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Filing services have experienced a number of innovations in recent years, but many of these

promising Ideas have faded to enter into broad use. One reason is that current filing environ-

ments present several barriers to new development. For example, file systems today typically

stand alone instead of building on the work of others, and support of new filing services often

requires changes that invahdate existing work.

Stackable file-system design addresses these issues m several ways. Complex fihng services

are constructed from layer “building blocks,” each of which may be provided by independent

parties. There are no syntactic constraints to layer order, and layers can occupy different address

spaces, allowing very flexible layer configuration Independent layer evolution and development

are supported by an extensible interface bounding each layer

This paper discusses stackable layering in detad and presents design techniques it enables We

describe an implementation providing these facilities that exhibits very high performance. By

lowering barriers to new filing design, stackable layering offers the potential of broad third-party

file-system development not feasible today.
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1. INTRODUCTION

File systems represent one of the most important aspects of operating-system

services. Traditionally, the file system has been tightly integrated with the

operating system proper. As a result, the evolution of filing services has been
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relatively slow. For example, the primary file system in UNIX@ systems

today, called UFS, is basically the Berkeley Fast File System introduced

almost a decade ago. The situation for filing in proprietary operating systems

is similar. The MVS catalog system, for example, has seen little architectural

change in over a decade and a half. This state of affairs exists despite the fact

that there are numerous improvements that are well known and have been

constructed in one context or another. By contrast, applications software in

many areas has evolved much more rapidly giving far more benefit to users.

This stifling of innovation and inhibition of evolution have kept a variety of

benefits from users and have caused applications developers such as database

builders to provide their own filing services inside their applications software

at considerable expense and without much generality.

There are several reasons why this unappealing situation persists. First, it

is very difficult for anyone other than a major system vendor to introduce a

file-system service or incremental improvement into an operating system.

There is no well-defined interface to employ. Despite the fact that in a few

systems, like UNIX, there is a coarse-grain interface (the Virtual File Sys-

tem, or VFS) by which an entire file system can be installed, in practice, this

fact has not worked well. VFS is inflexible in addressing the range of issues,

so most vendors have extended it in incompatible ways. Furthermore, any

real file system is a complex service that requires successful solution to a

variety of functional requirements, and is thus a daunting effort when viewed

in its entirety. Since filing is such a key part of an operating system, with so

much dependent on it, excellent performance is critical. Also, the impact of an

error in the filing system’s logic can be quite devasting, as it is usually

responsible for all of the persistent storage in the computer system.

In addition, the file service must interact on an intimate basis with other

core operating-system services. For example, there is considerable motivation

to arrange for the file service and the operating system’s virtual memory

manager to share management of pages, perhaps with a single buffer pool. In

the face of these observations, it is not surprising then that a file system,

once operational and deployed, is not changed for a long time.

Despite these problems, a great deal of benefit would accrue if it were

possible to add file-system services to an existing system in a very simple

manner, analogous to the way that an additional service is obtained at the

user level merely by adding another application. That is, the set of user

services is not provided by a monolithic program, but by a large number of

individually developed packages, many of which today can exchange data

with one another in a straightforward way. In the personal-computer arena, a

user may select the services he wishes, acquire appropriate “shrink-wrap

software” at a local store, and install it himself. This situation has provided

an explosion of services at a far faster rate, for example, than on mainframe

systems, where the process is traditionally considerably more cumbersome.

@ UNIX is a trademark of UNIX System Laboratories,
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We believe that a similar situation would benefit filing services a great

deal. Suppose it were just as straightforward to construct independently, or

obtain and install packages for such services as

—fast physical storage management,

—extended directory services,

—compression and decompression,

—automatic encryption and decryption,

—cache performance enhancement,

—remote-access services,

—selective file replication,

—undo and undelete, and

—transactions,

with assurance that they would work together effectively. Then, we contend,

the available services would be much richer, particular solutions would be

much more widely available, and evolution would be far more rapid. In

addition, the wide variety of expensive and confusing ad hoc solutions em-

ployed today would not occur.1

The goal of the research reported in this paper is to contribute toward

making it as easy to add a function to a file system in practice as it is to

install an application on a personal computer. To do so, it is necessary to

provide an environment in which file-system fragments can be easily and

effectively assembled, and for which the result makes no compromises in

functionality or performance. The environment must be extensible so that its

useful lifetime spans generations of computer systems. Continued successful

operation of modules built in the past must be assured. Multiple third-party

additions must be able to coexist in this environment, some of which may

provide unforeseen services.

The impact of such an environment can be considerable. For example,

many recognize the utility of microkernels such as Mach or Chorus. Such

systems, however, address the structure of about 15 percent of a typical

operating system, compared to the filing environment, which often represents

40 percent of the operating system.

This paper describes an interface and framework that support stackable

file-system development. This framework allows new layers to build on the

functionality of existing services, while allowing all parties to gradually grow
and evolve the interface and set of services. Unique characteristics of this

framework include the ability of layers in different address spaces to interact

and for layers to react gracefully in the face of change.

1Consider, for example, the grouping facihty in MS-Windows. It m, in effect, another directory

service on top of and independent of the underling MS-DOS directory system. It provides services

that would not have been easy to incorporate into the underlying file system in an upward

compatible fashion.
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Actual experience with software environments is an important test of their

utility. For this reason much of the body of this paper is accompanied by

examples drawn from the UNIX system, where these experiences were

obtained. Our work draws on earlier research with stream protocols [Ritchie

1984], file-system modularity [Keiman 1986], and object-oriented design (see

Section 6.2), as well as fragments of ideas in a variety of other referenced

work. The experiences and application of these principles to a complex

interface controlling access to persistent data differentiate this work from

that which has come before.

1.1 Organization of the Paper

This paper first examines the evolution of file-system development. We then

consider the essential characteristics of a stackable file system and discuss

how direct support for stacking can enable new approaches to file-system

design. An implementation of this framework is next examined, focusing on

the elements of filing unique to stacking. We follow with an evaluation of this

implementation, examining both performance and usability. Finally, we con-

sider similar areas of operating-systems research to place this work in

context.

2. FILE-SYSTEM DESIGN

Many new filing services have been suggested in recent years. The Introduc-

tion presented a certainly incomplete list of nine such services, each of which

exists today in some form. This section compares alternative implementation

approaches for new services, examining characteristics of each that hinder or

simplify development.

2.1 Traditional Design

A first approach to providing new filing functionality might be to modify an

existing file system. There are several widely available file systems, any of

which can be modified to add new features. Although beginning with an

existing implementation can speed development, “standard” services have

frequently evolved significantly since their initial implementation. Support-

ing new capabilities across a dozen different platforms may well mean a

dozen separate sets of modifications, each nearly as difficult as the previous.

Furthermore, it is often difficult to localize changes; correctness verification

of the modified file system will require examination of its entire implementa-

tion, not just the modifications. Finally, although file systems may be widely

used, source code for a particular system may be expensive, difficult, or

impossible to acquire. Even when source code is available, it can be expected

to change frequently as vendors update their system.

Standard filing interfaces, such as the vnode interface [Kleinman 1986]

and NFS [Sandberg et al. 1985], address some of these issues. By defining an
“airtight” boundary for change, such interfaces avoid modification of existing

services, preventing introduction of bugs outside new activity. Yet, by employ-

ing existing file systems for data storage, basic filing services do not need to
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be reimplemented. NFS also allows file systems to be developed at the user

level, simplifying development and reducing the impact of error.

Use of standard interfaces introduces implementation problems of their

own. The interface is either evolving or static. If, like the vnode interface, it

evolves to provide new services and functionality, compatibility problems are

introduced. A change to the vnode interface requires corresponding changes

to each existing filing service, today.

Compatibility problems can be avoided by keeping the interface static, as

with NFS. Although this approach improves portability, it becomes difficult

to provide new services cleanly. If protocol change is not allowed, then new

services must either be overloaded on existing facilities or employ a parallel

interface. Finally, NFS-like RPC interfaces to user-level services burden the

concept of modularity with particular choices of process execution and protec-

tion. A naive implementation approach can easily interpose repeated data

copies between the hardware and the user. Although performance can be

improved by in-kernel caching [Steere et al. 1990], portability is reduced, and

the result is not fully satisfactory. Finally, even with careful caching, the cost

of layer crossings is often orders of magnitude greater than subroutine calls,

thus discouraging the use of layering for structuring and reuse.

2.2 Stackable Design

Stackable file systems construct complex filing services from a number of

independently developed layers, each potentially available only in binary

form. New services are provided as separate layers; the layer division pro-

vides a clear boundary for modifications. Errors can be then isolated to the

current layer or an invalid implementation of the interlayer interface by

another layer. Figures 1–5 (discussed further in the following sections)

illustrate how stacking can be used to provide services in a variety of

environments. Stacking is actually somewhat of a misnomer, since nonlinear

“stacks,” such as those of Figures 3 and 4, should be common; we retain the

term for historic reasons.
Layers are joined by a symmetric interface, syntactically identical above

and below. Because of this symmetry, there are no syntactic restrictions in

the configuration of layers. New layers can be easily added or removed from a

file-system stack, much as Streams modules can be configured onto a net-

work interface. Such filing configuration is simple to do; no kernel changes

are required, allowing each experimentation with stack behavior.
Because new services often employ or export additional functionality, the

interlayer interface is extensible. Any layer can add new operations; existing

layers adapt automatically to support these operations. If a layer encounters

an operation it does not recognize, the operation can be forwarded to a lower

layer in the stack for processing. Since new file systems can support opera-

tions not conceived of by the original operating-system developer, unconven-

tional file services can now be supported as easily as standard file systems.

The goals of interface symmetry and extensibility may initially appear

incompatible. Confiwration is most flexible when all interfaces are literally
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syntactically identical, that is, when all layers can take advantage of the

same mechanisms. But extensibility implies that layers may be semantically

distinct, restricting how layers can be combined. Semantic constraints do

limit layer configurations, but Sections 4.2 and 4.4 discuss how layers may

provide reasonable default semantics in the face of extensibility.

Address-space independence is another important characteristic of stack-

able file-system development. Layers often execute in a single protection

domain, but there is considerable advantage to making layers also able to run

transparently in different address spaces. Whether or not different layers

exist in the same address space should require no changes to the layer and

should not affect stack behavior. New layers can then be developed at the

user level and later put into the kernel for maximum performance.

A transport layer bridges the gap between address spaces, transferring all

operations and results back and forth. Like the interlayer interface, a trans-

port layer must be extensible, to support new operations automatically. In

this way, distributed filing implementations fit smoothly into the same

framework and are afforded the same advantages. More importantly, the

transport layer isolates the “distributed” component of the stacking and its

corresponding performance impact. Stack calls between layers in a single

address space, the statistically dominate case, can then operate in an ex-

tremely rapid manner, avoiding distributed protocols such as argument

marshaling. The interface has been developed to enable absolutely minimum

crossing cost locally while still maintaining the structure necessary for

address-space independence.

This stacking model of layers joined by a symmetric but extensible filing

interface, constrained by the requirements of address-space independence,

the binary-only environment of kernels, and the overriding demand for

absolutely minimal performance impact, represents the primary contribution

of this work. The next section discusses approaches to file-system design that

are enabled or facilitated by the stacking model.

3. STACKABLE LAYERING TECHNIQUES

This section examines in detail a number of different file-system development

techniques enabled or simplified by stackable layering.

3.1 Layer Composition

One goal of layered file-system design is the construction of complex filing

services from a number of simple, independently developed layers. If the file

systems are to be constructed from multiple layers, one must decide how

services should be decomposed to make individual components most reusable.

Our experience shows that layers are most easily reusable and composable

when each encompasses a single abstraction. This experience parallels those
encountered in designing composable network protocols in the x-kernel

[Hutchinson et al. 1989] and tool development with the UNIX shells [Pike

and Kernighan 1984].
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Fig. 1. Compression serwce stacked over a UNIX file system. &

layer I

As an example of this problem in the context of file-system layering,

consider the stack presented in Figure 1. A compression layer is stacked over

a standard UNIX file system (UFS); the UFS handles file services, while the

compression layer periodically compresses rarely used files.

A compression service provided above the UNIX directory abstraction has

difficulty efficiently handling files with multiple names (hard links). This is

because the UFS was not designed as a stackable layer; it encompasses

several separate abstractions. Examining the UFS in more detail, we see at

least three basic abstractions: a disk partition, arbitrary-length files refer-

enced by fixed names (inode-level access), and a hierarchical directory ser-

vice. Instead of a single layer, the “UFS service” should be composed of a

stack of directory, file, and disk layers. In this architecture the compression

layer could be configured directly above the file layer. Multiply named files

would no longer be a problem because multiple names would be provided by a

higher-level layer. One could also imagine reusing the directory service over

other low-level storage implementations. Stacks of this type are shown in

Figure 2.

3.2 Layer Substitution

Figure 2 also demonstrates layer substitution. Because the log-structured file

system and the UFS are semantically similar, the compression layer can

stack equally well over either. Substitution of one for the other is possible,

allowing selection of low-level storage to be independent of higher-level

services. This ability to have “plug-compatible” layers not only supports

higher-level services across a variety of vendor-customized storage facilities,

but also supports the evolution and replacement of the lower layers as

desired.

3.3 Nonlinear Stacking

File-system stacks are frequently linear; all access proceeds from the top

down through each layer. However, there are also times when nonlinear

stacks are desirable.

Fan-oz/t occurs when a layer references “out” to multiple layers beneath it.

Figure 3 illustrates how this structure is used to provide replication in Ficus

[Guy et al. 1990].
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Fan-in allows multiple clients access to a particular layer. If each stack

layer is separately named, it is possible for knowledgeable programs to

choose to avoid upper stack layers. For example, one would prefer to back up

compressed or encrypted data without uncompressing or decrypting it to

conserve space and to preserve privacy (Figure 4). This could easily be done

by direct access to the underlying storage layer. Network access of encrypted
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A&
Fig. 4. Access through the compression layer provides users transpar-

ently uncompressed data. Fan-in allows a backup program to access

the compressed version dmectly.

~

comprason
layer

UFS

data could also be provided by direct access to the underlying encrypted

storage, avoiding clear-text transfer over the network.

3.4 Cooperating Layers

Layered design encourages the separation of file systems into small, reusable

layers. Sometimes services that could be reusable occur in the middle of an

otherwise special-purpose file system. For example, a distributed file system

may consist of a client and server portion, with a remote-access service in

between. One can envision several possible distributed file systems offering

simple stateless service, exact UNIX semantics, or even file replication. Each

might build its particular semantics on top of an “RPC” remote-access

service, but if remote access is buried in the internals of each specific file

system, it will be unavailable for reuse.

Cases such as these call for cooperating layers. A “semantics-free” remote-

access service is provided as a reusable layer, and the remainder is split into

two separate, cooperating layers. When the file-system stack is composed, the

reusable layer is placed between the others. Because the reusable portion is

encapsulated as a separate layer, it is available for use in other stacks. For

example, a new secure remote filing service could be built by configuring

encryption/decryption layers around the basic transport service.

An example of the use of cooperating layers in the Ficus replicated file

system [Guy et al. 1990] is shown in Figure 3. The Ficus logical and physical

layers correspond roughly to a client and server of a replicated service. A

remote-access layer is placed between them when necessary.

3.5 Compatibility with Layers

The flexibility stacking provides promotes rapid interface and layer evolution.

Unfortunately, rapid change often rapidly results in incompatibility. Inter-

face change and incompatibility today often prevent the use of existing filing

abstractions [Webber 1993]. A goal of our design is to provide approaches to

cope with interface change in a binary-only environment.

File-system interface evolution takes a number of forms. Third parties wish

to extend interfaces to provide new services. Operating-system vendors must

change interfaces to evolve the operating system, but usually also wish to
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maintain backward compatibility. Stackable layering provides a number of

approaches to address the problems of interface evolution.

Extensibility of the file-system interface is the primary tool to address

compatibility. Any party can add operations to the interface; such additions

need not invalidate existing services. Third-party development is facilitated,

gradual operating-system evolution becomes possible, and the useful lifetime

of a filing layer is greatly increased, protecting the investment in its construc-

tion.

Layer substitution (see Section 3.2) is another approach to address simple

incompatibilities. Substitution of semantically similar layers allows easy

adaption to differences in environments. For example, a low-level storage

format tied to particular hardware can be replaced by an alternate base layer

on other machines.

Resolution of more significant problems may employ a compatibility layer.

If two layers have similar but not identical views of the semantics of their

shared interface, a thin layer can easily be constructed to map between

incompatibilities. This facility could be used by third parties to map a single

service to several similar platforms or by an operating-system vendor to

provide backward comparability after significant changes.

A still more significant barrier is posed by different operating systems.

Although direct portability of layers between operating systems with radi-

cally different system services and operation sets is difficult, limited access to

remote services may be possible. Transport layers can bridge machine and

operating-system boundaries, extending many of the benefits of stackable

layering to a nonstacking computing environment. NFS can be thought of as

a widely used transport layer, available on platforms ranging from personal

computers to mainframes. Although standard NFS provides only core filing

services, imparts restrictions, and is not extensible, it is still quite useful in

this limited role. Section 5.3 describes how this approach is used to make

Ficus replication available on PCs.

3.6 User-Level Development

One advantage of microkernel design is the ability to move large portions of

the operating system outside of the kernel. Stackable layering fits naturally

with this approach. Each layer can be thought of as a server, and operations

are simply RPC messages between servers. In fact, new layer development

usually takes this form at UCLA (Figure 5). A transport layer (such as NFS)

serves as the RPC interface, moving all operations from the kernel to a

user-level file-system server. Another transport service (the “u-to-k layer”)

allows user-level calls on vnodes that exist inside the kernel. With this

framework layers may be developed and executed as user code. Although

inter-address-space RPC has real cost, caching may provide reasonable per-

formance for an out-of-kernel file system [Steere et al. 1990] in some cases,

particularly if other characteristics of the filing service have inherently high

latency (for example, hierarchical storage management).
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Fig, 5. User-level layer development via transport layers

Nevertheless, many filing services will find the cost of frequent RPCS

overly expensive. Stackable layering offers valuable flexibility in this case.

Because file-system layers each interact only through the layer interface, the

transport layers can be removed from this configuration without affecting a

layer’s implementation. An appropriately constructed layer can then run in

the kernel, avoiding all RPC overhead. Layers can be moved in an out of the

kernel (or between different user-level servers) as usage requires. By separat-

ing the concepts of modularity from address-space protection, stackable layer-

ing permits the advantages of microkernel development and the efficiency of

an integrated execution environment.

4. IMPLEMENTATION

The UCLA stackable layers interface and its environment are the results of

our efforts to tailor file-system development to the stackable model. Sun’s

vnode interface is extended to provide extensibility, stacking, and address-

space independence. We describe this implementation here, beginning with a

summary of the vnode interface and then examining important differences in

our stackable interface.

4.1 Existing File System Interfaces

Sun’s vnode interface is a good example of several “file-system switches”

developed for the UNIX operating system [Kleiman 1986; Rodriguez 1986].

All have the same goal, to support multiple file-system types in the same

operating system. The vnode interface has been quite successful in this

respect, providing dozens of different filing services in several versions of

UNIX.

The vnode interface is a method of abstracting the details of a file-system

implement ation from the majority of the kernel. The kernel views file access
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A

Fig. 6. Namespace composed of two subtrees.

through two abstract data types. A vnode identifies individual files. A small

set of file types is supported, including regular files, which provide an

uninterpreted array of bytes for user data, and directories, which list other

files. Directories include references to other directories, forming a hierarchy

of files. For implementation reasons, the directory portion of this hierarchy is

typically limited to a strict tree structure.

The other major data structure is the vfs, representing groups of files. For

configuration purposes, sets of files are grouped into sub trees (traditionally

referred to as file systems or disk partitions), each corresponding to one vfs.

Subtrees are added to the file-system namespace by mounting.

Mounting is the process of adding new collections of files into the global

file-system namespace. Figure 6 shows two subtrees: the root subtree and

another attached under /usr. Once a subtree is mounted, name translation

proceeds automatically across subtree boundaries, presenting the user with

an apparently seamless namespace.

All files within a subtree typically have similar characteristics. Tradition-

al UNIX disk partitions correspond one-to-one with subtrees. When NFS

is employed, each collection of files from a remote machine is assigned

a corresponding subtree on the local machine. Each subtree is allowed a

completely separate implementation.

Data encapsulation requires that these abstract data types for files and

subtrees be manipulated only by a restricted set of operations. The operations

supported by vnodes, the abstract data type for “files,” vary according to

implementation (see Karels and McKusick [1986] and Kleiman [1986] for

semantics of typical operations).
To allow this generic treatment of vnodes, binding of desired function to

correct implementation is delayed until kernel initialization. This is imple-

mented by associating with each vnode type an operations vector identifying

the correct implementation of each operation for that vnode type. Operations

can then be invoked on a given vnode by looking up the correct operation in

this vector (this mechanism is analogous to typical implementations of C+ +

virtual class method invocation).

Limited file-system stacking is possible with the standard vnode interface

using the mount mechanism. Sun Microsystems’ NFS [ Sandberg 1985], loop-
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back and translucent [Hendricks 1990] file systems take this approach.

Information associated with the mount command identifies the existing stack

layer and where the new layer should be attached into the filing namespace.

4.2 Extensibility in the UCLA Interface

Accommodation of interface evolution is a critical problem with existing

interfaces. Incompatible change and the lock-step release problem [Webber

1993] are serious concerns of developers today. The ability to add to the set of

filing services without disrupting existing practices is a requirement of

diverse third-party filing development and would greatly ease vendor evolu-

tion of existing systems.

The vnode interface allows the association of an operation with its imple-

mentation to be delayed until run time by fixing the formal definition of all

permissible operations before kernel compilation. This convention prohibits

the addition of new operations at kernel link time or during execution, since

file systems have no method of ensuring interface compatibility after change.

The UCLA interface addresses this problem of extensibility by maintaining

all interface definition information until execution beings and then dynami-

cally constructing the interface. Each file system provides a list of all the

operations it supports. At kernel initialization, the union of these operations

is taken, yielding the list of all operations supported by this kernel. This set

of operations is then used to define the global operations vector dynamically,

adapting it to arbitrary additions.z Vectors customized to each file system are

then constructed, caching information sufficient to permit very rapid opera-

tion invocation. During operation these vectors select the correct implementa-

tion of each operation for a given vnode. Thus, each file system may include

new operations, and new file systems can be added to a kernel with a simple

reconfiguration.

New operations may be added by any layer. Because the interface does not

define a fixed set of operations, a new layer must expect “unsupported”

operations and accommodate them consistently. The UCLA interface requires

a defaalt routine that will be invoked for all operations not otherwise

provided by a file system. File systems may simply return an “unsupported

operation” error code, but we expect most layers to pass unknown operations

to a lower layer for processing.

The new structure of the operations vector also requires a new method of

operation invocation. The calling sequence for new operations replaces the

static offset into the operations vector of the old interface with a dynamically

computed new offset. These changes have very little performance impact, an

important consideration for a service that will be as frequently employed as

2For simplicity, we ignore here the problem of adding new operations at run time. This “fully

dynamic” addition of operations can be supported with an extension to the approach described

here, although this extension is not part of current implementations.
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Fig. 7. Mounting a UFS layer. The new layer is instantiated at /layer/ufs/crypt raw from a disk

device /dev/dskOg.

an interlayer interface. Section 5.1 discusses performance of stackable layer-

ing in detail.

4.3 Stack Creation

This section discusses how stacks are formed. In the prototype interface,

stacks are configured at the file-system granularity and constructed as

required on a file-by-file basis.

4.3.1 Stack Configuration. Section 4.1 has described how a UNIX file

system is built from a number of individual subtrees by mounting. Subtrees

are the basic unit of file-system configuration; each is either mounted making

all of its files accessible, or unmounted and unavailable. We employ this same

mechanism for layer construction.

Fundamentally, the UNIX mount mechanism has two purposes: it creates a

new “subtree object” of the requested type, and it attaches this object into the

file-system namespace for layer use. Frequently, creation of subtrees uses

other objects in the file system. An example of this is shown in Figure

7, where a new UFS is instantiated from a disk device

/layer/ufs/crypt raw

from /dev/dskOg.
Configuration of layers requires the same basic steps of layer creation and

naming, so we employ the same mount mechanism for layer construction.3

Layers are built at the subtree granularity, a mount command creating each

layer of a stack. Typically, stacks are built bottom up. After a layer is

mounted to a name, the next higher layer’s mount command uses that name

to identify its “lower-layer neighbor” in initialization. Figure 8 continues the

‘;Although mount is typically used today to provide “expensive” services, the mechanism is not

inherently costly. Mount constructs an object and gives it a name; when object initialization is

inexpensive, so is the corresponding mount.
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Au encryption layer is stacked over a UFS. The encryption layer /usr/data

existing UFS layer /Iayer/ufs/crypt raw.
is instantiated

previous example by stacking an encryption layer over the UFS. In this figure

an encryption layer is created with a new name (/usr/data) after specifying

the lower layer (/lay er/ufs/crypt. raw). Alternatively, if no new name is neces-

sary or desired, the new layer can be mounted to the same place in the

namespace.4 Stacks with fan-out typically require that each lower layer be

named when constructed.

Stack construction does not necessarily proceed from the bottom up. So-

phisticated file systems may create lower layers on demand. The Ficus

distributed file system takes this approach in its use of volumes. Each volume

is a subtree storing related files. To ensure that all sites maintain a consis-

tent view about the location of the thousands of volumes in a large-scale

distributed system, volume mount information is maintained on disk at the

mount location. When a volume mount point is encountered during path-name

translation, the corresponding volume (and lower stack layers) is automati-

cally located and mounted.

4.3.2 File-Level Stacking. While stacks are configured at the subtree
level, most user actions take place on individual files. Files are represented

by vnodes, with one vnode per layer.

When a user opens a new file in a stack, a vnode is constructed to represent

each layer of the stack. User actions begin in the top stack layer and are then

forwarded down the stack as required. If an action requires creation of a new

vnode (such as referencing a new file), then as the action proceeds down the

stack, each layer will build the appropriate vnode and return its reference to

the layer above. The higher layer will then store this reference in the private

4Mounts to the same name are currently possible only in BSD 4.4-derived systems. If each layer

is separately named, standard access control mechanisms can be used to mediate access to lower

layers
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data of the vnode it constructs. Should a layer employ fan-out, each of its

vnodes will reference several lower-level vnodes similarly.

Since vnode references are used both to bind layers and to access files from

the rest of the kernel, no special provision needs to be made to perform

operations between layers. The same operations used by the general kernel

can be used between layers; layers treat all incoming operations identically.

Although the current implementation does not explicitly support stack

configuration at a per-file granularity, there is nothing in the model that

prohibits finer configuration control. A typed-file layer, for example, could

maintain layer configuration details for each file and automatically create the

proper layers when the file is opened.

4.3.3 Stack Data Caching. Individual stack layers often wish to cache

data, both for performance and to support memory mapped files. If each layer

may independently cache data pages, writes to different cached copies can

cause cache aliasing problems and possible data 10SS.5

A cache manager coordinates page caching in the UCLA interface. Before

any stack layer may cache a page, it must acquire “ownership” of that page

from the cache manager. The cache manager immediately grants ownership if

the page was not previously cached. If the page is cached by another layer,

the other layer is called upon to flush its cache before ownership is trans-

ferred. This approach is analogous to callbacks or token passing in a dis-

tributed file system.

A consistent page-naming policy is required to identify cached data pages

between different layers. The cache manager identifies pages by a pair: [stack

identifier, file offset]. Stack layers that provide semantics that violate this

naming convention are required to conceal this difference from their clients.

For example, a replication service must coordinate stack identifiers between

its clients, itself, and its several lower layers, providing replica storage. To

conceal this fact, the replication layer will claim to be the bottom of the stack

to its clients. A compression layer presents another example, since file offsets

have different meanings above and below a compression layer. The compres-

sion layer will explicitly coordinate cache behavior above and below itself.

Attribute the name caching by layers present similar problems; we are

currently investigating solutions in these areas.

4.4 Stacking and Extensibility

One of the most powerful features of a stackable interface is that layers can

be stacked together, each adding functionality to the whole. Often, layers in

the middle of a stack will modify only a few operations, passing most to the

next lower layer unchanged. For example, although an encryption layer

would encrypt and decrypt all data accessed by read and write requests, it

may not need to modify operations for directory manipulation. Since the

interlayer interface is extensible and therefore new operations may always be

5Imagine modifying the first byte of a page in one stack layer and the last byte of the same page

in another layer. Without some cache consistency policy, one of these modifications will be lost.
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added, an intermediate layer must be prepared to forward arbitrary, new

operations.

One way to pass operations to a lower layer is to implement, for each

operation, a routine that explicitly invokes the same operation in the next

lower layer. This approach would fail to adapt automatically to the addition

of new operations, requiring modification of all existing layers when any

layer adds a new operation. The creation of new layers and new operations

would be discouraged, and the use of unmodified third-party layers in the

middle of new stacks would be impossible.

What is needed is a single bypass routine that forwards new operations to

a lower level. Default routines (discussed in Section 4.2) provide the capabil-

ity to have a generic routine intercept unknown operations, but the standard

vnode interface provides no way to process this operation in a general

manner. To handle multiple operations, a single routine must be able to

handle the variety of arguments used by different operations, It must also be

possible to identify the operation taking place and to map any vnode argu-

ments to their lower-level counterparts.G

Neither of these characteristics is possible with existing interfaces where

operations are implemented as standard function calls. And, of course, sup-

port for these characteristics must have absolutely minimal performance

impact.

The UCLA interface accommodates these characteristics by explicitly man-

aging operations’ arguments as collections. In addition, metadata are associ-

ated with each collection, providing the operation identity, argument types,

and other pertinent information. Together, this explicit management of oper-

ation invocations allows arguments to be manipulated in a generic fashion

and efficiently forwarded between layers, usually with pointer manipulation.

These characteristics make it possible for a simple bypass routine to

forward all operations to a lower layer in the UCLA interface. By convention,

we expect most file-system layers to support such a bypass routine. More

importantly, these changes to the interface have minimal impact on perfor-

mance. For example, passing metadata requires only one additional arg-w

ment to each operation. See Section 5.1 for a detailed analysis of performance,

4.5 Intermachine Operation

A transport layer is a stackable layer that transfers operations from one

address space to another. Because vnodes for both local and remote file

systems accept the same operations, they may be used interchangeably,

providing network transparency. Sections 3.5 and 3.6 describe some of the

ways to configure the layers this transparency allows.

Providing a bridge between address spaces presents several potential

problems. Different machines might have differently configured sets of opera-

GVnode arguments change as a call proceeds down the stack, much as protocol headers are

stripped off as network messages are processed. No other argument processing is required to

bypass an operation between two layers in the same address space.
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tions. Heterogeneity can make basic data types incompatible. Finally, meth-

ods to support variable-length and dynamically allocated data structures

for traditional kernel interfaces do not always generalize when crossing

address-space boundaries.

For two hosts to interoperate, it must be possible to identify each desired

operation unambiguously. Well-defined RPC protocols, such as NFS, ensure

compatibility by providing only a fixed set of operations. Since restricting the

set of operations frequently restricts and impedes innovation, each operation

in the UCLA interface is assigned a universally unique identifier when it is

defined.7 Intermachine communication of arbitrary operations uses these

labels to reject locally unknown operations.

Transparent forwarding of operations across address-space boundaries re-

quires not only that operations be identified consistently, but also that

arguments be communicated correctly in spite of machine heterogeneity. Part

of the metadata associated with each operation includes a complete type

description of all arguments. With this information, an RPC protocol can

marshal operation arguments and results between heterogeneous machines.

Thus, a transport layer may be thought of as a semantics-free RPC protocol

with a stylized method of marshaling and delivering arguments.

NFS provides a good prototype transport layer. It stacks on top of existing

local file systems, using the vnode interface above and below. But NFS was

not designed as a transport layer; its supported operations are not extensible,

and its implementations define particular caching semantics. We extend NFS

to bypass new operations automatically. We have also prototyped a cache

consistency layer, providing a separate consistency policy.

In addition to the use of an NFS-like inter-address-space transport layer,

we employ a more efficient transport layer operating between the user and

the kernel level. Such a transport layer provides “system-call’’-level access to

the UCLA interface allowing user-level development of file-system layers and

providing user-level access to new file-system functionality. The desire to

support a system-call-like transport layer places one additional constraint on

the interface. Traditional system calls expect the user to provide space for all

returned data. We have chosen to extend this restriction to the UCLA

interface to make the user-to-kernel transport layer universal. In practice,

this restriction has not been serious since the client can often make a good

estimate of storage requirements. If the client’s first guess is wrong, informa-

tion is returned, allowing the client to repeat the operation correctly.

4.6 Centralized Interface Definition

Several aspects of the UCLA interface require precise information about the

characteristics of the operation taking place. Network transparency requires

a complete definition of all operation types, and a bypass routine must be

able to map vnodes from one layer to the next. The designer of a file system

employing new operations must provide this information.

7Generation schemes based on host identifier and time-stamp support fully distributed identifier

creation and assignment. We therefore employ the NCS UUID mechanism.
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Detailed interface information is needed at several different places

throughout the layers. Rather than require that the interface designer keep

this information consistent in several different places, operation definitions

are combined into an interface definition. Similar to the data-description

language used by RPC packages, this description lists each operation, its

arguments, and the direction of data movement. An interface “compiler”

translates this into forms convenient for automatic manipulation.

4.7 Framework Portability

The UCLA interface has proved to be quite portable. Initially implemented

under SunOS 4.0.3, it has since been ported to SunOS 4.1.1. In addition, the

in-kernel stacking and extensibility portions of the interface have been ported

to BSD 4.4. Although BSD’S namei approach to path-name translation re-

quired some change, we are largely pleased with our framework’s portability

to a system with an independently derived vnode interface. Section 5.3

discusses portability of individual layers.

While the UCLA interface itself has proved to be portable, portability of

individual layers is somewhat more difficult. None of the implementations

described have identical sets of vnode operations, and path-name translation

approaches differ considerably between SunOS and BSD.

Fortunately, several aspects of the UCLA interface provide approaches to

address layer portability. Extensibility allows layers with different sets of

operations to coexist. In fact, interface additions from SunOS 4.0.3 to 4,1.1

require no changes to existing layers. When interface differences are signifi-

cantly greater, a compatibility layer (see Section 3.5) provides an opportunity

to run layers without change. Ultimately, adoption of a standard set of core

operations (as well as other system services) is required for effortless layer

portability.

5. PERFORMANCE AND EXPERIENCE

While a stackable file-system design offers numerous advantages, file-system

layering will not be widely accepted if layer overhead is such that a mono-

lithic file system performs significantly better than one formed from multiple

layers. To verify layering performance, overhead was evaluated from several

points of view.

If stackable layering is to encourage rapid advance in filing, not only must

it have good performance, but it also must facilitate file-system development.

Here, we also examine this aspect of “performance,” first by comparing the

development of similar file systems with and without the UCLA interface,

and then by examining the development of layers in the new system.

Finally, compatibility problems are one of the primary barriers to the use of

current filing abstractions. We conclude by describing our experiences in

applying stacking to resolve filing incompatibilities.

5.1 Layer Performance

To examine the performance of the UCLA interface, we consider several

classes of benchmarks. First, we examine the costs of particular parts of this
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interface with “microbenchmarks.” We then consider how the interface affects

overall system performance by comparing a stackable layers kernel to an

unmodified kernel. Finally, we evaluate the performance of multilayer file

systems by determining the overhead as the number of layers changes.

The UCLA interface measured here was implemented as a modification to

SunOS 4.0.3. All timing data were collected on a Sun-3\60 with 8 Mb of RAM

and two 70-Mb Maxtor XT-1085 hard disks. The measurements in Section

5.1.2 use the new interface throughout the new kernel, while those in Section

5.1.3 use it only within file systems.

5.1.1 Microbenchmarks. The new interface changes the way every file-

system operation is invoked. To minimize overhead, operation calls must be

very inexpensive. Here, we discuss two portions of the interface: the method

for calling an operation, and the bypass routine. Cost of operation invocation

is the key to performance, since it is an unavoidable cost of stacking no

matter how layers themselves are constructed.

To evaluate the performance of these portions of the interface, we consider

the number of assembly-language instructions generated in the implementa-

tion. Although this statistic is only a very rough indication of true cost, it

provides an order-of-magnitude comparison.8

We begin by considering the cost of invoking an operation in the vnode and

the UCLA interfaces. On a Sun-3 platform, the original vnode calling se-

quence translates into four assembly-language instructions, while the new

sequence requires six instructions.g We view this overhead as not significant

with respect to most file-system operations.

We are also interested in the cost of the bypass routine, We envision a

number of “filter” file-system layers, each adding new abilities to the file-sys-

tem stack. File compression or local disk caching are examples of services

such layers might offer. These layers pass many operations directly to the

next layer down, modifying the user’s actions only to uncompress a com-

pressed file or to bring a remote file into the local disk cache. For such layers

to be practical, the bypass routine must be inexpensive. A complete bypass

routine in our design amounts to about 54 assembly-language instructions.l 0

About one-third of these instructions are not in the main flow, being used

only for uncommon argument combinations, reducing the cost of forwarding

simple vnode operations to 34 instructions. Although this cost is significantly

more than a simple subroutine call, it is not significant with respect to the

cost of an average file-system operation. To investigate the effects of

8Factors such as machine architecture and the choice of compiler have a significant impact on

these figures. Many architectures have instructions that are significantly slower than others. We
claim only a rough comparison from these statistics.

9We found a similar ratio on SPARC-based architectures, where the old sequence required five

instructions and the new required eight. In both cases these calling sequences do not include

code to pass arguments of the operation.

10 These figures were produced by the Free Software Foundation’s gcc compiler. Sun’s C compiler

bundled with SunOS 4.0.3 produced 71 instructions.
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Table I. Modified Andrew Benchmark Results Running on Kernels Using the Vnode and the

UCLA Interfacesa

Vnode interface UCLA interface Percent

Phase Time YoRSD Time %RSD overhead

MakeDir 3.3 16.1 3.2 14.8 -3.03

copy 18.8 4.7 191 5.0 1.60

ScanDir 17.3 5.1 17.8 7.9 2.89

ReadAll 28.2 1.8 28.8 2.0 2.13

Make 327.1 0.4 328.1 0.7 0.31

Overall 394.7 0.4 396.9 0.9 0.56

aTime values (in seconds; timer granularity = 1 s) are the means of elapsed time from 29 sample

runs. % RSD indicates the percent relative standard deviation ( ~X\W.Y ). overhead is the Percent

overhead of the new interface. High relative standard deviations for MakeDir are a result of poor

timer granularity.

file-system layering further, Section 5.1.3 examines the overall performance

impact of a multilayered file system.

5.1.2 lrzter~ace Performance. Although instruction counts are useful, ac-

tual implementation performance measurements are essential for evaluation.

The first step compares a kernel supporting only the UCLA interface with a

standard kernel. To do so, we consider two benchmarks: the modified Andrew

benchmarks [Ousterhout 1990; Howard et al. 1988] and the recursive copy

and removal of large subdirectory trees. In addition, we examine the effect of

adding multiple layers in the new interface.

The Andrew benchmark has several phases, each of which examines differ-

ent file-system activities. Unfortunately, the brevity of the first four phases

relative to granularity makes accuracy difficult. In addition, the long compile

phase dominates overall benchmark results. Nevertheless, taken as a whole,

this benchmark probably characterizes “normal use” better than a file-sys-

tem-intensive benchmark such as a recursive copy/remove.

The results from the benchmark can be seen in Table I. Overhead for the

first four phases averages about 2 percent. Coarse timing granularity and the

very short run times for these benchmarks limit their accuracy, The compile

phase shows only a slight overhead. We attribute this lower overhead to the

fewer number of file-system operations done per unit of time by this phase of

the benchmark.

To exercise the interface more strenuously, we examined recursive copy

and remove times. This benchmark employs two phases, the first doing a

recursive copy and the second a recursive remove. Both phases operate on

large amounts of data (a 4.8-Mb /usr/include directory tree) to extend the

duration of the benchmark. Because we knew all overhead occurred in the

kernel, we measured system time (time spent in the kernel) instead of total

elapsed time. This greatly exaggerates the impact of layering, since all

overhead is in the kernel and since system time is usually small compared to
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Table II. Recursive Copy and Remove Benchmark Results Running on Kernels Using
the Vnode and UCLA Interfacesa

Phase

Vnode interface UCLA interface Percent
Time %RSD Time %RSD overhead

Recursive copy 51.57 1.28 52.55 1.11 1.90
Recursive remove 25.26 2.50 25.41 2.80 0.59

Overall 76.83 0.87 77.96 1.11 1.47

‘Time values (in seconds; timer granularity = 0.1 s) are the means of system time from 20
sample runs. 70RSD indicates the percent relative standard deviation. Overhead is the percent
overhead of the new interface.

the elapsed “wall-clock” time a user actually experiences. As can be seen in

Table II, system-time overhead averages about 1.5 percent.

5.1.3 Multiple-Layer Performance. Since the stackable-layers design phi-

losophy advocates using several layers to implement what has traditionally

been provided by a monolithic module, the cost of layer transitions must be

minimal if it is to be used for serious file-system implementations. To

examine the overall impact of a multilayer file system, we analyze the

performance of a file-system stack as the number of layers that employs

changes.

To perform this experiment, we began with a kernel modified to support

the UCLA interface within all file systems and the vnode interface through-

out the rest of the kernel.11 At the base of the stack, we placed a Berkeley

Fast File System, modified to use the UCLA interface. Above this layer we

mounted from zero to six null layers, each of which merely forwards all

operations to the next layer of the stack. We ran the benchmarks described in

the previous section upon those file-system stacks. This test is by far the

worst possible case for layering, since each added layer incurs full overhead

without providing any additional functionality.

Figure 9 shows the results of this study. Performance varies nearly linearly

with the number of layers used. The modified Andrew benchmark shows

about a 0.3 percent elapsed-time overhead per layer. Alternate benchmarks

such as the recursive copy and remove phases, also show less than 0.25

percent overhead per layer.

To get a better feel for the costs of layering, we also measured system time,

that is, time spent in the kernel on behalf of the process. Figare 10 compares

recursive copy and remove system times (the modified Andrew benchmark

does not report system-time statistics). Because all overhead is in the kernel

and the total time spent in the kernel is only one-tenth of elapsed time,

comparisons of system time indicate a higher overhead: about 2 percent per

layer for recursive copy and remove. Slightly better performance for the case

of one layer in Figure 10 results from a slight caching effect of the null layer

11To Improve portability, we desired to modify as little of the kernel as possible. Mapping
between interfaces occurs automatically upon first entry of a file-system layer.
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Fig. 9. Elapsed time of recursive copy/remove and modified Andrew benchmarks as layers are

added to a file-system stack. Each data point is the mean of four runs,
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Fig. 10 System time of recursive copy/remove benchmarks as layers are added to a file-system

stack (the modified Andrew benchmark does not provide system time ). Each data point is the

mean of four runs. Measuring system time alone of a do-nothing layer represents the worst

possible layering overhead.
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compared to the standard UFS. Differences in benchmark overheads are the

result of differences in the ratio between the number of vnode operations and

benchmark length.

We draw two conclusions from these figures. First, elapsed-time results

indicate that under normal load usage,, a layered file-system architecture will

be virtually undetectable. Also, system-time costs imply that during heavy

file-system use a small overhead will be incurred when numerous layers are

involved.

5.2 Layer Implementation Effort

An important goal of stackable file systems and this interface is to ease the

job of new file-system development. Importing functional with existing layers

saves a significant amount of time in new development, but this savings must

be compared to the effort required to employ stackable layers. The next three

sections compare development with and without the UCLA interface, and

examine how layering can be used for both large and small filing services. We

conclude that layering simplifies both small and large projects.

5.2.1 Simple Layer Development. A first concern when developing new

file-system layers was that the process would prove to be more complicated

than the development was of existing file systems. Most other kernel inter-

faces do not support extensibility; would this facility complicate implementa-

tion?

To evaluate complexity, we chose to examine the size of similar layers

implemented both with and without the UCLA interface. A simple “pass-

through layer was chosen for comparison: the loopback file system under the

traditional vnode interface, and the null layer under the UCLA interface.lz

We performed this comparison for both the SunOS 4.0.3 and the BSD 4.4

implementations, measuring complexity as numbers of lines of comment-free

C code.13

Table III compares the code length of each service in the two operating

systems. Closer examination reveals that the majority of code savings occurs

in the implementation of individual vnode operations. The null layer imple-

ments most operations with a bypass routine, while the loopback file system

must explicitly forward each operation. In spite of a smaller implementation,

the services provided by the null layer are also more general; the same

implementation will support the addition of future operations.

For the example of a pass-through layer, use of the UCLA interface enables

improved functionality with a smaller implementation. Although the relative

difference in size would be less for single layers providing multiple services, a

goal of stackable layers is to provide sophisticated services through multiple,

‘2 In SunOS the null layer was augmented to reproduce the semantics of the loopback layer
exactly. This was not necessary in BSD UNIX.
13Although well-commented code might be a better comparison, the null layer was quite heavily
commented for pedagogical reasons, whereas the loopback layer had only sparse comments. We
chose to eliminate this variable.
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Table III. Number of Lines of Comment-Free Code Needed to Implement a Pass-Through

Layer or File System in SunOS 4.0.3 and BSD 4.4

SunOS BSD

Loopback-fs 743 lines 1046 lines

Null layer 632 lines 578 lines

Difference 111 lines (15%) 468 lines (45%)

reusable layers. This goal requires that minimal layers be as simple as

possible.

We are currently pursuing strategies to reduce the absolute size of null

layer code further. We expect to unify vnode management routines for

null-derived layers, centralizing this common service.

5.2.2 Layer Development Experience. The best way to demonstrate the

generality of a new design technique is through its use by different parties

and in application to different problems. To gain more perspective on this

issue, students were invited to design and develop new layers as part of a

graduate class at UCLA. While all were proficient programmers, their kernel

programming experience ranged from none to considerable. Five groups of

one or two students were each provided with a null layer and a user-level

development environment.

All projects succeeded in provided functioning prototype layers. Prototypes

include a file-versioning layer, an encryption layer, a compression layer,

second-class replication as a layer, and an NFS consistency layer. Other than

the consistency layer, each was designed to stack over a standard UFS layer,

providing its service as an optional enhancement. Self-estimates of develop-

ment time ranged from 40 to 60 person-hours. This figure included time to

become familiar with the development environment, as well as layer design

and implementation,

Review of the development of these layers suggested three primary contri-

butions of stacking to this experiment. First, by relying on a lower layer to

provide basic filing services, detailed understanding of these services was

unnecessary. Second, by beginning with a null layer, new implementation

required was largely focused on the problem being solved rather than on

peripheral framework issues. Finally, the out-of-kernel layer development

platform provided a convenient, familiar environment compared to tradi-

tional kernel development.

We consider this experience a promising indication of the ease of develop-

ment offered by stackable layers. Previously, new-file-system functionality

required in-kernel modification of current file systems, requiring knowledge

of multi-thousand-line file systems and low-level kernel debugging tools.

With stackable layers, students in the class were able to investigate signifi-

cant new filing capabilities with knowledge only of the stackable interface

and programming methodology.
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5.2.3 Large-Scale Example. The previous section has discussed our expe-

riences in stackable development of several prototype layers. This section

concludes with the results of developing a replicated file system suitable for

daily use.

Ficus is a “real” system, both in terms of size and use. It is comparable in

code size to other production file systems (12,000 lines for Ficus compared to

7,000–8,000 lines of comment-free NFS or UFS code). Ficus has seen exten-

sive development over its three-year existence. Its developers’ computing

environment (including Ficus development) is completely supported in Ficus,

and it is now in use at various sites in the United States.

Stacking has been a part of Ficus from its very early development. Ficus

has provided both a fertile source of layered development techniques, and a

proving ground for what works and what does not work.

Ficus makes good use of stackable concepts such as extensibility, cooperat-

ing layers, an extensible transport layer, and out-of-kernel development.

Extensibility is widely used in Ficus to provide replication-specific operations.

The concept of cooperating layers is fundamental to the Ficus architecture,

where some services must be provided “close” to the user whereas others

must be close to data storage. Between the Ficus layers, the optional trans-

port layer has provided easy access to any replica, leveraging location trans-

parency as well. Finally, the out-of-kernel debugging environment has proved

particularly important in early development, saving significant development

time.

As a full-scale example of the use of stackable layering and the UCLA

interface, Ficus illustrates the success of these tools for file-system develop-

ment. Layered file systems can be robust enough for daily use, and the

development process is suitable for long-term projects.

5.3 Compatibility Experiences

Extensibility and layering are powerful tools to address compatibility prob-

lems. Section 3.5 discusses several different approaches to employ these tools;

here we consider how effective these tools have proved to be in practice. Our

experiences primarily concern the use and evolution of the Ficus layers, the

user-id mapping and null layers, and the stack-enabled versions of NFS and

UFS.

Extensibility has proved quite effective in supporting “third-party’’-style

change. The file-system layers developed at UCLA evolve independently of

each other and of standard filing services. Operations are frequently added to

the Ficus layers with minimal consequences on the other layers. We have

encountered some cache consistency problems resulting from extensibility

and our transport layer. We are currently implementing cache coherence

protocols as discussed in Section 4.3.3 to address this issue. Without extensi-

bility, each interface change would require changes to all other layers, greatly

slowing progress.

We have had mixed experiences with portability between different operat-

ing systems. On the positive side, Ficus is currently accessible from PCS
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running MS-DOS (see Figure 11). The PC runs an NFS implementation to

communicate with a UNIX host running Ficus. Ficus requires more informa-

tion to identify files than will fit in an NFS file identifier, so we employ an

additional “shrinkfid” layer to map over this difference.

Actual portability of layers between the SunOS and BSD stacking imple-

mentations is more difficult. Each operating system has a radically different

set of core vnode operations and related services. For this reason and because

of licensing restrictions, we chose to reimplement the null and user-id map-

ping layers for the BSJ3 port. Although we expect that a compatibility layer

could mask interface differences, long-term interoperability requires not only

a consistent stacking framework, but also a common set of core operations

and related operating-system services.

Finally, we have been successful employing simple compatibility layers to

map over minor interface differences. The shrinkfld and umap layers each

correct deficiencies in interface or administrative configuration. We have also

constructed a simple layer that passes additional state information closes

through extensible NFS as new operations.

6. RELATED WORK

Stackable filing environments build upon several bodies of existing work.

UNIX shell programming, streams, and the x-kernel present examples of

stackable development, primarily applied to network protocols and terminal
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processing. There is also a significant relationship between stacking and

object-oriented design. Sun’s vnode interface provides a basis for modular file

systems. Finally, Rosenthal has presented a prototype stackable filing inter-

face independently descended from these examples. We consider each of these

in turn.

6.1 Other Stackable Systems

The key characteristics of a stackable file system are its symmetric interface

and a flexible method of joining these layers. UNIX shell programming

provides an early example of combining independently developed modules

with a syntactically identical interface [Pike and Kernighan 1984].

Ritchie [1984] applied these principles to one kernel subsystem with the

Streams device 1/0 system. Ritchie’s system constructed terminal and net-

work protocols by composing stackable modules that may be added and

removed during operation. Ritchie’s concluded that Streams significantly

reduce complexity and improve maintainability of this portion of the kernel.

Since their development, Streams have been widely adopted.

The x-kernel is an operating-system nucleus designed to simplify network

protocol implementation by implementing all protocols as stackable layers

[Hutchinson et al. 1989]. Key features are a uniform protocol interface,

allowing arbitrary protocol composition; run-time choice of protocol stacks,

allowing selection based on efficiency; and very inexpensive layer transition.

The x-kernel demonstrates the effectiveness of layering in new protocol

development in the network environment, and that performance need not

suffer.

Shell programming, Streams, and the x-kernel are all important examples

of stackable environments. They differ from our work in stackable file sys-

tems primarily in the richness of their services and in the level of perfor-

mance demands. The pipe mechanism provides only a simple byte-stream of

data, leaving it to the application to impose structure. Both Streams and the

x-kernel also place very few constraints or requirements on their interface,

effectively annotating message streams with control information. A stackable

file system, on the other hand, must provide the complete suite of expected

filing operations under reasonably extreme performance requirements.

Caching of persistent data is another major difference between Streams-like

approaches and stackable file systems. File systems store persistent data that

may be repeatedly accessed, making caching of frequently accessed data both

possible and necessary. Because of the performance differences between

cached and noncached data, file caching is mandatory in production systems.

Network protocols operate strictly with transient data, and so caching issues

need not be addressed.

6.2 Object-Orientation and Stacking

Strong parallels exist between “object-oriented design techniques and stack-

ing. Object-oriented design is frequently characterized by strong data encap-

sulation, late binding, and inheritance. Each of these has a counterpart in
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stacking. Strong data encapsulation is required; without encapsulation one

cannot manipulate layers as black boxes. Late binding is analogous to run-

time stack configuration. Inheritance parallels a layer providing a bypass

routine; operations inherited in an object-oriented system would be bypassed

through a stack to the implementing layer.

Stacking differs from object-oriented design in two broad areas. First,

object-orientation is often associated with a particular programming lan-

guage. Such languages are typically general purpose, while stackable filing

can be instead tuned for much more specific requirements. For example,

languages usually employ similar mechanisms (compilers and linkers) to

define a new class of objects and to instantiate individual objects. In a

stackable filing environment, however, far more people will configure (instan-

tiate) new stacks than will design new layers. As a result, special tools exist

to simplify this process.

A second difference concerns inheritance. Simple stackable layers can

easily be described in object-oriented terms. For example, the compression

stack of Figure 3 can be thought of as a compression subclass of normal files;

similarly, a remote-access layer could be described as a subclass of “files.” But

with staking it is not uncommon to employ multiple remote-access layers. It

is less clear how to express this characteristic in traditional object-oriented

terms.

6.3 Modular File Systems

Sun’s vnode interface [Kleinman 1986] has served as a foundation for our

stackable file-systems work. Section 2 compares stackable filing and the

standard vnode interface. We build upon its abstractions and approach to

modularity to provide stackable filing.

The standard vnode interface has been used to provide basic file-system

stacking. Sun’s loopback and translucent file systems [Hendricks 1990] and

early versions of the Ficus file system were all built with a standard vnode

interface. These implementations highlight the primary differences between

the standard vnode interface and our stackable environment; with support

for extensibility and explicit support for stacking, the UCLA interface is

significantly easier to employ (see Section 5.2.1).

6.4 Rosenthal’s Stackable Interface

Rosenthal [1990] also recently explored stackable filing, Although conceptu-

ally similar to our work, the approaches differ with regard to stack con@-ura-

tion, stack view consistency, and extensibility.

Stack configuration in Rosenthal’s model is accomplished by two new

operations, push and pop. Stacks are configured on a file-by-file basis with

these operations, unlike our subtree granularity configuration. Per-file config-
uration allows additional configuration flexibility, since arbitrary files can be

independently configured. However, this flexibility complicates the task of

maintaining this information; it is not clear how current tools can be applied

to this problem. A second concern is that these new operations are specialized
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for the construction of linear stacks. Push and pop do not support more

general stack fan-in and fan-out.

Rosenthal’s stack model requires that all users see an identical view of

stack layers; dynamic changes of the stack by one client will be perceived by

all other clients. As a result, it is possible to push a new layer on an existing

stack and to have all clients immediately begin using the new layer. In

principle, one might dynamically add and remove a measurements layer

during file use. This approach also can be used to implement mounts as a

new vnode pushed over the mount point.

However, it is not clear that this facility is widely needed. Bec~tise stack

layers typically have semantic content, a client will expect stack contents to

remain unchanged during use. Consider a compression layer. Clearly, if it

were used to write the file, the corresponding decompression service needs to

be employed to read the data. This suggests that a more global dynamic

change may not be necessary and, to the extent that it adds complexity and

overhead, may be undesirable.

In addition, ensuring that all stack clients agree on stack construction has

a number of drawbacks. As discussed in Section 3.3, access to different stack

layers is often useful for special tasks such as backup, debugging, and remote

access. Such diverse access is explicitly prohibited if only one stack view is

allowed. Ensuring a common stack top also requires very careful locking in a

multiprocessor implementation, at some performance cost. Since the UCLA

interface does not enforce atomic stack configuration, it does not share this

overhead.

The most significant problem with Rosenthal’s method of dynamic stacking

is that for many stacks there is no well-defined notion of “top-of-stack.”

Stacks with fan-in have multiple stack tops. Encryption is one service

requiring fan-in with multiple stack “views” (see Section 3.3). Rosenthal’s

guarantee of a single-stack view for all stack users does not make sense with

multiple stack tops. Furthermore, with transport layers, the correct stack top

could be in another address space, making it impossible to keep a top-of-stack

pointer. For all of these reasons, our stack model explicitly permits different

clients to access the stack at different layers. 14

A final difference between Rosenthal’s vnode interface and the UCLA

interface concerns extensibility. Rosenthal discussed the use of versioning

layers to map between different interfaces. While versioning layers work well

to map between pairs of layers with conflicting semantics, the number of
mappings required grows exponentially with the number of changes, making

this approach unsuitable for wide-scale, third-party change. A more general

solution to extensibility is preferable, in our view.

7. CONCLUSION

The focus of this work is to improve the file-system development process. This

has been approached in several ways. Stacking provides a framework allow-

14While Rosenthal’s model can be extended to support nonlinear stacking [UNIX International

Stackable Files Working Group 1992], the result is, in effect, two different “stacking” methods.
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ing reuse of existing filing services. Higher-level services can be built quickly

by leveraging the body of existing file systems; improved low-level facilities

can immediately have a wide-reaching impact by replacing existing services.

Formal mechanisms for extensibility provide a consistent approach to export

new services, even from lower layers of a sophisticated stack. When these

facilities are provided in an address-space-independent manner, this frame-

work enables a number of new development approaches.

Widespread adoption of a framework such as that described in this paper

will permit independent development of filing services by many parties, while

individual developers can benefit from the ability to leverage others’ work

while moving forward independently. By opening this field previously largely

restricted to major operating-systems vendors, it is hoped that the industry

as a whole can progress forward more rapidly.
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