

starting at \$1/attack automated botnets [Santanna et al, 2015] for extortion [Arbor12a, figure 17] bigger 216.119.216.50 2013 innovation: 300+ DNS amplification biggerer (as of Feb. 2018) 2016: 620 Gb/s KrebsOnSecurity.com 800 Gb/s (or more?) OVH biggest (so far) innovation: 145k-node botnet from [Arbor14a, figure 60] 2018: 1.3Tb/s memcached hacking IoT devices **USC**Viterbi

DDoS Defense in Depth / 2019-12-09

1

Years of Research... the Problem Remains

fixing the problem at the root: \Rightarrow but misaligned cost and benefits

- source address filtering (BCP38)
 hard to deploy for big ISPs
 - only ~50% after 10 years of work
- attack traceback
 - requires cooperation across ISPs
- better security in end-devices
 - fundamentally hard to be perfect
 - counter to the economics of commodity devices and IoT

USCViterbi School of Engineering Institute

USCViterbi

mitigating the problem with services \Rightarrow loses autonomy and can be expensive

- traffic scrubbing
 - NTT, etc.
 - re-route traffic, "clean it" (proprietary), forward it to you
- huge infrastructure with automated traffic shifting
 - Akamai, Cloudflare, etc.

DDoS Defense in Depth / 2019-12-09

DDoS Fundamental Problem

- any open service must accept queries from everywhere
- end-devices will never be fully secure
- millions of devices exist (more every day)
- each attack is **easy** (DDoS-as-a-Service exists)

=> huge advantages for attacker and no silver bullet

Our Approach: Defense In Depth

- no one silver bullet
- **Deep Layers:** a *collection* of countermeasures to mitigate attacks
 - chip away at *each part* of problem
- components
 - 1. hop-count filtering: anti-spoofing
 - 2. existing-name query whitelisting
 - 3. known client whitelisting
 - 4. aggressive client detection
 - 5. scale-out to cloud
- we will open source components

USC Viterbi School of Engineering Institute

Testing and Transition using B-Root DNS

- Root DNS is a key Internet service
 - has been DDoS'ed multiple times
- Steps in transition plan:
 - Test on B-Root infrastructure first (committed to support research)
 - Work with other DNS operators
 - Letters of interest from two other root operators
 - Joint collaboration with .nl
 - Publish results and release software as open source

Current Results

- specific filters
- automatic filter selection
- curated datasets to support research
- future plans

USCViterbi Information

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Not spoofed

not aggressive

(2) Hop-Count with (3) Client Modeling

Attack mix

DDoS Defense in Depth / 2019-12-09

hop

Not spoofed

Client Modeling

• idea:

- learn typical *hop-count* and *rate* from each source IP
- filter by hop-counts
- filter remaining traffic by rate
- pro:
 - hop-counts are stable, so good filter with low false positive
 - traffic with spoof known clients gets wrong hop-count
 - client-modeling catches anything that slips through
- con:
 - need new iptables module to hop-count filter at scale
 - client modeling may not be easy

USCViterbi School of Engineering Institute

TTL	Source	Entry size	Percent dropped	
Random	In table	/32	98.4%	very accurate
	In table	/24	98%	very accurate vs. naïve attacke
	Not in table	/32 or /24	100%	
Most popular TTL	In table	/32	40%	1
	In table	/24	70%	somewhat accur vs. adversary
	Not in table	/32 or /24	100%	vs. auversary
Exact TTL	In table	/32 or /24	0%	ineffective vs.
	Not in table	/32 or /24	100%	omniscient orac
				(but impractica adversary)

(3) Client Modeling Details

- model request and error rate from each client
- filter when client's query rate increases suddenly
 - intuition: tolerate typical aggressive users
 - but filter new ones
- also filter if client's *error rate increases* (NXDOMAIN)
 intuition: attackers often use fake names to avoid caching
- status: tested on several 2017 B-Root events
 - Good attacker identification, acceptable collateral damage

DDoS Defense in Depth / 2019-12-09

USC Viterbi Information

Date	Precision	Recall	F1 score
2017-11-30	0.99	0.99	0.99
2017-02-21	0.97	0.89	0.93
2017-03-06	0.93	0.93	0.93
2017-04-25	0.96	0.89	0.92
very e	effective (high accu	racy) against all 20	017 attacks vs. B-Root

(5) Automating Defenses

- in general, need *combination* of approaches
- possible filters on prior slides
- need to *automate* selection
 - to react quickly
 - and to keep re-evaluating
- how?
 - measure resource consumption directly
 - deploy most promising countermeasure
 - measure response and try alternative if unsuccessful

USCViterbi School of Engineering Institute

DDoS Defense in Depth / 2019-12-09

Automating Defenses: the Need for Choice

		(no sir	require different defenses (no single method works all the time)				we always find the best defense, although sometimes it takes seve					ral tries
real-world attacks	Event	Source Whitelisting	rce Response		sting	Converge to the best?	o det atta (fro	Latency to detect attack (s) (from attack start)		Latency to select the best filter (s) (from attack start)		No. of selected filters before the best choice
M.	2015-11-30	Good	No	Good		Yes		13.17		13.33	1	
111	2015-12-01	Good	No	Good		Yes		5.05		5.22	1	
i c	2016-06-25	Fair	No	No		Yes		10.24		10.24	0	
m	2017-02-21	No	Fair	Good		Yes		6.67		38.81	3	
different	2017-03-06	No	Fair	Good		Yes		14.33		15.37	1	
ulle	2017-04-25	No	Fair	Good		Yes		11.73		12.03	1	

USCViterbi Information

- 5 events so far (attacks or large traffic bursts)
- 10 DITL events (each 2 days long)
 48-hour period, synchronized with other root letters
- new full week of data
- DITL and other DDoS datasets distributed through IMPACT
 - https://impactcybertrust.org
 - https://ant.isi.edu/datasets/

Relationship to Other DDoS Projects

- LEADER (NSF, started PAADDoS (started 2018)
 - PIs: Mirkovic and Hauser (ISI)

USCViterbi

- Looking into low-rate DDoS attacks and OS mechanisms to prevent them
- May be useful to harden OS on root servers
- 2018)
 - PIs: Heidemann and Pras (U. Twente in .nl)
 - will examine anycast routing
- ideas:
 - active use of anycast to adapt to attack load
 - anycast planning with Verfploeter

- DIINER (started 2019-10)
 - PIs: Heidemann and Hardaker (USC)
- ideas:
 - leverage B-Root into an open testbed
 - data availability
 - experiments on live traffic

