Partial Reachability in the Internet Core: Definition, Measurement, and Application (Invited Talk)

Technical Report on arXiv, released 2025-11-24

John Heidemann

University of Southern California
Information Sciences Institute and Thomas Lord Department of Computer Science
Marina del Rey, California, USA
johnh@isi.edu

This work is the abstract and slides of an invited keynote talk presented at ACM AINTEC 2025, the Asian Internet Engineering Conference at the Dr. Andrew L. Tan Data Science Institute, De La Salle University, Bonifacio Global City, Taguig, Philippines, on 2025-11-25.

TALK ABSTRACT

Routing strives to connect the Internet, but failures can result in **partial reachability** in the Internet. This talk identifies partial reachability as an underappreciated area. We will show that partial reachability affects as many users as Internet outages, sometimes persisting for days or years.

We suggest three steps are critical to better understand partial reachability: We first present a **conceptual definition of the Internet core**, since, surprisingly, today there is *no clear definition of what the Internet is*. This definition is technical and neutral, based on connectivity, not authority. It enables us to understand *peninsulas* as persistent partial reachability, and *islands*, where networks are disconnected from the core.

Second, these definitions allow us to realize **algorithms that detect peninsulas and islands** reusing data from existing measurement systems that provide Internet-wide observations over years from thousands of observers.

Finally, we show **important practical applications of this work**. Our new analysis shows that partial reachability affects even more users than outages. We show how to improve RIPE Atlas sensitivity by removing measurement error and persistent reachability problems that otherwise that otherwise overwhelm individual events. Finally, we use our neutral definition to inform Internet policy, including questions about Internet sovereignty.

MORE INFORMATION

For more information, please see our technical reports "What Is The Internet? Partial Connectivity of the Internet Core" [1] and "Reasoning About Internet Connectivity" [2].

SPEAKER BIOGRAPHY

John Heidemann is the chief scientist for the Network and Cybersecurity Division of the University of Southern California/Information Sciences Institute (USC/ISI) and a research professor in the Thomas Lord Department of Computer Science at USC. At ISI he leads the ANT (Analysis of Network Traffic) Lab, developing privacy-aware methods to measure the Internet and improve network reliability, security, protocols, and critical services.

ACKNOWLEDGMENTS

This work was done in collaboration with Guillermo Baltra, Yuri Pradkin, and Tarang Saluja.

This work is supported in part by NSF contract PIMAWAT/CNS-2319409, BRIPOD/OAC-2530698, and DARPA contract AQUARIUS.

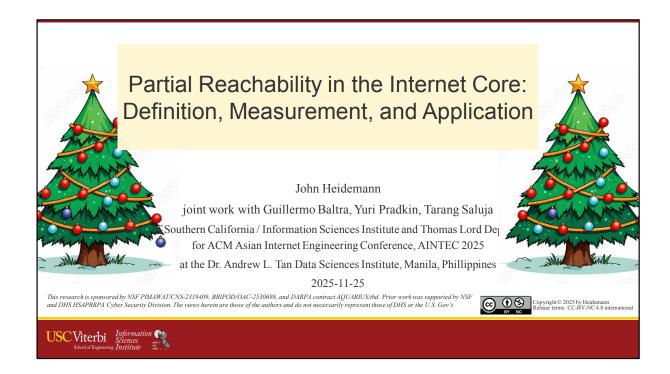
This work is copyright (C) 2025 by John Heidemann and is released under a CC BY-NC-SA: Creative Commons Attribution-NonCommercial-ShareAlike license.

REFERENCES

- Guillermo Baltra and John Heidemann. 2023. Detecting Partial Reachability in the Internet Core. Technical Report arXiv:2107.11439v4. USC/Information Sciences Institute. https://doi.org/10.48550/2107.11439v4
- [2] Guillermo Baltra, Tarang Saluja, Yuri Pradkin, and John Heidemann. 2024. Reasoning About Internet Connectivity. Technical Report arXiv:2407.14427 [cs.NI]. arXiv. https://ant.isi.edu/%7ejohnh/PAPERS/ Baltra24b.html

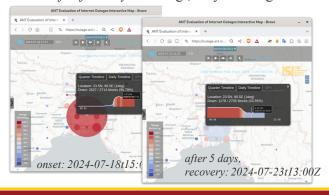
Partial Reachability in the Internet Core: Definition, Measurement, and Application

John Heidemann


joint work with Guillermo Baltra, Yuri Pradkin, Tarang Saluja
U. of Southern California / Information Sciences Institute and Thomas Lord Dept. of CS
for ACM Asian Internet Engineering Conference, AINTEC 2025

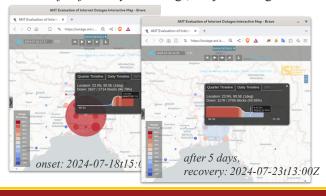
2025-11-25

This research is sponsored by NSF PIMAWAT/CNS-2319409, BRIPOD/OAC-2530698, and DARPA contract AQUARIUS/tbd. Prior work was supported by NS and DHS HSAPRRPA Cyber Security Division. The views herein are those of the authors and do not necessarily represent those of DHS or the U.S. Gov't.



Outage detection finds things... Bangladesh's Civil Unrest, July 2024

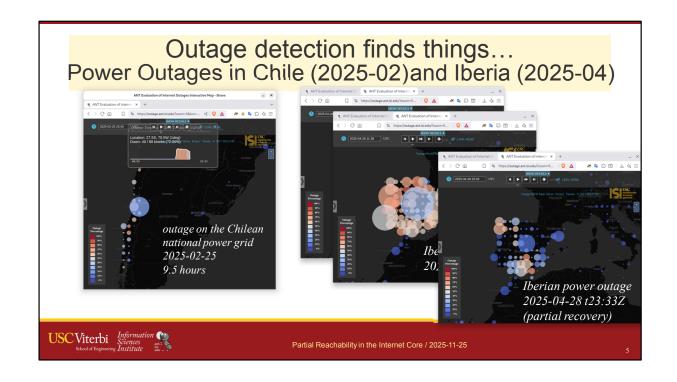
In July 2024, a new law led to civil unrest and Bangladesh shut down their Internet *for five days*. In Aug., they did it again when the gov't resigned.


USC Viterbi Information Sciences School of Engineering Institute

Partial Reachability in the Internet Core / 2025-11-25

3

Outage detection finds things... Bangladesh's Unrest Change of Gov't, Aug. 2024


In July 2024, a new law led to civil unrest and Bangladesh shut down their Internet *for five days*. In Aug., they did it again when the gov't resigned.

USC Viterbi Information Sciences School of Engineering Institute

Partial Reachability in the Internet Core / 2025-11-25

Outage Detection (Un)Certainty

- this data is from **Trinocular**
 - 6 sites: LA, Denver, Washington/DC, Tokyo, Netherlands, Greece
- tested against several other systems
- and tested against itself... we compare the 6 sites
 - we vote to get a single answer
- but is it *correct*?
 - ...but what about when our six sites don't agree?
 - measurement error? bugs?
 - or something else?

Partial Reachability in the Internet Core / 2025-11-25

We Need Better Theory to Explain Partial Outages

- outage detection has struggled with partial outages for years...
 - ThunderPing (2011) hosed state—some pings work and some don't'
 - Trinocular (2013): precision improvement small diffs are timing
 - CDN (Richter, 2018): maybe it's outages in part of the /24?
 - Trinocular (2019): majority voting for long disagreements
 - other systems ignore conflicting data
- common problem:
 no theory explaining disagreement in reachability observations

Partial Reachability in the Internet Core / 2025-11-25

7

Premise 1: Partial Reachability is Real

- agreements are typical
- some disagreement is measurement error
 - ex: timing variation between sites (transient disagreement)

time	truth	A	В	belief
1:00	up	+		up
1:01	down			up (*wrong!)
1:02	down		-	conflicting
1:11	down	-		down (aggreeing)
1:13	down		-	down
1:22	down	-		down
1:24	down		-	down

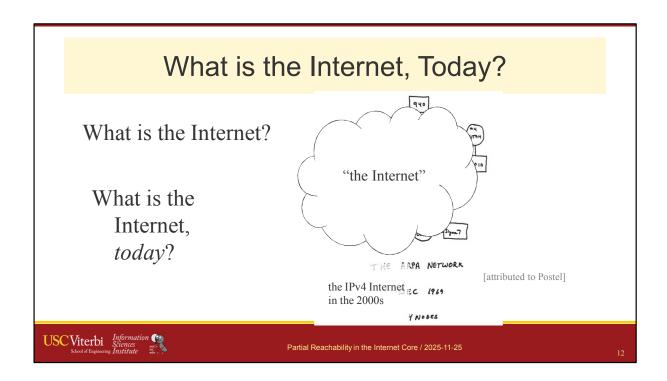
Partial Reachability in the Internet Core / 2025-11-25

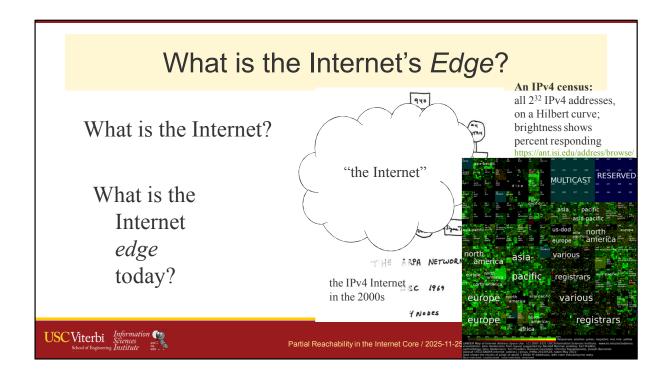
Premise 1: Partial Reachability is Real

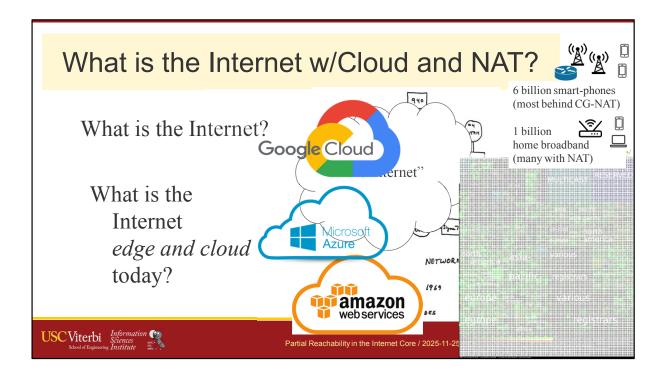
- agreements are typical
- some disagreement is measurement error
 - ex: timing variation between sites (transient disagreement)
- but persistent disagreement is real:
 - => partial reachability in the Internet

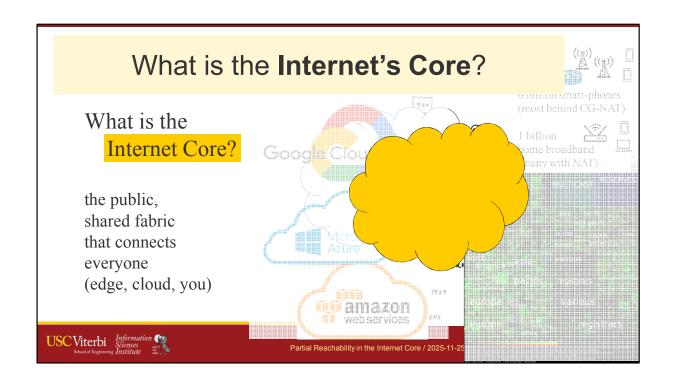
12 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2				
time	truth	A	В	belief
1:00	up	+		up
1:01	partial			true partial reach.
1:02	partial		+	
1:11	partial	-		confirmed partial
1:13	partial		+	
1:22	partial	-		
1:24	partial		+	
	time 1:00 1:01 1:02 1:11 1:13 1:22	time truth 1:00 up 1:01 partial 1:02 partial 1:11 partial 1:13 partial 1:22 partial	time truth A 1:00 up + 1:01 partial 1:02 partial 1:11 partial - 1:13 partial 1:22 partial -	time truth A B 1:00 up + 1:01 partial 1:02 partial + 1:11 partial - 1:13 partial + 1:22 partial -

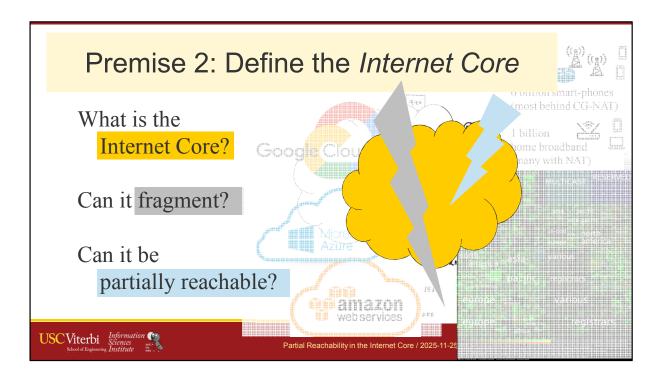
Partial Reachability in the Internet Core / 2025-11-25


Outages Given Partial Reachaility


- true outages are disconnected from the Internet (or off)
- partial outages are real
 - disagreements observing reachability happen!
 - don't try to rationalize them away




Partial Reachability in the Internet Core / 2025-11-25



Prior Definitions of "Internet"

- TCP for an "internetwork" [Cerf and Khan, 1974]
- "A collection of interconnected networks is called an internet" [Postel, 1980]
 - examples were ARPAnet and X.25/X.75
- "an agreement to use an evolving set of protocols, in a globally unique address space, to enable universal data delivery" [Federal Networking Council, 1995]

Partial Reachability in the Internet Core / 2025-11-29

12

Improving a Definition of "Internet"

- TCP for an "internetwork" [Cerf and Khan, 1974]
- "A collection of interconnected networks is called an internet" [Postel, 1980]
 examples were ARPAnet and X.25/X.75
- "an agreement to use an evolving set of protocols, in a globally unique address space, to enable universal data delivery" [Federal Networking Council, 1995]

All good properties for the Internet!

But not operationizable.

(Measurable, quantifiable—what is and is not the Internet.)

Partial Reachability in the Internet Core / 2025-11-25

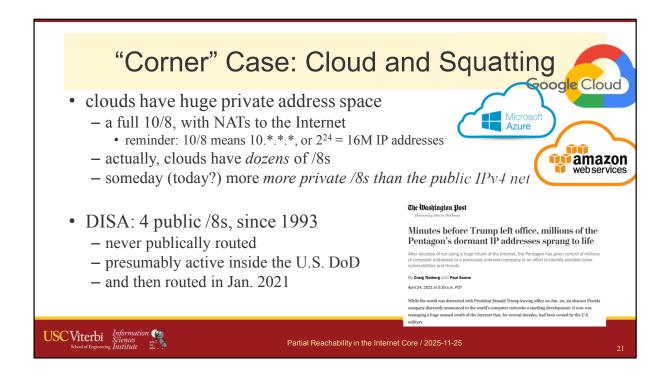
Corner Cases of "the Internet": Bottom-Up

- 1 laptop with wifi (but not connected to anything)
 - it can run a webserver on a public IP
 - a web browser can connect to it(self)
- 2 laptops with wifi, connecting to each other
- 3 laptops, connecting over a layer-2 802.11s mesh
- 4 laptops, connecting with AODV multi-hop routing
- ...and public IPs

Partial Reachability in the Internet Core / 2025-11-25

19

"Corner" Case: the Cloud


- clouds have huge private address space
 - a full 10/8, with NATs to the Internet
 - reminder: 10/8 means 10.*.*.*, or $2^{24} = 16$ M IP addresses
 - actually, clouds have *dozens* of /8s
 - someday (today?) more more private /8s than the public IPv4 net

Google Cloud



Partial Reachability in the Internet Core / 2025-11-25

Business Threat: ISPs Disputes

- two big ISPs with a peering dispute, won't exchange routes
- customers of those ISPs that cannot reach each other Internet

USC Viterbi Information Sciences School of Engineering Institute

Partial Reachability in the Internet Core / 2025-11-25

25

Our Contributions

- recognizing partial reachability as fundamental to network
- defining the Internet Core, a solution
- algorithms to operationalize the definition
- applications that show this understand helps real systems

Details: Baltra and Heidemann, "What is the Internet? Partial Connectivity at the Internet Core", arXiv:2107.11439v3

Partial Reachability in the Internet Core / 2025-11-25

Our Contributions

- recognizing partial reachability as fundamental to network
- defining the Internet Core, a solution
- · algorithms to operationalize the definition
- applications that show this understand helps real systems

Details: Baltra and Heidemann, "What is the Internet? Partial Connectivity at the Internet Core", arXiv:2107.11439v3

Partial Reachability in the Internet Core / 2025-11-25

27

Our Definition of the Internet Core

The Internet Core is all Active IP Addresses that can Bidirectionally Route to more than 50% of the public, Potentially Routable IP addresses

A *conceptual* definition (no one can instantly measure reachability between all IPs!)

A useful limit a goal for *operational* algorithms.

And a basis to reason about corner cases.

Partial Reachability in the Internet Core / 2025-11-25

Active IPs that can Bidirectionally Route to >50% of the public, Routable IPs

- why more than 50%?
 - 50% defines one, **unambiguous** component (a majority!)
- no central authority or special locations
- implications:
 - \Rightarrow there is only *one** Internet

(* but wait two slides)

- a lower threshold allows two groups to claim "the Internet" with a plurality
- we can end the Internet by splitting into 3 pieces, each <50%
- no one country or organization can unilaterally claim "the Internet"

Partial Reachability in the Internet Core / 2025-11-25

20

Active IPs that can **Bidirectionally Route** to >50% of the public, Routable IPs

why bidirectionally route?

- can ping both ways
- captures "universal data delivery"
- implication: operationizable (we can measure it!)
 - alternatives to ping TCP or HTTP, but ping is most benign

Partial Reachability in the Internet Core / 2025-11-25

Active IPs that can Bidirectionally Route to >50% of the public, Routable IPs

why the active and public, (Potentially) Routable IPs?

- captures "globally unique address space"
- public, potentially routable IPs: necessary for universal delivery
- implications
 - we actually define *two* Internets: IPv4 and IPv6
 - private addresses are second class

Partial Reachability in the Internet Core / 2025-11-29

31

Active IPs that can Bidirectionally Route to >50% of the public, Routable IPs

why the active?

- allocated but not-routed doesn't "count"
- IPv6 is mostly unallocated!
- implications
 - use it if you have it!

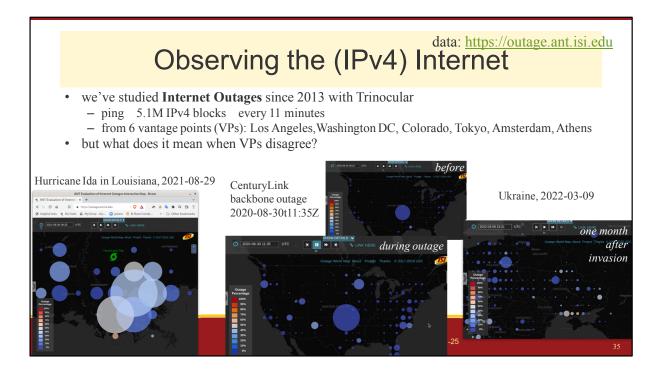
Partial Reachability in the Internet Core / 2025-11-25

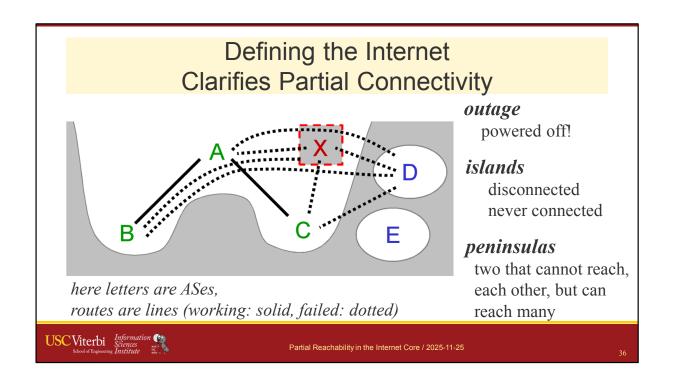
A Engineering Definition to Be Useful

- users only want working e-mail, web, Facebook, phone apps
- but...
 - policy makers enact laws and rulings
 - engineers design and operate protocols and networks
 - researchers design measurement systems
- => an operational definition can provide "facts on the ground", separate from politics or business
- users will benefit from these efforts!

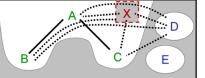
Partial Reachability in the Internet Core / 2025-11-25

33

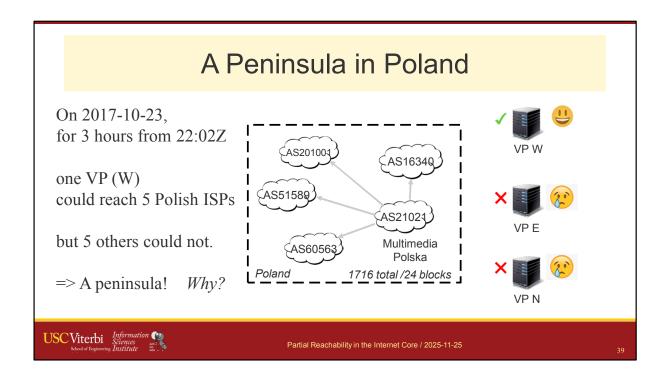

Our Contributions

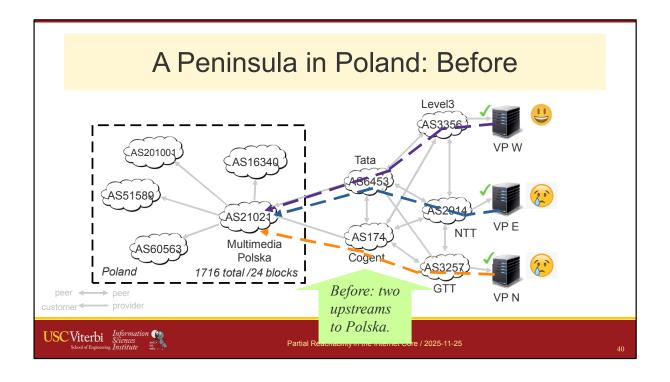

- · recognizing partial reachability as fundamental to network
- defining the Internet Core, conceptually
- algorithms to operationalize the definition
- · applications that show this understand helps real systems

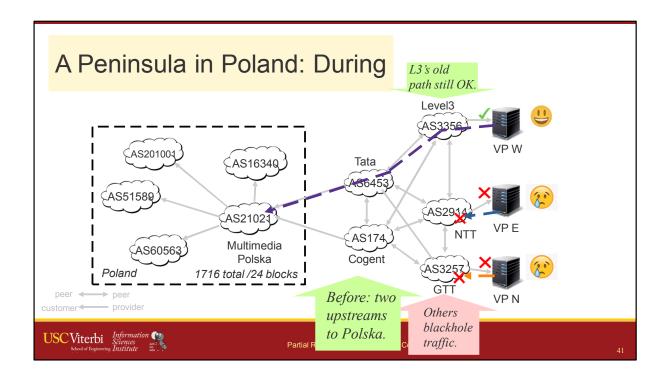
Details: Baltra and Heidemann, "What is the Internet? Partial Connectivity at the Internet Core", arXiv:2107.11439v3


Partial Reachability in the Internet Core / 2025-11-25

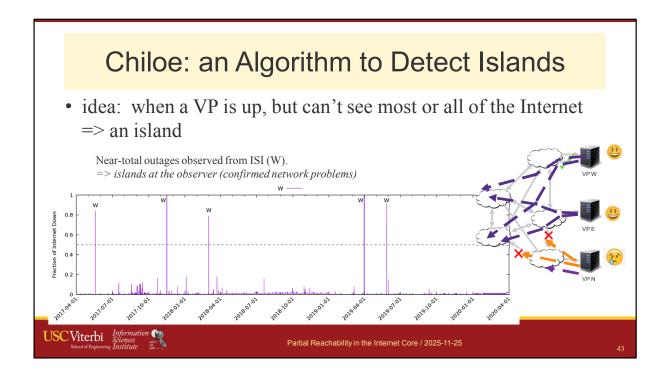
Islands • when computers are not reachable (D & E) — more common than "computers off" outages (X)! • happen anytime we have a disconnected part of the IP space CenturyLink backbone outage 2020-08-30t11:35Z computers on customer LANs could talk to each other W W USC Viterbi Shabillyin Appendix Appen

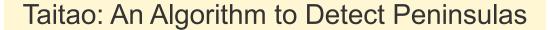

Peninsulas



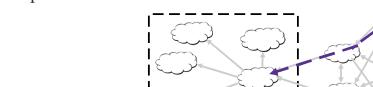

- two locations cannot reach each other, but *can* reach others (B-C)
- routing transients make many short-lived peninsulas
 - see "Internet Optometry" by Bush et al, ACM IMC 2009
- sometimes persistent
 - peering disputes: like Cogent/HE peering dispute around IPv6
 - routing misconfiguration
 - firewalls

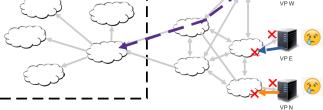
Partial Reachability in the Internet Core / 2025-11-25


Our Contributions

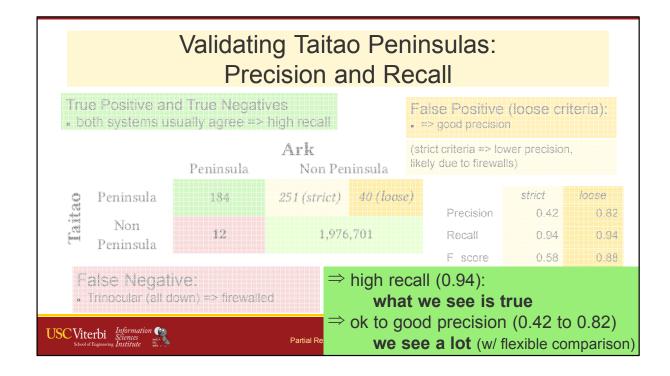

- recognizing partial reachability as fundamental to network
- defining the Internet Core, conceptually
- algorithms to operationalize the definition
 - Chiloe: an algorihtm to detect islands
 - Taitao: an alogrithm to detect peninsulas
- applications that show this understand helps real systems

Details: Baltra and Heidemann, "What is the Internet? Partial Connectivity at the Internet Core", arXiv:2107.11439v3




Partial Reachability in the Internet Core / 2025-11-25

- idea: probe a target network from several independent VPs
- if they disagree (some reach and others don't) => peninsula


Partial Reachability in the Internet Core / 2025-11-25

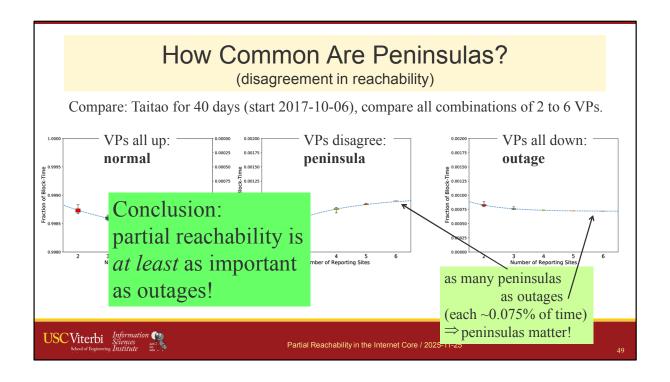
Applying Taitao: Detecting Peninsulas

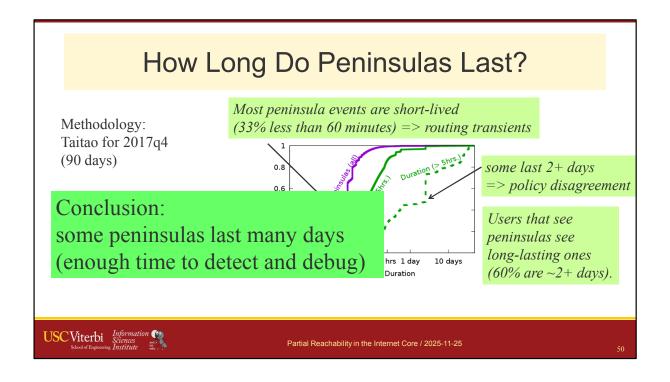
- data source: reanalysis of Trinocular
 - from: LA, Denver, Washington (DC), Amsterdam, Athens, Tokyo
 - to: 5M IPv4 /24s, pinging every 11 minutes
 - reanalyze 21 days starting 2017-10-10
- validate against traceroutes from CAIDA's Ark
 - 171 VPs, tracerouting every /24 once a day

Partial Reachability in the Internet Core / 2025-11-25

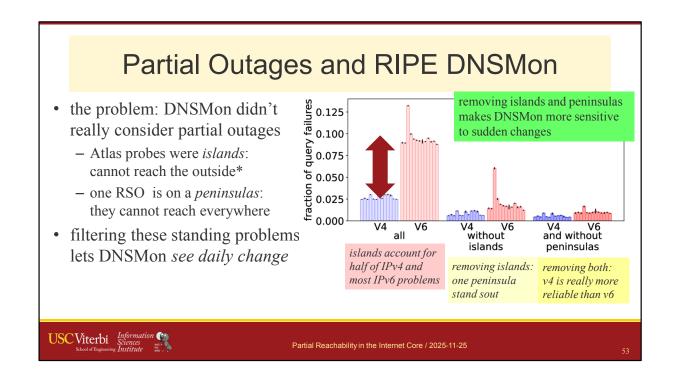
Our Contributions

- · recognizing partial reachability as fundamental to network
- defining the Internet Core, conceptually
- · algorithms to operationalize the definition
- applications that show this understand helps real systems


Details: Baltra and Heidemann, "What is the Internet? Partial Connectivity at the Internet Core", arXiv:2107.11439v3



Partial Reachability in the Internet Core / 2025-11-25


47

Outages from N Vantage Points Compare: Taitao for 40 days (start 2017-10-06), compare all combinations of 2 to 6 VPs. Conclusion: VPs all up: VPs all down: normal outage 4 physically distributed VPs provide a consistent view of most of the Internet values converge variance is small: $(4 \text{ VPs} \approx 6 \text{ VPs})$ ⇒VPs are *independent* (any 2 give the same result) ⇒VPs are enough USC Viterbi Informat Partial Reachability in the Internet Core / 2025-11-25

A Practical Application: Making RIPE DNSMon More Sensitive • dnsmon.ripe.net: essential root DNS monitor — IPv4 and IPv6 reachability to the 13 root DNS letters • problem: for years IPv6 reachability is bad (worse than IPv4) • is this real? fixable?

conclusions partial reachability is real defining the Internet helps Active IPs that can Bidirectionally Route to >50% of the public, Routable IPs new algorithms can measure peninsulas and islands this perspective improves outage detection, RIPE DNSMon does this definition help clarify your Internet? USCViterbi Information (more detail: our tech report: arXiv:2107.11439 v3)