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Abstract

Filing services have experienced a number of innovations

in recent years, but many of these promising ideas have

failed to enter into broad use. One reason is that cur-

rent �ling environments present several barriers to new

development. For example, �le systems today typically

stand alone instead of building on the work of others,

and support of new �ling services often requires changes

which invalidate existing work.

Stackable �le system design addresses these issues in

several ways. Complex �ling services are constructed

from layer \building blocks", each of which may be pro-

vided by independent parties. There are no syntactic

constraints to layer order, and layers can occupy di�er-

ent address spaces, allowing very 
exible layer con�g-

uration. Independent layer evolution and development

is supported by an extensible interface bounding each

layer.

This paper discusses stackable layering in detail and

presents design techniques it enables. We describe an

implementation providing these facilities that exhibits

very high performance. By lowering barriers to new

�ling design, stackable layering o�ers the potential of

broad third party �le system development not feasible

today.
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1 Introduction

File systems represent one of the most important as-
pects of operating system services. Traditionally, the
�le system has been tightly integrated with the operat-
ing system proper. As a result, the evolution of �ling
services has been relatively slow. For example, the pri-
mary �le system in Unix

1 systems today, called UFS,
is basically the Berkeley Fast File System introduced al-
most a decade ago. The situation for �ling in proprietary
operating systems is similar. The MVS catalog system,
for example, has seen little architectural change in over
a decade and a half. This state of a�airs exists despite
the fact that there are numerous improvements that are
well known and have been constructed in one context
or another. By contrast, applications software in many
areas has evolved much more rapidly, giving far more
bene�t to users. This sti
ing of innovation and inhibi-
tion of evolution has kept a variety of bene�ts from users
and has caused application developers such as database
builders to provide their own �ling services inside their
applications software at considerable expense and with-
out much generality.

There are several reasons why this unappealing situ-
ation persists. First, it is very di�cult for anyone other
than a major system vendor to introduce a �le system
service or incremental improvement into an operating
system. There is no well de�ned interface to employ.
Despite the fact that in a few systems, like Unix, there
is a coarse grain interface (the Virtual File System, or
VFS) by which an entire �le system can be installed, in
practice this fact has not worked well. VFS is in
exible
in addressing the range of issues, so most vendors have
extended it in incompatible ways. Further, any real �le
system is a complex service that requires successful solu-
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tion to a variety of functional requirements, and is thus
a daunting e�ort when viewed in its entirety. Since �ling
is such a key part of an operating system, with so much
dependent on it, excellent performance is critical. Also,
the impact of an error in the �ling system's logic can be
quite devastating, as it is usually responsible for all of
the persistent storage in the computer system.

In addition, the �le service must interact on an in-
timate basis with other core operating system services.
For example, there is considerable motivation to arrange
for the �le service and the operating system's virtual
memory manager to share management of pages; per-
haps with a single bu�er pool.

In the face of these observations, it is not surprising
then that a �le system, once operational and deployed,
is not changed for a long time.

Despite these problems, a great deal of bene�t would
accrue if it were possible to add �le system services to
an existing system in a very simple manner, analogous
to the way that an additional service is obtained at the
user level merely by adding another application. That is,
the set of user services are not provided by a monolithic
program, but by a large number of individually devel-
oped packages, many of which today can exchange data
with one another in a straightforward way. In the per-
sonal computer arena, a user may select the services he
wishes, acquire appropriate \shrink-wrap software" at
a local store, and install it himself. This situation has
provided an explosion of services at a far faster rate, for
example, than on mainframe systems, where the process
is traditionally considerably more cumbersome.

We believe that a similar situation would bene�t �ling
services a great deal. Suppose it were just as straightfor-
ward to construct independently, or obtain and install
packages for such services as:
� fast physical storage management
� extended directory services
� compression and decompression
� automatic encryption and decryption
� cache performance enhancement
� remote access services
� selective �le replication
� undo and undelete
� transactions

with assurance that they would work together e�ec-
tively. Then, we contend, the available services would be
much richer, particular solutions would be much more
widely available, and evolution would be far more rapid.
In addition, the wide variety of expensive and confusing
ad hoc solutions employed today would not occur2.

2Consider for example the grouping facility in MS-Windows.
It is in e�ect another directory service, on top of and independent

The goal of the research reported in this paper is to
contribute towards making it as easy to add a function to
a �le system in practice as it is to install an application
on a personal computer.

To do so, it is necessary to provide an environment in
which �le system fragments can be easily and e�ectively
assembled, and for which the result makes no compro-
mises in functionality or performance. The environment
must be extensible so that its useful lifetime spans gen-
erations of computer systems. Continued successful op-
eration of modules built in the past must be assured.
Multiple third party additions must be able to coexist in
this environment, some of which may provide unforseen
services.

The impact of such an environment can be consider-
able. For example, many recognize the utility of micro-
kernels such as Mach or Chorus. Such systems, however,
address the structure of about 15% of a typical operat-
ing system, compared to the �ling environment, which
often represents 40% of the operating system.

This paper describes an interface and framework to
support stackable �le system development. This frame-
work allows new layers to build on the functionality of
existing services while allowing all parties to gradually
grow and evolve the interface and set of services. Unique
characteristics of this framework include the ability of
layers in di�erent address spaces to interact and for lay-
ers to react gracefully in the face of change.

Actual experience with software environments is an
important test of their utility. For this reason much
of the body of this paper is accompanied by examples
drawn from the Unix system where these experiences
were obtained. Our work draws on earlier research with
stream protocols [10] �le system modularity [7], and
object-oriented design (see Section 6.2), as well as frag-
ments of ideas in a variety of other referenced work.
The experiences and application of these principles to
a complex interface controlling access to persistent data
di�erentiates this work from that which has come before.

1.1 Organization of the paper

This paper �rst examines the evolution of �le system
development. We then consider the essential character-
istics of a stackable �le system and discuss how direct
support for stacking can enable new approaches to �le
system design. An implementation of this framework is
next examined, focusing on the elements of �ling unique
to stacking. We follow with an evaluation of this imple-
mentation, examining both performance and usability.

of the underling MS-DOS directory system. It provides services
that would not have been easy to incorporate into the underlying
�le system in an upward compatible fashion.
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Finally, we consider similar areas of operating systems
research to place this work in context.

2 File System Design

Many new �ling services have been suggested in recent
years. The introduction presented a certainly incom-
plete list of nine such services, each of which exists to-
day in some form. This section compares alternative
implementation approaches for new services, examining
characteristics of each that hinder or simplify develop-
ment.

2.1 Traditional Design

A �rst approach to providing new �ling functionality
might be to modify an existing �le system. There are
several widely available �le systems, any of which can be
modi�ed to add new features. While beginning with an
existing implementation can speed development, \stan-
dard" services have frequently evolved signi�cantly since
their initial implementation. Supporting new capabili-
ties across a dozen di�erent platforms may well mean
a dozen separate sets of modi�cations, each nearly as
di�cult as the previous. Furthermore, it is often di�-
cult to localize changes; veri�cation of the modi�ed �le
system will require examination of its entire implemen-
tation, not just the modi�cations. Finally, although �le
systems may be widely used, source code for a particu-
lar system may be expensive, di�cult, or impossible to
acquire. Even when source code is available, it can be
expected to change frequently as vendors update their
system.

Standard �ling interfaces such as the vnode inter-
face [7] and NFS [13] address some of these issues. By
de�ning an \air-tight" boundary for change such inter-
faces avoid modi�cation of existing services, preventing
introduction of bugs outside new activity. Yet, by em-
ploying existing �le systems for data storage, basic �ling
services do not need to be re-implemented. NFS also al-
lows �le systems to be developed at the user-level, sim-
plifying development and reducing the impact of error.

Use of standard interfaces introduces implementation
problems of their own. The interface is either evolving or
static. If, like the vnode interface, it evolves to provide
new services and functionality, compatibility problems
are introduced. A change to the vnode interface requires
corresponding changes to each existing �ling service, to-
day.

Compatibility problems can be avoided by keeping
the interface static, as with NFS. While this approach
improves portability, it becomes di�cult to provide new

services cleanly. If protocol change is not allowed then
new services must either be overloaded on existing fa-
cilities or employ a parallel interface. Finally, NFS-like
RPC interfaces to user-level services burden the concept
of modularity with particular choices of process execu-
tion and protection. A naive approach can easily in-
terpose repeated data copies between the hardware and
the user. Although performance can be improved by
in-kernel caching [14], portability is reduced and the re-
sult is not fully satisfactory. Finally, even with careful
caching, the cost of layer crossings is often orders of mag-
nitude greater than subroutine calls, thus discouraging
the use of layering for structuring and re-use.

2.2 Stackable Design

Stackable �le systems construct complex �ling services
from a number of independently developed layers, each
potentially available only in binary form. New services
are provided as separate layers; the layer division pro-
vides a clear boundary for modi�cations. Errors can be
then isolated to the current layer or an invalid imple-
mentation of the inter-layer interface by another layer.
Figures 1 through 5 (discussed further in the following
sections) illustrate how stacking can be used to provide
services in a variety of environments. Stacking is actu-
ally somewhat of a misnomer, since non-linear \stacks"
such as those of Figures 3 and 4 should be common; we
retain the term for historic reasons.

Layers are joined by a symmetric interface; syntacti-
cally identical above and below. Because of this symme-
try there are no syntactic restrictions in the con�gura-
tion of layers. New layers can be easily added or removed
from a �le system stack, much as Streams modules can
be con�gured onto a network interface. Such �ling con-
�guration is simple to do; no kernel changes are required,
allowing easy experimentation with stack behavior.

Because new services often employ or export addi-
tional functionality, the inter-layer interface is extensi-

ble. Any layer can add new operations; existing layers
adapt automatically to support these operations. If a
layer encounters an operation it does not recognize, the
operation can be forwarded to a lower layer in the stack
for processing. Since new �le systems can support oper-
ations not conceived of by the original operating system
developer, unconventional �le services can now be sup-
ported as easily as standard �le systems.

The goals of interface symmetry and extensibility
may initially appear incompatible. Con�guration is
most 
exible when all interfaces are literally syntacti-
cally identical|all layers can take advantage of the same
mechanisms. But extensibility implies that layers may
be semantically distinct, restricting how layers can be
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combined. Semantic constraints do limit layer con�gu-
rations, but sections 4.2 and 4.4 discuss how layers may
provide reasonable default semantics in the face of ex-
tensibility.

Address space independence is another important
characteristic of stackable �le system development. Lay-
ers often execute in a single protection domain, but there
is considerable advantage to making layers also able to
run transparently in di�erent address spaces. Whether
or not di�erent layers exist in the same address space
should require no changes to the layer and should not
a�ect stack behavior. New layers can then be devel-
oped at user-level and put into the kernel for maximum
performance.

A transport layer bridges the gap between address
spaces, transferring all operations and results back and
forth. Like the inter-layer interface, a transport layer
must be extensible, to support new operations automat-
ically. In this way, distributed �ling implementations
�t smoothly into the same framework, and are a�orded
the same advantages. More importantly, the transport
layer isolates the \distributed" component of the stack-
ing and its corresponding performance impact. Stack
calls between layers in a single address space, the statis-
tically dominate case, can then operate in an extremely
rapid manner, avoiding distributed protocols such as
argument marshaling. The interface has been devel-
oped to enable absolutely minimumcrossing cost locally,
while still maintaining the structure necessary for ad-
dress space independence.

This stacking model of layers joined by a symmet-
ric but extensible �ling interface, constrained by the re-
quirements of address space independence, the binary-
only environment of kernels, and the overriding demand
for absolutely minimal performance impact, represents
the primary contribution of this work. The next sec-
tion discusses approaches to �le system design that are
enabled or facilitated by the stacking model.

3 Stackable Layering

Techniques

This section examines in detail a number of di�erent
�le system development techniques enabled or simpli�ed
by stackable layering.

3.1 Layer Composition

One goal of layered �le system design is the construc-
tion of complex �ling services from a number of simple,
independently developed layers. If �le systems are to
be constructed from multiple layers, one must decide
how services should be decomposed to make individual

user

OS

UFS

compression
     layer

Figure 1: A compression service stacked over a Unix �le
system.

components most reusable. Our experience shows that
layers are most easily reusable and composable when
each encompasses a single abstraction. This experience
parallels those encountered in designing composable net-
work protocols in the x-kernel [5] and tool development
with the Unix shells [9].

As an example of this problem in the context of �le
system layering, consider the stack presented in Figure 1.
A compression layer is stacked over a standard Unix �le
system (UFS); the UFS handles �le services while the
compression layer periodically compresses rarely used
�les.

A compression service provided above the Unix di-
rectory abstraction has di�culty e�ciently handling �les
with multiple names (hard links). This is because the
UFS was not designed as a stackable layer; it encom-
passes several separate abstractions. Examining the
UFS in more detail, we see at least three basic abstrac-
tions: a disk partition, arbitrary length �les referenced
by �xed names (inode-level access), and a hierarchical
directory service. Instead of a single layer, the \UFS
service" should be composed of a stack of directory, �le,
and disk layers. In this architecture the compression
layer could be con�gured directly above the �le layer.
Multiply-named �les would no longer be a problem be-
cause multiple names would be provided by a higher-
level layer. One could also imagine re-using the direc-
tory service over other low level storage implementa-
tions. Stacks of this type are show in Figure 2.

3.2 Layer Substitution

Figure 2 also demonstrates layer substitution. Because
the log structured �le system and the UFS are seman-
tically similar, the compression layer can stack equally
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Figure 2: A compression layer con�gured with a mod-
ular physical storage service. Each stack also uses a
di�erent �le storage layer (UFS and log structured lay-
out).

well over either. Substitution of one for the other is
possible, allowing selection of low level storage to be in-
dependent of higher-level services. This ability to have
\plug-compatible" layers not only supports higher-level
services across a variety of vendor customized storage
facilities, but it also supports the evolution and replace-
ment of the lower layers as desired.

3.3 Non-linear Stacking

File system stacks are frequently linear; all access pro-
ceeds from the top down through each layer. However,
there are also times when non-linear stacks are desirable.

Fan-out occurs when a layer references \out" to mul-
tiple layers beneath it. Figure 3 illustrates how this
structure is used to provide replication in Ficus [2].

Fan-in allows multiple clients access to a particular
layer. If each stack layer is separately named, it is possi-
ble for knowledgeable programs to choose to avoid upper
stack layers. For example, one would prefer to back up
compressed or encrypted data without uncompressing
or decrypting it to conserve space and preserve privacy
(Figure 4). This could easily be done by direct access
to the underlying storage layer. Network access of en-
crypted data could also be provided by direct access
to the underlying encrypted storage, avoiding clear-text

user

 Ficus
logical

OS

remote
access

  Ficus
physical

UFS UFS

  Ficus
physical

Figure 3: Cooperating Ficus layers. Fan-out allows the
logical layer to identify several replicas, while a remote
access layer is inserted between cooperating Ficus layers
as necessary.

transfer over the network.

3.4 Cooperating Layers

Layered design encourages the separation of �le systems
into small, reusable layers. Sometimes services that
could be reusable occur in the middle of an otherwise
special purpose �le system. For example, a distributed
�le system may consist of a client and server portion,
with a remote access service in-between. One can en-
vision several possible distributed �le systems o�ering
simple stateless service, exact Unix semantics, or even
�le replication. Each might build its particular seman-
tics on top of an \RPC" remote access service, but if
remote access is buried in the internals of each speci�c
�le system, it will be unavailable for reuse.

Cases such as these call for cooperating layers. A
\semantics-free" remote access service is provided as a
reusable layer, and the remainder is split into two sep-
arate, cooperating layers. When the �le system stack
is composed, the reusable layer is placed between the
others. Because the reusable portion is encapsulated as
a separate layer, it is available for use in other stacks.
For example, a new secure remote �ling service could
be built by con�guring encryption/decryption layers
around the basic transport service.
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program

UFS

compression
     layer

user

OS

Figure 4: Access through the compression layer provides
users transparently uncompressed data. Fan-in allows a
backup program to directly access the compressed ver-
sion.

An example of the use of cooperating layers in the
Ficus replicated �le system [2] is shown in Figure 3. The
Ficus logical and physical layers correspond roughly to a
client and server of a replicated service. A remote access
layer is placed between them when necessary.

3.5 Compatibility with Layers

The 
exibility stacking provides promotes rapid inter-
face and layer evolution. Unfortunately, rapid change
often rapidly results in incompatibility. Interface change
and incompatibility today often prevent the use of ex-
isting �ling abstractions [15]. A goal of our design is to
provide approaches to cope with interface change in a
binary-only environment.

File system interface evolution takes a number of
forms. Third parties wish to extend interfaces to provide
new services. Operating system vendors must change in-
terfaces to evolve the operating system, but usually also
wish to maintain backwards compatibility. Stackable
layering provides a number of approaches to address the
problems of interface evolution.

Extensibility of the �le system interface is the pri-
mary tool to address compatibility. Any party can add
operations to the interface; such additions need not in-
validating existing services. Third party development is
facilitated, gradual operating system evolution becomes
possible, and the useful lifetime of a �ling layer is greatly
increased, protecting the investment in its construction.

Layer substitution (see Section 3.2) is another ap-
proach to address simple incompatibilities. Substitution
of semantically similar layers allows easy adaption to dif-

ferences in environment. For example, a low-level stor-
age format tied to particular hardware can be replaced
by an alternate base layer on other machines.

Resolution of more signi�cant problems may employ
a compatibility layer. If two layers have similar but not
identical views of the semantics of their shared inter-
face, a thin layer can easily be constructed to map be-
tween incompatibilities. This facility could be used by
third parties to map a single service to several similar
platforms, or by an operating system vendor to provide
backwards compatibility after signi�cant changes.

A still more signi�cant barrier is posed by di�erent
operating systems. Although direct portability of lay-
ers between operating systems with radically di�erent
system services and operation sets is di�cult, limited
access to remote services may be possible. Transport
layers can bridge machine and operating system bound-
aries, extending many of the bene�ts of stackable layer-
ing to a non-stacking computing environment. NFS can
be thought of as a widely used transport layer, avail-
able on platforms ranging from personal computers to
mainframes. Although standard NFS provides only core
�ling services, imparts restrictions, and is not extensi-
ble, it is still quite useful in this limited role. Section 5.3
describes how this approach is used to make Ficus rep-
lication available on PCs.

3.6 User-level Development

One advantage of micro-kernel design is the ability to
move large portions of the operating system outside of
the kernel. Stackable layering �ts naturally with this
approach. Each layer can be thought of as a server, and
operations are simply RPC messages between servers.
In fact, new layer development usually takes this form
at UCLA (Figure 5). A transport layer (such as NFS)
serves as the RPC interface, moving all operations from
the kernel to a user-level �le system server. Another
transport service (the \u-to-k layer") allows user-level
calls on vnodes that exist inside the kernel. With this
framework layers may be developed and executed as user
code. Although inter-address space RPC has real cost,
caching may provide reasonable performance for an out-
of-kernel �le system [14] in some cases, particularly if
other characteristics of the �ling service have inherently
high latency (for example, hierarchical storage manage-
ment).

Nevertheless, many �ling services will �nd the cost of
frequent RPCs overly expensive. Stackable layering of-
fers valuable 
exibility in this case. Because �le system
layers each interact only through the layer interface, the
transport layers can be removed from this con�guration
without a�ecting a layer's implementation. An appro-
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Figure 5: User-level layer development via transport lay-
ers.

priately constructed layer can then run in the kernel,
avoiding all RPC overhead. Layers can be moved in and
out of the kernel (or between di�erent user-level servers)
as usage requires. By separating the concepts of modu-
larity from address space protection, stackable layering
permits the advantages of micro-kernel development and
the e�ciency of an integrated execution environment.

4 Implementation

The UCLA stackable layers interface and its environ-
ment are the results of our e�orts to tailor �le system
development to the stackable model. Sun's vnode inter-
face is extended to provide extensibility, stacking, and
address-space independence. We describe this imple-
mentation here, beginning with a summary of the vnode
interface and then examining important di�erences in
our stackable interface.

4.1 Existing File System Interfaces

Sun's vnode interface is a good example of several \�le
system switches" developed for the Unix operating sys-
tem [7, 11]. All have the same goal, to support multi-
ple �le system types in the same operating system. The
vnode interface has been quite successful in this respect,
providing dozens of di�erent �ling services in several ver-
sions of Unix.

The vnode interface is a method of abstracting the
details of a �le system implementation from the major-
ity of the kernel. The kernel views �le access through

/
vmunix

man

dev
usr

lib

Figure 6: A namespace composed of two subtrees.

two abstract data types. A vnode identi�es individual
�les. A small set of �le types is supported, including reg-
ular �les, which provide an uninterpreted array of bytes
for user data, and directories, which list other �les. Di-
rectories include references to other directories, forming
a hierarchy of �les. For implementation reasons, the di-
rectory portion of this hierarchy is typically limited to
a strict tree structure.

The other major data structure is the vfs, represent-
ing groups of �les. For con�guration purposes, sets of
�les are grouped into subtrees (traditionally referred to
as �le systems or disk partitions), each corresponding to
one vfs. Subtrees are added to the �le system namespace
by mounting.

Mounting is the process of adding new collections
of �les into the global �le system namespace. Fig-
ure 6 shows two subtrees: the root subtree, and an-
other attached under /usr. Once a subtree is mounted,
name translation proceeds automatically across sub-
tree boundaries, presenting the user with an apparently
seamless namespace.

All �les within a subtree typically have similar char-
acteristics. Traditional Unix disk partitions correspond
one-to-one with subtrees. When NFS is employed, each
collection of �les from a remote machine is assigned a
corresponding subtree on the local machine. Each sub-
tree is allowed a completely separate implementation.

Data encapsulation requires that these abstract data
types for �les and subtrees be manipulated only by a
restricted set of operations. The operations supported
by vnodes, the abstract data type for \�les", vary ac-
cording to implementation (see [7] and [6] for semantics
of typical operations).

To allow this generic treatment of vnodes, binding
of desired function to correct implementation is delayed
until kernel initialization. This is implemented by asso-
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ciating with each vnode type an operations vector iden-
tifying the correct implementation of each operation for
that vnode type. Operations can then be invoked on a
given vnode by looking up the correct operation in this
vector (this mechanism is analogous to typical imple-
mentations of C++ virtual class method invocation).

Limited �le system stacking is possible with the stan-
dard vnode interface using the mount mechanism. Sun
Microsystems' NFS [13], loopback, and translucent [3]
�le systems take this approach. Information associated
with the mount command identi�es the existing stack
layer and where the new layer should be attached into
the �ling name space.

4.2 Extensibility in the UCLA Interface

Accommodation of interface evolution is a critical prob-
lem with existing interfaces. Incompatible change and
the lock-step release problem [15] are serious concerns
of developers today. The ability to add to the set of �l-
ing services without disrupting existing practices is a re-
quirement of diverse third party �ling development and
would greatly ease vendor evolution of existing systems.

The vnode interface allows that the association of an
operation with its implementation to be delayed until
run-time by �xing the formal de�nition of all permissi-
ble operations before kernel compilation. This conven-
tion prohibits the addition of new operations at kernel
link time or during execution, since �le systems have no
method of insuring interface compatibility after change.

The UCLA interface addresses this problem of exten-
sibility by maintaining all interface de�nition informa-
tion until execution begins, and then dynamically con-
structing the interface. Each �le system provides a list
of all the operations it supports. At kernel initialization,
the union of these operations is taken, yielding the list
of all operations supported by this kernel. This set of
operations is then used to de�ne the global operations
vector dynamically, adapting it to arbitrary additions3.
Vectors customized to each �le system are then con-
structed, caching information su�cient to permit very
rapid operation invocation. During operation these vec-
tors select the correct implementation of each operation
for a given vnode. Thus, each �le system may include
new operations, and new �le systems can be added to a
kernel with a simple recon�guration.

New operations may be added by any layer. Because
the interface does not de�ne a �xed set of operations,

3For simplicity we ignore here the problem of adding new op-
erations at run-time. This \fully dynamic" addition of operations
can be supported with an extension to the approach described
here, although this extension is not part of current implementa-
tions.

a new layer must expect \unsupported" operations and
accommodate them consistently. The UCLA interface
requires a default routine which will be invoked for all
operations not otherwise provided by a �le system. File
systems may simply return an \unsupported operation"
error code, but we expect most layers to pass unknown
operations to a lower layer for processing.

The new structure of the operations vector also re-
quires a new method of operation invocation. The call-
ing sequence for new operations replaces the static o�-
set into the operations vector of the old interface with a
dynamically computed new o�set. These changes have
very little performance impact, an important consider-
ation for a service that will be as frequently employed
as an inter-layer interface. Section 5.1 discusses perfor-
mance of stackable layering in detail.

4.3 Stack Creation

This section discusses how stacks are formed. In the pro-
totype interface, stacks are con�gured at the �lesystem
granularity, and constructed as required on a �le-by-�le
basis.

4.3.1 Stack con�guration

Section 4.1 described how a Unix �le system is built
from a number of individual subtrees by mounting. Sub-
trees are the basic unit of �le system con�guration; each
is either mounted making all its �les accessible, or un-
mounted and unavailable. We employ this same mecha-
nism for layer construction.

Fundamentally, the Unix mount mechanism has two
purposes: it creates a new \subtree object" of the re-
quested type, and it attaches this object into the �le
system name-space for later use. Frequently, creation of
subtrees uses other objects in the �le system. An ex-
ample of this is shown in Figure 7 where a new UFS is
instantiated from a disk device (/layer/ufs/crypt.raw
from /dev/dsk0g).

Con�guration of layers requires the same basic steps
of layer creation and naming, so we employ the same
mount mechanism for layer construction4. Layers are
built at the subtree granularity; a mount command cre-
ating each layer of a stack. Typically, stacks are built
bottom up. After a layer is mounted to a name, the next
higher layer's mount command uses that name to iden-
tify its \lower layer neighbor" in initialization. Figure 8

4Although mount is typically used today to provide \expen-
sive" services, the mechanism is not inherently costly. Mount con-
structs an object and gives it a name; when object initialization
is inexpensive, so is the corresponding mount.
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Figure 7: Mounting a UFS layer. The new layer is in-
stantiated at /layer/ufs/crypt.raw from a disk device
/dev/dsk0g.

continues the previous example by stacking an encryp-
tion layer over the UFS. In this �gure, an encryption
layer is created with a new name (/usr/data) after spec-
ifying the lower layer (/layer/ufs/crypt.raw). Alterna-
tively, if no new name is necessary or desired, the new
layer can be mounted to the same place in the name-
space5. Stacks with fan-out typically require each lower
layer be named when constructed.

Stack construction does not necessarily proceed from
the bottom up. Sophisticated �le systems may create
lower layers on demand. The Ficus distributed �le sys-
tem takes this approach in its use of volumes. Each vol-
ume is a subtree storing related �les. To insure that all
sites maintain a consistent view about the location of the
thousands of volumes in a large scale distributed system,
volume mount information is maintained on disk at the
mount location. When a volume mount point is encoun-
tered during path name translation, the corresponding
volume (and lower stack layers) is automatically located
and mounted.

4.3.2 File-level stacking

While stacks are con�gured at the subtree level, most
user actions take place on individual �les. Files are rep-
resented by vnodes, with one vnode per layer.

When a user opens a new �le in a stack, a vnode is
constructed to represent each layer of the stack. User
actions begin in the top stack layer and are then for-

5Mounts to the same name are currently possible only in
BSD 4.4-derived systems. If each layer is separately named, stan-
dard access control mechanisms can be used to mediate access to
lower layers.

/
usr
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    fs

data

user

ufs
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layerOS

encryption
    layer

UFS
layer

Figure 8: An encryption layer is stacked over a UFS.
The encryption layer /usr/data is instantiated form an
existing ufs layer /layer/ufs/crypt.raw.

warded down the stack as required. If an action requires
creation of a new vnode (such as referencing a new �le),
then as the action proceeds down the stack, each layer
will build the appropriate vnode and return its reference
to the layer above. The higher layer will then store this
reference in the private data of the vnode it constructs.
Should a layer employ fan-out, each of its vnodes will
reference several lower-level vnodes similarly.

Since vnode references are used both to bind layers
and to access �les from the rest of the kernel, no special
provision need be made to perform operations between
layers. The same operations used by the general kernel
can be used between layers; layers treat all incoming
operations identically.

Although the current implementation does not ex-
plicitly support stack con�guration at a per-�le gran-
ularity, there is nothing in the model which prohibits
�ner con�guration control. A typed-�le layer, for exam-
ple, could maintain layer con�guration details for each
�le and automatically create the proper layers when the
�le is opened.

4.3.3 Stack Data Caching

Individual stack layers often wish to cache data, both
for performance and to support memory mapped �les.
If each layer may independently cache data pages, writes
to di�erent cached copies can cause cache aliasing prob-
lems and possible data loss6.

6Imagine modifying the �rst byte of a page in one stack layer
and the last byte of the same page in another layer. Without some
cache consistency policy, one of these modi�cations will be lost.
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A cache manager coordinates page caching in the
UCLA interface. Before any stack layer may cache a
page, it must acquire \ownership" of that page from the
cache manager. The cache manager immediately grants
ownership if the page was not previously cached. If the
page is cached by another layer, the other layer is called
upon to 
ush its cache before ownership is transferred.
This approach is analogous to callbacks or token passing
in a distributed �le system.

A consistent page naming policy is required to iden-
tify cached data pages between di�erent layers. The
cache manager identi�es pages by a pair: [ stack identi-
�er, �le o�set ]. Stack layers that provide semantics that
violate this naming convention are required to conceal
this di�erence from their clients. For example, a repli-
cation service must coordinate stack identi�ers between
its clients, itself, and its several lower layers providing
replica storage. To conceal this fact the replication layer
will claim to be the bottom of stack to its clients. A com-
pression layer presents another example, since �le o�sets
have di�erent meanings above and below a compression
layer. The compression layer will explicitly coordinate
cache behavior above and below itself.

Attribute and name caching by layers present simi-
lar problems; we are currently investigating solutions in
these areas.

4.4 Stacking and Extensibility

One of the most powerful features of a stackable interface
is that layers can be stacked together, each adding func-
tionality to the whole. Often layers in the middle of a
stack will modify only a few operations, passing most to
the next lower layer unchanged. For example, although
an encryption layer would encrypt and decrypt all data
accessed by read and write requests, it may not need
to modify operations for directory manipulation. Since
the inter-layer interface is extensible and therefore new
operations may always be added, an intermediate layer
must be prepared to forward arbitrary, new operations.

One way to pass operations to a lower layer is to im-
plement, for each operation, a routine that explicitly
invokes the same operation in the next lower layer. This
approach would fail to adapt automatically to the ad-
dition of new operations, requiring modi�cation of all
existing layers when any layer adds a new operation.
The creation of new layers and new operations would be
discouraged, and the use of and unmodi�ed third-party
layers in the middle of new stacks would be impossible.

What is needed is a single bypass routine which for-
wards new operations to a lower level. Default routines
(discussed in Section 4.2) provide the capability to have
a generic routine intercept unknown operations, but the

standard vnode interface provides no way to process this
operation in a general manner. To handle multiple op-
erations, a single routine must be able to handle the
variety of arguments used by di�erent operations. It
must also be possible to identify the operation taking
place, and to map any vnode arguments to their lower
level counterparts7.

Neither of these characteristics are possible with ex-
isting interfaces where operations are implemented as
standard function calls. And, of course, support for
these characteristics must have absolutely minimal per-
formance impact.

The UCLA interface accommodates these character-
istics by explicitly managing operations' arguments as
collections. In addition, meta-data is associated with
each collection, providing the operation identity, argu-
ment types, and other pertinent information. Together,
this explicit management of operation invocations allows
arguments to be manipulated in a generic fashion and ef-
�ciently forwarded between layers, usually with pointer
manipulation.

These characteristics make it possible for a simple
bypass routine to forward all operations to a lower layer
in the UCLA interface. By convention, we expect most
�le system layers to support such a bypass routine. More
importantly, these changes to the interface have minimal
impact on performance. For example, passing meta-data
requires only one additional argument to each operation.
See Section 5.1 for a detailed analysis of performance.

4.5 Inter-machine Operation

A transport layer is a stackable layer that transfers op-
erations from one address space to another. Because
vnodes for both local and remote �le systems accept
the same operations, they may be used interchangeably,
providing network transparency. Sections 3.5 and 3.6
describe some of the ways to con�gure layers this trans-
parency allows.

Providing a bridge between address spaces presents
several potential problems. Di�erent machines might
have di�erently con�gured sets of operations. Hetero-
geneity can make basic data types incompatible. Finally,
methods to support variable length and dynamically al-
located data structures for traditional kernel interfaces
do not always generalize when crossing address space
boundaries.

7Vnode arguments change as a call proceeds down the stack,
much as protocol headers are stripped o� as network messages are
processed. No other argument processing is required in order to
bypass an operation between two layers in the same address space.
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For two hosts to inter-operate, it must be possible
to identify each desired operation unambiguously. Well-
de�ned RPC protocols such as NFS insure compatibil-
ity by providing only a �xed set of operations. Since
restricting the set of operations frequently restricts and
impedes innovation, each operation in the UCLA inter-
face is assigned a universally unique identi�er when it
is de�ned8. Inter-machine communication of arbitrary
operations uses these labels to reject locally unknown
operations.

Transparent forwarding of operations across address
space boundaries requires not only that operations be
identi�ed consistently, but also that arguments be com-
municated correctly in spite of machine heterogeneity.
Part of the meta-data associated with each operation
includes a complete type description of all arguments.
With this information, an RPC protocol can marshal
operation arguments and results between heterogeneous
machines. Thus a transport layer may be thought of as
a semantics-free RPC protocol with a stylized method
of marshaling and delivering arguments.

NFS provides a good prototype transport layer. It
stacks on top of existing local �le systems, using the
vnode interface above and below. But NFS was not de-
signed as a transport layer; its supported operations are
not extensible and its implementations de�ne particular
caching semantics. We extend NFS to automatically by-
pass new operations. We have also prototyped a cache
consistency layer providing a separate consistency pol-
icy.

In addition to the use of an NFS-like inter-address
space transport layer we employ a more e�cient trans-
port layer operating between the user and the kernel
level. Such a transport layer provides \system call"
level access to the UCLA interface, allowing user-level
development of �le system layers and providing user-
level access to new �le system functionality. The de-
sire to support a system-call-like transport layer placed
one additional constraint on the interface. Traditional
system calls expect the user to provide space for all re-
turned data. We have chosen to extend this restriction
to the UCLA interface to make the user-to-kernel trans-
port layer universal. In practice this restriction has not
been serious since the client can often make a good esti-
mate of storage requirements. If the client's �rst guess
is wrong, information is returned allowing the client to
correctly repeat the operation.

8Generation schemes based on host identi�er and time-stamp
support fully distributed identi�er creation and assignment. We
therefore employ the NCS UUID mechanism.

4.6 Centralized Interface De�nition

Several aspects of the UCLA interface require precise
information about the characteristics of the operation
taking place. Network transparency requires a complete
de�nition of all operation types, and a bypass routine
must be able to map vnodes from one layer to the next.
The designer of a �le system employing new operations
must provide this information.

Detailed interface information is needed at several dif-
ferent places throughout the layers. Rather than require
that the interface designer keep this information consis-
tent in several di�erent places, operation de�nitions are
combined into an interface de�nition. Similar to the
data description language used by RPC packages, this
description lists each operation, its arguments, and the
direction of data movement. An interface \compiler"
translates this into forms convenient for automatic ma-
nipulation.

4.7 Framework Portability

The UCLA interface has proven to be quite portable.
Initially implemented under SunOS 4.0.3, it has since
been ported to SunOS 4.1.1. In addition, the in-kernel
stacking and extensibility portions of the interface have
been ported to BSD 4.4. Although BSD's namei ap-
proach to pathname translation required some change,
we are largely pleased with our framework's portability
to a system with an independently derived vnode in-
terface. Section 5.3 discusses portability of individual
layers.

While the UCLA interface itself has proven to be
portable, portability of individual layers is somewhat
more di�cult. None of the implementations described
have identical sets of vnode operations, and path-
name translation approaches di�er considerably between
SunOS and BSD.

Fortunately, several aspects of the UCLA interface
provide approaches to address layer portability. Exten-
sibility allows layers with di�erent sets of operations to
co-exist. In fact, interface additions from SunOS 4.0.3
to 4.1.1 required no changes to existing layers. When
interface di�erences are signi�cantly greater, a compat-
ibility layer (see Section 3.5) provides an opportunity
to run layers without change. Ultimately, adoption of a
standard set of core operations (as well as other system
services) is required for e�ortless layer portability.

5 Performance and Experience

While a stackable �le system design o�ers numerous ad-
vantages, �le system layering will not be widely accepted
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if layer overhead is such that a monolithic �le system
performs signi�cantly better than one formed from mul-
tiple layers. To verify layering performance, overhead
was evaluated from several points of view.

If stackable layering is to encourage rapid advance
in �ling, it must have not only good performance, but
it also must facilitate �le system development. Here
we also examine this aspect of \performance", �rst by
comparing the development of similar �le systems with
and without the UCLA interface, and then by examining
the development of layers in the new system.

Finally, compatibility problems are one of the pri-
mary barriers to the use of current �ling abstractions.
We conclude by describing our experiences in applying
stacking to resolve �ling incompatibilities.

5.1 Layer Performance

To examine the performance of the UCLA interface, we
consider several classes of benchmarks. First, we exam-
ine the costs of particular parts of this interface with
\micro-benchmarks". We then consider how the inter-
face a�ects overall system performance by comparing a
stackable layers kernel to an unmodi�ed kernel. Finally
we evaluate the performance of multi-layer �le systems
by determining the overhead as the number of layers
changes.

The UCLA interface measured here was implemented
as a modi�cation to SunOS 4.0.3. All timing data was
collected on a Sun-3/60 with 8 Mb of RAM and two
70 Mb Maxtor XT-1085 hard disks. The measurements
in Section 5.1.2 used the new interface throughout the
new kernel, while those in Section 5.1.3 used it only
within �le systems.

5.1.1 Micro-benchmarks

The new interface changes the way every �le system op-
eration is invoked. To minimize overhead, operation
calls must be very inexpensive. Here we discuss two
portions of the interface: the method for calling an op-
eration, and the bypass routine. Cost of operation invo-
cation is key to performance, since it is an unavoidable
cost of stacking no matter how layers themselves are
constructed.

To evaluate the performance of these portions of the
interface, we consider the number of assembly language
instructions generated in the implementation. While
this statistic is only a very rough indication of true cost,
it provides an order-of-magnitude comparison9.

9Factors such as machine architecture and the choice of com-
piler have a signi�cant impact on these �gures. Many architectures
have instructions which are signi�cantly slower than others. We

We began by considering the cost of invoking an oper-
ation in the vnode and the UCLA interfaces. On a Sun-3
platform, the original vnode calling sequence translates
into four assembly language instructions, while the new
sequence requires six instructions10. We view this over-
head as not signi�cant with respect to most �le system
operations.

We are also interested in the cost of the bypass rou-
tine. We envision a number of \�lter" �le system layers,
each adding new abilities to the �le system stack. File
compression or local disk caching are examples of ser-
vices such layers might o�er. These layers pass many
operations directly to the next layer down, modifying
the user's actions only to uncompress a compressed �le,
or to bring a remote �le into the local disk cache. For
such layers to be practical, the bypass routine must be
inexpensive. A complete bypass routine in our design
amounts to about 54 assembly language instructions11.
About one-third of these instructions are not in the main

ow, being used only for uncommon argument combi-
nations, reducing the cost of forwarding simple vnode
operations to 34 instructions. Although this cost is sig-
ni�cantly more than a simple subroutine call, it is not
signi�cant with respect to the cost of an average �le
system operation. To further investigate the e�ects of
�le system layering, Section 5.1.3 examines the overall
performance impact of a multi-layered �le system.

5.1.2 Interface performance

While instruction counts are useful, actual implementa-
tion performance measurements are essential for evalu-
ation. The �rst step compares a kernel supporting only
the UCLA interface with a standard kernel.

To do so, we consider two benchmarks: the modi�ed
Andrew benchmark [8, 4] and the recursive copy and
removal of large subdirectory trees. In addition, we ex-
amine the e�ect of adding multiple layers in the new
interface.

The Andrew benchmark has several phases, each of
which examines di�erent �le system activities. Unfor-
tunately, the brevity of the �rst four phases relative to
granularity makes accuracy di�cult. In addition, the
long compile phase dominates overall benchmark results.
Nevertheless, taken as a whole, this benchmark proba-
bly characterizes \normal use" better than a �le-system

claim only a rough comparison from these statistics.
10We found a similar ratio on SPARC-based architectures,

where the old sequence required �ve instructions, the new eight.
In both cases these calling sequences do not include code to pass
arguments of the operation.

11These �gures were produced by the Free Software Founda-
tion's gcc compiler. Sun's C compiler bundled with SunOS 4.0.3
produced 71 instructions.
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intensive benchmark such as a recursive copy/remove.

The results from the benchmark can be seen in Ta-
ble 1. Overhead for the �rst four phases averages about
two percent. Coarse timing granularity and the very
short run times for these benchmarks limit their accu-
racy. The compile phase shows only a slight overhead.
We attribute this lower overhead to the fewer number of
�le system operations done per unit time by this phase
of the benchmark.

To exercise the interface more strenuously, we exam-
ined recursive copy and remove times. This benchmark
employed two phases, the �rst doing a recursive copy
and the second a recursive remove. Both phases operate
on large amounts of data (a 4.8 Mb /usr/include di-
rectory tree) to extend the duration of the benchmark.
Because we knew all overhead occurred in the kernel, we
measured system time (time spent in the kernel) instead
of total elapsed time. This greatly exaggerates the im-
pact of layering, since all overhead is in the kernel and
system time is usually small compared to the elapsed,
\wall clock" time a user actually experiences. As can be
seen in Table 2, system time overhead averages about
1.5%.

5.1.3 Multiple layer performance

Since the stackable layers design philosophy advocates
using several layers to implement what has traditionally
been provided by a monolithic module, the cost of layer
transitions must be minimal if it is to be used for seri-
ous �le system implementations. To examine the overall
impact of a multi-layer �le system, we analyze the per-
formance of a �le system stack as the number of layers
employed changes.

To perform this experiment, we began with a kernel
modi�ed to support the UCLA interface within all �le
systems and the vnode interface throughout the rest of
the kernel12. At the base of the stack we placed a Berke-
ley fast �le system, modi�ed to use the UCLA interface.
Above this layer we mounted from zero to six null layers,
each of which merely forwards all operations to the next
layer of the stack. We ran the benchmarks described in
the previous section upon those �le system stacks. This
test is by far the worst possible case for layering since
each added layer incurs full overhead without providing
any additional functionality.

Figure 9 shows the results of this study. Perfor-
mance varies nearly linearly with the number of layers
used. The modi�ed Andrew benchmark shows about

12To improve portability, we desired to modify as little of the
kernel as possible. Mapping between interfaces occurs automati-
cally upon �rst entry of a �le system layer.

0:3% elapsed time overhead per layer. Alternate bench-
marks such as the recursive copy and remove phases,
also show less than 0:25% overhead per layer.

To get a better feel for the costs of layering, we also
measured system time, time spent in the kernel on be-
half of the process. Figure 10 compares recursive copy
and remove system times (the modi�ed Andrew bench-
mark does not report system time statistics). Because
all overhead is in the kernel, and the total time spent
in the kernel is only one-tenth of elapsed time, compar-
isons of system time indicate a higher overhead: about
2% per layer for recursive copy and remove. Slightly
better performance for the case of one layer in Figure 10
results from a slight caching e�ect of the null layer com-
pared to the standard UFS. Di�erences in benchmark
overheads are the result of di�erences in the ratio be-
tween the number of vnode operations and benchmark
length.

We draw two conclusions from these �gures. First,
elapsed time results indicate that under normal load us-
age, a layered �le system architecture will be virtually
undetectable. Also, system time costs imply that during
heavy �le system use a small overhead will be incurred
when numerous layers are involved.

5.2 Layer Implementation E�ort

An important goal of stackable �le systems and this in-
terface is to ease the job of new �le system development.
Importing functionality with existing layers saves a sig-
ni�cant amount of time in new development, but this
savings must be compared to the e�ort required to em-
ploy stackable layers. The next three sections compare
development with and without the UCLA interface, and
examine how layering can be used for both large and
small �ling services. We conclude that layering simpli-
�es both small and large projects.

5.2.1 Simple layer development

A �rst concern when developing new �le system layers
was that the process would prove to be more complicated
than development of existing �le systems. Most other
kernel interfaces do not support extensibility; would this
facility complicate implementation?

To evaluate complexity, we choose to examine the size
of similar layers implemented both with and without
the UCLA interface. A simple \pass-through" layer was
chose for comparison: the loopback �le system under
the traditional vnode interface, and the null layer under
the UCLA interface13 We performed this comparison for

13In SunOS the null layer was augmented to exactly reproduce
the semantics of the loopback layer. This was not necessary in
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Vnode interface UCLA interface Percent
Phase time %RSD time %RSD Overhead
MakeDir 3.3 16.1 3.2 14.8 �3:03
Copy 18.8 4.7 19.1 5.0 1.60
ScanDir 17.3 5.1 17.8 7.9 2.89
ReadAll 28.2 1.8 28.8 2.0 2.13
Make 327.1 0.4 328.1 0.7 0.31
Overall 394.7 0.4 396.9 0.9 0.56

Table 1: Modi�ed Andrew benchmark results running on kernels using the vnode and the UCLA interfaces. Time
values (in seconds, timer granularity one second) are the means of elapsed time from 29 sample runs; %RSD
indicates the percent relative standard deviation (�X=�X). Overhead is the percent overhead of the new interface.
High relative standard deviations for MakeDir are a result of poor timer granularity.

Vnode interface UCLA interface Percent
Phase time %RSD time %RSD Overhead
Recursive Copy 51.57 1.28 52.55 1.11 1.90
Recursive Remove 25.26 2.50 25.41 2.80 0.59
Overall 76.83 0.87 77.96 1.11 1.47

Table 2: Recursive copy and remove benchmark results running on kernels using the vnode and UCLA interfaces.
Time values (in seconds, timer granularity 0:1 second) are the means of system time from twenty sample runs;
%RSD indicates the percent relative standard deviation. Overhead is the percent overhead of the new interface.
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SunOS BSD
loopback-fs 743 lines 1046 lines
null layer 632 lines 578 lines
di�erence 111 lines 468 lines

(15%) (45%)

Table 3: Number of lines of comment-free code needed
to implement a pass-through layer or �le system in
SunOS 4.0.3 and BSD 4.4.

both the SunOS 4.0.3 and the BSD 4.4 implementations,
measuring complexity as numbers of lines of comment-
free C code14.

Table 3 compares the code length of each service in
the two operating systems. Closer examination revealed
that the majority of code savings occurs in the imple-
mentation of individual vnode operations. The null layer
implementsmost operations with a bypass routine, while
the loopback �le system must explicitly forward each
operation. In spite of a smaller implementation, the ser-
vices provided by the null layer are also more general;
the same implementation will support the addition of
future operations.

For the example of a pass-through layer, use of the
UCLA interface enabled improved functionality with a
smaller implementation. Although the relative di�er-
ence in size would be less for single layers providing
multiple services, a goal of stackable layers is to provide
sophisticated services through multiple, reusable layers.
This goal requires that minimal layers be as simple as
possible.

We are currently pursuing strategies to further reduce
the absolute size of null layer code. We expect to unify
vnode management routines for null-derived layers, cen-
tralizing this common service.

5.2.2 Layer development experience

The best way to demonstrate the generality of a new
design technique is through its use by di�erent parties
and in application to di�erent problems.

To gain more perspective on this issue students were
invited to design and develop new layers as part of a
graduate class at UCLA. While all were pro�cient pro-
grammers, their kernel programming experience ranged
from none to considerable. Five groups of one or two
students were each provided with a null layer and a user-
level development environment.

BSD Unix.
14While well commentedcodemight be a better comparison, the

null layer was quite heavily commented for pedagogical reasons,
while the loopback layer had only sparse comments. We chose to
eliminate this variable.

All projects succeeded in provided functioning proto-
type layers. Prototypes include a �le-versioning layer,
an encryption layer, a compression layer, second class
replication as a layer, and an NFS consistency layer.
Other than the consistency layer, each was designed to
stack over a standard UFS layer, providing its service as
an optional enhancement. Self-estimates of development
time ranged from 40 to 60 person-hours. This �gure in-
cluded time to become familiar with the development
environment, as well as layer design and implementa-
tion.

Review of the development of these layers suggested
three primary contributions of stacking to this experi-
ment. First, by relying on a lower layer to provide basic
�ling services, detailed understanding of these services
was unnecessary. Second, by beginning with a null layer,
new implementation required was largely focused on the
problem being solved rather than peripheral framework
issues. Finally, the out-of-kernel layer development plat-
form provided a convenient, familiar environment com-
pared to traditional kernel development.

We consider this experience a promising indication of
the ease of development o�ered by stackable layers. Pre-
viously, new �le system functionality required in-kernel
modi�cation of current �le systems, requiring knowledge
of multi-thousand line �le systems and low-level kernel
debugging tools. With stackable layers, students in the
class were able to investigate signi�cant new �ling ca-
pabilities with knowledge only of the stackable interface
and programming methodology.

5.2.3 Large scale example

The previous section discussed our experiences in stack-
able development of several prototype layers. This sec-
tion concludes with the the results of developing a rep-
licated �le system suitable for daily use.

Ficus is a \real" system, both in terms of size and
use. It is comparable in code size to other production
�le systems (12,000 lines for Ficus compared to 7{8,000
lines of comment-free NFS or UFS code). Ficus has
seen extensive development over its three-year existence.
Its developers' computing environment (including Ficus
development) is completely supported in Ficus, and it is
now in use at various sites in the United States.

Stacking has been a part of Ficus from its very early
development. Ficus has provided both a fertile source of
layered development techniques, and a proving ground
for what works and what does not.

Ficus makes good use of stackable concepts such as
extensibility, cooperating layers, an extensible transport
layer, and out-of-kernel development. Extensibility is
widely used in Ficus to provide replication-speci�c oper-
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ations. The concept of cooperating layers is fundamental
to the Ficus architecture, where some services must be
provided \close" to the user while others must be close
to data storage. Between the Ficus layers, the optional
transport layer has provided easy access to any replica,
leveraging location transparency as well. Finally, the
out-of-kernel debugging environment has proved partic-
ularly important in early development, saving signi�cant
development time.

As a full-scale example of the use of stackable layering
and the UCLA interface, Ficus illustrates the success
of these tools for �le system development. Layered �le
systems can be robust enough for daily use, and the
development process is suitable for long-term projects.

5.3 Compatibility Experiences

Extensibility and layering are powerful tools to address
compatibility problems. Section 3.5 discusses several
di�erent approaches to employ these tools; here we con-
sider how e�ective these tools have proven to be in prac-
tice. Our experiences here primarily concern the use and
evolution of the Ficus layers, the user-id mapping and
null layers, and stack-enabled versions of NFS and UFS.

Extensibility has proven quite e�ective in supporting
\third party"-style change. The �le system layers devel-
oped at UCLA evolve independently of each other and
of standard �ling services. Operations are frequently
added to the Ficus layers with minimal consequences on
the other layers. We have encountered some cache con-
sistency problems resulting from extensibility and our
transport layer. We are currently implementing cache
coherence protocols as discussed in Section 4.3.3 to ad-
dress this issue. Without extensibility, each interface
change would require changes to all other layers, greatly
slowing progress.

We have had mixed experiences with portability be-
tween di�erent operating systems. On the positive side,
Ficus is currently accessible from PCs running MS-DOS
(see Figure 11). The PC runs an NFS implementation
to communicate with a Unix host running Ficus. Fi-
cus requires more information to identify �les than will
�t in an NFS �le identi�er, so we employ an additional
\shrink�d" layer to map over this di�erence.

Actual portability of layers between the SunOS and
BSD stacking implementations is more di�cult. Each
operating system has a radically di�erent set of core
vnode operations and related services. For this reason,
and because of licensing restrictions we chose to reimple-
ment the null and user-id mapping layers for the BSD
port. Although we expect that a compatibility layer
could mask interface di�erences, long term interoper-
ability requires not only a consistent stacking framework

UFS

PC user

 Ficus
logical

  Ficus
physical

   nfs
(server)

   nfs
(client)

shrinkfid
MS−DOS
    PC

Unix
host

Figure 11: Access to Unix-based Ficus from a PC run-
ning MS-DOS. NFS bridges operating system di�er-
ences; the shrink�d layer addresses minor internal in-
terface di�erences.
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but also a common set of core operations and related op-
erating system services.

Finally, we have had quite good success employing
simple compatibility layers to map over minor interface
di�erences. The shrink�d and umap layers each correct
de�ciencies in interface or administrative con�guration.
We have also constructed a simple layer which passes
additional state information closes through extensible
NFS as new operations.

6 Related Work

Stackable �ling environments build upon several bodies
of existing work. Unix shell programming, Streams, and
the x-kernel present examples of stackable development,
primarily applied to network protocols and terminal pro-
cessing. There is also a signi�cant relationship between
stacking and object-oriented design. Sun's vnode inter-
face provides a basis for modular �le systems. Finally,
Rosenthal has presented a prototype stackable �ling in-
terface independently descended from these examples.
We will consider each of these in turn.

6.1 Other Stackable Systems

The key characteristics of a stackable �le system are
its symmetric interface and a 
exible method of joining
these layers. Unix shell programming provides an early
example of combining independently developed modules
with a syntactically identical interface [9].

Ritchie applied these principles to one kernel subsys-
tem with the Streams device I/O system [10]. Ritchie's
system constructs terminal and network protocols by
composing stackable modules which may be added and
removed during operation. Ritchie's conclusion is that
Streams signi�cantly reduce complexity and improve
maintainability of this portion of the kernel. Since their
development Streams have been widely adopted.

The x-kernel is an operating system nucleus designed
to simplify network protocol implementation by imple-
menting all protocols as stackable layers [5]. Key fea-
tures are a uniform protocol interface, allowing arbi-
trary protocol composition; run-time choice of protocol
stacks, allowing selection based on e�ciency; and very
inexpensive layer transition. The x-kernel demonstrates
the e�ectiveness of layering in new protocol development
in the network environment, and that performance need
not su�er.

Shell programming, Streams, and the x-kernel are all
important examples of stackable environments. They
di�er from our work in stackable �le systems primarily

in the richness of their services and the level of perfor-
mance demands. The pipe mechanism provides only a
simple byte-stream of data, leaving it to the application
to impose structure. Both Streams and the x-kernel also
place very few constraints or requirements on their inter-
face, e�ectively annotating message streams with con-
trol information. A stackable �le system, on the other
hand, must provide the complete suite of expected �l-
ing operations under reasonably extreme performance
requirements

Caching of persistent data is another major di�erence
between Streams-like approaches and stackable �le sys-
tems. File systems store persistent data which may be
repeatedly accessed, making caching of frequently ac-
cessed data both possible and necessary. Because of the
performance di�erences between cached and non-cached
data, �le caching is mandatory in production systems.
Network protocols operate strictly with transient data,
and so caching issues need not be addressed.

6.2 Object-orientation and Stacking

Strong parallels exist between \object-oriented" design
techniques and stacking. Object-oriented design is fre-
quently characterized by strong data encapsulation, late
binding, and inheritance. Each of these has a counter-
part in stacking. Strong data encapsulation is required;
without encapsulation one cannot manipulate layers as
black boxes. Late binding is analogous to run-time
stack con�guration. Inheritance parallels a layer provid-
ing a bypass routine; operations inherited in an object-
oriented system would be bypassed through a stack to
the implementing layer.

Stacking di�ers from object-oriented design in two
broad areas. Object-orientation is often associated with
a particular programming language. Such languages are
typically general purpose, while stackable �ling can be
instead tuned for much more speci�c requirements. For
example, languages usually employ similar mechanisms
(compilers and linkers) to de�ne a new class of objects
and to instantiate individual objects. In a stackable �l-
ing environment, however, far more people will con�gure
(instantiate) new stacks than will design new layers. As
a result, special tools exist to simplify this process.

A second di�erence concerns inheritance. Simple
stackable layers can easily be described in object-
oriented terms. For example, the compression stack of
Figure 3 can be thought of as a compression sub-class
of normal �les; similarly a remote-access layer could be
described as a sub-class of \�les". But with stacking it
is not uncommon to employ multiple remote-access lay-
ers. It is less clear how to express this characteristic in
traditional object-oriented terms.
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6.3 Modular File Systems

Sun's vnode interface [7] served as a foundation for our
stackable �le systems work. Section 2 compares stack-
able �ling and the standard vnode interface. We build
upon its abstractions and approach to modularity to
provide stackable �ling.

The standard vnode interface has been used to pro-
vide basic �le system stacking. Sun's loopback and
translucent �le systems [3], and early versions of the
Ficus �le system were all built with a standard vnode
interface. These implementations highlight the primary
di�erences between the standard vnode interface and
our stackable environment; with support for extensibil-
ity and explicit support for stacking, the UCLA interface
is signi�cantly easier to employ (see Section 5.2.1).

6.4 Rosenthal's Stackable Interface

Rosenthal [12] has also recently explored stackable �l-
ing. Although conceptually similar to our work, the ap-
proaches di�er with regard to stack con�guration, stack
view consistency, and extensibility.

Stack con�guration in Rosenthal's model is accom-
plished by two new operations, push and pop. Stacks
are con�gured on a �le-by-�le basis with these opera-
tions, unlike our subtree granularity con�guration. Per-
�le con�guration allows additional con�guration 
exi-
bility, since arbitrary �les can be independently con�g-
ured. However, this 
exibility complicates the task of
maintaining this information; it is not clear how current
tools can be applied to this problem. A second concern
is that these new operations are specialized for the con-
struction of linear stacks. Push and pop do not support
more general stack fan in and fan out.

Rosenthal's stack model requires that all users see
an identical view of stack layers; dynamic changes of
the stack by one client will be perceived by all other
clients. As a result, it is possible to push a new layer on
an existing stack and have all clients immediately begin
using the new layer. In principle, one might dynamically
add and remove a measurements layer during �le use.
This approach also can be used to implement mounts as
a new vnode pushed over the mount point.

However, it is not clear that this facility is widely
needed. Because stack layers typically have semantic
content, a client will expect stack contents to remain
unchanged during use. Consider a compression layer.
Clearly if it were used to write the �le, the corresponding
decompression service needs to be employed to read the
data. This argues that a more global dynamic change
may not be necessary, and, to the extent that it adds
complexity and overhead, undesirable.

In addition, insuring that all stack clients agree on
stack construction has a number of drawbacks. As dis-
cussed in Section 3.3, access to di�erent stack layers is
often useful for special tasks such as backup, debugging,
and remote access. Such diverse access is explicitly pro-
hibited if only one stack view is allowed. Insuring a
common stack top also requires very careful locking in
a multiprocessor implementation, at some performance
cost. Since the UCLA interface does not enforce atomic
stack con�guration, it does not share this overhead.

The most signi�cant problem with Rosenthal's
method of dynamic stacking is that for many stacks
there is no well de�ned notion of \top-of-stack". Stacks
with fan-in have multiple stack tops. Encryption is one
service requiring fan-in with multiple stack \views" (see
Section 3.3). Rosenthal's guarantee of a single stack
view for all stack users does not make sense with mul-
tiple stack tops. Furthermore, with transport layers,
the correct stack top could be in another address space,
making it impossible to keep a top-of-stack pointer. For
all these reasons, our stack model explicitly permits dif-
ferent clients to access the stack at di�erent layers15.

A �nal di�erence between Rosenthal's vnode interface
and the UCLA interface concerns extensibility. Rosen-
thal discusses the use of versioning layers to map be-
tween di�erent interfaces. While versioning layers work
well to map between pairs of layers with con
icting se-
mantics, the number of mappings required grows expo-
nentially with the number of changes, making this ap-
proach unsuitable for wide-scale, third party change. A
more general solution to extensibility is preferable, in
our view.

7 Conclusion

The focus of this work is to improve the �le system de-
velopment process. This has been approached in several
ways. Stacking provides a framework allowing re-use
of existing �ling services. Higher level services can be
built quickly by leveraging the body of existing �le sys-
tems; improved low-level facilities can immediately have
a wide-reaching impact by replacing existing services.
Formal mechanisms for extensibility provide a consis-
tent approach to export new services, even from lower
layers of a sophisticated stack. When these facilities
are provided in an address space independent manner,
this framework enables a number of new development
approaches.

15While Rosenthal's model can be extended to support non-
linear stacking [1], the result is, in e�ect two di�erent \stacking"
methods.
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Widespread adoption of a framework such as that de-
scribed in this paper will permit independent develop-
ment of �ling services by many parties, while individ-
ual developers can bene�t from the ability to leverage
others' work while moving forward independently. By
opening this �eld previously largely restricted to major
operating systems vendors, it is hoped that the industry
as a whole can progress forward more rapidly.
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