
posiumon Principles of Distributed Comput-
ing, pp. 229-239. ACM, August 1986.

Stuart E. Madnick and Joseph W. Alsop,
I[I. “A modular approach to file system
design.” In AFIPS Conference Proceedings
Soring Joint Computer Conference, pp. 1-13.
AFIPS Press, May 1969.

Henry Massalin. Synthesis: An Efficient Im-
plementation of Fundamental Operating Sys-
tem Services. PhD thesis, Columbia Uni-
versity, 1992.

Marshall Kirk McKusick. “The Virtual File-
system Interface in 4.4BSD.” Computing
Systems, 8(1):3-26, Winter 1995.

Stuart E. Madnick and John J. Donovan. Op-
erating Systems. McGraw-Hill, 1974.

James G Mitchell, Jonathan J. Gibbons, Gra-
ham Hamilton, Peter B. Kessler, Yousef A.
Khalidi, Panos Kougiouris, Peter W.
Madany, Michael N. Nelson, Michael L.
Powell, and Sanjay R. Radia. “An Overview
of the Spring System.” In Proceedings of
the Soring 1994 IEEE COMPCON. |EEE,
February 1994.

Marshall McKusick, William Joy, Samuel
Leffler, and R. Fabry. “A Fast File System
for UNIX.” ACM Transactions on Computer
Systems, 2(3):181-197, August 1984.

Michael N. Nelson, Yousef A. Khalidi, and
Peter W. Madany. “The Spring File System.”
Technical Report SMLI TR-93-10, Sun Mi-
crosystems, February 1993.

Michael N. Nelson, Brent B. Welch, and
John K. Ousterhout. “Caching in the Sprite
Network File System.” ACM Transactions
on Computer Systems, 6(1):134-154, Febru-
ary 1988.

Michael A. Olson. “The Design and Imple-
mentation of the Inversion File System.” In
USENIX Conference Proceedings, pp. 205—
217. USENIX, January 1993.

Sean W. O'Malley and Larry L. Peterson.
“A Dynamic Network Architecture.”
ACM Transactions on Computer Systems,
10(2):110-143, May 1992.

102

[Ous90]

[PK84]

[PPTO1]

[PW8S]

[RAAQQ]

[RFHS6]

[Rit84]

[RKHS6]

[RNP93]

[Ros90]

[Ros92]

John K. Ousterhout. “Why Aren't Operat-
ing Systems Getting Faster As Fast as Hard-
ware?’ In USENIX Conference Proceed-
ings, pp. 247-256. USENI X, June 1990.

Rob Pike and Brian Kernighan. “Pro-
gram Design in the UNIX Environment.”
AT& T Bell Laboratories Technical Journal,
63(8):1595-1605, October 1984.

Dave Presotto, Rob Pike, Ken Thompson,
and Howard Trickey. “Plan 9, A Distributed
System.” In Proceedings of the Spring 1991
EurOpen, pp. 43-50, May 1991.

Gerald J. Popek and Bruce J. Walker. The
Locus Distributed System Architecture. The
MIT Press, 1985.

Marc Rozier, Vadim Abrossimov, Frangois
Armand, lvan Boule, Michel Gien, Marc
Guillemont, Frédéric Herrmann, Claude
Kaiser, Sylvain Langlois, Pierre Léonard,
and Will Neuhauser. “Overview of the
Chorus Distributed Operating System.”
Technical Report CS/TR-90-25, Chorus
systemes, April 1990.

Andrew P. Rifkin, Michael P. Forbes, Rich-
ard L. Hamilton, Michael Sabrio, Suryakanta
Shah, and Kang Yueh. “RFS Architectural
Overview.” In USENIX Conference Pro-
ceedings, pp. 248-259. USENI X, June 1986.

Dennis M. Ritchie. “A Stream Input-Output
System.” AT& T Bell Laboratories Technical
Journal, 63(8):1897-1910, October 1984.

R. Rodriguez, M. Koehler, and R. Hyde.
“TheGeneric FileSystem.” In USENIX Con-
ference Proceedings, pp. 260—269. USENI X,
June 1986.

S. Radia, M. Nelson, and M. Powell. “The
Spring Name Service.” Technical Report
SMLI TR-93-16, Sun Microsystems, Octo-
ber 1993.

David S. H. Rosenthal. “Evolvingthe Vnode
Interface.” In USENIX Conference Proceed-
ings, pp. 107-118. USENI X, June 1990.

David S. H. Rosenthal. “Requirementsfor a
“Stacking” vnode/VFS Interface.” Unix In-
ternational document SF-01-92-N014, 1992.

APPENDIX B. CACHE-COHERENCE APPENDIX

[RT74]

[SBMOO]

[SGK85]

[SGN85]

[Smig2]

[SS90]

[Sun87]

[Sun90]

[SW93]

[Webo3]

DennisM. Ritchieand Ken Thompson. “The
UNIX Time-sharing System.” Communic-
ations of the ACM, 17(7):365-375, October
1974.

Alex Siegel, Kenneth Birman, and Keith
Marzullo. “Deceit: A Flexible Distributed
File System.” In USENIX Conference Pro-
ceedings, pp. 51-61. USENIX, June 1990.

Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon.
“Design and Implementation of the Sun Net-
work File System.” In USENIX Conference
Proceedings, pp. 119-130. USENIX, June
1985.

Michael D. Schroeder, David K. Gifford, and
Roger M. Needham. “A Caching File System
for a Programmer’s Workstation.” In Pro-
ceedings of the Tenth Symposium on Oper-
ating Systems Principles, pp. 25-34. ACM,
December 1985.

Alan J. Smith. “Cache Memories.”
ACM Computing Surveys, 14(3):473-530,
September 1982.

David C. Steere and James J. Kistler andMa-
hadev Satyanarayanan. “Efficient User-
Level File Cache Management on the Sun
Vnode Interface.” In USENIX Conference
Proceedings, pp. 325-332. USENIX, June
1990.

Sun Microsystems. “XDR: External Data
Representation standard.” Technical Report
RFC-1014, Internet Request For Comments,
June 1987.

Sun Microsystems. “Network Extens-
ible File System Protocol Specification,
draft.” Available for anonymous FTP on
titan.rice.edu as public/nefs.doc.ps, February
1990.

Glenn C. Skinner and Thomas K. Wong.
““Stacking” Vnodes: A Progress Report.” In
USENIX Conference Proceedings, pp. 161—
174. USENIX, June 1993.

Neil Webber. “Operating System Support
for Portable Filesystem Extensions.” In
USENIX Conference Proceedings, pp. 219—
228. USENIX, January 1993.

B.3. CACHE-COHERENCE STORAGE OPTIONS

[Wei95]

[Wit93]

Jeff Weidner. “The UCLA Extensible Attrib-
utes Layer.” In preparation, 1995.

Mark Wittle. “LADDIS: The Next Genera-
tion In NFS File Server Benchmarking.” In
USENIX Conference Proceedings, pp. 111—
128. USENIX, June 1993.

103

104 APPENDIX B. CACHE-COHERENCE APPENDIX

Colophon

This document was produced using IATEX2e on a a
Sun IPC running SunOS 4.1.1 Unix modified to support
UCLA stacking and the Ficusreplicated file-system, and
on a Dell Latitude XP portable computer running the
Linux operating system (aversion of Unix). | employed
idraw for figures and jgraph for most graphs.

105

