
To appear, ACM Symposium on Operating Systems Principles, December, 1995.

Performance of Cache Coherence in Stackable Filing�

John Heidemann Gerald Popek
University of California, Los Angeles

Abstract

Stackable design of filing systems constructs sophisticated services
from multiple, independently developed layers. This approach has
been advocated to address development problems from code re-use,
to extensibility, to version management.

Individual layers of such a system often need to cache data to im-
prove performance or provide desired functionality. When access to
different layers is allowed, cache incoherencies can occur. Without
a cache coherence solution, layer designers must either restrict layer
access and flexibility or compromise the layered structure to avoid
potential data corruption. The value of modular designs such as
stacking can be questioned without a suitable solution to this prob-
lem.

This paper presents a general cache coherence architecture for
stackable filing, including a standard approach to data identifica-
tion as a key component to layered coherence protocols. We also
present a detailed performance analysis of one implementation of
stack cache-coherence, which suggests that very low overheads can
be achieved in practice.

1 Introduction

Stackable filing: Filing services are one of the most user-visible
parts of the operating system, so it is not surprising that there are
both many filing services suggested by operating systems research-
ers and a variety of third parties interested in providing these solu-
tions. Of the many innovations which have appeared recently, very
few of them have become widely available in a timely fashion. We
believe this delay results from two deficiencies in the practice of cur-
rent file system development. First, file systems are large and diffi-
cult to implement, and new filing systems often cannot take advant-
age of existing services. Second, file systems today are built around
a few fixed interfaces which fail to accommodate change and evolu-
tion inherent in modern operating systems. Today’s filing interfaces
vary from system to system, and even between point releases of a
single operating system. These differences imply that third parties
cannot adapt filing interfaces to suit their own needs, nor can they
expect their software to function as the base system evolves.

Stackable filing [7, 22, 8] presents a new approach to the con-
struction of filing services to address these problems. Inspired by

�This work was sponsored by the Advanced Research Projects Agency under
contract N00174-91-C-0107. Gerald Popek is also affiliated with Locus Com-
puting Corporation. The authors can be reached at 3564 Boelter Hall, UCLA,
Los Angeles, CA, 90095, or by electronic mail to johnh@ficus.cs.ucla.edu or
popek@ficus.cs.ucla.edu. References to work related to this paper can be found at
hhttp://ficus-www.cs.ucla.edu/ficus-members/johnh/work.htmli.

Copyright c
 1995 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or com-
mercial advantage and that new copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request Permissions from Publications Dept,
ACM Inc., Fax +1 (212) 869–0481, or hpermissions@acm.orgi.

UFS

encryption

OS

user

Figure 1: A sample application of the stackable layers. Each layer
is connected by a standard interface.

Streams [21], stackable filing is based on two key ideas. First, to
allow rapid development of new services, stacking constructs filing
services from layers which are combined into stacks to provide a
complete filing environment. (We formalize these concepts in Sec-
tion 2.) In this approach a new service is provided as a layer; it re-
uses existing services by stacking over them. Each layer is bounded
above and below by a syntactically identical interface. This pre-
cisely defined interface allows layers to be provided in a binary form
without source code. In spite of this “hands-off” design, changes
to an existing service can often be accomplished easily by simply
“pulling apart” any two layers and inserting a new module. Finally,
since all layers meet the same interface, semantically equivalent lay-
ers can be swapped to improve performance or portability.

The second key idea in stacking is that the interface which bounds
layers is extensible, allowing layers to be robust both to internal and
external change. An extensible interface allows third parties to inde-
pendently grow and adapt the filing interface to their needs. It also
allows developers to incrementally evolve the base operating sys-
tem without invalidating existing layers. Evidence suggests that the
ability to construct and install binary modules that extend and alter
filing services can lead to much more rapid evolution of available
services and greatly increase reuse of existing service implementa-
tions.

An example of stackable filing is shown in Figure 1. A standard
Unix file system (UFS) manages disk storage while a layer stacked
above encrypts and decrypts data passing through it. One could ima-
gine adding compression to the top of this stack as another layer. At
UCLA we have constructed a number of services with stackable lay-
ers including replicated filing, user-id mapping, a persistent, object-
oriented storage service, and prototypes of compression and encryp-
tion [7, 8]. All of these have been integrated into a full function fil-
ing service (SunOS 4.1.1).

In UCLA stacking, each layer provides a potentially different
view of the underlying data; a user can select different views by ac-
cessing a file through different layers. Access to different views is
important to meet changing user needs and to provide for adminis-
trative services and sophisticated layer configurations. In Figure 1,
for example, a user might write a file through the encryption layer
while a backup program archives the encrypted data directly from
the UFS storage layer. A directory-union layer might present sev-
eral underlying directories as a single directory. The unified view
would be most often used, but the underlying directories would be
required for new software installation. Finally, we describe in Sec-
tion 5.4 how internal access to different layers occurs in sophistic-
ated filing services.

Stacking has been adopted in BSD 4.4 and the Spring operating
system [12], and it has been employed extensively at UCLA to de-
velop distributed filing services [7]. However, we argue below that
suitable incorporation of multi-level cache management is essential
to the success of modular systems.

File system caching: Caching can be used to improve perform-
ance in a system with stackable layers just as elsewhere: commonly
used data is kept “on the side” by an upper layer to avoid repeat-
ing prior work. Stackable caching is particularly important for lay-
ers such as encryption and compression since the computation these
layers perform is relatively expensive.

In addition to caching as a performance optimization, caching is
also a required filing service in modern operating systems. Many
systems employ an integrated file system cache and virtual memory
system; such systems require caching to implement program execu-
tion.

For these reasons caching is a required part of any modern fil-
ing environment, and we expect caching to be important in file sys-
tems constructed from stackable layers. As described above and
in Section 5.4, data can be accessed and cached at multiple layers
of a single stack. Yet data caches in multiple layers raise several
questions. How can these caches be kept coordinated? If layers are
provided by different parties, how can they cooperate to provide co-
herence? Consider Figure 1. Both layers are likely to cache pages.
However, when the same data is cached in both the encryption and
UFS layers, updates to one cache must be coordinated with the other
cache, or reads can return stale data and multiple updates can lose
data. Some form of cache coherence is required. These problems
are not issues in a monolithic file system where there is only one
file system and one cache1.

Thus far we have presented the problem of file data coherence in
a multi-layer caching system. File system data is only one aspect of
file system state which requires consistency guarantees. The more
general problem is that many assertions easy to make in a monolithic
system become difficult or impossible to make when state is distrib-
uted across several layers of a file system stack. Several such asser-
tions are important in file systems: file data coherence, file attribute
(meta-data) coherence, name lookup cache coherence, consistency
of user-level locking, and internal concurrency control. This paper
presents a system capable of addressing all of these areas.

Therefore, to summarize the focus of this paper:

1. file system stacking, if feasible in practice, would be very at-
tractive;

1Some user-level systems (such as stdio) do caching. Such packages and caching
are typically avoided when cache coherence is needed. This alternative are not possible
when the services of a filing layer are required.

2. practical stacking often requires concurrent access to multiple
points in the stack;

3. various stack layers must cache information of different sorts
in order to provide satisfactory performance;

4. those intra-layer caches must be kept coherent, or the accesses
implied in the second point above can give incorrect results;
and

5. a general framework for cache coherence is needed, since no
individual third-party layer can solve the problem alone.

That is, cache coherence is essential to allow stacking to reach its
full potential. This paper provides a modular solution to this prob-
lem.

Related work and directions for this paper: Our work builds
upon two areas of prior research. First, we draw cache coherence
algorithms from research in the areas of hardware multiprocessing,
distributed filing, and distributed shared memory. Second, we build
upon stacking work done at Sun Microsystems [22] and UCLA [7,
8], and cache-coherent stacking work also done at Sun [12]. A com-
plete discussion of related work follows in Section 6.

This paper contributes to the architecture of cache coherence in a
stacking system. We refine the notion of separation of the manager
and the provider of cached objects introduced in Spring [12]. We
show that consistent identification of cached objects is an import-
ant component of a coherence solution and can simplify the burden
cache coherence places on layers. There are also several import-
ant structural characteristics to this work, principally a design that
requires minimal change to common virtual memory architectures,
and the freedom to access intermediate layers directly. We believe
that these contributions are essential to more completely exploit the
capabilities of stacking.

We also present a detailed performance analysis of our system.
Conflicting costs of the framework and benefits of caching make
careful performance analysis important. An understanding of the
performance trade-offs in cache coherence is critical to the applica-
tion of these results to other systems.

For concreteness we have focused our efforts in cache coherence
on file system stacking. With the widespread deployment of object-
oriented software development, many large-scale software systems
are structured similarly to file system stacks. To the extent that cach-
ing is important at multiple levels of such systems, cache coherence
also will be important, and the techniques employed in this paper
may also be relevant.

2 Overview of UCLA Stacking
Our work on cache coherence takes place in the context of the
UCLA stackable filing environment [8]. This system has been de-
veloped at UCLA since 1990, and portions of it have more recently
been incorporated into 4.4BSD Unix. The research environment at
the UCLA Ficus project has been hosted under a replicated file sys-
tem built with stacking since 1991.

To provide a uniform vocabulary for the remainder of the pa-
per, we now briefly summarize the original vnode interface and the
UCLA stackable filing framework. (Detailed descriptions of the
vnode interface [14] and UCLA stacking [8, 9] are available else-
where.)

The vnode interface: The vnode interface separates the upper-
level kernel from different file system implementations in an object-
oriented manner. The upper-level kernel treats files as nearly opaque

A: B:

C:

b1a1

c1c2

d2 d1D:

E: F:e2 f2

Figure 2: A configuration of several layers. The ovals represent lay-
ers; the figure as a whole represents a stack. Each triangle is a vnode,
while each collection of joined triangles represents a file.

objects, vnodes. Actions on files are invoked via vnode operations
which match the desired action with the a particular implementation
at run-time.

At UCLA [8] and Sun [22, 25, 12] the vnode interface has been
extended to support file system stacking, extensibility, and distrib-
uted filing. We next discuss each component of stackable filing at
UCLA, drawing on Figure 2 for illustration.

Layer configuration: Each filing service is provided as a layer.
Layers can be distributed as binary-only modules by third-parties
and are configured into the kernel at system startup2.

Layer instantiation: Layers are an abstract facility provided by
the kernel. Before a layer is used it must be instantiated in a run-
ning system. Instantiation attaches a layer to a part of the file sys-
tem namespace; all user actions in this part of the file system will
be forwarded to the layer. (In our system, layer instantiation is done
with the mount system call.)

Layers take layer-specific configuration information when instan-
tiated. These parameters provide any additional information needed
for layer execution, typically the name of the layer to stack upon.
For example, configuration of layer D in Figure 2 would specify lay-
ers E and F. This approach is analogous to the specification of disk
partition identity when configuring a physical file system.

More commonly, layers will rely upon other layers for lower-
level resources. We describe such a combination of layers as a stack.
By combining the services of several existing layers, stacks can
form sophisticated filing services.

Each layer of a stack has a different place in the file system name-
space, so different layers of the stack may be referenced at the same
time.

2In principle, layers can be dynamically loaded into the kernel, but this is not sup-
ported by our current implementation. Regardless of how layers are loaded, new layers
can be instantiated at any time.

Figure 2 is a single stack composed of six layer-instantiations
labeled A through F.

Files in a layer: Stacks and layers are units of file system config-
uration. Translation of a path-name that enters the namespace under
control of a layer creates a vnode to represent the state of that layer.
The vnode represents its layer’s “view” of the file. Just as layers
build on other layers to form stacks, vnodes may build on vnodes
from lower layers. Taken together these vnodes represent a file.

Each triangle in Figure 2 represents a vnode. Vnodes a1, b1, c1,
and d1 combine to form file 1, while c2, d2, e2, and f2 form file 2.

This figure also shows several different configurations. Vnode c1
has two vnodes stacked on top of it, called fan-in. Vnode d2 stacks
over two vnodes and so exhibits fan-out. Fan-in and fan-out allow
stacks to form a directed acyclic graph (DAG) but complicate the
problem of cache management. As an example of the use of fan-in,
layer A might be an on-disk caching layer while layer B provides
remote access, both of which stack over layer C which provides the
Unix-specific extensions to layer D, a CD-ROM file system. Fan-
out is common when a replication layer stacks over two storage lay-
ers.

File information: As a user extracts information from a file, a
vnode of that file may cache some of this information, typically to
improve performance. There are several types of information a layer
may cache, including file data pages, file attributes, and directory
name lookups. Collectively, such information will be termed cache-
objects.

In Figure 2, a user might write to file 2 through vnode c2. Initially
the user’s data might be cached with vnode c2. Later it would be
written down the stack, through layer D and to E and F.

A cache-object is a layer’s representation of some type of file in-
formation (data, attributes, etc.). Cache-objects representing logic-
ally the same data may be held in different vnodes of the same stack.
For example, all vnodes of file 2 in Figure 2 might store the “file
length attribute” cache-object for the file. Because there are poten-
tially multiple copies of what is logically the same data, some mech-
anism must be provided to keep them synchronized. This paper de-
scribes a cache coherence strategy to insure that cache-objects of
layers from different parties and in arbitrary configurations can re-
main synchronized.

3 Architecture

Cache management is more difficult in a layered system than in a
monolithic system because state (cache contents and restrictions)
previously concentrated in a single location is now distributed
across several modules. Our approach to cache coherence is to unify
this state in a centralized cache manager. The cache management
service is known to all stack layers and records the caching behavior
of different layers. If it detects caching requests that would violate
existing coherence constraints, it revokes caching privileges as ne-
cessary to preserve coherence.

An example of a potential stack and cache manager configura-
tion can be seen in Figure 3. When a request is made to cache an
object and that request conflicts with existing usage, existing cache
holders are required to flush their caches before the request is al-
lowed to proceed. In this example the encryption layer might re-
quest the cache manager to grant it exclusive caching rights to ob-
ject A. The cache manager knows this request conflicts with the out-
standing UFS cache of A, and so it will require the UFS to flush its
cache before continuing. If the encryption layer allowed shared ac-

UFS

encryption

 cache
manager

A

A in UFS

Figure 3: A sample application of the cache manager.

cess of A, the cache manager would verify that this request was com-
patible with the UFS’s outstanding request (breaking this request if
not) and then continue.

We next examine the design considerations which influence our
approach to cache coherence. We then examine each of the sub-
problems facing our cache manager: identifying when different lay-
ers cache the same logical object, deciding if such concurrent cache
requests are compatible, deadlock avoidance, and the relationship
of caching and distributed filing.

3.1 Design constraints

Several constraints influence our choice and design of a solution.
Good performance is the first constraint; support for the coherence
framework should have little performance impact on an otherwise
unaltered system.

To manage data, the cache manager must be able to identify it.
A flexible and extensible identification scheme is a second require-
ment. Extensibility is critical because we already cache different
kinds of data (names, file data, attributes); we anticipate caching
other data and attribute types in the future. Flexible cache-object
naming is also important because logically identical data-objects
may be labeled differently in different layers. For example, “file
data bytes 15–20” has a different meaning above and below a com-
pression layer.

Additional design requirements include a strategy for deadlock
avoidance (an important special case of stack-wide state) and the
desire to make minimal changes to the virtual memory (VM) sys-
tem. Several similar VM designs are widely available; the applic-
ability of our work is maximized by focusing on the file system and
its limited interactions with the VM rather than requiring significant
changes to both systems. We comment as we proceed regarding the
impact of these constraints on our design and implementation.

3.2 Data identification

To explore the services and level of generality required by a stack-
able cache management service, consider the analogy of identify-
ing shared memory. In a simple shared-memory application where
all processes share identical address spaces, data can be identified
by its offset from the beginning of memory. A more sophisticated
shared-memory application might allow independent processes on
the same host to share memory by adding a second level of nam-
ing. Processes identify shared data with a memory segment name
and shared data as offsets in that segment. More general still is a
distributed shared memory system where host identification must be
added to segment and byte names. A common characteristic of all
of these examples is that all active agents (threads or processes) ulti-
mately refer to the same thing: a particular byte of memory. Increas-
ing generality of agents requires more sophisticated addressing, but
fundamentally the problem is still the same.

The problem of data identification becomes more difficult with a
general stacking model. Stack layers can arbitrarily change the se-
mantics of the data representation above and below the layer. For
example, layers may choose to rename data obtained from below, or
may dynamically compute new data. Because new filing layers can
be configured into the system dynamically, the scope of data change
cannot be predicted until run-time. Data must be kept coherent in
spite of these difficulties.

Our cache manager design addresses this problem in a man-
ner analogous to how DSM addressing was identified: layers use
more sophisticated identification as increasing generality is re-
quired. With the goal to “make simple things simple and complex
things possible”, the cache manager provides significant support for
the common case where layers do not change naming of cachable
objects. Layers with more sophisticated needs are allowed complete
control over caching behavior. We examine each of these cases be-
low.

3.2.1 Cache-object naming: simple layers

Layers cache several kinds of cache-objects, so a first component of
cache-object identification must distinguish different cache-objects
held by a single vnode. To identify cache-objects the cache manager
uses a cache-object type and a type-specific name. Type-specific
names are easily generated. (For example, each attribute or group
of attributes is given a unique name, and file data bytes are identi-
fied by their location in the file. Section 4.2 discusses name selection
in more detail.) Figure 4a shows how a single vnode might identify
several cache-objects.

The cache manager can identify a cache-object held by a single
vnode with specific names for each cache-object. The cache man-
ager must be able to identify when cache-objects held by different
vnodes alias one another. We solve this problem in two ways. The
next section describes a solution for the general problem, but here
we examine an important special case.

Often a layer assigns cache-object names in the same way as the
layer it is stacked upon. We optimize our cache manager to support
this kind of simply-named layer. Since information is identified the
same way by each vnode of a simply-named file, the cache manager
can automatically identify and avoid cache aliases if it can determine
which vnodes belong to the same file.

The cache manager associates vnodes by tagging vnodes of
the same simply-named file with a special token. The mapping
h file-token, co-type, co-name i ! vnode allows the cache man-
ager to determine that h file-2, attrs, length i ! vp-c2 and
h file-2, attrs, length i ! vp-d2 refer to the same object and
must be kept coherent. In Figure 4b the cache manager has recorded
both vnodes of a two-vnode file as caching the file length attribute.

3.2.2 Cache-object naming: general layers

Not all layers are simply-named. A layer that alters a cache-object
in a way that changes its naming violates the simply-named restric-
tion. Without help the cache manager cannot insure cache coher-
ence above and below such a layer since it cannot anticipate how
that layer alters cache-objects. For example, a file’s length and the
location of file data are altered by a compression layer in a layer-
specific manor.

To solve this problem, generally-named layers must become in-
volved in the cache coherence process. The cache manager super-
vises data above and below this layer as if there were two separate,
simply-named files (each with a separate file-token). The generally-
named layer is responsible for this division and knows about the
two different “files”. It informs the cache manager that it must see

(a)
a3

 Cache
Manager

(b)
a4

b4

 Cache
Manager

(c)
a5

b5

c5

length=5
mode=0777
data=aaaab

length=5

length=5

length=3

length=5

<file−5’,attrs,length> −> a5
<file−5’,attrs,length> −> b5
<file−5,attrs,length> −> b5
<file−5,attrs,length> −> c5

 Cache
Manager

<file−4,attrs,length> −> a4
<file−4,attrs,length> −> b4

<attrs,length> −> a3
<attrs,mode> −> a3
<data,0−4> −> a3
<lock,0−4> −> a3

uncompr. length=5
compr. length=3

Figure 4: Levels of cache-object identification described in Sec-
tion 3.2. In (a) a single vnode identifies cache-objects by type and
name. In (b) a file-token is added. Part (c) shows how a general
layer can map between different file tokens.

all caching events occurring in either simply-named file. That layer
then relays and translates cache coherence events as necessary.

Figure 4c shows the general cache management case. Vnode b5 is
cache-name-complex and divides the stack into simply-named files
5 and 50. The cache manager has a record for b5 with both of these
simply-named file-tokens, allowing b5 to map any cache actions to
the other side of the stack. The details of this mapping are dependent
on b5’s implementation. The details of one possible implementation
are discussed in Section 4.4.

We provide cache coherence in two flavors to support simple lay-
ers with very little work while still providing a solution for the gen-
eral case. For example, addition of coherent data page caching to a
“null” layer (which uses simple naming) required only 70 lines of
code, while support in a layer requiring general naming can easily
be 5 to 10 times longer.

3.3 Cache-object status

A cache manager employs cache-object identification to track which
layers cache what information. Tracking cache-objects allows the
cache manager to implement a simple coherence policy by never al-
lowing concurrent caching of the same object.

A better solution can be obtained if we employ knowledge of
cache-object semantics to specify when cache-objects require ex-
clusive access and when they can be safely cached in multiple lay-
ers. For example, some file attributes are immutable and so can be

cached by multiple layers without penalty, other attributes change
frequently enough to preclude caching, and an intermediate policy
would be suitable for still others.

We require that a layer’s cache request include not only what ob-
ject is to be cached, but also its desired status. The status specifies
if the layer intends to cache the object and whether other layers are
allowed to concurrently cache it also. To handle a cache request
the cache manager compares the incoming request against other out-
standing cache requests, invalidating layers with conflicting require-
ments. If the new request indicates that the object is to be cached,
the cache manager then records what layer will hold the data, prom-
ising to inform that layer if future actions require invalidation.

In addition to the standard cache-object requests, a layer can
simply register interest in watching caching behavior for a given ob-
ject. It will then be notified of all future cache actions. This facility
is used to implement cache coherence across general layers.

3.4 Deadlock prevention

An operating system must either avoid or detect (and break) dead-
lock. In operating systems, deadlock avoidance is usually preferred
to avoid the expense of deadlock detection and the difficulty of dead-
lock resolution.

Without cache coherence our style of stacking does not contribute
to deadlock. Locks are not held across operations and since opera-
tions proceed only down the vnodes of a file, file vnodes form an
implicit lock order. Cache coherence callbacks violate this impli-
cit lock order; callbacks can be initiated by any vnode (in any stack
layer) and can call any other vnode of that file.

To prevent deadlock from concurrent cache-management opera-
tions we protect the whole file with a single lock during cache ma-
nipulation. This approach has the disadvantage of preventing mul-
tiple concurrent caching operations on a single file, but in many en-
vironments that event is quite unlikely. In most cases cache opera-
tions are either already serialized by a pre-existing lock (such as dur-
ing disk I/O) or can be processed rapidly (as with name lookup cach-
ing). Although a single lock works well in these environments, an
aggressive multiprocessor system may wish to provide additional,
finer granularity locking to reduce lock contention.

We guarantee deadlock avoidance by insuring a one-to-one asso-
ciation between stack locks and files. In Figure 4, for example, files
3, 4 and 5 each have a single lock, even though file 5 requires gen-
eral naming. Run-time changes to stack configuration can violate
this rule if a new layer with fan-out merges two existing files into a
single new file. When this occurs the new layer must acquire both
locks and then replace all references of the second lock with refer-
ences to first.

3.5 Relationship to distributed computing

Cache coherence in stacking as described so far will keep all layers
in a single operating system coherent3 . Of course, shared filing is a
useful service beyond the kernel of a single processor or small mul-
tiprocessor. Clusters of independent workstations and large-scale
multiprocessors often have a shared filing environment among inde-
pendent kernels and operating systems. Cache coherence on a single
machine must not interfere with the overall distributed filing envir-
onment.

Cache coherence in a distributed system is subject to a wide range
of latencies and degrees of autonomy. This range has prompted the

3Although we expect all layers to be cache coherent, layers which do not participate
in coherence protocols are possible. Stacks involving such layers cannot make coher-
ence guarantees.

 NFS
protocol

 Sprite
protocol

Figure 5: Distributed cache coherence involving different network
protocols. Cache managers maintain coherence local to each ma-
chine while different protocols are employed for inter-machine co-
herence.

development of a number of different distributed file systems (for
example, Locus, NFS, Sprite, AFS, and Ficus). Each of these file
systems are designed for different environments and as a result have
different internal coherence algorithms; the variety of solutions sug-
gests that no single approach is best for all environments.

Cache coherence in stackable files on a single node of a distrib-
uted system must interact with the distributed filing coherence pro-
tocol, but we cannot require generalization of our protocol to the
whole distributed system and successfully match all environments
already served. Neither is it suitable to adopt different distributed
filing semantics on a single machine where we can often provide a
much better service. Instead, each particular distributed filing pro-
tocol interacts with the stackable coherence algorithms to maintain
local consistency, but also communicates with its peers to provide its
distributed policy. Figure 5 illustrates this concept. The cache man-
ager at each site (the small ovals) maintains local coherence, while
the layers implementing different distributed protocols (such as NFS
or Sprite) implement their own coherence protocols independently.
Distributed coherence and locking issues are thus the responsibil-
ity of the distributed filing protocol. Recognizing the variety of dis-
tributed protocols suggests that this “hands-off” distributed concur-
rency policy is the only one that will permit stacking to be widely
employed.

4 Implementation

An implementation of this coherence framework is an important
step in validating and evaluating the approach. This section briefly
summarizes important points of our implementation, highlighting
optimizations and other relevant implementation choices. We con-
clude by drawing the design and implementation together in an ex-
tended example.

4.1 Implementation overview

In general, a cache coherent stack behaves just as any other file sys-
tem stack. A user invokes operations upon a layer, the operation
passes down the stack and the results are returned back up the stack.

A layer may employ cached data to service a request. If the data
already exists in the cache, that data is assumed to be coherent and
the layer can use it. If the data is not in the cache, the layer will
typically acquire the data and place it in the cache.

Before acquiring data to be cached a layer must gain ownership of
that data. To acquire ownership a layer first locks the stack and then
makes a cache-ownership call to the cache manager, providing its

simply-named stack token, the identity of the cache-object it wishes
to cache, and what restrictions it places on concurrent use of that
cache object. The cache manager returns with a guarantee that the
request has been met and the layer can acquire data without fear of
coherence problems.

To make this guarantee the cache manager examines its records.
If any other layers in the same simply-named stack have conflicting
requests, the cache manager calls them back and asks them to re-
linquish their cached data. Other layers may have also registered
“watch” interest in the stack to provide cache coherence between
general layers. If so, the cache manager informs them of the in-
coming cache request, allowing them to translate and propagate the
cache message throughout the whole stack.

When designing our cache manager we identified several kinds
of cache-objects in need of coherence. We also realized that there
would likely be other kinds of cache-objects in the future. To al-
low cache requests to be processed efficiently we apply three generic
“classes” of cache-objects to several situations. The next sections
discuss these classes and their application to actual cached data. In
addition, Appendix A.2 presents the interfaces between the cache
manager and a layer.

4.2 Cache-object classes

For efficiency we structured our implementation around three types
of cached objects: whole files, named objects, and byte-ranges. We
examine each of these classes briefly here; we apply them in the fol-
lowing section.

Whole-file identification: Successful use of stacking in a multi-
processing context requires coordination of multiple streams of con-
trol within a single file. Per-file locking provides an approach that
can achieve this goal. Key design concerns are lightweight identi-
fication, support for arbitrarily complex stacks (since stacks can be
DAGs), and careful attention to deadlock.

Whole-file identification is accomplished by recursively labeling
the vnodes of the file. The lowest vnode in the file generates a unique
token to identify that file. (In our implementation, the memory loca-
tion of the vnode is used as a token4 .) As vnodes representing upper
layers of the file are created, they inherit the identity of the vnodes
they stack upon As each vnode making up the file is created it iden-
tifies itself as part of the same file as the vnode it stacks upon. (Fan-
out vnodes which stack over multiple children employ general nam-
ing as described in Section 3.2.2.)

Whole-file identification solves a unique problem. More general
services such as named-object and byte-range identifiers discussed
in the following sections handle other stack identification needs.

Named-object identification: The fundamental service provided
by the cache manager is maintenance of a central database of cache-
object usage. Generic “names” of variable-length byte-strings
provide a general way of object naming. The named-object subsys-
tem implements this general model of cached object identification.

Named-objects are identified by the layer and a short string of
bytes (the name). The cache manager uses these names to identify
when layers of the same stack are caching related information. Ser-
vices with a few objects may use fixed, pre-defined names; services
that require more general naming might use application-specific
names. Named-objects are suitable for file attribute (and extended
attribute) cache management and name lookup validation. Details
of name assignment for these applications follow in the next section.

4While suitable for our prototype, a better long-term implementation would use 32-
bit counters to avoid name-reuse issues.

Byte-range Identification: Byte-range identification is a more
specific scheme then named-objects. Byte-ranges support efficient
association of caching information with specific areas in a file, iden-
tified as segments specified by file offset and length. Byte-range
identification is suitable for user-level file locking and data cache
coherence.

4.3 Application and optimizations

Our current system supports cache coherent file data, name-lookup
caching, and attributes. Although application of byte-range or
named-object cache management to each of these problems is relat-
ively straightforward, several important optimizations are discussed
below.

4.3.1 Data page caching

Our approach to data page caching is influenced by the observa-
tion that a sophisticated distributed shared memory system is not
required to support inter-layer coherence. We adopt this view for
two reasons. First, we expect most user action to be focused on one
view of each file at a time and so concurrent sharing of a single file
between layers will be rare. We explore the implications and the
reasoning behind this assumption in Section 5.6. Second, we did not
choose to provide stronger consistency than that provided by the fil-
ing system today. Multi-file consistency is left to the application, or
to a separate layer.

An expected low rate of concurrent access to data pages implies
that the simplest possible synchronization policy is warranted. We
therefore protect each page with a single logical token and only al-
low a single layer to cache that page at any instant. (With byte-range
identification we represent the logical tokens for contiguous pages
efficiently.) When cache coherence requires pages to be flushed
(because of potential cache incoherence) the current owning layer
writes the pages to the bottom stack layer, insuring that future re-
quests anywhere in the stack retrieve the most recent data.

Page flipping: A first optimization one might consider is moving
pages between layers by changing page identification in the VM sys-
tem. (In SunOS, each page is named and indexed by its vnode and
file-offset. The most efficient way to move a page from one layer
to another is to adjust this information.) For brevity we will term
this optimization “page flipping”. A key problem in page flipping is
recognizing between which layers the page should be moved.

Consider the need to flip a page from vnode a1 to b1 in Figure 2.
The minimal action required would be to move the page down the
stack to vnode c1, the “greatest common layer” of a1 and b1, then
back up to b1. Identification of the greatest common layer is difficult
given the limited knowledge a layer has of the whole stack, partic-
ularly when non-linear stacks are considered. Our implementation
therefore employs a simplification by approximating the greatest
common layer with the bottom-most stack layer (vnode d1 in the
figure). Stacks with fan-in will move the page to each bottom layer.
With this optimization pages can move between layers without in-
curring any disk activity or data copying.

Page sharing: Allowing multiple layers to concurrently share the
same physical page representation is a desirable optimization to
avoid page thrashing and page duplication when two active layers
have identical page contents. This optimization requires support
from the VM system, like that provided by Spring [13]. Unfortu-
nately, the SunOS 4.x VM system serving as our test-bed associates
each page with a single vnode, and so we were unable to explore this
optimization.

Read-only and read/write pages: Another possible optimization
is to coordinate page access with reader/writer tokens instead of
simple tokens. Reader/writer tokens allow multiple read-only cop-
ies of pages to exist in the stack concurrently. If pages are used
primarily for read access, then this optimization avoids needless
page flipping. We chose not to implement this optimization because
of our expectation that concurrent data page sharing will be rare.

4.3.2 File attribute caching

File system layers often must alter their behavior based on file meta-
data. Current file systems may depend on file type or size; repli-
cated file systems such as Ficus must know replica storage loca-
tions. Good performance often requires these sorts of attributes be
cached in multiple filing layers, particularly when files are accessed
remotely. Reliable behavior requires that such attributes be kept
cache coherent. Our implementation of attribute cache coherence
is therefore based on the assumption that multiple layers will need
to cache attributes concurrently.

The cache manager handles coherent attributes as a class of
named-objects. Groups of related attributes are each given a unique
name when designed and are managed together. Because named-
object cache management places no restrictions on the number of
groups, this system extends easily to support file-specific attributes
and potentially generic “extended attributes”. There are many pos-
sible attribute-group naming schemes; we employ one modeled on a
h host-id, time-stamp i tuple to allow simple distributed allocation.

Our current implementation provides coherence for standard at-
tributes; coherent Ficus extended attribute support is underway.
Standard attributes are broken into three groups (frequently chan-
ging, occasionally changing, and unchanging) as an optimization to
avoid unnecessary invalidation.

4.3.3 Directory name lookup caching

Pathname translation is one of the most frequently employed por-
tions of the file system. The directory name lookup cache (DNLC)
is a cache of directory and pathname component-to-object mappings
which has been found to substantially improve file system perform-
ance. Cached name translations must be invalidated when the name
is removed. In a multi-layer system the name may be cached in one
layer and removed through another; a cache coherence system must
insure that a removal in any layer invalidates any cached names in
other layers.

A cache coherent DNLC must coordinate name caching and in-
validation in several layers. Several approaches are possible to solve
this problem. We considered merging the DNLC with our cache
manager, but we rejected it for our research environment to keep
our code cleanly separated from the remainder of the operating sys-
tem. Instead we experimented with two different mappings between
DNLC entries and the named-object cache manager. We first recor-
ded all names and removals with the cache manager, directly us-
ing file names as cache-object names. This initial approach did not
match typical DNLC usage (cache invalidations are rare) and so per-
formance suffered. Our final approach tags directories that have any
cached name translations; an invalidation in a tagged directory is
sent to all layers. We found that occasional “broadcasts” prove more
efficient than the bookkeeping necessary for more precise invalida-
tion.

4.3.4 File data locks

User-level programs employ file-locking system calls to manage
concurrency between independent user programs. For file locks to
provide effective concurrency control they must apply to all stack

layers, otherwise programs modifying a file through different lay-
ers could unwittingly interfere with each other. User-level file lock-
ing can be provided with the byte-range cache manager in a manner
analogous to file data cache coherence5 .

4.3.5 Whole-file locking

Just as user-level programs employ locking for concurrency con-
trol, the kernel employs locking internally to keep file data struc-
tures consistent. Stacking requires serialization of access to stack-
wide data structures as well as per-layer data. Whole-file locking
provides this serialization.

We implement whole-file locking with a streamlined protocol
separate from other forms of cache coherency. Stack-locking calls
bracket other cache coherence mechanisms to avoid deadlock, so a
separate protocol is required and minimal overhead is important.

4.4 An extended example

To bring together the design and implementation of cache coherence
we next consider an example. We will examine stacks b and c in
Figure 4 as data is cached.

Stack b represents the case of two layers with simple naming.
Consider a user reading data from the top layer. Assuming the
file’s data structures do not already exist in memory, the pathname-
translation operation is passed down the stack. As it returns up the
stack, vnodes b4 and a4 are built. Creation of vnode b5 allocates
a file-token, cache management structure, and lock for file 4, and
vnode a4 uses this same information. Name-lookup caching may
occur as a side effect of pathname translation; if so, one of the layers
(typically the top) would register this fact with the cache manager of
the parent directory of the file.

After the vnodes are created, a user reads from a4. Vnode a4
locks the stack and passes the read operation down the stack, spe-
cifying a4 as the caching vnode. The operation arrives at b4 (the
bottom layer) which requests that a4 be given ownership of h 40,
data, 0–8k i. The cache manager grants ownership of the entire file
immediately (initially pages are unowned), and b4 reads the pages,
placing them directly into a4’s cache.

The stack in Figure 4c presents a more difficult case since general
naming is required. Again, creation of c5 allocates cache manage-
ment structures. Layer b is a compression layer which requires gen-
eral naming, so it allocates a new file-token 50 to represent the “un-
compressed file”, and layer b registers “watch” interest in all cach-
ing occurring to layer 50. No new lock is created since each file must
have only one lock. Finally, vnode a5 is created and returned.

Next assume that the user writes data into bytes 0–32k of our file
through the top layer. Before the data can be written, a5 must ac-
quire page ownership of h 50, data, 0–32k i. Vnode b5 watches
caching operations to file-token 50, so the cache manager makes a
callback and b5 translates this request and registers ownership of h 5,
data, 0–24k i (assuming 25% compression). Ownership is now as-
sured and the read operation can take place.

To demonstrate cache interference, another user now will read
the file back through vnode a5. Without cache coherence the results
of this request are indeterminate. With coherence, a5 must register
ownership of the data before the read. Currently b5 has ownership
of part of file 5 so the cache manager calls back b5. Before b5 re-
leases ownership of h 5, data, 0–24k i it synchronizes h 50, data,
0–32k i. Vnode a5 owns this data, so the cache manager calls a5 to
synchronize the pages; vnode a5 writes the pages, calling on b5 to
compress them, ultimately delivering them to c5.

5Our current prototype does not yet implement cache-coherent, user-level locking.

(a) non-layered caching:

1. If data is in cache, use it.
2. Read data into the cache; use it.

(b) layered caching:

1. If data is in our layer’s cache, use it.
2. Register ownership of data with the cache manager.
3. If registration conflicts with outstanding requests,

revoke them.
4. If caching data-pages currently in another layer’s cache,

page-flip data into our layer and use it.
5. Read data into our layer’s cache; use it.

Figure 6: Caching algorithms with and without layering. We use the
layered caching algorithm in our system.

These examples present some of the most important details of our
cache coherence protocol, both with simple- and general-naming.

5 Performance Evaluation

Performance evaluation of large software systems is difficult, and
caching file systems is particularly difficult. When examining the
performance of a cache coherence framework, particular care must
be taken to separate the overhead of the framework from the bene-
fits of caching. (The LADDIS NFS server benchmark, for example,
carefully exercises NFS to gain useful measurements [27].) The
next sections examine components of our coherence approach that
impact performance, the benchmarks we use to examine that per-
formance, and finally the performance of our system from several
perspectives.

5.1 Performance components

A cache coherent, layered file system is composed of a number of
cooperating components. Some of these components improve over-
all performance while others impose limits. (Of course, we expect
better performance overall with caching than without.) This section
examines the caching algorithms before and after our addition of
cache coherence, with the goal of identifying which changes alter
performance.

An abstract form of the algorithms used to access data through the
cache is shown in Figure 6. Step 1 of both algorithms is the same,
but the following steps differ and so may influence performance.
Because Step 1 is identical, the cost of accessing already-cached
data should not change. This fact is critical to overall performance,
since a high cache hit rate significantly reduces average access time
even if the cache miss penalty is also high.

Step 2, cache-object registration, is a new step and represents
overhead of the cache coherence framework. The cost of this step
is examined in Section 5.5.

Conflicting cache requests in Step 3 also represent a cost of cache
coherence. This overhead is distinct from framework overhead,
though, since it is a property of client usage patterns. We therefore
characterize it as client overhead and examine it in Section 5.6.

Step 4 is an optimization to the basic cache coherence algorithm.
For data pages the cost of servicing a cache miss is high (because
they are large and require hardware interaction, see Section 4.3.1),
so it is profitable to move cache-objects from layer to layer rather
than regenerate them. The effects of this optimization are discussed

in Section 5.6.

On the surface the last step is identical in the two algorithms;
however their implementations differ. In a monolithic system, the
same module generates and caches data. In a layered system one
layer might generate the data, another may modify this data some-
how, and a third may cache the data. An important aspect of the cost
of layered caching is passing data between layers. For example, if
data must be copied each time it moves between layers, bulk-data
copy overhead would quickly limit layer usage. Such costs might
not be present in a monolithic implementation where there is only
one kind of buffering.

Typical vnode interfaces were not constructed with layered filing
in mind; some aspects of their interfaces require excessive copying
in a multi-layered filing environment. We have extended the inter-
face to avoid this problem. We examine the implementation and per-
formance costs of these changes and Step 5 in Section 5.3.

We have identified several differences between the layered and
non-layered caching algorithms. We expect some of these differ-
ences not to significantly affect performance while others may im-
prove or limit performance. After discussing our benchmarks and
methodology, we will examine each difference with several experi-
ments.

5.2 Performance experiments and methodology

Benchmarks: We examined our system with several sets of
benchmarks. Our benchmarks can be divided into three groups.
First are a set of benchmarks that operate recursively over a dir-
ectory hierarchy. These benchmarks include recursive copy, find,
find and grep, and remove. We selected this set because they in-
tensively exercise the file system in different ways. Find accesses
a large number of files without generating much caching. Copy ac-
cesses files and their data.

The second class of benchmarks is represented by the Modified
Andrew Benchmark [18]. The Modified Andrew Benchmark con-
sists of five phases: four brief file system operations and a large-
program build. In our environment we found the first four phases
too short to allow good statistical comparisons, and all were dom-
inated by the compile phase. We therefore present only aggregate
performance of all phases of this benchmark.

The final set of benchmarks is employed to measure cache inter-
ference. We describe them in Section 5.6.

Measurement times: We examined all benchmarks with two dif-
ferent measurement times: elapsed time and system time. Elapsed
time represents the performance observed by a typical workstation
user. System time represents only time spent in the kernel. Since all
of our overhead is in the kernel, this measure exaggerates the impact
of our changes.

Test environment: All tests were performed on a Sun SPARCsta-
tion IPC with 12 Mb of memory and a Sun 207 Mb hard disk with
16 msec average seek time. Our test machine runs a modified ver-
sion of SunOS 4.1.1.

All data is stored in a stack-enabled version of the standard
SunOS 4.1.1 file-system (UFS), a version of Berkeley’s Fast File-
system [16]. For multi-layer tests we add one or more null layers [8].
A null layer ordinarily passes all filing operations down the stack for
processing; for these experiment we modified the null layer to cache
file data pages internally.

5.3 Costs of layered data caching

The modularity enforced by a layered system limits information ex-
ported by a layer to that provided by its interface. A minimal, clear
interface is both a benefit and a curse to a multi-layer system. A
minimal interface simplifies multiple service implementations, but
a minimal interface appropriate to a monolithic system may not ad-
mit efficient caching in a multi-layer system. Most current file sys-
tem interfaces (for example, the SunOS and SVR4 vnode interfaces)
do not provide the necessary services to allow efficient multi-layer
caching.

One cost of caching in a layered system is therefore creation of
new interface operations to allow efficient caching. This cost takes
two forms: increased interface complexity and run-time overhead
due to added code. We examine each of these issues below.

Implementation cost: Rather than engineer a completely new
file system/virtual-memory system interface, we provided “stack-
friendly” caching by minimal modifications to relevant existing
vnode operations. The number of modifications required can be
used as a measure of additional complexity required for efficient
stackable caching. We currently cache three types of objects: at-
tributes, file name translations, and data pages. Efficient caching of
the first two of these objects is possible with no interface changes.
Attribute manipulation already avoids unnecessary data copies, and
name translation is internal to a each layer. Data page caching, the
final case, was the only class of operations that required change. We
next examine modifications required for this class of operations.

Data page caching required some interface changes to avoid
repeated data copies. The caching operations (putpage and
getpage) manage caching file data. The process of caching file data
consists logically of two separate components; first data is read from
stable storage, then it is placed in the VM cache. In a monolithic sys-
tem such as the UFS, the same layer performs both of these opera-
tions. As first noted by the Spring project [12], successful layered
caching benefits from a separation of these functions. In Spring
terms, one object will serve as the pager, performing actual data I/O,
while another object (the cacher) may be actively caching data. Our
system restructures the file system paging operations to allow dif-
ferent layers to assume each of these functions. We modify three
vnode operations (putpage, getpage, and rdwr) and their support
code to accept vnodes representing both the cache and pager objects,
rather than a single vnode representing both. The interfaces of these
modified operation are listed in Appendix A.1.

Another operation requiring slight modification was the data
read/write operation. Writing beyond the end of a file automatically
extends the file length; our modifications keep file data and length
information synchronized.

Our experiences modifying SunOS to support efficient data cach-
ing across multiple layers suggest that relatively few changes are re-
quired. The other relevant aspect of performance is the run-time cost
of these changes, to which we now turn.

Performance cost: To investigate the performance cost of these
changes we ran our benchmarks on kernels using standard and stack-
friendly data acquisition. Neither case employed cache coherence;
the measurement results are intended to evaluate the cost of the
stack-friendly framework. Table 1 compares the standard Unix file
system with and without these changes. Figure 7 presents these res-
ults graphically.

A comparison of individual benchmarks from these results shows
a performance difference of �4% for different tests, and that several
of the tests show no statistically significant difference. Taken as a

standard stack-friendly
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 159.0 12.67 154.2 12.18 –3.02
find 79.2 6.78 81.1 5.99 2.40
findgrep 205.2 5.90 197.7 1.22 –3.66
grep 61.6 3.60 61.9 1.68 0.487�
rm 58.0 8.35 57.9 2.49 –0.172�
mab 147.7 2.44 149.2 5.52 1.02
system time:
cp 22.9 1.66 23.1 1.85 0.873�
find 51.8 13.68 52.7 14.04 1.74�
findgrep 102.4 1.38 101.5 1.58 –0.879
grep 19.2 1.97 20.1 2.41 4.69
rm 6.3 11.93 6.1 10.62 –3.17�
mab 37.3 1.11 37.9 1.35 1.61

Table 1: Elapsed- and system-time performance comparisons of
UFS performance with standard and stack-friendly cache opera-
tions. %RSD is �x=�x. Differences marked with an asterisk are
less than the 90% confidence interval and so are not statistically sig-
nificant. These values are derived from 25 sample runs. Section 5.3
interprets this data; Figure 7 presents it graphically.

whole the tests suggest that there is some performance variation, but
there is no consistent bias for either type of data acquisition.

5.4 Cache coherence benefits

Given operations that permit efficient caching in multiple layers, the
next important issue is to examine what benefits cache coherence
provides. The most important benefit is improved system reliabil-
ity. Although instances of cache incoherence are usually rare, even
occasional incoherence is not permissible in many critical applic-
ations. A related benefit is that cache coherence allows improved
structure of multi-layer filing systems. File system implementa-
tions often require the ability to make assertions about data; without
cache coherence these assertions are more difficult and often force
a less modular structure. Finally, cache coherence and caching can
improve system performance. We consider these benefits in turn,
drawing on Ficus replication for illustrations.

The most important benefit of cache coherence is its support for
correct system behavior. Without coherence unusual combinations
of user activity can result in cache incoherence and incorrect res-
ults. Potential caching problems would force many developers to
structure their systems in a less modular way, or prevent user access
to lower layers. An example of this problem occurs in Ficus (see
Figure 8 for the Ficus layer configuration). Ficus caches pathname
translations in the selection layer (step 1). A file removal action by
the remote user is directed to the physical layer on the local user’s
replica (steps 2 and 3). Without cache coherence the local user can
still employ the cached name at the selection layer (step 4). With
cache coherence, step 3 would have also removed the cached entry.
Restructuring Ficus to avoid this problem would require that opera-
tions always pass through all layers, adding overhead and artificially
distorting layer configuration. Although this problem occurs only
occasionally in daily use, it would almost certainly require a solu-
tion should Ficus be deployed in a production setting. Moreover,
fear of this sort of problem would curtail use of stacking as a struc-
turing technique in many settings.

Another benefit of cache coherence is that by providing a rich en-
vironment within which correct behavior is easily achieved, layer

cp find findgrep grep rm mab

benchmark

0

50

100

150

200

250

ti
m

e
in

 s
ec

on
ds

non-stack-friendly operations, elapsed time
stack-friendly operations, elapsed time
system time

Figure 7: Benchmarks comparing a UFS with and without stack-
friendly data acquisition. Error bars show one standard deviation.
(This figure illustrates the data presented in Table 1.)

development is made easier. One is also led into increased separ-
ation of function into separate layers, improving reusability. Two
examples in Ficus illustrate how lack of coherence altered the de-
sired system structure. First, without cache coherence Ficus cannot
completely support memory-mapped data access. We work around
this problem in several ways, but in a widely deployed system this
problem may prevent the use of layering techniques. Second, the
selection layer requires file attribute information when accessing a
file. The overhead of an attribute fetch for each file access is signi-
ficant (particularly if the file is remote), yet the selection layer could
not cache attributes because its cache may have become invalid. In-
stead we were forced to build an ad hoc facility to work around the
problem.

Performance is another important motivation for caching. Per-
formance can be improved when the cache coherence service per-
mits caching where it could otherwise not be used. The degree of
performance change is highly application-dependent. For example,
a software encryption layer which could not cache decrypted pages
in memory would be unusable for executing programs (although
it might be acceptable for logged output). To quantify the bene-
fits of caching, we stacked three null layers over a UFS, simulating
the layering overhead in the Ficus stack. We measured benchmark
performance with and without name-lookup caching in the top null
layer. Results were quite dependent on the pattern of use. In some
cases, improvement was insignificant. Elapsed time of the copy case
in fact showed a 10% increase; caching is of no benefit in a single-
pass copy. In other cases overhead was cut up to 40%.

5.5 Cache coherence performance: no interference

We have suggested that there are both performance and structural
advantages when layers employ cache coherence. Even when a
layer experiences substantial overall speedup due to caching, there
is still some overhead due to the cache coherence framework effort

UFS

physical

logical

selection

physical

logical

selection

UFS

xNFS

remote user

(2) remove F

(3) remove F

local user

(1) lookup
 (and cache) F

(4) lookup F

Figure 8: The Ficus layer configuration. Each column represents
a particular host. The logical layer controls access to different rep-
licas, accessing remote replicas through stack-enabled NFS. The se-
quence of operations listed results in cache coherence problems; see
Section 5.4 for details.

without DNLC with DNLC
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 170.7 8.03 188.2 19.40 10.3
find 135.8 9.63 126.8 1.31 –6.63
findgrep 202.9 3.46 198.1 0.87 –2.37
grep 81.6 2.03 64.7 13.59 –20.7
rm 64.5 9.71 60.6 1.75 –6.05
mab 156.2 6.79 150.3 1.63 –3.78
system time:
cp 27.8 1.29 25.3 1.20 –8.99
find 67.9 15.11 60.3 2.17 –11.2
findgrep 114.9 2.40 111.0 0.75 –3.39
grep 40.3 0.80 24.1 33.24 –40.2
rm 11.4 6.77 8.8 6.94 –22.8
mab 41.8 1.23 41.1 0.93 –1.67�

Table 2: Elapsed- and system-time performance comparisons of a
stack of three null layers over a UFS without and with name-lookup
caching. Differences marked with an asterisk are less than the 90%
confidence interval and so are not statistically significant. These val-
ues are derived from 8 sample runs. Section 5.4 characterizes this
data.

cp find findgrep grep rm mab

benchmark

0

50

100

150

200

250

ti
m

e
in

 s
ec

on
ds

no DNLC, elapsed time
DNLC, elapsed time
system time

Figure 9: Benchmarks comparing three null layers stacked over a
UFS with and without coherent name-lookup caching. (This figure
illustrates the data presented in Table 2.)

spent in step 2 of the layered caching algorithm (Figure 6b).
Measuring cache coherence framework overhead is crucial for

several reasons. First, framework overhead can be used as a met-
ric to select between different cache coherence implementations.
Second and perhaps more importantly, framework overhead is re-
quired of all layers involved in cache coherence. Framework over-
head therefore represents an additional cost applied to existing file
system layers if they wish to participate in cache coherent stacks.
Finally, cache coherence is an important component to a robust and
general environment for stackable filing, so its performance is crit-
ical.

To investigate the cost of the framework alone, independent of
any performance benefits of caching, we compare a layer with and
without the cache coherence framework. Table 3 compares our disk-
based file system (UFS) with and without the framework. Since only
a single layer is employed in these tests all overhead observed is due
to the framework as opposed to cache interference. Figure 10 repro-
duces these results graphically.

Cache coherence overhead on these benchmarks varies but is typ-
ically about 3–5%. Of the measured benchmarks, find exhibits the
most overhead (15%) while findgrep and grep show the least cost
(1–2%).

A 3–5% performance cost is not unreasonable when providing
new functionality, but it is an unfortunate cost for existing services.
This overhead represents the cost of setting up and maintaining
cache coherence data structures. We expect that some of this cost
can be avoided by internally preserving partially built data struc-
tures [2]. Careful tuning and examination of fast-path opportunit-
ies could also likely improve our prototype system; we project that
a production quality service is quite feasible.

The cost of this overhead must also be weighed against the bene-
fits of cache coherence. Caching in a multi-layer system can dramat-
ically improve overall performance, often more than accounting for

non-coherent coherent
benchmark mean %RSD mean %RSD % difference
elapsed time:
cp 228.1 12.81 218.9 17.61 –4.03
find 73.2 11.36 84.8 12.74 15.8
findgrep 212.0 2.19 216.7 2.14 2.22
grep 60.1 1.61 61.1 1.26 1.66
rm 73.4 1.62 79.8 17.89 8.72
mab 151.6 2.60 157.2 4.90 3.69
system time:
cp 22.5 2.36 23.2 2.02 3.11
find 46.2 7.18 53.4 9.59 15.6
findgrep 98.3 1.61 103.1 1.54 4.89
grep 18.6 1.94 19.5 2.25 4.85
rm 6.2 14.99 6.3 11.70 1.61�
mab 36.9 1.21 38.4 1.51 4.07

Table 3: Elapsed- and system-time performance comparisons of
non-coherent and coherent caching kernels. Differences marked
with an asterisk are less than the 90% confidence interval and so
are not statistically significant. These values are derived from 30
sample runs. (The data in table is shown graphically in Figure 10.)

cache coherence overhead. In addition, cache coherence is an im-
portant part of providing a robust layered system by allowing layer
designers to accommodate caching across all layers of a stack.

5.6 Cache coherence performance: interference

The experiments described thus far describe the performance of
cache coherence when a stack is exercised with current styles of us-
age (all access through a single layer). Cache coherence is designed
for a broader environment where access is possible through multiple
layers. Shared access to the same data through different layers res-
ults in competition for caching this data. We next examine the effect
this competition can have on performance.

Inter-layer cache interference is highly application-dependent
and is not easily tested by standard benchmarks. We have there-
fore constructed two synthetic benchmarks to stress interference:
sequential and random updates to potentially different file layers.
We relate these benchmarks to practical applications below.

For each benchmark we stack one or two null layers on a UFS.
Once layers are configured we map the file data into memory and ex-
ercise it according to the pseudo-code of Figure 11. Files are small
enough to fit into physical memory, so all overhead measured is the
effect of cache interference.

The results of these benchmarks appear in Table 4. Since the
range of data is so great, some measurements are on the order of
timer granularity (one-tenth of a second); in these cases measure-
ment error is relatively high (10–14%).

We draw two conclusions from Table 4. First, the random-update
benchmark shows that cache coherent access to multiple layers is
extraordinarily expensive. Random updates exhibit more than 20
times greater elapsed time and 400 times greater system time when
cache interference is present. This performance is a direct result of
the lack of locality across multiple stack layers (layer locality) in
a random access reference pattern. If this case were common, full
function stacking would not be viable. However, we are not aware
of any applications that exhibit this reference pattern; we discuss
this problem in detail below. Furthermore, sequential file access
presents a much different story: elapsed time is practically equival-
ent regardless of the degree of interference, although system time

cp find findgrep grep rm mab

benchmark

0

50

100

150

200

250

ti
m

e
in

 s
ec

on
ds

non-cache coherent, elapsed time
cache coherent, elapsed time
system time

Figure 10: Benchmarks comparing a UFS in kernels with and
without cache coherence. (This figure illustrates the data presented
in Table 3.)

degrades by a factor of five.
Poor performance of the two-null-layer case with respect to the

one-null-layer case is due to lack of layer locality. With one null
layer the entire file is brought into memory and updates then happen
without operating system intervention. With multiple null layers
pages move between layers; each move requires a page fault which
is several orders of magnitude more expensive than a direct memory
reference.

We can analytically determine the number of page faults expec-
ted for each benchmark. Using file length and access conditions
specified in Figure 11 and assuming a 4kbyte page size, any one-
null-layer benchmark will page the entire file into the null layer with
250 faults. By comparison, the two-null-layer sequential bench-
mark will require 8000 faults to move the file between layers 32
times. In the two-null-layer random access benchmark each access
has a 50% chance of requiring a fault6. In this case, where no layer
locality is exhibited, randomly updating only four-tenths of the file
results in 204,800 faults on average. (We have verified this figure,
counting about 270,000 faults in a typical two-null-layer, random-
update trial.)

These benchmarks suggest that, like virtual memory, locality is
required for efficient use of cache coherence. With stacking, the ref-
erence stream must exhibit good layer locality to avoid cross-layer
page faults. To interpret the results of these synthetic benchmarks in
the context of real applications, we must characterize expected layer
locality.

We have proposed file system layers as an approach to building
rich filing services from composable layers. Currently (with the ex-
ception of direct disk access) filing environments export only one
service; all user applications access this “top layer”. We expect that

6In then-active layer steady-state each access has a 1=n chance of a cache hit. First
access to a page are not part of steady state; for our 1000k file with 4k pages these first
250 page accesses are not significant.

one two 90% confidence
time benchmark mean %RSD mean %RSD %difference interval, % diff.
elapsed: random-update 14.67 7.92 350.53 1.2 2289.90 9.44

sequential-update 441.04 1.45 443.49 0.46 0.56 0.4
system: random-update 0.72 10.02 289.48 0.87 40,291.00 134.17

sequential-update 1.42 13.74 9.13 3.38 544.10 29.96

Table 4: Elapsed- and system-time performance comparisons of files with and without cache contention. The columns headed “one” show
access through a single null layer stacked over a UFS; the columns headed “two” add a second null layer to this stack. Layer accesses are
distributed across all null layers according to benchmark type. There is no contention with one null layer; contention is possible with multiple
layers. These values are derived from 12 sample runs. These benchmarks exercise worst-case performance and are not representative of typical
behavior; see Section 5.6 for discussion.

Random-update:
for i = 1 to random-scale(file-length)
begin

layer = random(file-layers)
offset = random(file-length)
data[layer][offset]++

end

Sequential-update:
for i = 1 to sequential-scale(file-length)
begin

layer = (i div file-length) mod file-layers
offset = i mod file-length
data[layer][offset]++

end

Constants:
random-scale(length) = (length / 10) * scale
sequential-scale(length) = (length * 8) * scale
length = 1,024,000 bytes
scale = 4

Figure 11: Benchmarks and parameters used to test cache interfer-
ence for memory-mapped files.

a primary benefit of multi-layered filing will be to allow users to cus-
tomize and extend their filing environment. Once configured, we
believe that most user access will be to the “top layer” represent-
ing a particular configuration of a multi-layer stack. For example,
most user access to the stack in Figure 1 would be to the clear-
text provided through the encryption layer, not the encrypted-text
presented by the UFS. No interference would occur in the common
case of two programs reading (or memory mapping) a file through
the same layer. When all user access occurs through a particular
layer, no cache interference occurs and we expect performance res-
ults equivalent to the one-null-layer case.

Nevertheless, although most applications access a single layer,
we have identified several cases where multi-layer access is import-
ant. In these cases, access to multiple layers may cause cache in-
terference. Continuing our example, the user in Figure 1 may wish
to transmit the encrypted-text of a file, and so after updating the file
via the encryption layer, the user would read the file directly from
the UFS. As in this example, we expect that the majority of such
access will be sequential. Floyd’s studies of Unix applications in
an academic environment suggest that 70–90% of opened files are
read sequentially [4]. For these cases, the sequential-update bench-
mark is representative. Sequential-update performance shows some
system-time performance cost, but no noticeable elapsed-time per-
formance penalty.

The remaining random access case is exemplified by database ap-

plications. Recall, however, that the random-update benchmark is a
stream of randomly located updates to random layers. We do not ex-
pect a single database application would need to access multiple lay-
ers of the same file concurrently, or that two independent databases
would access the same file concurrently through different layers, so
this synthetic, worst case seems unlikely to occur in practice.

We selected these benchmarks to push the bounds of our system,
and their worst-case results show significant overhead. Fortunately,
we believe that they also suggest that practical applications will not
suffer significant performance degradation with expected patterns of
layer locality.

5.7 Performance experiences

Cache coherence in stackable filing is important to manage cache
coherence problems that can arise from access to different stack lay-
ers. Both multi-layer access and caching are required in many prac-
tical layering systems. Administrative programs and sophisticated
stack configurations require access to different stack layers, while
caching is required for good performance.

Our performance experiments suggest a layer actively caching
data will experience about a 3–5% overhead for typical benchmarks,
although some may be higher or lower. Our use of stack-friendly
cache access operations does not seem to be a significant portion
of this cost. Instead we believe that the cost is primarily due to the
maintenance of additional data structures and to comparison of our
prototype implementation with carefully tuned file system code.

We also investigated system performance when different layers
contend for the same cached objects. When applications that exhibit
no locality compete for cached objects, significant overhead occurs.
Common patterns of file usage and the expected uses of cache coher-
ence suggest that typical applications will see minimal or no over-
head due to contention.

We find a powerful analogy between virtual memory and cache
coherence in stacking. The performance of both is strongly depend-
ent on the locality exhibited by given applications; VM requires spa-
tial locality while stack cache coherence requires “layer locality”.
Virtual memory frees many application designers from detailed con-
cerns about memory management, often allowing applications to be
more naturally structured. Similarly, stack cache coherence frees
the designer from concerns about inter-layer consistency, providing
a rich framework in which each layer truly can be independently de-
veloped and employed.

6 Related Work

Our work on cache coherence is based on several bodies of existing
work including distributed filing, shared memory multiprocessing
and distributed shared memory, and stackable layering. Each of

these areas evolved slightly different solutions to cache coherence,
but the central problem is determining who holds what data. We ex-
amine different applications from this perspective, categorizing how
this information is stored and collected.

6.1 Distributed filing

Early distributed file systems such as Cedar and NFS avoid the
problem of cache coherence by disallowing file mutation [24] and
not providing strong coherence [23]. Locus provides strong co-
herence with a distributed token passing algorithm [20], while
Sprite detects concurrent update at a central site and disables cach-
ing for coherence [17]. Later systems provide variations on the
token algorithm: AFS’s callbacks are essentially centrally-managed
tokens [11]; Gray’s leases are tokens that can time-out to simplify
error recovery [6].

Cache coherence in stacking borrows the basic coherence ap-
proach used in these systems. Unlike these systems, stacking faces
the unique problem of data identification across different data rep-
resentations.

6.2 Multiprocessors and distributed shared memory

As with distributed filing, early approaches to shared memory mul-
tiprocessing avoid multiple caches or do not provide strong coher-
ence (Smith surveys such systems [26]). More sophisticated sys-
tems broadcast and multicast coherence information to some or all
processors. The constraints of a hardware implementation limit the
scale of these approaches.

In distributed shared memory systems software plays a larger role
in coherence. Li proposes strong consistency with both central-
ized and distributed algorithms [15]. Recent work has focused on
employing application-specific knowledge to relax the consistency
model and obtain better performance [5, 3].

6.3 Stackable layering

Early work in joining layers with a symmetric interface developed
in several contexts: the Unix shell [19], the Streams I/O system [21],
and x-kernel network protocols [10]. Most data in these systems is
transient, and so they do not address cache coherence problems7 .

Databases and file systems have both persistent data and a need
for caching. The Genesis work in databases [1], and file system
stacking work from UCLA [7, 8], Rosenthal and Skinner at Sun-
Soft [22, 25] and the Spring project at Sun Laboratories [12] ap-
proach cache coherence in different ways.

The Genesis work focuses on modularity and stacking for data-
bases. Cache coherence problems are avoided by not allowing
multi-layer access.

Rosenthal identifies the problem of cache coherence in stackable
filing [22]. His early system restricts access and caching to the top
stack layer, avoiding coherence problems at the cost of prohibit-
ing multi-layer access. Skinner’s later work provides two kinds of
stacking termed “interposition” and “composition” [25]. Access to
multiple stack layers created with composition is allowed, but with
interposition is not. Issues of cache coherence are mentioned but
not addressed in Skinner’s paper. Locking among interposition lay-
ers is provided with a single readers/writers lock; locking between

7User data in networking traffic (at the TCP level) is transient and so is not suitable
for caching. Routing information is often cached, both between hosts (IP routing and
ARP translation), and between TCP/UDP and IP layers of some implementations. Oc-
casional cache incoherence in these systems is either tolerated, or the cache is not con-
sidered authoritative and is verified before each use. These approaches do not general-
ize to filing environments where cached data is considered authoritative and employed
without verification.

composition layers is not discussed.
Spring is an operating system that closely ties the virtual memory

and file systems to provide distributed shared memory [12]. Cache
coherent file system stacking is a natural result of this architecture,
and with it come two important results. First, they recognize that
separation of the data provider and the data manager is necessary
for efficient, layered caching. In Spring terminology this concept is
the separation of the cacher and pager objects. Second, they recog-
nize that general cache coherence can be provided if each layer acts
recursively as cacher and pager objects for the layer it stacks upon.
We build upon these results.

Our work differs from the Spring work in several respects. We see
cache-object identification as the central problem in cache-coherent
stacking. To aid the layer designer, we provide two approaches to
object identification, a fast, simple one for the dominant case and
a richer solution for the general case. Our cache manager handles
all aspects of the simple case and can directly invalidate data in any
layer. The Spring work only provides (in our terms) the general
model, potentially placing additional burden on designers of new
layers and raising performance questions.

A second difference is application of cache coherence to all as-
pects of filing. The Spring project discusses coherent sharing of
data pages and some file attributes. They recommend use of Spring
object-oriented inheritance to provide coherence for other file at-
tributes. We instead provide a cache coherence framework suitable
for file data pages, attributes, generic extended attributes, and name
lookup caching. We expect that this framework will extend easily
to accommodate future data types, for example file locks.

A third difference in our work and Spring is the degree of inde-
pendence or integration between stacking and the rest of the system.
Spring is a complete operating system. Its virtual memory system,
distributed shared memory, and stackable filing share an integrated
implementation. While such an approach may be attractive, it lim-
its portability. We instead focus on stackable filing. We require few
modifications of and limited interaction with the VM system. Our
system is designed to function with drop-in file systems in a binary-
only kernel distribution, and we are intentionally distinct from dis-
tributed filing. We believe that a more modular approach is essential
to allow wider application.

A final important difference between our work and Spring is that
of performance evaluation. Performance analysis of the Spring file
system and file system layering has focused on the cost of layer-
ing and the benefits of caching. While it is clear that caching is of
substantial benefit in Spring (as in many other systems), it is not
clear what overhead is paid for cache coherence. Because our sys-
tem has evolved to support cache coherence, we are able to present
a “before-and-after” performance analysis of cache coherence.

7 Conclusion

Stackable filing has the potential to significantly simplify file-
system development, allowing a substantially richer filing environ-
ment through third-party contribution. To make full use of the stack-
able model, developers must have control over caching and cache
coherence; without cache coherence the layer structure can be im-
paired, performance can suffer, and incorrect results can occur.

Good performance, ease of layer construction, modularity with
the rest of the operating system, and extensibility are a few of the re-
quirements of a successful cache coherence system. We believe we
have an architecture and an implementation that meets these criteria.
We were pleased that these goals could be achieved by a modular
“drop-in” design which has few interactions with the rest of the op-

erating system and yet sacrifices neither function nor performance.
With the architecture and performance analysis presented in this pa-
per we are optimistic that file-system stacking can be more generally
employed.

Acknowledgments
The authors thank the anonymous reviewers and Greg Minshall, our
paper shepherd, whose comments significantly improved this paper.
We also thank members of the Ficus project for reviews of early
drafts of this paper.

References
[1] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,

B. C. Twichell, and T. E. Wise. GENESIS: An extensible data-
base management system. IEEE Transactions on Software En-
gineering, 14(11):1711–1730, November 1988.

[2] Jeff Bonwick. The slab allocator: An object-caching kernel
memory allocator. In USENIX Conference Proceedings, pages
87–98. USENIX, June 1994.

[3] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Im-
plementation and performance of Munin. In Proceedings of
the Thirteenth Symposium on Operating Systems Principles,
pages 152–164. ACM, October 1991.

[4] Rick Floyd. Short-term file reference patterns in a UNIX
environment. Technical Report TR-177, University of
Rochester, March 1986.

[5] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phil-
lip Gibbons, Anoop Gupta, and John Hennessy. Memory con-
sistency and event ordering in scalable shared-memory mul-
tiprocessors. In Proceedings of the 17th International Sym-
posium on Computer Architecture, pages 15–26. IEEE, May
1990.

[6] Cary Gray and David Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proceedings of the Twelfth Symposium on Operating Systems
Principles, pages 202–210. ACM, December 1989.

[7] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W.
Page, Jr., Gerald J. Popek, and Dieter Rothmeier. Implementa-
tion of the Ficus replicated file system. In USENIX Conference
Proceedings, pages 63–71. USENIX, June 1990.

[8] John S. Heidemann and Gerald J. Popek. File-system develop-
ment with stackable layers. ACM Transactions on Computer
Systems, 12(1):58–89, 1994. Preliminary version available as
UCLA technical report CSD-930019.

[9] John Shelby Heidemann. Stackable Design of File Systems.
Ph.D. dissertation, University of California, Los Angeles,
1995.

[10] Norman C. Hutchinson, Larry L. Peterson, Mark B. Ab-
bott, and Sean O’Malley. RPC in the x-Kernel: Evaluat-
ing new design techniques. In Proceedings of the Twelfth
Symposium on Operating Systems Principles, pages 91–101.
ACM, December 1989.

[11] Michael Leon Kazar. Synchronization and caching issues in
the Andrew File System. In USENIX Conference Proceedings,
pages 31–43. USENIX, February 1988.

[12] Yousef A. Khalidi and Michael N. Nelson. Extensible file sys-
tems in Spring. In Proceedings of the 14th Symposium on Op-
erating Systems Principles. ACM, Dec 1993.

[13] Yousef A. Khalidi and Michael N. Nelson. The Spring virtual
memory system. Technical Report SMLI TR-93-09, Sun Mi-
crosystems, February 1993.

[14] S. R. Kleiman. Vnodes: An architecture for multiple file sys-
tem types in Sun Unix. In USENIX Conference Proceedings,
pages 238–247. USENIX, June 1986.

[15] Kai Li and Paul Hudak. Memory coherence in shared virtual
memory systems. In Proceedings of the Fifth Annual ACM
Symposium on Principles of Distributed Computing, pages
229–239. ACM, August 1986.

[16] Marshall McKusick, William Joy, Samuel Leffler, and
R. Fabry. A fast file system for UNIX. ACM Transactions on
Computer Systems, 2(3):181–197, August 1984.

[17] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout.
Caching in the Sprite network file system. ACM Transactions
on Computer Systems, 6(1):134–154, February 1988.

[18] John K. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware? In USENIX Conference Proceed-
ings, pages 247–256. USENIX, June 1990.

[19] Rob Pike and Brian Kernighan. Program design in the UNIX
environment. AT&T Bell Laboratories Technical Journal,
63(8):1595–1605, October 1984.

[20] Gerald J. Popek and Bruce J. Walker. The Locus Distributed
System Architecture. The MIT Press, 1985.

[21] Dennis M. Ritchie. A stream input-output system. AT&T
Bell Laboratories Technical Journal, 63(8):1897–1910, Octo-
ber 1984.

[22] David S. H. Rosenthal. Evolving the vnode interface. In
USENIX Conference Proceedings, pages 107–118. USENIX,
June 1990.

[23] Russel Sandberg, David Goldberg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Design and implementation of the Sun
Network File System. In USENIX Conference Proceedings,
pages 119–130. USENIX, June 1985.

[24] Michael D. Schroeder, David K. Gifford, and Roger M. Need-
ham. A caching file system for a programmer’s workstation.
In Proceedings of the Tenth Symposium on Operating Systems
Principles, pages 25–34. ACM, December 1985.

[25] Glenn C. Skinner and Thomas K. Wong. “Stacking” vnodes:
A progress report. In USENIX Conference Proceedings, pages
161–174. USENIX, June 1993.

[26] Alan J. Smith. Cache memories. ACM Computing Surveys,
14(3):473–530, September 1982.

[27] Mark Wittle. LADDIS: The next generation in NFS file server
benchmarking. In USENIX Conference Proceedings, pages
111–128. USENIX, June 1993.

A Interface Changes

A goal of our work is to provide the minimal changes to existing
systems and allow a modular adoption of cache coherence. This ap-
pendix summarizes our interface changes. Considerable mechanism
underlies them, as the body of the paper presumably makes clear.

All new code in our implementation is freely available under a
BSD-style copyright. A complete distribution is available to those
with a SunOS 4.x source-code license. The implementation in-
cludes modules to manage byte-range and named-object lists, lock-
ing, and modifications to make the UFS and null layer cache coher-
ent. The authors welcome inquiries.

In the following sections we present interfaces with C-like declar-
ations. In these declarations, IN, OUT, and INOUT denote the dir-
ection of data movement. Ordinarily vnodes are adjusted to refer to
the current layer as operations move down and up the stack; the NO-
TRANSLATE modifier indicates that this mapping should not oc-
cur. (This option is required for vnodes in an interface when vnodes
must refer to a particular layer of the file, rather than the “current”
layer.) All operations return “errno”-style error codes.

A.1 Stack-friendly interface changes

As described in Section 5.3, efficient data-page caching in a
multiple-layer stack requires changes to three vnode operations.
These operations are based on the corresponding SunOS 4.x oper-
ations but are modified to separate pager and cacher functionality.
In the interface this change is reflected by replacing the original vp
argument (which served as both the paging and caching agent) with
three parameters: vp, the paging vnode; mapvp, the caching vnode;
and name, a reference to cache-manager information.

vop stackgetpage (IN struct vnode *vp, IN struct svcm name
*name, IN NOTRANSLATE struct vnode *mapvp, IN u int
offset, IN u int length, IN u int *protection p, INOUT struct
page **page list, IN u int page list size, IN struct seg *seg-
ment, IN addr t address, IN enum seg rw rw, IN struct ucred
*cred)

A getpage operation is invoked to service a page fault in
memory backed by a layer. We have expanded the original vp
argument into vp, name, and mapvp. Offset and length specify
the required data. The remaining arguments are employed by
the VM system.

vop stackputpage (IN struct vnode *vp, IN struct svcm name
*name, IN NOTRANSLATE struct vnode *mapvp, IN u int
offset, IN u int length, IN int flags, IN struct ucred *cred)

The putpage operation is the opposite of getpage: it writes
dirty pages back to stable storage. We change vp, name, and
mapvp.

vop stackrdwr (IN struct vnode *vp, IN struct svcm name *name,
IN NOTRANSLATE struct vnode *mapvp, INOUT struct uio
*uiop, IN enum uio rw rw, IN int ioflag, IN struct ucred *cred)

A rdwr operation is used to read or write data. Again, we
change vp, name, and mapvp. The uio specifies what data will
be read or written.

A.2 Cache-coherence interfaces

Below are the two vnode operations which have been added to sup-
port cache coherence, and the cache-object registration interface ex-
ported by the cache manager.

vop cachenamevp (IN struct vnode *vp, OUT NOTRANSLATE
svcm name token *token, IN struct ucred *cred)

Vop cachenamevp is called when an upper-layer creates a new
vnode. It returns the token representing the simply-named part
of the stack. This token is then used to build an svcm name,
the data structure used by the cache manager to record caching
information.

vop cache callback (IN struct vnode *vp, IN struct svcm name
*name, IN enum svcm obj classes obj class, IN void *obj, IN
struct ucred *cred)

Vop cache callback is invoked when the cache manager inval-
idates a cache-object. The obj parameter specifies the cache-
object to be purged. For byte-range classes, obj specifies the
region’s offset and length; for named-objects it points to a
length-counted string.

svcm register (INOUT struct svcm name *name, IN struct vnode
*own vp, IN enum svcm obj classes obj class, IN u int
obj name length, IN void *obj name, IN enum svcm status
status, IN struct ucred *cred);

Svcm register is called by each layer implementation after it
has locked the file, but before it attempts to cache data. It in-
forms the cache manager that own vp wishes to cache object
obj name of class obj class with status rights in the simply-
named file name. The cache manager will consult its records
and call-back any vnodes with conflicting cache requests and
all vnodes with general-naming.

