
A Layered Approach to File System Development�John S. Heidemann Gerald J. PopekDepartment of Computer ScienceUniversity of California, Los AngelesTechnical Report CSD-910007March 1991AbstractThis paper discusses the stackable layers approach to�le system design. With this approach, a �le systemis constructed from several layers, each implement-ing one portion of the �le system well. Each layeris bounded above and below by an identical interfaceframework. The symmetry of the interface, coupledwith run-time stack de�nition, make layer con�gura-tion
exible and facilitate experimentation and new�le system development.Addition of new �le system functionality to exist-ing environments often requires changes to currentinterfaces. To address this issue, stackable layers arejoined by an extensible interface. Any layer can addto such an interface; existing layers continue to func-tion without modi�cation.Stackable architectures bene�t from new develop-ment techniques. This paper examines developmentmethods unique to stackable systems, and concludeswith an analysis of the performance of layered �lesystems.1 IntroductionThe utility of modular structures in systems softwareis widely recognized. There are the numerous soft-ware development advantages, including ease of de-�This work is sponsored by the Defense Advanced ResearchProjects Agency under contract number F29601-87-C-0072.John Heidemann is also sponsored by a USENIX scholarshipfor the 1990-91 academic year, and Gerald Popek is a�liatedwith Locus Computing Corporation.The authors can be reached at 3804 Boelter Hall,UCLA, Los Angeles, CA, 90024, or by electronic mail tojohnh@cs.ucla.edu or popek@cs.ucla.edu.Revised May 13, 1991.

velopment, testing, and maintenance. Here we wishto concentrate on one important aspect of modulardevelopment, namely the ability of independent par-ties to contribute function and innovation when inter-faces are wisely chosen, generally available and com-patibly maintained. Commonly used operating sys-tems especially bene�t from this practice, since im-provements may be so widely leveraged. If indepen-dent parties can work together e�ectively, then surelysub-groups within a development group are also wellserved.Micro-kernels and protocol stacks are two impor-tant illustrative examples of e�orts to develop suit-able interfaces in Unix. A micro-kernel such asMach [1] or Chorus [11] divides the operating sys-tem into two parts: a core, typically responsible forproviding a virtual memory; and processing service,and the remainder of the operating system servicesthat run within the framework provided by the core.In the case of Mach and Unix, as a �gure of merit,the core is of the order of 15% of the total of theoperating system kernel. This intra-kernel boundaryis an important structuring tool, and may becomewidely available enough that third parties can buildon it. A Mach-style interface however does not setthe structure for the remaining 85%, although betterpractices appear generally encouraged.The formal framework for protocol stacks providedin Unix System V Streams [9] goes a step further byproviding a structure within the network communi-cations software and portions of the device supportof the operating system. The interface among proto-col layers is �xed; the syntax is the same at all layerboundaries. As a result, third parties have success-fully built commercial quality layers that integratewell with other protocol modules. It is not uncom-1

mon for the communications software in the operat-ing system to represent another 15% of the kernel,but in this case with a structure that allows multiple,independent groups to contribute to the communica-tions functions. We believe that this ability is one ofthe reasons whyUnix is a preferred base for network-ing and distributed systems software in engineeringand commercial use1.The value of micro-kernels and protocol stacks isencouraging enough to motivate one to consider anal-ogous e�orts for other parts of the system software.As one examines the services typically provided in anoperating system, the �le system is an obvious can-didate in which to introduce a �rm structure. Today,the entire �le system can be substituted via the Vir-tual File System (VFS) interface, but it is not easy toreplace or enhance separate portions of the �le sys-tem, keeping the physical disk management and in-stalling a new directory layer, for example. Since the�le system can easily compose 25% of the operatingsystem code, and arguably critical and highly visiblecode at that, an internal structure that enables thirdparties to add their value and services could makea major di�erence in the success of the host operat-ing system, and allow rapid evolution in the servicesavailable to users.However, an internal �le system interface is subjectto a number of serious requirements if they are to besuccessful. Most of all, the interface must be very wellde�ned so that independent groups can build theirservices without cross group coordination. Certainlysuch an interface must be extensible, in the sense ofallowing new functions to be added even though oldlayers do not recognize the functions and cannot ex-plicitly handle them. New layers must be easy toadd. Rich
ow of control is needed among modulesto support sophisticated caching strategies. Last, butperhaps most important, the interface must be highlye�cient, as the �le system is often in the \tight loop"of users' computations. A ten percent slow-down inthe �le system due to its composition as a half dozenlayers of software can easily translate to a ten percentslowdown in the system overall, making the approachunacceptable.The research reported in this paper set out to pro-vide a interface within �le system software suitablefor wide and heavy use in demanding situations, butstill maintaining the characteristics mentioned above.We envisioned a situation where a �ling service could1In fact, commercial systems such as Netware-386 haveadopted the Streams framework, presumably for similar rea-sons.

be composed from a number of independent layers,each provided by developers working separately. Ex-amples include physical disk directory management,directory service, selectively replicated �les, �le ver-sions, encryption for secure storage on servers, sin-gle system image synchronization among a group ofworkstations, a compression layer, and a long termcaching service. Each of these examples have beenor are being built as stackable layers using the frame-work described below. One of those cases, replication,is discussed further in a companion paper [7].The body of this paper describes the stackable�ling layers framework; the properties we tried toachieve and why, performance results, remainingwork, and our conclusions from the experience gainedthus far.2 Requirements of a LayeredInterfaceThe success of a �le system interface depends on itsability to promote the growth of future �ling envi-ronments. Based on the experiences of existing �lesystem interfaces and our work with stackable layer-ing, we consider several features critical to a layeredinterface.Extensibility. An interface must be extensi-ble, allowing addition of new operations as needed.Nearly all interfaces must adapt to meet future re-quirements. As an example, the continuous evolu-tion of Sun's vnode interface is described by Rosen-thal [10].Current kernel interfaces discourage evolution. Ad-dition of a new operation often requires entire kernelsource code availability and modi�cations to the im-plementation of existing �le systems. These charac-teristics make it di�cult for third parties to o�er new�le system services, or for several new �le systems tofunction concurrently. Ideally, new �le system func-tions could be added as easily as new device driversare today.Stackablity. File systems frequently implementvery similar abstractions. Most �le systems must co-ordinate disk access or �le and directory allocation,for example.File system module stacking is an e�ective methodof code reuse, employing existing implementations forwell known abstractions. Rather than each �le sys-tem providing all user services with a monolithic im-plementation, separable services are placed in indi-vidual layers. These layers then serve as powerful2

OS

directory
 layer

 file
layer

 disk
layerFigure 1: A simple �le system stack.building blocks for future work. Because layers arebounded by symmetric interfaces, combining layers iseasy. Often new functionality can be achieved sim-ply by slipping a new layer into currently availablestacks.For example, a conventional disk �le system mightbe provided by a stack of three layers. A base layerimplements raw disk access. A middle layer providesinode-level �le support, and the top layer provideshierarchical directory services. Figure 1 illustratessuch a stack. With stackable layering, a comprehen-sive user-centered naming service might replace thehierarchical directory layer while still making use ofthe low-overhead �le access layer, or a compressionlayer might be inserted between the directory and�le layers to provide twice the apparent storage.Support for stacking is an important considerationwhen designing an interface. Although stacking aloneis not di�cult to provide, stacking with an extensi-ble interface requires more care. Consider Figure 1again. If the interface supported by the �le layerwere extended to provide atomic commit, for exam-ple, this interface should be available above the di-rectory layer, even though that layer was completedbefore the commit service was even designed.Well de�ned. Most kernel interfaces are de-scribed only by paper documentation, relying on pro-grammer vigilance about the types and contents ofarguments. For e�ective use of stackable layers, thisapproach is insu�cient. Meta-data about each oper-ation is very important to allow stackable layers to

deal with operations in a generic way. Enough infor-mation should be present to allow a layer to pack-age operations to execute in another address space.All relevant information about an interface should beavailable for layer use at run time.E�ciency. Reuse of layers is enhanced when eachlayer encompasses few abstractions. If layer crossingoverhead is at all signi�cant, modular �ling environ-ments will either su�er serious performance penalties(relative to non-layered environments), or layers willbe combined, making layer reuse more di�cult. Thelayering strategy must be very e�cient so that it doesnot otherwise impact the �le system design.Rich
ow of control. File systems are for themost part passive, responding to user actions. In astackable �le system, user actions can be imagined aspassing down through each layer of the stack for pro-cessing. Occasionally, however, a user's action needsto pass up the stack, or even \sideways" to anotherstack. For example, cache invalidation in a multi-layer system can be viewed as a lower layer calling anupper layer to purge its cached data, and failure re-covery in a distributed system typically requires con-sulting peers of the same logical layer. These actionsdo not proceed naturally down a stack of layers, butinstead naturally progress up and sideways betweenlayers. Providing this kind of interaction within theframework of a �le system interface minimizes thenumber of separate constructs required in develop-ment.Opaqueness. For a �le system interface to be ef-fective, it must have complete control over the statusof the �le system. The remainder of the kernel shouldnot intrude on the private contents of �le system datastructures, but should restrict all interaction to pro-vided operations.Also, the kernel should try not to second guess the�le system. Many optimizations make assumptionsabout the status of the �le system. These optimiza-tions break when confronted with radically new �lesystems.3 A New InterfaceOur original stackable �le system e�orts were builtusing a standard �le system interface. As our workprogressed, we were frustrated by its lack of extensi-bility and its limited support for �le system stacking.To address these issues, we have adopted a new in-terface for our future work.We begin by discussing the vnode interface, a com-mon Unix �le system interface. After reviewing its3

structure, we discuss our modi�cations of this inter-face to provide stacking and extensibility. Finally,we examine the new interface in light of the goals ofSection 2.3.1 The existing interfaceTo meet the demand for several �le systems withinthe same kernel, the �le system switch was developed.Sun's vnode interface [5] is a good example of this ap-proach, separating �le systems from the remainder ofthe kernel with an object-oriented interface. Versionsof the vnode interface are provided in several variantsof Unix, including SunOS, System V Release 4, and4.3-Reno BSD. The interface has been successful insupporting a number of �le systems, including theBerkeley Fast File System, the System V �le system,NFS, and a variety of other �le system services.The vnode interface consists of two primary datastructures. A vfs structure identi�es a \�le system",or subtree of �les, to the operating system. Vnodestructures represent individual �les within each �lesystem. To provide data abstraction, access to thesedata types is restricted to a set of operations2. Byconvention, all �le systems provide the same set ofoperations.The vnode interface supports multiple �le systemimplementations. Although all �le systems providethe same set of operations, each may implement themin di�erent ways. To insure that the correct imple-mentation is invoked for a given vnode, each vnodetype has associated with it an operations vector. Thisvector lists each vnode operation, associating an op-eration with the code which implements it. Oper-ations on a vnode are then invoked by an indirectfunction call through this vector. Arguments to theoperation are simply parameters to this function call.File systems with this interface are con�gured withthe Unix mount mechanism. Mounting is the processof connecting several independent �le system subtreesinto the global �le system name space. Each subtreerepresents a group of �les with similar characteristics,such as �les from a given disk partition or remotehost.Subtrees are made available with the mount sys-tem call. To allow con�guration of di�erent kindsof �le system subtrees, a collection of \private data"speci�c to the involved �le system is included witheach mount system call. For example, a local �le sys-tem would list the disk partition in this private data,2Actually, some public data, such as a type and a referencecount, is directly available for e�ciency. Signi�cant actions areprovided by vnode operations.

and a remote �le system would list the host and pathname of the remote subtree.This mount mechanism has been used to providesome �le system stacking with the standard vnode in-terface. Sun Microsystems' NFS [12], loopback, andtranslucent [2] �le systems take this approach. Theprivate data of the mount command identi�es thelower layer of the stack, the mount command cre-ates the new upper layer and connects it into the �lesystem name space.3.2 The new interfaceOur concern with the existing vnode interface is thatit is not extensible and it does little to facilitate stack-ing. To meet these needs, our new interface incorpo-rates several improvements over the standard inter-face.To provide extensibility, we construct operationsvectors dynamically. In the standard vnode interface,the operations vector is de�ned by convention. All�le systems assume, for example, that the open oper-ation is the �rst, the close operation the second, andso on. The new interface instead constructs opera-tions vectors dynamically when the operating systemis con�gured. To do this the union of all supportedoperations is taken, and each operation is assigneda position in the vector. Then a custom operationsvector is built for each vnode type.With an extensible interface, the complete set ofoperations is not necessarily known when a �le sys-tem is implemented. A �le system must therefore beprepared to handle general operations it does not ex-plicitly implement. In the new interface, each layerprovides a default routine to handle this case. Lay-ers at the base of the stack may log the unknownoperation and return an error as a default. We ex-pect intermediate �le system layers to provide a by-pass routine which will pass unknown operations toa lower layer by default.The default routine must be able to handle manydi�erent operations. The new interface supports thisin two ways. First, rather than passing operation ar-guments as parameters of the subroutine implement-ing the operation, they are grouped into a structure,and a pointer to this structure is passed. This methodallows arguments to be collectively identi�ed by ageneric pointer, and it avoids repeatedly copying ar-guments when passing through several layers of a �lesystem stack.Second, a new parameter is added to each op-eration. This argument contains meta-informationabout the operation: what operation it is, the number4

OS

directory
 layer

 disk
layer

 file
layer

 file
layer

 disk
layer

mirroring
 layer

Figure 2: A tree of �le system layers.and types of its arguments, and so on. This descrip-tion information and the arguments structure extendthe object-oriented style provided by the vnode inter-face to the implementation of the interface itself. Theoriginal interface gave the user the ability to performoperations on a vnode without regard to its type;this modi�cation allows a bypass routine to forwardan operation to a lower level without regard to theoperation involved.Like the standard vnode interface, the new vnodeinterface constructs �le system stacks at the �le sys-tem granularity. A complete �le system stack is builtby creating each layer with a mount command. Eachnew layer is given a name in the �le system namespace, allowing potential user access at that level ofthe stack. This name also serves to identify the layerwhen another layer is mounted above it.File system stacks are not necessarily linear. Treesare also possible, with one �le system presiding overseveral lower layers. Figure 2 shows how a tree of�le systems might be used to provide disk mirroring.Stack creation proceeds as before, except that to cre-ate the mirroring layer, the names of both of its lowerlevel layers must be provided to the mount call.As an example, Figure 3 shows the use of theget-attributes vnode operation in the fstat systemcall. The operation is invoked with the VOP GETATTRmacro. This macro expands to encode the opera-

tion's arguments in a structure and invoke the op-eration indirectly through the operations vector. As-suming the operation is performed on a local disk, theufs getattr routine will be called which performsthe operation and returns the results to the user.3.3 Flow of ControlAs observed earlier, �le systems are usually passive,responding only to operations from the user. Controltypically
ows from the user down through layers ofthe �le system.There are several important applications of �le sys-tems which require a richer
ow of control. Cacheconsistency algorithms in distributed systems makeuse of callbacks, operations invoked on the client bythe server, to inform the client of modi�ed data. Sim-ilarly, consider a consistency layer connecting severalmachines providing single system image semantics forthe shared �le system. Such a layer needs to commu-nicate with the consistency layers of other machines.An RPC protocol is one approach to providing thiskind of non-linear
ow of control. However, ratherthan add another interface to a �le system, it wouldbe attractive to generalize the vnode interface to sup-port non-linear
ow of control. We have considereddi�erent approaches to providing this functionality.Our current method focuses on providing richer
owof control with an NFS-like protocol; we are not en-tirely satis�ed with the degree of transparency thisapproach o�ers.4 Comparison to Other Layer-ing MethodsRitchie introduced the concept of stackable proto-cols with the Streams I/O subsystem [9]. His workdemonstrated the
exibility a symmetric interfaceprovides in protocol con�guration, and has beenwidely adopted in commercial Unix systems.Since that work, the concept of stackable protocolshas been applied more widely to kernel interfaces. In-dependently, Rosenthal has developed a prototype ofthe vnode interface with Streams-like stacking. Thex-kernel has applied the concepts of layered designand late binding to a variety of kernel interfaces. Herewe compare these layered design approaches and thestandard vnode interface to the work described in thispaper.5

struct vnode {int (**v_ops)();...};int vop_getattr_offset;/*set at configuration*/struct vnodeop_desc vop_getattr_desc;struct vop_getattr_args {struct vnodeop_desc *a_desc;struct vnode *a_vp;struct vattr *a_vap;struct ucred *a_cred;};#define USES_VOP_GETATTR \struct vop_getattr_args getattr_a#define VOP_GETATTR(VP,VA,C) \(getattr_a.a_desc=&vop_getattr_desc, \getattr_a.a_vp=(VP), \getattr_a.a_vap=(VA), \getattr_a.a_cred=(C), \(*(VP)->v_ops[vop_getattr_offset])(VP,VA,C))fstat(uap)struct a { int fd; struct stat *buf; } *uap;{ USES_VOP_GETATTR;struct vattr va;vp = FDTOVP(uap->fd);VOP_GETATTR(vp,&va,u.u_cred);vattr_to_stat (va, uap->buf);}ufs_getattr(ap)struct vop_getattr_args *ap;{ struct inode *ip = VTOI(ap->vp);inode_to_vattr(ip, ap->va); /* get stats */}Figure 3: Declarations for the get-attributes vnodeoperation, and its use in the fstat system call (withouterror handling code).

4.1 The standard vnode interfaceThe new interface di�ers from the standard vnode in-terface both in support for extensibility, and facilitiesfor stacking.Most existing vnode interfaces provide no supportfor extensibility. Workstation vendors change the in-terface between releases of the operating system toprovide new �ling facilities; this ability is not avail-able to third parties. The System V Release 4 vnodeinterface acknowledges the need for extension by re-serving extra space in the operations vector. Thisspace is not of general use, however, because no mech-anism is provided to coordinate its use among multi-ple independent software vendors.Support for creating new stacks in the old and newinterfaces is very similar. Both operate on a �le sys-tem granularity with the mount mechanism. Thesupport the new interface o�ers for handling oper-ations in a general way allows the creation of by-pass routines, making long-term stackable develop-ment much easier.4.2 Rosenthal's stackable vnode inter-faceRosenthal [10] has also developed a prototype �le sys-tem supporting vnode stacking. While we share manyof the same goals, our approaches di�er signi�cantlyon several points. Stacking occurs at di�erent gran-ularities, and support for dynamic change of stacksand methods of extensibility di�er.Rosenthal proposes to stack at the vnode granu-larity, rather than the �le system granularity. Hisdesign allows vnodes within the same �le systemto have completely di�erent stacks. Our design in-stead restricts stack composition to a �le system ba-sis where vnodes within the same �le system havesimilar stacks.An ability to con�gure the �ling environment ata �ne granularity is, in principle, desirable. Onecan imagine several �les within the same directory,one compressed, the other encrypted and compressed,and so on. While this
exibility is desirable, it re-quires an underlying �ling system with typed �lesto allow each �le to identify its stack separately.Currently, no such �ling system is widely available.Whether the additional complexity which results canbe managed in practice is not yet clear. This area isan important one for future research.Another important di�erence between our workand Rosenthal's concerns when stacks can be manip-ulated. Rosenthal allows new layers to be pushed6

on an active vnode. User operations are always for-warded to the current top of stack, seeing this newlayer. With our approach, the new layer would begiven a new name in the �le system name space; tosee the new layer, user requests must be directed atthis new name.Rosenthal's approach has the advantage that theuser will see new layers as they are created and addedto the stack, since operations are automatically redi-rected to the stack top. But operations should notalways be redirected. A �le system layer may imple-ment some operations by performing them directlyon the lower layer. These operations cannot be redi-rected. Therefore, two methods to invoke vnode op-erations must be provided: one always going to thestack top, and another without redirection.Like stacks of communications protocols, it is nec-essary to have the \right" collection of �le stack layersin order to successfully manipulate the �ling environ-ment. Generally, the stack used to read a �le musthave the same semantic interpreters in it as thosewhich were used to write the �le in the �rst place. Ifencryption, compression, and an extended directoryservice with encoded attributes were used to write thebits on the disk, then they should typically be usedto read those bits, by default. It is for this reasonthat we chose to use a relatively static con�gurationmethod for building stacks.There are some other advantages that result fromnot pushing and popping stack layers at run time.Since the top of stack does not change, clients whichhave their own pointers to data linked to a vnode atthe top are not disturbed. A good example is thevirtual memory manager of some operating systems,which accesses data through the �le system. Like anyother �le system client, it accesses �les via vnodes atthe top of the stack; but then retains its own refer-ences to pages that belong to the �le represented bythat vnode and linked in memory to it. If the stacktop were changed, all those pointers would have tochange; alternately, the page cache would have to be
ushed3.Introducing such dynamic change into an environ-ment which is typically static should be very care-fully weighed before it is done; surprises often await.Furthermore, we question the persuasiveness of the3Consider the sequence where one reader maps the �le intohis address space, anothermodule is pushed onto the stack, anda subsequent open followed by reads are done. Since pages inthe SunOS virtual memory system are indexed by vnode and�le o�set, the �rst pages will be indexed by one vnode and thelater reads by another. This problem was �rst encountered byRosenthal.

motivations for dynamic layer manipulation.Finally, the approaches to extensibility di�er signif-icantly between Rosenthal's work and ours. Rosen-thal employs a versioning layer to map between oneversion of the vnode interface and another. Such alayer provides a \compatibility mode" for layers us-ing old interface versions until they can be updated.While this method is also possible with our interface,the more gradual interface evolution permitted by ourextensible design provides a much more
exible alter-native.4.3 The x-kernelThe x-kernel [4] is designed around the concept of lay-ered protocols. Although originally focused on net-work protocols, recent work has addressed �le sys-tems as well [8].The scope of the x-kernel work is quite di�erentfrom that of this paper. The x-kernel seeks to pro-vide a complete new kernel environment, while ourwork is targeted speci�cally at the �le system por-tion of existing Unix systems. Because the x-kernelprovides the entire computing environment, it is ableto provide all kernel services with a homogeneous,layered interface.Although the x-kernel provides a number of di�er-ent protocols, it does not address the issue of evolu-tion of individual protocols.5 Experiences in Layered De-signE�ective use of stackable layering bene�ts from tech-niques somewhat di�erent from those used in tradi-tional �le system development. This section outlinessome of the lessons learned in our layer development.5.1 Layer compositionThere are many possible ways to structure a �le sys-tem into layers. While there are no all-encompassingrules for layer selection, layers can be reused most of-ten if each implements one well-de�ned abstraction.Layer design is in this respect similar to design of�lters in the Unix shell.To illustrate this point, we present two examplesof �le system layering. First, consider the standardUnix �le system. It implements three basic abstrac-tions: a �le system (a disk partition), �le level access7

OS

logical
 layer

 file
layer

 disk
layer

transport
 layer

 disk
layer

 file
layerFigure 4: The Ficus stack of layers. The left stackprovides access to a local replica. The right stackshows the addition of a transport layer to allow re-mote replica access.with �xed names (inode-level access), and a hierar-chical directory service. If each of these were sepa-rated into layers, they would be useful for implement-ing other �le systems. There are many �le systems(databases, AFS, or Ficus for example) which wouldenjoy e�cient inode-level �le access without the over-head and complication of directories.The Ficus replicated �le system is a second exam-ple of layered �le system design. Figure 4 shows theconstruction of the Ficus replicated �le service. It iscomposed of two cooperating layers, a logical layerexporting the notion of a highly-available �le, anda physical layer mapping replication to a standardUnix �le system. Between these layers, a transportservice can be inserted to provide access to remotereplicas. The physical layer is actually composed ofseveral services: a facility to support additional �leattributes, one to map low level identi�ers to �les,and support for replication-speci�c issues. One mightimagine improving Ficus performance by replacingthe identi�er mapping facility with inode-level �le ac-cess, and the extended attribute facilities seem a gen-erally useful service. For this to be possible, the sep-arate functions of the physical layer must be isolatedin con�gurable layers. We are interested in divid-

ing this layer into a �le-mapping layer, an extendedattributes layer, and a Ficus-speci�c layer. Two ofthese layers would then be useful in other contexts.5.2 Cooperating layersThe previous section encouraged the separation of �lesystems into small, reusable layers. Sometimes, ser-vices that could be reusable occur in the middle of anotherwise special purpose �le system. For example,a distributed �le system may consist of a client andserver portion, with an RPC service in between. Onecan envision several possible distributed �le systemso�ering simple stateless service, exact Unix seman-tics, or even �le replication. All would have need ofthe RPC service, but such a service would be buriedin the internals of each speci�c �le system, unavail-able for reuse.Cases such as these call for cooperating layers. Thereusable service is built as one layer, and the restis split into two separate, cooperating layers. Whenthe �le system stack is composed, the reusable layer isplaced between the others. Because it is encapsulatedin a separate layer, the reusable layer is available foruse in other stacks. Ficus illustrates this case, placingan optional transport layer between two cooperatinglayers. Further details about the Ficus implementa-tion and use of cooperating layers can be found in[7].5.3 Use of meta-dataMeta-data, information about the operation that istaking place, is an important part of any interface.One important reason why current �le system inter-faces are unsuitable for use in a stackable environ-ment is that they lack necessary meta-data.For a kernel interface, the most important meta-data is the identity of the operation and the types ofits arguments. With this information, implementinga bypass routine or a transport layer becomes possi-ble.As an optimization, it often helps to have meta-data present in several forms. For example, an RPCprotocol may prefer a list of argument types, while forspeed, a bypass routine must quickly access particulararguments. Duplicating this information in di�erentforms improves performance.5.4 Network transparencyA transport layer is a stackable layer which trans-fers operations from one address space to another.8

The object-oriented
avor of this enhanced interfaceallows remote access to be network transparent tothe programmer. Because vnodes for both local andremote �le systems accept the same operations, theprogrammer may use either at any time. This trans-parency allows novel approaches to con�guring layers,and high performance in the local case, as describedin Section 5.5.For this transparency to be preserved with an ex-tensible interface, it must be possible for transportlayers to forward new operations to other addressspaces, just as bypass routines forward operations tolower layers in the same address space.Moving operations between address spaces requiresthat the type of each argument be known so that anetwork RPC protocol can marshal that operationand its arguments. This information is part of themeta-data carried along with each operation, and itmust be described by a formal interface de�nitionsimilar to an RPC interface speci�cation. In additionto the description of arguments and operations, eachoperation must be assigned a unique name for uni-versal identi�cation, similar to RPC protocol num-bers. Thus a transport layer may be thought of as asemantics-free RPC protocol with a stylized methodof marshaling and delivering arguments.NFS provides a good prototype transport layer.Rather than providing a monolithic networked �lesystem, it layers on top of existing local �le systems.Internally, NFS uses a vnode-like RPC interface. ButNFS was not designed to serve as a transport layer.Instead, it was specialized for remote �le access. Itsstateless service complicates its use as a semantics-free transport layer. To address the protocol's lack ofextensibility, we have modi�ed it and included sup-port for a bypass routine.5.5 Uses of transport layersTransport layers are a powerful component in theconstruction of distributed �le systems. With thecon�guration
exibility of a stackable environment,transport layers have many additional applications.In the role of remote access, they provide a bridgebetween hardware and software incompatibilities. Inaddition, transport layers can be used to gain manyof the advantages of a micro-kernel approach to op-erating system design.Transport layers can provide access to resourceswhich would not otherwise be available. For exam-ple, a new �le system might exist only for a particu-lar operating system. By mounting a transport layerabove that �le system, most features of the new ser-

OS

development
 layer

lower
layer

 nfs
(server)

user level

kernel level

 nfs
(client)

user

system
calls

nfs
protocol

utok
layerFigure 5: User-level layer development via transportlayers.vice become available to all machines supporting thetransport layer. Similarly, a machine lacking hard-ware resources such as disk space could make use ofanother machine for data storage by placing a trans-port layer just above the disk-level �le system layer.Stackable layering is a natural complement to amicro-kernel design. Each layer can be thought of asa server, and operations are simplyRPC messages be-tween servers. In fact, new layer development usuallytakes this form at UCLA. Figure 5 shows this strat-egy. The NFS-based transport layer serves as theRPC interface, moving all operations from the kernelto a user-level �le system server. Another transportservice, the utok (user to kernel) layer, allows user-level calls on lower-level vnodes which exist inside thekernel. As a result, layers may be developed and exe-cuted as user code. Although this RPC has real cost,careful caching can provide good performance for anout-of-kernel �le system [13].But stackable layering o�ers a valuable comple-ment to this approach. Because �le system layerseach interact only through the layer interface, thetransport layers can be removed from this con�gura-tion without a�ecting a layer's implementation. The�le system can then run in the kernel, avoiding allRPC overhead. Thus with stackable layering, the ad-vantages of micro-kernel development are availablewhen needed, but the performance overhead of RPCmay be removed for production use.9

6 PerformanceThe interface described in this paper has been im-plemented as a modi�cation of SunOS 4.0.3. Twoimplementations have been made, one converting theentire kernel to use the new interface, another usingthe new interface only for new �le systems and sup-porting the old interface throughout the rest of thekernel.To examine the performance of the new interface,we consider several classes of benchmarks. First, wecarefully examine the costs of particular parts of thenew interface with \micro-benchmarks". We thenconsider how the interface modi�cations a�ect overallsystem performance by comparing a modi�ed kernelwith an unmodi�ed kernel. To determine the cost ofmultiple layers with the new interface, we evaluatethe performance of a �le system stack composed ofdi�ering numbers of layers. Finally, we compare theimplementation e�ort of similar �le systems underboth the new and the old interfaces.All timing data was collected on a Sun-3/60 with8 Mb of RAM and two 70 Mb Maxtor XT-1085 harddisks. The measurements in Section 6.2 used the newinterface throughout the new kernel, while those inSection 6.3 used it only within �le systems.6.1 Micro-benchmarksParts of the new vnode interface are called at leastonce per vnode operation. To minimize the total costof an operation, these must be carefully optimized.Here we discuss two such portions of the interface:the method for calling an operation, and the bypassroutine.To evaluate the performance of these portions ofthe interface, we consider the number of assemblylanguage instructions generated in the implementa-tion. While this statistic is only a very rough indi-cation of true cost, it provides an order-of-magnitudecomparison4.We began by considering the cost of invoking anoperation in the old and the new interfaces. Figure 3shows the C code for calling an operation. On a Sun-3platform, the original vnode calling sequence trans-lates into four assembly language instructions, whilethe new sequence requires six instructions5. We view4Factors such as machine architecture and the choice ofcompiler have a signi�cant impact on these �gures. Manyarchitectures have instructions which are signi�cantly slowerthan others. We claim only a rough comparison from thesestatistics.5We found a similar ratio on SPARC-based architectures,

this overhead as not signi�cant with respect to most�le system operations.We are also interested in the cost of the bypassroutine. We imagine a number of \�lter" �le systemlayers, each adding characteristics to the �le systemstack. File compression or local disk caching are ex-amples of services such layers might o�er. These lay-ers pass some operations directly to the next layerdown, modifying the user's actions only to uncom-press a compressed �le, or to bring a remote �le intothe local disk cache. For such layers to be practical,the bypass routine must be inexpensive. A completebypass routine in our design amounts to about 54assembly language instructions6. About one-third ofthese instructions are used only for uncommon argu-ment combinations, reducing the cost of forwardingsimple vnode operations to 34 instructions. Althoughthis cost is signi�cantly more than a simple subrou-tine call, it is not signi�cant with respect to the costof an average �le system operation. To further inves-tigate the e�ects of �le system layering, Section 6.3examines the overall performance impact of a multi-layered �le system.6.2 Interface performanceEncouraged by results of the previous section, we an-ticipated low overhead for our stackable �le system.Our �rst goal was to compare a kernel supportingonly the new interface with a standard kernel.To examine overall performance, we consider twobenchmarks: the modi�ed Andrew benchmark [6, 3]and recursive copy and remove of large subdirectorytrees. In addition, we examined the e�ect of addingmultiple layers in the new interface.The Andrew benchmark has several phases, each ofwhich examines di�erent �le system activities. Unfor-tunately, we were frustrated by two shortcomings ofthis benchmark. The �rst four phases are very brief,making accurate evaluation of these phases di�cult.While the �nal compile phase is relatively long, onmany machines compilation is compute-bound, ob-scuring the impact of �le system performance.The results from the benchmark can be seen inTable 1. Overhead for the �rst four phases averagesslightly more than one percent. The very short runtimes for these benchmarks limit their accuracy, dueto timing granularity. The compile phase shows onlywhere the old sequence required �ve instructions, the neweight.6These �gures were produced by the Free Software Foun-dation's gcc compiler. Sun's C compiler bundled withSunOS 4.0.3 produced 71 instructions.10

a slight overhead. We attribute this lower overheadto the fewer number of �le system operations doneper unit time by this phase of the benchmark.To get a more accurate assessment of performanceof the new interface, we examined an additionalbenchmark. These benchmark employed two phases,the �rst doing a recursive copy and the second arecursive remove. Both phases operate on largeamounts of data (a 4.8 Mb /usr/include directorytree) to extend the duration of the benchmark. Be-cause we knew all overhead occurred in the kernel, wemeasured system time alone to exaggerate the impactof layering. Our �rst additional phase recursivelycopies this data, the second recursively removes it.As can be seen in Table 2, overhead averages about1.5%.6.3 Multiple layer performanceSince the stackable layers design philosophy advo-cates using several layers to implement what has tra-ditionally been provided by a monolithic module, thecost of layer transitions must be minimal if it is to beused for serious �le system implementations. To ex-amine the overall impact of a multi-layer �le system,we analyze the performance of a �le system stack asthe number of layers employed changes.To perform this experiment, we began with a kernelmodi�ed to support the new interface within all �lesystems and the old interface throughout the rest ofthe kernel7. At the base of the stack we placed aconventional Unix �le system, modi�ed to use thenew interface. Above this layer we mounted fromzero to six null layers, each which merely forwards alloperations to the next layer of the stack. Upon those�le system stacks we ran the benchmarks described inthe last section. This test illustrates the worst case,since each layer provides full layer overhead withoutany additional functionality.Figure 6 shows the results of this study. As canbe seen, performance varies nearly linearly with thenumber of layers used. The modi�ed Andrew bench-mark shows about 0:3% elapsed time overhead perlayer. Alternate benchmarks such as the recursivecopy and remove phases, also show less than 0:25%overhead per layer. To get a better feel for the costs oflayering, we also measured system time, time spentin the kernel on behalf of the process. Because alloverhead is in the kernel, and the total time spent7To improve portability, we desired to modify as little ofthe kernel as possible. Mapping between interfaces occurresautomatically when the �le system is entered.

in the kernel is only one-tenth of total time, com-parisons of system time indicate a higher overhead:about 2% per layer for recursive copy and remove.These overheads were computed by least squares �tsto the sample data, yielding good correlations of 0.9for the system time benchmarks, and 0.7 to 0.9 forelapsed times. Di�erences in benchmark overheadsare the result of di�erences in the ratio between thenumber of vnode operations and benchmark length.Elapsed time results indicate that under normal loadusage, a layered �le system architecture will be vir-tually undetectable. System time costs imply thatduring heavy �le system use a small overhead will beincurred when numerous layers are involved.6.4 Layer implementation e�ortThe goal of stackable �le systems and this interfaceis to ease the job of developing new �le systems.Clearly, importing functionality from existing layerssaves a signi�cant amount of time. Ficus, for ex-ample, borrows network transport and low-level diskstorage facilities from pre-existing �le systems, forgreat savings in implementation e�ort. In additionto code reuse, we would hope that implementing in astackable �le system framework is as easy as buildingconventional �le systems. To address these questions,we compare two very similar �le systems as developedunder each interface.The loopback �le system in SunOS duplicates aportion of the �le system name space. Modi�cationsto either copy of the name space appear in the other.This �le system is provided in SunOS 4.0 under thevnode interface.Our null layer, implemented under the new inter-face, provides very similar characteristics. The nulllayer forwards all operations to the next layer downthe stack. Since each layer has a name visible in the�le system name space, both the null layer and theunderlying �le system are accessible to the user.Table 3 shows the number of lines of C code neededto implement the loopback �le system and the nulllayer. The amount of support code needed for eachimplementation is very similar, as are implementa-tions of the mount protocol. The null layer imple-mentation for vnode operations is much shorter, how-ever, since the loopback �le system requires specialcase code to pass each operation down. The servicesthe null layer provides are also more general, sincethe same implementation will handle all future addedoperations.For the example of a pass-through layer, the null�le system layer provides better functionality with11

Old interface New interface PercentPhase time %RSD time %RSD OverheadMakeDir 3.3 16.0 3.2 14.8 -2.76Copy 18.8 4.6 19.1 5.0 1.92ScanDir 17.2 5.2 17.8 7.9 3.13ReadAll 28.3 2.0 28.8 2.0 1.70Make 327.6 0.4 328.1 0.7 0.15Overall 395.2 0.4 396.9 0.9 0.45Table 1: Modi�ed Andrew benchmark results running on kernels using the old and new vnode interfaces.Time values (in seconds, accurate to one second) are the means of elpased time from thirty sample runs;%RSD indicates the percent relative standard deviation (�X=�X); overhead is the percent overhead of thenew interface. High relative standard deviations for MakeDir are a result of poor timer granularity.Old interface New interface PercentPhase time %RSD time %RSD OverheadRecursive Copy 51.57 1.28 52.54 1.38 1.88Recursive Remove 25.26 2.50 25.48 2.74 0.89Overall 76.83 0.87 78.02 1.33 1.55Table 2: Recursive copy and remove benchmark results running on kernels using the old and new vnodeinterfaces. Time values (in seconds, accurate to one-tenth of a second) are the means of system timefrom twenty sample runs; %RSD indicates the percent relative standard deviation; overhead is the percentoverhead of the new interface.
-4-202468
10121416

0 1 2 3 4 5 6TotalOverhead(percent) Number of layers
cp sys 3

3 3 3 3 3 3 3least squares �trm sys 44 4 4 4 4 4 4least squares �tMAB elapsed 22 2 2 2 2 2 2cp elapsed 33 3 3 3 3 3 3rm elapsed 44 4 4 4 4 4 4Figure 6: Performance of �le system stacks with varying numbers of layers under the new interface. Recursivecopy and recursive remove system times and overall modi�ed Andrew benchmark (MAB) times are shown.Dotted lines indicate linear least squares approximations of the data. Each data point is the mean of fourruns. 12

loopback nullmodule �le system layernode.h 10 12info.h 25 37subr.c 200 199vfsops.c 135 173vnodeops.c 373 211total 743 632node.h de�nes the vnode structure for that �le system.info.h provides declarations for mounting.subr.c implements node management and other utility routines.vfsops.c implements the �le system mount protocol.vnodeops.c provides all vnode operations.Table 3: Number of lines of code needed to implement a pass-through layer or �le system.fewer lines of code. We expect this trend to beeven more marked in more sophisticated �le systems,where the ability to reuse existing functionality with-out source code changes o�ers a clear savings in im-plementation e�ort.7 Future WorkCurrent �le systems su�er from their monolithic ori-gins. Using stackable layers, a more modular ap-proach is appropriate. Existing �le systems should bebroken into several layers, each of which implementsonly one abstraction. The UFS itself could be dividedinto several layers, one implementing the concept ofa disk partition, one �les, and another directories.New �le systems built on top of others will oftenneed to extend the data structures of lower levels.NFS, for example, needed to add a generation num-ber to the inode, and replication in Ficus requiresadditions to the superblock, the inode, and the di-rectory entry. When a new �le system abstraction isimplemented, its corresponding data structure mustbe extensible to allow future layers to build on it.We are currently investigating methods to make �lesystem data structures more extensible.The vnode interface is a kernel interface for �les.Its counterpart for whole �le systems is the VFS in-terface. Modi�cations to make the VFS interface ex-tensible need to be examined. One approach underconsideration is to make the �le system vfs data struc-ture a special type of vnode, thereby taking advan-tage of the mechanisms for vnode extensibility.Finally, it is important to note that there are cur-rently many slightly di�erent versions of the vnodeinterface. Standardization on some core set of vnode

operations is important to widespread acceptance ofthe interface. Extensibility mechanisms described inthis paper can be used to provide features not widelyagreed upon.8 ConclusionsWe have been surprised at how successful stackablelayers seem to be in achieving the goals we set outfor them. Initial experience suggests that they dorepresent an interface well enough and extensiblyenough de�ned that third parties can indeed buildvalue added layers for new �ling services, or replaceservices built in this manner by others. Gone for ex-ample are the problems of coordinating addition ofnew operations, or worrying about unimplementedservices.A wide variety of �ling services have been providedunder this interface. That these services have beenbuilt by very small groups or even individuals, some-times in a very short period of time, demonstratesthe power of this approach to enable the user's �l-ing environment to evolve rapidly and see rich im-provements in functionality. At the same time, muchheavier enhancements employing extensive cross sys-tem �ling protocols have been equally well provided,as discussed in a companion paper [7].The retro�tting of stackable layers to Unix sys-tems already equipped with the VFS interface hasbeen reasonably straightforward. No part of the ker-nel needed modi�cation other than that directly re-lated to the �le system interface. While this fact mayreveal as much about the quality of the rest of thesystem's modular construction as the de�nition andimplementation of stackable layers, it is reassuring13

nevertheless.The decision to limit ourselves to stacks that arenot dynamically built, but instead are constructedat system startup, is somewhat more controversial.Certainly that is a limitation, as discussed earlier,but it led to such simpli�cation that on balance webelieve that it is the right choice at this point.We chose to overload the mount function to con-struct a �le system stack. This choice was made be-cause it allowed incremental development of conceptsand made use of already existing naming facilities.However, this use of mount for two concepts com-plicates the user view. Furthermore, the ability tocustomize the �ling environment on a �le-by-�le ba-sis may be desirable. We intend to re-examine thisdecision.Most of all, the fact that for most benchmarks ofinterest, a �rst implementation can perform as well asthis one does gives promise that wide use of modular�ling structures is indeed feasible, and in light of theearlier observations, especially desirable.AcknowledgmentsThe authors would like to thank Tom Page and Rich-ard Guy for their contributions to the concept ofstackable �le systems. They would also like to ac-knowledge the contributions of Yu Guang Wu for im-plementation of a �rst version of the null layer, andDieter Rothmeier and Wai Mak for their contribu-tions to the Ficus �le system.References[1] Mike Accetta, Robert Baron, David Golub, Rich-ard Rashid, Avadis Tevanian, and Michael Young.Mach: A new kernel foundation for UNIX develop-ment. In USENIX Conference Proceedings, pages 93{113. USENIX, June 1986.[2] David Hendricks. A �lesystem for software devel-opment. In USENIX Conference Proceedings, pages333{340. USENIX, June 1990.[3] John Howard, Michael Kazar, Sherri Menees, Da-vid Nichols, Mahadev Satyanarayanan, Robert Side-botham, and Michael West. Scale and performancein a distributed �le system. ACM Transactions onComputer Systems, 6(1):51{81, February 1988.[4] Norman C. Hutchinson, Larry L. Peterson, Mark B.Abbott, and Sean O'Malley. RPC in the x-Kernel:Evaluating new design techniques. In Proceedings ofthe Twelfth Symposium on Operating Systems Prin-ciples, pages 91{101. ACM, December 1989.

[5] S. R. Kleiman. Vnodes: An architecture for multiple�le system types in Sun UNIX. In USENIX Con-ference Proceedings, pages 238{247. USENIX, June1986.[6] John K. Ousterhout. Why aren't operating systemsgeting faster as fast as hardware? In USENIX Con-ference Proceedings, pages 247{256. USENIX, June1990.[7] Thomas W. Page, Jr., Richard G. Guy, Gerald J.Popek, and John S. Heidemann. Architecture of theFicus scalable replicated �le system. Technical Re-port CSD-910005, University of California, Los An-geles, March 1991.[8] Larry L. Peterson, Norman C. Hutchinson, Sean W.O'Malley, and Herman C. Rao. The x-Kernel: Aplatform for accessing Internet resources. IEEEComputer, 23(5):23{33, May 1990.[9] Dennis M. Ritchie. A stream input-output sys-tem. AT&T Bell Laboratories Technical Journal,63(8):1897{1910, October 1984.[10] David S. H. Rosenthal. Evolving the vnode interface.In USENIX Conference Proceedings, pages 107{118.USENIX, June 1990.[11] Marc Rozier, Vadim Abrossimov, Fran�cois Armand,Ivan Boule, Michel Gien, Marc Guillemont, Fr�ed�ericHerrmann, Claude Kaiser, Sylvain Langlois, PierreL�eonard, and Will Neuhauser. Overview of the cho-rus distributed operating system. Technical ReportCS/TR-90-25, Chorus syst�emes, April 1990.[12] Russel Sandberg, David Goldberg, Steve Kleiman,Dan Walsh, and Bob Lyon. Design and implementa-tion of the Sun Network File System. In USENIXConference Proceedings, pages 119{130. USENIX,June 1985.[13] David C. Steere, James J. Kistler, and M. Satyanara-yanan. E�cient user-level �le cache management onthe Sun vnode interface. In USENIX ConferenceProceedings, pages 325{332. USENIX, June 1990.
14

