
Back Out: End-to-end Inference
of Common Points-of-Failure in the Internet

(extended)
USC/ISI Technical Report ISI-TR-724

February 2018

John Heidemann
Yuri Pradkin
Aqib Nisar

University of Southern California / Information Sciences Institute

ABSTRACT
Internet reliability has many potential weaknesses: fiber
rights-of-way at the physical layer, exchange-point con-
gestion from DDOS at the network layer, settlement
disputes between organizations at the financial layer,
and government intervention the political layer. This pa-
per shows that we can discover common points-of-failure
at any of these layers by observing correlated failures.
We use end-to-end observations from data-plane-level
connectivity of edge hosts in the Internet. We identify
correlations in connectivity: networks that usually fail
and recover at the same time suggest common point-
of-failure. We define two new algorithms to meet these
goals. First, we define a computationally-efficient al-
gorithm to create a linear ordering of blocks to make
correlated failures apparent to a human analyst. Second,
we develop an event-based clustering algorithm that di-
rectly networks with correlated failures, suggesting com-
mon points-of-failure. Our algorithms scale to real-world
datasets of millions of networks and observations: linear
ordering is O(n log n) time and event-based clustering
parallelizes with Map/Reduce. We demonstrate them
on three months of outages for 4 million /24 network
prefixes, showing high recall (0.83 to 0.98) and preci-
sion (0.72 to 1.0) for blocks that respond. We also show
that our algorithms generalize to identify correlations in
anycast catchments and routing.

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on

the first page. Copyrights for third-party components of this work

must be honored. For all other uses, contact the owner/author(s).

ISI-TR-724, Feb. 2018,

© 2018 Copyright held by the owner/author(s).

ACM Reference Format:
John Heidemann, Yuri Pradkin, and Aqib Nisar . 2018. Back
Out: End-to-end Inference of Common Points-of-Failure in
the Internet (extended) : USC/ISI Technical Report ISI-
TR-724 February 2018 . Marina del Rey, California, USA,
17 pages.

1 INTRODUCTION
The Internet was designed to survive the face of com-
ponent failure [13]. As a primary consideration in its
design, this goal motivated routing algorithms that are
independent and distributed across many organizations,
with support for backup paths and load balancing (for
example, see [9]), Because policies are distributed and
often private, understanding the actual reliability the In-
ternet achieves is difficult. Yet understanding reliability
is important to many stakeholders, from companies that
operate and depend on the Internet, to governments and
policy makers who wish to foster development, oversight,
and the role of regulation.

Network topology is an important component to under-
stand Internet reliability, since loss of a link can discon-
nect or overload part of the network. Many groups have
studied the Internet topology [1, 12, 21, 24, 27, 32, 43],
exposing some of its rich complexity, particularly when
long duration, careful observations are employed. Com-
pleteness is a challenge common to all evaluations of
Internet topology. Because the Internet is distributed
and private peerings are common, even the largest ISPs
can directly observe only a small fraction of the Internet
topology. BGP reveals a great deal about connectivity
at one layer, but BGP-level AS-paths abstract away
router-level connectivity, emphasizing business relation-
ships [9, 22, 26, 32]. After nearly 20 years of router-level
topology discovery with tools such as traceroute, and



ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

extensive studies of AS-path topologies, it remains chal-
lenging to provide strong estimates of completeness in
what is discovered [1]. A major source of incompleteness
in the router-level topology is that active probing shows
only the currently preferred path; backup paths are hid-
den until a partial failure makes them preferred [32].

Underneath the network-level topology of the Internet
is an actual physical topology of optical fibers and other
wired and wireless media. Although also difficult to study,
recent work has assembled maps of the Internet’s physi-
cal topology [16], revealing how physical bottlenecks can
be common points-of-failure, even when paths appear
independent at the network layer. Strikingly, these com-
mon vulnerabilities may not be obvious to ISPs, since
they operate independently and such information is often
considered proprietary. As one example, awareness of a
critical tunnel between New York and New Jersey only
emerged after a fire [5].

Business and politics loom over the network layer, and
although not “technical”, they have affected network
traffic and reachability on multiple occasions. Business
disputes over television programming [44] and traffic
settlements [30] have resulted in de-peering and heavy
congestion at exchanges. Such congestion can affect third
parties, prompting multiple approaches to document
these results [30, 46]. Governments have suspended In-
ternet or mobile phone access out of concern for public
safety [8], or to suppress dissent or news [14, 15, 20].
The goal of this paper is to show that end-to-end

techniques can systematically identify common points-
of-failure across these many layers of the Internet. By
end-to-end, we mean techniques that are oblivious to the
characteristics of a specific network layer. A complete
network or physical map, and models of the business or
political layers seem impossible, so we instead observe
connectivity to hosts at the edge of the Internet across
all layers. Our goal is to find common points-of-failure,
single components than can affect specific parts of the
Internet. Our insight is that correlated failures in end-
to-end measurements can reveal these common points-
of-failure—the consistency of failures over time allows
us to distinguish likely underlying commonalities from
the noise of random co-occurring failures. We call our
approach Back Out, since infers backwards from outages.

Our algorithms consume data from end-to-end outage
measurements, routing, or anycast catchment detection.
For outages, we use three months of data from Trinocu-
lar [34]; covering about 4M /24 network prefixes (blocks),
each with about 24k observations per block. We chose
Trinocular because it is broad and relatively unbiased
(it covers all networks that respond to enough pings)
and its data is available at no cost to researchers [49].

In principle we could use other sources of outages such
as iPlane [25], Pingin’ [41], Disco [42], background radi-
ation [15]; see §6. For routing and anycast (§5), we use
data from RouteViews [50] and RIPE Atlas [39].
Our approach is blind, operating independent of do-

main knowledge specific to any layer. This ability to cut
across all layers means it can identify common points-
of-failure at any layer, even those unknown to domain
experts. This ability is important because faults occur
not just in the physical and network layers, where they
have been subject to extensive technical study, but also
in the more elusive business and political layers. Our
approach does not directly identify root causes of com-
mon points-of-failure, but instead seeks to discover of
previously unsuspected commonalities (see §4.5 and §5).
Such discoveries may then focus future studies of the
physical, network, and business layers that are actual
root causes, either by re-focusing existing approaches or
motivating new ones.

A limitation common to approaches that employ active
measurement is that their coverage is incomplete. Our
approach discovers common points-of-failure as a result
of failures that occur, and not latent dependencies that
have yet to manifest themselves. Prior studies of routing
show that long observation with repeated measurements
are important to reveal latent backup paths [32]; our ap-
proach shares this requirement. Measuring completeness
is difficult given challenge getting ground truth. However,
the 2014 Time Warner outage provides a large, natural
experiment to test our ideas—we find very good recall
(0.83 and 0.98) and precision (from 0.72 to 1.0) for the
what is measurable, and recall is still moderate to good
(0.62 to 0.92) even if we count blocks that never respond
(§4.3),

The primary contribution of this paper is to develop
new algorithms that reveal correlated failures from end-
to-end outage measurements. First we show a new algo-
rithm for efficient linear ordering to support visualiza-
tion of outages (§2). This algorithm scales to work on
millions of blocks over months of observations, running
with O(n log n) time (for n blocks) in tens of minutes
(§2). Second, in §3 we show a new algorithm that clus-
ters events, using correlated failures to identify network
blocks that share a common point-of-failure. This algo-
rithm is O(n2) in runtime, where n is the number of
blocks with concurrent failures. The algorithm paral-
lelizes well with Map/Reduce, and we are able to process
three months of outage data for 4M blocks in a few days
on a moderate size (220 core) Hadoop cluster.

Our final contribution is identify several applications
of these algorithms. First, our algorithms simplify anal-
ysis of huge network datasets (millions of networks by



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

thousands of observations) by identifying clusters with
similar behavior. We show that they succeed at discov-
ering missing information about dependencies (§4 and
§5), through a study of the third quarter, 2014, and the
August 2014 Time-Warner outage. Second, by identify-
ing the scope of actual outages, it provides information
to help identify the spatial scales that one must use
to study network outages. Prior work has studied indi-
vidual addresses [41], /24 network blocks [34], routable
prefixes [25] or ASes [42], and country-level regions [15],
and while larger regions may be needed to detect weaker
signals, our work provides data to suggest reasonable
minimum spatial sizes worth study.

We study our algorithms with publicly available datasets
(§4.1). We will release our analysis software and make
derived datasets available before this work is published.
Our work has been reviewed by our Institutional Re-
view Board (USC IIR00001648) and categorized as non-
human subjects research.

2 EFFICIENT LINEAR ORDERING
We first consider how to place blocks in a linear ordering
to support visualization. Our goal here is to take out-
age timeseries for a set of blocks and arrange them to
emphasize similarities between blocks. The outcome of
this algorithm is an image that summarizes the status
of the network, allowing humans to identify trends vi-
sually. These visualizations support iteration with our
event clustering algorithm (§3)—it discovers potential
common points-of-failure, while visualization provides
context for investigation into root causes.

2.1 The Problem and Prior Approaches
Two-dimensional visualizations showing network blocks
against time have long been used to identify shared
events [18, 28, 48]. The goal of optimizing the visualiza-
tion to emphasize similarity was formally defined only
recently [35]. Their problem takes as input b blocks, each
with a timeseries Sb(i) giving the status of block b at
time i. Status are binary valued, with 1 and 0 indicating
the network is or is not reachable, or the occurrence of
a routing change.

The desired output is to assign blocks some linear or-
dering (position Pb for each block b), while maximizing
the “similarity” of adjacent blocks. The definition of sim-
ilarity is chosen to reveal correlations in the data. This
goal is subjective (we know it when we see it), but for a
given algorithm it can be quantified. Quan’s algorithm
defines similarity as the Hamming distance between each
block’s timeseries (that is, the sum of the exclusive-or

block (b) status (Sb(·)) distance
b1 1111 1110 1111 1111

2
b2 1111 1111 1111 1110

3
b3 1111 1100 1111 1111

1
b4 1111 1100 0111 1111

2
b5 1111 1110 1111 1111

Figure 1: Input to linear ordering.

of each observation). They evaluate clustering on out-
ages and route changes, with clustering revealing events
related to natural disasters and ISP changes.

Figure 1 shows an example of four blocks, and in Fig-
ure 3 we show the the clustering we produce. Hamming
distances between rows are given on the right, and we
can quantify the quality of clustering as the sum of the
Hamming distances, with total Hamming distance 8 in
the input and only 4 in the output. The clustered output
is an improvement, with a total distance of 4 bits of
difference in the bottom version compared to 8 with
arbitrary ordering. Subjectively, this clustering is good
because it groups the outages in the middle of the period
and places larger outages at the bottom.

Quan’s algorithm clusters blocks by similarity using a
simple greedy algorithm using Hamming distance. How-
ever, that algorithm is O(db2) for duration d and b blocks,
with the quadratic term occurring because in each step
of clustering, the best block is compared to all other
unmatched blocks. While they report success for up to
2.5M blocks in less than one hour, these results are for
short durations (48 hours). Our datasets instead exceed
4M blocks and have durations that stretch to months.
Our implementation of this algorithm takes days to com-
plete. Moreover, the greedy clustering algorithm does
not parallelize easily, since selection of the most similar
block at each step requires examining all other blocks
and affects all subsequent choices.

2.2 Other Input: Routing and Anycast
We have applied our algorithms to routing updates and
anycast catchment changes, in addition to outage data.
All of these are large network datasets where commonal-
ity can be revealed through clustering; the challenge is
to align other inputs to match binary outage timeseries.
For routing, we use routable prefixes instead of /24

blocks, and we map times of routing events (any BGP
announcements and withdrawal messages, obtained from
RouteViews [50] and BGPMon [53]) as an outage event
(bit 0) in the observed timebin. We use timebins of 600 s
to reflect route convergence times, and evaluate about
250k network prefixes.



ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

To cluster changes in anycast catchments, we draw on
DNS CHAOS queries [52] from RIPE Atlas [39]. Taken
at 4-minute intervals, these observations identify the
current Root DNS anycast site for each of about 9000
vantage points (VPs). We use this timeseries in our
algorithms with VPs in place of blocks, and with timebins
of 600 s to match more frequent reporting. Our clustering
algorithms require that each observation be binary (on
or off), not many-valued (as with many anycast sites).
We map the initial anycast site for each VP to the value
1, then toggle this state in the timeseries any time the
VP changes to a different anycast site. (In practice, most
VPs only see two sites.) When studying denial-of-service
(DoS) attacks we often have missing data; missed entries
do not change timeseries state.

2.3 The Linear Ordering Algorithm
Our new algorithm for efficient linear ordering is possi-
ble because of two insights. First, we gain algorithmic
efficiency by mapping clustering to sorting. Greedy clus-
tering is O(b2) in blocks, since just like Bubble sort,
each step requires a comparison against all remaining
candidates. Instead, we turn to sorting to use the relative
relationships discovered in each comparison to reduce
the number of comparisons (to O(b log b)).

The second insight is that mapping each block’s time-
series to a multi-timescale representation allows the prob-
lem to be reduced to sorting. Before we define our rep-
resentation explicitly, consider sorting a typical (single-
timescale) timeseries. Each timeseries will be an array
of many “up” bits followed by an 0-bit indicating an
outage at a given time (its bit position). If we treat these
timeseries as bitstrings and sort, we cluster by time of
first outage, not by overall similarity across all times.

To capture behavior over all time, we generate many
timeseries, each with a different timescale (the duration

of each element). In the initial timeseries S
(0)
b (i), at

timescale m = 0, each element i represents one time
bin with the shortest duration. At the next timescale
(m = 1), we generate a timeseries S

(1)
b (i) with half as

many elements, each representing twice the duration.
To do this, we combine adjacent elements with some
aggregation function f(s(i), s(i+ 1)):

S
(m+1)
b (i/2) = f(S

(m)
b (i), S

(m)
b (i+ 1)),

Figure 2 shows an example of multi-timescale views
of block b4 from Figure 1

We average elements (rounding down) as our aggrega-
tion function, flargest (a, b) = ⌊(a + b)/2⌋. We call this

function Largest, because short outages fade as they are
overwhelmed by up periods. This function requires that
we preserve the timeseries as real values (floating point,

agg. timescale
fn (m) status (Sb(·))

la
rg
es
t

0 1111 1100 0111 1111
1 1 1 1 0 0* 1 1 1
2 1 0* 1 1
3 1 1
4 1
all 1 11 1011 11100111 1111110001111111

fi
rs
t

0 1111 1100 0111 1111
1 1 1 1 0 0 1 1 1
2 1 0 0 1
3 0 0
4 0
all 0 00 1001 11100111 1111110001111111

Figure 2: Multi-timescale views of block b4.

Hamm.
multi-timescale representation block dist.

1 11 1111 11111110 1111111111111110 b2
2

1 11 1111 11101111 1111111011111111 b1
0

1 11 1111 11101111 1111111011111111 b5
1

1 11 1011 11101111 1111110011111111 b3
1

1 11 1011 11100111 1111110001111111 b4

Figure 3: Output from linear ordering.

not just binary). Because flargest captures overall be-
havior, we use it as our combining function. In the top
of Figure 2, the outage in this block is short enough to
disappear at these timescales with flargest .

We also examined an alternate aggregation function
we call First. The First function aggregates values with
logical-AND, ffirst (a, b) = a ∗ b. Logical-AND is simple,

but it allows even a tiny outage to propagate across all
timescales, since a zero value (an outage) in any time
bin will dominate all up periods as they are ANDed
together. As a result, ffirst tends to cluster blocks by

the first outage that occurs, not overall behavior. The
bottom of Figure 2 shows the use of First, where the
outage at times i = [6, 8] propagates to mark all values
in timescales m = 3 and 4 as down.

Finally, for sorting, we form the multi-timescale string
by concatenating all timeseries from the largest-timescale
to shortest-timescale. Thus:

Sall
b = S

(M)
b + S

(M−1)
b + . . .+ S

(1)
b + S

(0)
b

where + indicates concatenation of each timeseries.
Figure 3 sorts our sample blocks by their multi-timescale

representation. In this example, sorting results in the
same ordering as with Quan’s algorithm (Figure 1). For
large datasets this algorithm is much faster.



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

2.4 Linear Ordering Performance
Our goal in the new algorithm is to improve performance
of linear ordering. Pragmatically, we are successful be-
cause the Quan algorithm could not run to completion
on our full datasets of 4M blocks and about 12k obser-
vations (3 months at 11 minutes per observation) and it
takes about a day to run even on highly downsampled
datasets (1 in 200 sampling). The new algorithm can
cluster the full dataset in less than one hour.
The core reason for this improvement is a shift from

an algorithm that is O(b2) to one that is O(b log b) in
runtime as a function of the number of blocks, as we shift
from all-pairs greedy clustering to sorting on our multi-
resolution bitstring. We add one caveat here: while the
performance as a function of number of blocks is better,
there is a cost in that the size of what is compared is
larger. Each status bitstring is d observations long, but
the multi-resolution version is actually d log d bits long,
so technically the algorithm runtimes are O(db2) before
and O(db log d log b) with the new algorithm. However,
there are far more blocks and so more timeseries than
there observations in each one: b is around 4M for our
dataset representing the full Internet, while there are
only around d = 12k observations per quarter, so the d
term is dominated by the b term.

The new algorithm also is faster than the old for sev-
eral practical reasons. First, sort implementations are
carefully optimized—we use either the implementation
in GNU coreutils, or in Hadoop. Those implementations
avoid unnecessary I/O and data copies, and can use
parallelism. By contrast, our implementation of the prior
algorithm was not carefully optimized and was imple-
mented in Python. Second, when comparing timeseries,
comparisons for sorting can terminate after the first dif-
fering element, while evaluations of Hamming distance
require comparison of all elements.

3 EVENT CLUSTERING
While linear ordering supports visualization and enables
human perception to come to bear, it is fundamentally
limited—any block can have only two neighbors. Linear
ordering of blocks can capture at most two relationships.
In addition, linear ordering will cluster blocks on long
outages over short, so smaller features can be overridden
by long outages that propagate to larger timescales.
These limitations encourage our use of event-based

clustering. Rather than focus on relationships between
blocks, we look at the outages themselves. Our hypothesis
is that blocks that consistently change state at the same
time are reacting to some underlying, common factor.

3.1 Definitions and Overview
An event is when a block changes state, and the input
to event clustering is the list of times and transition for
each state transition for each /24 block. An event can
be common to many blocks if they all transition in the
same direction (up-to-down or down-to-up) at the same
time. Times must be compared approximately to account
for variation in when outage transitions are observed;
Trinocular observations only guarantee precision within
the measurement interval of 11 minutes.

Clusters are all blocks that show consistent responses
for most events. We define most as 90% of events roughly
correlated in time.
Our algorithm maps blocks into clusters based on

events. From a graph theoretic viewpoint, blocks are
vertices, we construct edges based on the consistency of
events the blocks have in common, and clusters are the
connected components that emerge.
Given outage data like that shown in Figure 7, we

divide time into bins. In each time bin, we look for all
blocks that have the same status transition (down-to-up
or up-to-down). These temporally-correlated events are
what we use to identify clusters, but before clustering
we first list all block pairs, all possible combinations of
blocks that share a temporally-correlated event.

We then combine all correlated-event block-pairs over
all our observations. Block-pairs where more than a
threshold of events are in common are temporally corre-
lated suggest a some underlying common cause.

Block-pairs with only a few correlated events suggest
random chance. When examining events to see if two
candidate blocks are related, we compare how many
events the two candidate blocks had together relative
to all events seen by either block. Thus two blocks that
have only four outage or recovery event in total and all
are in common will have a 100% match, while if two
were at the same time and two were at different times
they would have a 50% match. We compare against all
events seen by either block, so if b1 and b2 have two
events in common, as do b2 and b3, then b2’s four total
events mean that both the (b1, b2) and the (b2, b3) pairs
have only a 50% match.

3.2 Event Clustering, Formally
Event clustering has several steps: input, cleaning, vertex
creation, edge creation, and finally cluster formation.

Input: Input is a list of event times t (from observa-
tion duration T = [Tstart , Tend )), each of which indi-
cates that block b (drawn from all blocks, B), transitions
to new state s (drawn from S = {0, 1} indicating tran-
sition to out or up). We indicate the time of the jth
transition to state s by block b as Eb(s, j).



ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

Before we receive outage data, we assume some pre-
cleaning has been done to remove expected measurement
artifacts [2]. Pre-cleaning confirms any outage that oc-
curs is seen from at least three observation locations,
avoiding mis-interpreting outages near a single observer
as a global outage. It also removes blocks that show
outages for very long period (more than two weeks),
on the assumption that that block has either started
filtering measurement traffic, or the block’s operators
have changed how it is used.

The output of event clustering is a set of clusters, each
a list of blocks that are all strongly connected.

Data cleaning: First, we compute the marginal dis-
tributions of block status: how often is the block down,
up, or unmeasureable. We define the marginal distri-
bution for block b in state s as Mb(s) and compute
∀b ∈ B, s ∈ S : Mb(s) =

∑
∀j Eb(s, j + 1)− Eb(∗, j).

We then compute the fraction of time each block is
up: Ub = Mb(1)/(Mb(0) + Mb(1)). We define strong
blocks Bstrong as those that are mostly up: Bstrong =
{b ∈ B s.t. Ub > Tstrong}. We currently use a threshold
Tstrong = 0.8. We ignore blocks that are down more than
20% of the time on the principle that a well maintained
network should almost always be up. Looking for com-
monalities across diurnal or frequently down networks
seems unlikely to be to be fruitful, and computation is
quadratic with the number of concurrent events.

Vertex creation: We then map all events to time
bins so we can find blocks that change status at roughly
the same time. If we assume observation uncertainty E
for outage beginning and ending, then time bins must
be at least E seconds long.
Timebin duration is selected to avoid aliasing: if we

map continuous times into discrete bins and an outage
affects many blocks but at a time that is right at a bin
transition, then half of the affected blocks appear in the
prior bin and half in the next, diluting our conclusions.
In addition, we do not require perfect consistency in
when outages occur, and ideally we should run our algo-
rithm with slightly different phases. In the end, we chose
Dtimebin = 4096 s, slightly more than 6× our E = 660 s.
Another kind of measurement artifact occurs at the

beginning and ending of our dataset. We discard the
first and last events in each dataset for each block, since
they represent beginning and ending measurement (a
measurement artifact) and not an actual change at the
target (a signal from the network). Most blocks are
completely stable, emphasizing the need for extended
observation to detect the rare outage events that inform
about the network.

cleaning events
block Mb(0) Mb(1) Ub Bstrong Nb

b1 1 15 0.94 1 2
b2 1 15 0.94 1 1
b3 2 14 0.88 1 2
b4 2 14 0.88 1 2
b5 1 15 0.94 1 2

Figure 4: Data cleaning, marginal distributions,
and number of events; from event clustering on
our sample blocks.

Edge creation: Given the base timescale of each time
bin, we now compute all block-pairs: the combinations of
blocks that have the same state transition in that time
bin. Each time bin i is a period P from Tstart+iDtimebin
to Tstart + (i+ 1)Dtimebin . We find all blocks in time
bin i with the same state transition to s: B(s, i) = {∀b ∈
B s.t. Eb(s, j) ∈ P} (for some transition j). We then
list all pairs of blocks in time bin i with transition s:
P (s, i) = {∀b1, b2 ∈ B(s, i) s.t. b2 > b1}.

We next evaluate how consistently blocks behave. We
compute the number of events for each block and for
each blockpair (without measurement start and end
events): Nb(s) = |Eb(s, ∗)| − 2 and Nb1,b2(s) = |P (s, ∗)|,
and combine both transitions Nb = Nb(0) +Nb(1) and
Nb1,b2 = Nb1,b2(0)+Nb1,b2(1). Commonality between two
blocks is then Cb1,b2 = (Nb1,b2/max(Nb1 , Nb2)). (Com-
monality is symmetric, so Cb1,b2 = Cb2,b1).

Finally, we create edges ε from the commonality: ε =
{(b1, b2) s.t. Cb1,b2 > Tcluster}. We set Tcluster = 0.9,
a conservative choice. We studied variations from 0.29
to 0.9; we see similar results for all Tcluster > 0.5, but
we see 3 to 4× more edges when Tcluster < 0.5.

Cluster formation: Finally we can cluster blocks by
this commonality. We use a simple breadth-first search
(BFS) to create a cluster K of blocks that are reachable
from some seed block b using the edges defined above.

We label each cluster Kid by its lowest-numbered block.
Thus the cluster-id for any block is the solution to the

fixed point: Kid
b = min(b, b2),∀b2 s.t. (b, b2) ∈ ε. The

blocks in a cluster with seed block b are all those with
the same id Kblocks

b = {∀b1 s.t. Kid
b1

= Kid
b }.

Clusters are usually complete or near-complete graphs,
a result of our strict threshold (Tcluster ). Near-complete
clusters work well with BFS; a lower threshold may
benefit from sophisticated clustering algorithms (perhaps
OPTICS [3]) to avoid a single large, degenerate cluster.

3.3 An Example of Event Clustering
As an example, we consider event clustering on the blocks
shown in Figure 1. Figure 4 shows the results of data



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

(b1,1,0) (b1,0,3) (b1,1,4) (b1,u,8)
(b2,1,0) (b2,0,7) (b2,u,8)
(b3,1,0) (b3,0,3) (b3,1,4) (b3,u,8)
(b4,1,0) (b4,0,3) (b4,1,5) (b4,u,8)
(b5,1,0) (b5,0,3) (b5,1,4) (b5,u,8)

Figure 5: Vertices (block, end state, timebin at
timescale m = 1) created for event clustering on
our sample blocks.

time
bin events. . .

3 (b1,b3,0) (b1,b4,0) (b1,b5,0) (b3,b4,0) (b3,b5,0) (b4,b5,0)
4 (b1,b3,1) (b1,b5,1) (b3,b5,1)

Nb1,b2 2 1 2 1 2 1
Cb1,b2 1 0.5 1 0.5 1 0.5

Figure 6: Edges created from each time bin, and
the number of mutual events for each block pair.

cleaning and the marginal distributions for these blocks.
(None of these blocks are rejected.)

For this example we assume time bins for vertex cre-
ation are twice the base timescale, giving each block 8
time bins. We discard the first and last transitions (no
measurement-to-up at timebin 0, and to-non-measured
at timebin 8), leaving the vertices shown in Figure 5.

These edges induce verticies (Figure 6), with each row
resulting from the indicated time bin. We compute events
per block (right-most row of Figure 4) and evaluate the
number of edges per block pair and block commonality
(the bottom two rows in Figure 6). The result is to create
these edges: (b1,b3), (b1,b5), and (b3, b5).
Finally we form clusters by walking this graph. We

discover one cluster: b1, made up of blocks b1, b3, and
b5. In this small example, we discover the three blocks
that match perfectly at the timescale used for event
clustering. We exclude block b4 from this cluster because
it recovered later, and b2 because it has no outages in
common with other blocks.

3.4 Event Clustering Performance
The most expensive step in event clustering is edge
creation, with up to O(n2) edges, where n is the number
of blocks in any time bin that have concurrent outages.
In the worst case, this n could be the number of blocks b,
but because outages are rare, for our data it is only a few
percent of b. In practice, enumerating edges and counting
matches typically consumes about half the runtime for
our 3-month datasets.

Second, cluster formation requires repeatedly travers-
ing the edges of the graph, and is O(Db log b), for b

blocks and cluster diameter D. In the worst case, D can
approach b, but in practice most clusters are densely
connected and D < 12.
Fortunately, all of these algorithms parallelize well

with Map/Reduce-style processing. We have implemented
event clustering in Hadoop as job with ten stages of maps
and reduces, followed by final non-parallel graph traver-
sal stage. Our implementation is not optimal; we use
simple database with primitives that are not very well
optimized, and we could optimize away one reduce stage
if we used custom code or had better implementations
of join.

In practice, our algorithm runs in about two hours on
three months of data for all 6415 blocks in 172/8, and in
about five days on three months of Internet-wide data
with about 4M blocks. These estimates are on a shared
cluster of 220 cores of older (2011-era) x86 computers;
they are rough the testbed is shared with intermittently
competing workload. Much of the cluster idles during
edge creation while the most active timbins generate
edges. We suspect that optimization could reduce overall
runtime.

4 CLUSTERING 2014Q3 OUTAGES
We study clustering of outages in third quarter, 2014.

4.1 Datasets and Events
Datasets: Table 1 lists the datasets we use to study
our algorithms. We begin with two quarterly observa-
tions of Internet outages from Trinocular [34], each
covering about 4M blocks; this data is available pub-
licly [49]. Each quarterly dataset observes about hun-
dreds of millions of state transitions together across
all blocks. These datasets are composites of four geo-
graphically distributed observers; they include a state
transition for each block any time one observer changes
its conclusions, as well as a consensus that the block is
up or down. Blocks are also sometimes marked as unmea-
surable, either because too few observers are available
to reach a strong conclusion (we require three, following
prior work), or because observations suggest the block as
“gone dark” by becoming non-responsive for more than
1 week [2]. The number of events per block is highly
skewed, with many blocks showing only a handful of
events, while other blocks change state daily [36].
In addition, we break out a subset of the 2014q3

dataset, examining just the 172.0.0.0/8 prefix in §4.3.
Events: Time Warner had a major outage affecting

about 11 million customers on 2014-08-26t09:00 UTC
for about two hours [6]. In later reports, Time Warner
indicated that the problem was misconfiguration of their



ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

size state
period start date (duration) name (/24 blocks) changes
2014q3 2014-07-01 (92 days) internet_outage_adaptive_a17all-20140701 [49] 4,034,614 519,910,659

172/8 subset of 2014q3 6,415 996,391
2015 2015-11-30 (1 day) RIPE Atlas J-Root CHAOS [38] 9305 VPs 65,927

Table 1: Datasets used in this paper.

backbone network that occurred during planned mainte-
nance [45, 47].

4.2 Linear Ordering for Visualization
Figure 7 shows example output of our linear ordering
for visualization. Input to this plot is part of the 2014q3
dataset with 4M /24 blocks over three months. Here we
geolocate all blocks using Maxmind Geolite City [29]
and visualize only the U.S. blocks. We show the visu-
alization at full resolution on our website [33]; here we
have downsampled it by a factor of four for printing. At
full resolution each row is a /24 block and each column a
1024 s period stretching over 90 days. We choose 1024 s
(about 17 minutes) as relatively prime to the measure-
ment frequency and therefore unlikely to cause aliasing.
When required, we downsample blocks by discarding
rows, and in the time dimension by averaging adjacent
columns; after downsampling each pixel here represents
about 68 minutes of time.

Linear ordering is dominated by the longest duration
outage for each block (for example, see (c) in Figure 7).
This outage is large enough that it propagates to even
very large timescales. The jump from the left of the
graph (d) to the right (c) occurs because outages in
(d) last long enough they reach a larger timescale. Our
visualization suggests studying these many long but
uncorrelated outages to understand if they represent
measurement error or some factor in Internet usage such
as block reallocation or change in usage [37].
The more important operational feature is the long

column at (b) that corresponds to the Time Warner
outage. Because the outage was relatively short (about
two hours) it is a secondary feature that assists in the
ordering, but for this part of the ordering, only after
the longer outages. For many blocks, the Time Warner
outage is the only outage in these three months, so
much later in the ordering (b) is the only visible feature.
Another very small event is shown at (a).

These features illustrate the need for linear ordering:
blocks of long outages shown at (c) and (d) are easily
hidden if those blocks are dispersed across millions of
others, yet clustered this way they stand out. While the
Time-Warner outage did not last long enough to force

all of its blocks to be adjacent, it stands out as a strong
feature (b) as it frequently reappears. In both cases,
our ordering algorithm improves visualization to assist
a human analyst.

This example also shows the weakness of visualization
alone—analysis cannot be automated, and a linear order-
ing can focus on the wrong feature. The Time Warner
outage shows a dependency in the Internet infrastructure;
our desire to automatically discover these dependencies
motivates our development of event clustering.

4.3 Event Clustering in 172/8
The Time Warner outage serves as a natural experiment
to evaluate event clustering’s correctness and complete-
ness. Here we examine all /24 prefixes in the 172.0.0.0/8
block in 2014q3. We examine this subset of data because
it is small enough to visualize and validate manually.
We chose this time period because it includes the Time
Warner outage (with 2304 Time Warner /24 blocks in
several non-adjacent groups), and this /8 block because,
as original class-B address space, it has many /16 blocks
allocated to different organizations.

4.3.1 Identifying Ground Truth. As ground truth, we
take all measurable Time Warner blocks in 172/8, since
that is the most that could be clustered. We will re-
visit this decision in §4.5. We then evaluate the preci-
sion (tp/(tp + fp) for true and false positives) and recall
(tp/(tp+fn), considering false negatives) of event cluster-
ing at discovering this truth. This experiment is unusual,
in that it is very rare for such a large ISP to have a com-
plete outage, and difficult to replicate, because outages
are rarely so well documented. The natural experiment
in this one event provides some confidence that the much
more common, smaller correlated failures that we see
(for example, (a) in Figure 7) share a real underlying
common point-of-failure.

We determine routed Time Warner prefixes and their
origin Autonomous Systems (ASes) from 2014-10-01
RouteViews data [50]. We identify ASes using bulk whois
provided by ARIN on 2015-04-15 [4]. We label as Time
Warner all /24 blocks that are routed with “TimeWarner”
in orgID field for their origin AS.



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

Figure 7: A subset of the U.S.-only blocks from 2014q3, showing at (b) the Time Warner outage on
2014-08-26.

2014q3: 172/8 all
measured /24 blocks 6415 4,037,157

after gone-dark cleaning 5818 4,034,613
never responded 869 292,402
mostly out 74 72,578
clean observations 4875 3,672,177

routed /24 TW blocks 1341 98,262
not measured 24 2,927
measured 1317 95,335

probed but never responding 295 4,241
removed (mostly out) 18 1,817
clean observations 1004 89,277

Table 2: Clustering input (in blocks) for 2014q3-
172/8 and 2014q3-all.

The middle column of Table 2 characterizes the blocks
in 172/8. Trinocular reports outages for only about 10%
of the blocks; the remaining blocks cannot be measured
because they did have enough ping-response addresses
in the 36 months before this quarter. At this time, Time
Warner operated about 2300 blocks in this range, and
about half of these were measurable. We further clean
these blocks after outage detection, discarding 296 blocks
that never respond and 18 as rarely responsive (less than
25% of the time). Non-responsive block may be unused,
used but not on the public Internet, or firewalled and
non-responsive to ICMP echo requests. Rarely responsive
blocks may be sparsely or intermittently used, or become
firewalled early during observation.
In all, we observe 4875 blocks, of which 1004 are

assigned to Time Warner.

4.3.2 Clustering with Three Months: Discovery, Pre-
cision, and Recall. We first cluster with the full three
months of data for 172/8, then examine what we find
about Time Warner. We find 207 clusters, and Figure 8a

shows outages from last 7 weeks of the three months. Of
these, 90 clusters contain only TW blocks; Table 3 lists
clusters by category.
Figure 8a shows the 207 clusters determined from 3

months. The Time-Warner outage is the vertical line on
2014-08-27, in the two largest clusters and in 88 smaller
clusters. We next show that clustering discovers both
events and common infrastructure with high precision
and recall.

Discoving Large Events: These clusters discover
the Time-Warner event. The two largest clusters in the
3-month dataset (the lowest two in Figure 8a), both
show only the Time-Warner event. A researcher will
discover large events by looking at the largest clusters
in Figure 8a.
We see two large clusters (rather than one) because

of inherent imprecision in measurements, coupled with
time-binning in clustering. Trinocular may be as much as
660 s late in flagging an outage (although with multiple
observers we often do better). With Dtimebin of 4096 s,
16% of the time (660/4096) the event will split across two
timebins. We could reduce this chance by probing more
frequently (increasing network traffic), or by lengthen-
ing the time bin (decreasing match precision). However,
real outages are not always instantaneous because of
distributed routing [23, 51]. Split events are still likely
to be prominent enough for automatic detection and can
be merged, if necessary, for further analysis.

Many of the remaining 88 clusters that contain Time
Warner blocks are in different clusters because of other
common outages. Figure 8a shows dozens of outages in
the last 5 weeks of observation, and some of these affect
certain TW blocks. These different outages reflect failures
in different parts the TW infrastructure. In §4.3.3 we



ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

(a) Clusters based on full three months of input. (Only the last 7 weeks are shown.) (b) Three day input.

Figure 8: Clusters (alternating backgrounds) for all measurable blocks in 172/8 based on different
durations of input. Clusters decrease in size going up. Outages are shown by colored areas.

coverage 2014q3-172/8 all 2014q3
input duration 3 months 3 days 3 months 3 days
unclustered blocks 2870 3868 2,875,305 3,514,745

all clusters 2005 / 207 1007 / 7 796,872 / 49,047 157,432 / 3,836
unclustered TW blocks 167 17 15,208 6,750
TW in TW-only clusters 837 / 90 57 / 1 20,930 / 2,742 967 / 129
TW:non-TW in mixed clusters 0:0 / 0 930:4 / 3 53,139:29,325 / 249 81,560:8,997 / 138
non-TW blocks in clusters 1168/ 121 16 / 3 693,478/ 45,971 65,908 / 3569

Table 3: Clustering (in blocks or blocks/clusters) for all blocks and clusters that contain Time-Warner-
related /24 blocks, for 172/8 and full coverage, each with 3 months and 3 days of input.

show we find fewer, larger TW clusters when clustering
on data around the TW event.

Precision and Recall: Clustering with three months
provides very high precision: each of the clusters that
relate to the TW event contains only TW blocks. If we
regard non-TW blocks as false positives, and measurable
TW blocks as ground truth, precision is perfect (1.0).

Recall measures how much of the TW infrastructure
we discover. We consdier two definitions of ground truth:
all TW blocks in 172/8, and all measurable blocks in
172/8, and assume an analyst identifies the 90 clusters
as true positives (in §4.3.3 we justify this assumption).
The first is pessimistic—no system with only active
measurement can find the 1092 TW blocks that are not
active, firewalled, or very rarely responsive. Even with
this pessimistic definition, recall is 0.62 (837 found of
all 1341 TW blocks). If we instead define our target as
the 1004 measured and responding Time-Warner blocks

that an ideal active system would find, our recall is 0.83
(837 of 1004 blocks), fairly complete.

4.3.3 Clustering with Three Days: Blind Discovery. The
top two events in the three-month clustering both point
to the Time-Warner outage, and these events can lead
to discovery of the event in other blocks. However, in
blind discovery, one does not have prior knowledge of
what organization to look for and where they already
are. For blind discovery we aim for fewer, larger clusters.

We can broaden clustering by using a shorter observa-
tion period as input. The TW blocks were split into many
clusters not because the TW outage was not prominent,
but because outages at other times split the large TW
event. The many resulting clusters are overly precise,
revealing details about internals of the Time-Warner
infrastructure, unfortunately losing the bigger picture.

Figure 8b visualizes the clusters that result from using
only three days of data (starting 2014-08-25, two days



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

before the TW outage). We find far fewer blocks (from
2005 to 1007 blocks, Table 3, with different vertical scales
in Figure 8) because there are only about 5 outage events
in these three days. We find 7 clusters, with the 4 largest
all TW-related (771, 139, 57, and 24 blocks), and three
small clusters (11, 3 and 2 blocks, none TW).

Recall and Precision: We can quantify our ability
to find more of the TW infrastructure with recall. With
the shorter input dataset, recall improves to 0.98 (987 of
1004 TW blocks). This improvement results because the
shorter input window reduces the distractions at other
times that would split individual TW blocks out of the
large TW clusters. (And if we add unmeasurable TW
blocks to ground truth, recall is still good: 0.74.)
Precision is 0.996 (987 of 991 blocks, taking only

measurable TW blocks as ground truth), nearly perfect,
but lower than the three-month data because of the 4
non-TW blocks in the three mixed clusters.

Iterative Discovery: Finally, the comparision be-
tween clustering over long and short inputs suggests that
iterative discovery may be beneficial. One would begin
with long-duration input to identify the time periods of
big outages, then carry out focused clustering on these
time periods to identify the largest number of blocks that
match just that event. Iterative discovery could be auto-
mated, or, if done with human supervision, visualization
(with linear ordering) can assist.

4.4 Clustering All Blocks of 2014q3
We next examine all blocks in 2014q3. The right column
of Table 2 shows the input: more than 4M blocks, with
almost 3.7M viable observations, 95k of which are are
identified as Time Warner.
The clustering output is too big to visualize, with

neary 800k blocks and 49k clusters for the full dataset,
and 157k blocks in 3836 clusters when we focus on just
the thee days around the Time-Warner outage (Table 3).

Recall and Precision: Continuing with recall and
precision as defined before (§4.3.2).

Our results for recal from 172/8 hold for the complete
dataset: recall is now 0.83 for 3 months, and 0.92 with 3
days (and 0.75 and 0.83 with our pessmistic definition),
confirming that a focus on the TW outage avoids distrac-
tion. Precision is 0.72 and 0.90, both lower than in 172/8,
but still quite high. Lower precision likely reflects that
TW makes up a smaller fraction of the whole Internet
than of 172/8, with more non-TW blocks to confuse.

Blind Discovery: Blind discovery is straightforward
with full data: with three months, the largest cluster
(34,691 blocks) is 97% Time Warner, as are the third
and fourth largest (with 8330 and 8280 blocks), more
than enough evidence to focus on the outage. Clustering

on three days is even clearer, with the top four (sizes:
49k, 25k, 5.7k, and 4.6k) each 94% to 86% TW.

We are currently evaluating clustering for 2017q4, a
period that includes a major outage for Comcast, a large
U.S. ISP [11], and long-term outages in Puerto Rico
resulting from Hurricane Maria. A full analysis of these
events are outside the scope of this paper, but they will
provide additional tests of blind discovery.

4.5 Revealing Unknown Dependencies
We next show that many of the non-Time-Warner blocks
that appear in TW clusters are actually previously un-
known dependencies of networks on Time Warner, not
false positives. We investigate all four non-TW blocks in
the 2014q3-172/8 clustering with 3-day input (§4.3.3).,
and a random sample of 10 blocks from the four largest
clusters from 2014q3-all clustering with 3-day input.

Of the 4 non-TW blocks in 172/8, two are mislabeled
and two belong to hosting services. two (172.248.41/24
and 172.248.7/24) were not labeled in our dataset. How-
ever, all 995 of the 1024 /24 blocks in 172.248/14 that
are labeled were listed as RoadRunner-West, a Time
Warner service. (We confirm this use with traceroutes
taken in Jan. 2018.) The other two blocks are assigned to
Enzu.com, a hosting company; and Nobis Technology, a
datacenter and hosting company that was purchased by
LeaseWeb in 2016. We examined historical traceroutes
from CAIDA [10] before, during, and after our 2014q3
dataset (although with DNS from2018), suggesting that
172.246.86/24 was operating Enzu’s scalabledns.com,
and 172.247.0/24 was hosted by Above.net. We conjec-
ture that these blocks may have been in Time Warner
datacenters in 2014.
Of the 10 random non-TW blocks from 2014q3-all,

seven were for Time Warner or subsidiaries (then unla-
beled TW and RoadRunner, plus four for Bright House
Networks), or partners (ECR Internet, a TW Business
reseller), two were for other cable providers (GVT Com-
munciations andWayport), and one was for telmex.net.ar
(a Mexican telecomm with operations in Argentina). We
confirmed with public records that in 2014q3, Bright
House was owned by Time Warner, and we discovered
the partnership between ECR Internet and TW. We
believe at least the seven TW-related blocks represent
dependencies discovered through clustering.
Two of the four blocks in 2014q3-172/8 and seven of

the ten in 2014q3-all are all previously hidden depen-
dences we discovered through event clustering.

4.6 The Need for Long Observation
This quarter of data and the TW event demonstrate
the importance of rare events and the need for long

scalabledns.com
telmex.net.ar


ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

observation. Our view of Time Warner was only possible
because of this large event; to our knowledge, they have
never had that level of outage before. If we had only
considered 2014q4 data we would not have discovered
the how many blocks and organizations depend on TW’s
backbone.
This need for long-duration observation confirmed

by two related results. First, prior work reported that
repeated probing for months is required for router-level
topologies to discover backup paths, since they are only
visible during failures [32]. Second, a similar trade-off has
been reported in passive monitoring of network traffic
to discover services [7]. While passive observation finds
busy hosts in hours, it finds only 60% of ground truth
after 18 days, and half of this discovery is due to external
scanners walking the network. Good coverage in each
these studies depends on rare external events (outages,
backup paths, or external scans) that are outside the
direct control of the observer.

5 CLUSTERING TO STUDY
ROUTING AND ANYCAST

We next describe use of both linear ordering and event
clustering to study anycast routing during Denial-of-
Service (DoS) attacks. Our goal is to understand the
relationship between routing changes and anycast catch-
ments during the the Nov. 30, 2015 attack on the DNS
Root server system [31, 40]. We use public informa-
tion about routing (from RouteViews [50]) and RIPE
Atlas [39] to infer routing changes and examine their
effects. This problem is a good fit for our clustering al-
gorithms these observations are numerous enough that
they cannot be examined manually, but clustering can
reveal underlying events (often routing) that result in
anycast changes and often improved service.

We apply event clustering to 48 hours of observations
9305 RIPE Atlas Vantage Points (VPs or “probes”),
starting at 2015-11-30t00:00 UTC. Each VP reports
which anycast site it sees every 4 minutes. Here we report
data for the the J-Root DNS service. Event clustering
produces 237 clusters.
Figure 9 shows the largest 30 clusters. The clusters

are shown in alternating background shades; the initial
site for each VP is white, then it flips to red for each
site change. Black areas indicate missing data due to the
two DoS attacks, one starting at time 6:50, the second
at 5:10 the next day.
We see that the largest two clusters (1200 and 300

VPs) switch sites mid-way through the attack and remain
at the new site. Other clusters show different patterns
of changes, and that many are temporary. Discovery of
these clusters reduces how many routing events need to

11
-30

 00
:00

11
-30

 06
:00

11
-30

 12
:00

11
-30

 18
:00

12
-01

 00
:00

12
-01

 06
:00

12
-01

 12
:00

12
-01

 18
:00

0

500

1000

1500

2000

2500

Figure 9: The largest 30 clusters with similar any-
cast catchment choices for J-Root DNS. Clusters
are shown with alternating white and light gray
backgrounds, with red showing a new anycast
site and black missing data due to DoS.

be studied to understand how operators and the Internet
react to DoS attacks. A next step is analysis of BGP
routing events for each cluster, a more tractable task
with only 237 clusters rather than 9305 VPs.

6 RELATED WORK
Our work builds on prior work evaluating Internet ro-
bustness at routers, ASes, and business and politics.
We reviewed prior studies of Internet robustness in

the introduction of this paper. There are many studies of
Internet topology at the router level [1, 12, 21, 24, 27, 43],
AS-level [9, 22, 26, 32], and the business level [30]. The
strength of these studies is that by focusing on individual
layers and mechanisms, they can identify specific root
causes of problems. Prior work complements our end-to-
end study, which can detect common failures across all
layers, but is more limited in identifying root causes. A
common problem across all of these approaches is the
completeness of coverage; most events are rare, requiring
long and careful observation [32].
Several groups measure network outages [15, 25, 34,

41, 42]. We use datasets from Trinocular because they
have large scope, well defined precision, and are available
to researchers at no cost [34, 49]. In principle our analy-
sis could work over other sources of outage data [15, 25,
41, 42]. Some of these approaches place preconditions
on what is measured: iPlane tracks only routable pre-
fixes [25], and Pingin’ follows weather events [41]. Use
of background radiation is promising [15], but to our
knowledge, datasets with labeled outages using this tech-
nique are not yet available. Recent work has examined
outages at IXPs [19]; we instead study edge networks.



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

Beyond robustness, recent work has explored indepen-
dent observation of network neutrality [54] and traffic
policing [17]. As with our work, the goal of the network
neutrality study is to allow a third party to detect a prop-
erty of a multi-party Internet, but violations of network
neutrality occur more frequently than outages. Traffic
policing can be imposed at many places in the network,
however the traffic policing study was carried out by
Google, making use of its participation as one of the
parties in video traffic. While the analysis in both of
these papers differs from ours, our linear ordering may
help visualization of their measurements.

7 CONCLUSION
This paper has shown two new algorithms to assist in
identifying common points-of-failure in the Internet. Us-
ing end-to-end measurements of outages, we ordered
address blocks to provide a visualization to support hu-
man pattern analysis. We then showed how correlations
of failure events across blocks allow clustering of blocks
that respond similarly, suggesting a common point-of-
failure. We demonstrated these algorithms against data
from 2014q3, showing that the outage experienced by
Time Warner in that period allows us to not only discover
all Time-Warner blocks that depend on their backbone,
but also blocks of two CDNs that appear to share that
dependency.

ACKNOWLEDGMENTS
We thank hosts of our pingers: Christos Papadopoulos
(CSU); Midori Kato, Yohei Kuga, Rod Van Meter (Keio
U. and WIDE); George Polyzos and George Xylomenos
(Athens University of Economics and Business), Wim
Biemolt and Gijs Rijnders (SURFNet).

We thank John Wroclawski for discussion and sugges-
tions about the paper.

We thank Young Hyun (CAIDA) for providing histor-
ical traceroute data.

We thank Jay Bennett, John Healy, Brian Luu, Rasoul
Safavian of the FCC for their input on Internet outage
detection.
The in this paper is partially supported by the De-

partment of Homeland Security (DHS) Science and Tech-
nology Directorate, HSARPA, Cyber Security Division,
via the Air Force Research Laboratory, Information Di-
rectorate (agreement FA8750-17-2-0280), and contract
number HHSP233201600010C. The U.S. Government is
authorized to make reprints for governmental purposes
notwithstanding any copyright. The views contained
herein are those of the authors and do not necessarily
represent those of DHS or the U.S. Government.

REFERENCES
[1] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sar-

rar, Steve Uhlig, and Walter Willinger. Anatomy of a large
European IXP. In Proceedings of the ACM SIGCOMM Con-

ference, pages 163–174, Helsinki, Finland, August 2012. ACM.
[2] Abdulla Alwabel, John Healy, John Heidemann, Brian Luu,

Yuri Pradkin, and Rasoul Safavian. Evaluating exter-

nally visible outages. Technical Report ISI-TR-2015-701,
USC/Information Sciences Institute, August 2015.

[3] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel,

and Jörg Sander. OPTICS: Ordering points to identify the
clustering structure. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages

49–60, Philadelphia, Pennsylvania, USA, June 1999. ACM.
[4] ARIN. ARIN Whois. http://www.arin.net/whois, April 2015.

[5] Associated Press. Fire in Baltimore snarls Internet traffic,
too. New York Times, July 20 2001.

[6] Associated Press. Time Warner Cable says outages largely

resolved. New York Times, Aug. 27 2014.
[7] Genevieve Bartlett, John Heidemann, and Christos Pa-

padopoulos. Understanding passive and active service dis-

covery. In Proceedings of the ACM Internet Measurement
Conference, pages 57–70, San Diego, California, USA, October
2007. ACM.

[8] Eve Batey. BART defends decision to cut off cell service
after civil rights, FCC concerns raised. SF Appeal Online
Newspaper, Aug. 12 2011.

[9] Matthew Caesar and Jennifer Rexford. BGP routing poli-
cies in ISP networks. IEEE Network Magazine, 19(6):5–11,

November 2005.
[10] CAIDA. CAIDA UCSD IPv4 prefix-probing dataset. http://

www.caida.org/data/active/ipv4 prefix probing dataset.xml,

2013. Samples from July 2013 to April 2015 for 172.246.86/24
and 172.247.0/24. Provided by Young Hyun.

[11] Ashley Carman. Comcast’s Xfinity internet service is report-

edly down across the US. The Virge, November 2017.
[12] Kimberly Claffy, Young Hyun, Ken Keys, Marina Fomenkov,

and Dmitri Krioukov. Internet mapping: from art to science.

In Proceedings of the IEEE Cybersecurity Applications and
Technologies Conference for Homeland Security (CATCH),
pages 205–211, Alexandria, VA, USA, March 2009. IEEE.

[13] David D. Clark. The design philosophy of the DARPA In-
ternet protocols. In Proceedings of the 1988 Symposium on

Communications Architectures and Protocols, pages 106–114.
ACM, August 1988.

[14] James Cowie. Egypt leaves the Internet. Re-
nesys Blog http://www.renesys.com/blog/2011/01/
egypt-leaves-the-internet.shtml, January 2011.

[15] Alberto Dainotti, Claudio Squarcella, Emile Aben, Marco

Chiesa, Kimberly C. Claffy, Michele Russo, and Antonio
Pescapé. Analysis of country-wide Internet outages caused by

censorship. In Proceedings of the ACM Internet Measurement
Conference, pages 1–18, Berlin, Germany, November 2011.
ACM.

[16] Ramakrishnan Durairajan, Paul Barford, Joel Sommers, and
Walter Willinger. InterTubes: A study of the US long-haul

fiber-optic infrastructure. In Proceedings of the ACM SIG-

COMM Conference, pages 565–578, London, United Kingdom,
August 2015. ACM.

[17] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pe-
drosa, Yuchung Cheng, Tayeb Karim, Ethan Katz-Bassett,
and Ramesh Govindan. An Internet-wide analysis of traffic

http://www.arin.net/whois
http://www.caida.org/data/active/ipv4_prefix_probing_dataset.xml
http://www.caida.org/data/active/ipv4_prefix_probing_dataset.xml
http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml
http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml


ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

policing. In Proceedings of the ACM SIGCOMM Conference,
pages 468–482, Floranopolis, Brazil, 2016. ACM.

[18] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Un-

derstanding network failures in data centers: Measurement,
analysis, and implications. In Proceedings of the ACM SIG-
COMM Conference, pages 350–361, Toronto, Ontario, Canada,

August 2011. ACM.
[19] Vasileios Giotsas, Christoph Dietzel, Georgios Smaragdakis,

Anja Feldmann, Arthur Berger, and Emile Aben. Detecting

peering infrastructure outages in the wild. In Proceedings of
the ACM SIGCOMM Conference, pages 446–459, Los Angeles,
CA, USA, August 2017. ACM.

[20] James Glanz and John Markoff. Egypt’s autocracy found
Internet’s ‘off’ switch. New York Times, page A1, Feb. 16
2011.

[21] Ramesh Govindan and Hongsuda Tangmunarunkit. Heuris-

tics for Internet map discovery. In Proceedings of the IEEE
Infocom, pages 1371–1380, Tel Aviv, Israel, March 2000. IEEE.

[22] Enrico Gregori, Alessandro Improta, Luciano Lenzini, Lorenzo
Rossi, and Luca Sani. On the incompleteness of the AS-level

graph: a novel methodology for BGP route collector placement.
In Proceedings of the ACM Internet Measurement Conference,
pages 253–264, Boston, Massachusetts, USA, November 2012.

ACM.
[23] Craig Labovitz, Abha Ahuja, Abhijit Abose, and Farnam

Jahanian. Delayed Internet routing convergence. In Pro-
ceedings of the ACM SIGCOMM Conference, pages 175–187,

Stockholm, Sweeden, August 2000. ACM.

[24] Lun Li, David Alderson, Walter Willinger, and John Doyle.
A first-principles approach to understanding the Internet’s

router-level topology. In Proceedings of the ACM SIGCOMM
Conference, pages 3–14, Portland, Oregon, USA, August 2004.
ACM.

[25] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin

Dixon, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. iPlane: An information plane for distributed
services. In Proceedings of the 7th USENIX Symposium on

Operating Systems Design and Implementation, pages 367–
380, Seattle, WA, USA, November 2006. USENIX.

[26] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov,
Bradley Huffaker, Xenofontas Dimitropoulos, k. c. claffy, and

Amin Vahdat. The Internet AS-level topology: Three data
sources and one definitive metric. ACM Computer Commu-
nication Review, 36(1):17–26, January 2006.

[27] Pietro Marchetta, Pascal Mérindol, Benoit Donnet, Antonio

Pescapè, and Jean-Jacques Pansiot. Topology discovery at the
router level: A new hybrid tool targeting ISP networks. IEEE

Journal of Selected Areas in Communication, 29(9):1776–1787,

October 2011.
[28] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhat-

tacharyya, Chen-Nee Chuah, and Christophe Diot. Charac-
terization of failures in an IP backbone. In Proceedings of the

23rd IEEE Infocom, Hong Kong, China, March 2004. IEEE.

[29] Maxmind. Geolite city. Web page http://dev.maxmind.com/
geoip/geolite, 2014.

[30] MLab. ISP interconnection and its impact on consumer

Internet performance. Technical report, Measurement Lab
Consortium, October 2014.

[31] Giovane C. M. Moura, Ricardo de O. Schmidt, John Hei-

demann, Wouter B. de Vries, Moritz Müller, Lan Wei, and
Christian Hesselman. Anycast vs. DDoS: Evaluating the No-

vember 2015 root DNS event. In Proceedings of the ACM

Internet Measurement Conference, November 2016.
[32] Ricardo V. Oliveira, Dan Pei, Walter Willinger, Beichuan

Zhang, and Lixia Zhang. In search of the elusive ground truth:

the Internet’s AS-level connectivity structure. In Proceedings
of the ACM SIGMETRICS, pages 217–228. ACM, June 2008.

[33] ANT Project. Ant internet outage browser. https://ant.isi.

edu/outage/browse/, 2016.
[34] Lin Quan, John Heidemann, and Yuri Pradkin. Trinocular:

Understanding Internet reliability through adaptive probing.

In Proceedings of the ACM SIGCOMM Conference, pages
255–266, Hong Kong, China, August 2013. ACM.

[35] Lin Quan, John Heidemann, and Yuri Pradkin. Visualizing

sparse Internet events: Network outages and route changes.
Computing, 96(1):39–51, January 2014.

[36] Lin Quan, John Heidemann, and Yuri Pradkin. When the
Internet sleeps: Correlating diurnal networks with external

factors. In Proceedings of the ACM Internet Measurement
Conference, pages 87–100, Vancouver, BC, Canada, November
2014. ACM.

[37] Philipp Richter, Georgios Smaragdakis, David Plonka, and

Arthur Berger. Beyond counting: New perspectives on the
active IPv4 address space. In Proceedings of the ACM Internet
Measurement Conference, pages 135–149, Santa Monica, CA,

USA, November 2016. ACM.
[38] RIPE NCC. RIPE Atlas J-Root server data. https://atlas.

ripe.net/measurements/10316/.
[39] RIPE NCC. RIPE Atlas. web site https://atlas.ripe.net/,

2010.

[40] Root Server Operators. Events of 2015-11-30. Technical
report, Root Server Operators, Dec. 4 2015.

[41] Aaron Schulman and Neil Spring. Pingin’ in the rain. In
Proceedings of the ACM Internet Measurement Conference,
pages 19–25, Berlin, Germany, November 2011. ACM.

[42] Anant Shah, Romain Fontugne, Emile Aben, Cristel Pelsser,

and Randy Bush. Disco: Fast, good, and cheap outage detec-
tion. In Proceedings of the IEEE International Workshop on
Traffic Monitoring and Analysis, pages 1–9, Dublin, Ireland,

June 2017. Springer.
[43] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring

ISP topologies with Rocketfuel. In Proceedings of the ACM
SIGCOMM Conference, pages 133–145, Pittsburgh, Pennsyl-

vania, USA, August 2002. ACM.

[44] Brain Stelter. Internet is a weapon in cable fight. New York
Times, page B3, Oct. 20 2010.

[45] Brian Stelter. TimeWarner Cable comes back from nationwide

internet outage. CNN Media Website, August 2014.
[46] Srikanth Sundaresan, Danny Lee, Xiaohong Deng, Yun Feng,

and Amogh Dhamdhere. Challenges in inferring Internet

congestion using throughput measurements. In Proceedings
of the ACM Internet Measurement Conference, pages 43–56,

London, UK, November 2017. ACM.
[47] Time Warner Cable. This morning’s outage.

web http://www.twcableuntangled.com/2014/08/

twc-identifies-cause-of-internet-outage/, August 2014.
[48] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan

Savage. California fault lines: Understanding the causes and

impact of network failures. In Proceedings of the ACM SIG-
COMM Conference, pages 315–326, New Delhi, India, August

2010. ACM.

[49] USC/LANDER Project. Internet outage measure-
ments. IMPACT ID USC-LANDER/internet outage

adaptive a17all-20140701 and https://ant.isi.edu/datasets/

http://dev.maxmind.com/geoip/geolite
http://dev.maxmind.com/geoip/geolite
https://ant.isi.edu/outage/browse/
https://ant.isi.edu/outage/browse/
https://atlas.ripe.net/measurements/10316/
https://atlas.ripe.net/measurements/10316/
https://atlas.ripe.net/
http://www.twcableuntangled.com/2014/08/twc-identifies-cause-of-internet-outage/
http://www.twcableuntangled.com/2014/08/twc-identifies-cause-of-internet-outage/
USC-LANDER/internet_outage_adaptive_a17all-20140701
USC-LANDER/internet_outage_adaptive_a17all-20140701
https://ant.isi.edu/datasets/internet_outages/
https://ant.isi.edu/datasets/internet_outages/


Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

internet outages/, July 2014.
[50] Route Views. University of Oregon Route Views Project. web

site http://www.routeviews.org, 2000.

[51] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao,
and Randy Bush. A measurement study on the impact of
routing events on end-to-end Internet path performance. In

Proceedings of the ACM SIGCOMM Conference, pages 375–
386, Pisa, Italy, August 2006. ACM.

[52] S. Woolf and D. Conrad. Requirements for a mechanism iden-

tifying a name server instance. RFC 4892, Internet Request
For Comments, June 2007.

[53] He Yan, Ricardo Oliveira, Kevin Burnett, Dave Matthews,

Lixia Zhang, and Dan Massey. BGPmon: A real-time, scalable,
extensible monitoring system. In Proceedings of the IEEE
Cybersecurity Applications and Technologies Conference for
Homeland Security (CATCH), pages 212–223, Washington,

DC, USA, March 2009. IEEE.

[54] Zhiyong Zhang, Ovidiu Mara, and Katerina Argyraki. Net-
work neutrality inference. In Proceedings of the ACM SIG-
COMM Conference, pages 63–74, Chicago, IL, USA, August

2014. ACM.

A CLUSTERING OF THE TIME
WARNER OUTAGE

We next use observations from 2014q3 and the Time-
Warner outage to understand what clustering can find.

We discuss outages in the 172/8 block of 2014q3 in
§4.3.
Here we provide some additional information. Fig-

ure 10 shows the full three months of clusters.

B MORE ABOUT CLUSTERING
ANYCAST CATCHMENTS

In §5 we discussed the use of clustering to evaluate any-
cast catchments. Figure 9 shows anycast catchments
as seen by the clustering algorithm, with binary val-
ues, where white shows the original anycast site and it
alternates with red for each subsequent site shift.

While that visualization is faithful to what clustering
sees, several different catchments are shown as white.
Figure 11 shows the two largest clusters where each site
has a unique color.

https://ant.isi.edu/datasets/internet_outages/
http://www.routeviews.org


ISI-TR-724, Feb. 2018, John Heidemann, Yuri Pradkin, and Aqib Nisar

Figure 10: Clusters for all measurable blocks in 172/8 using all three months of 2014q3. Data is
grouped by cluster and then linear ordering within each cluster. Clusters are shown by alternating
white and light gray backgrounds. Outages are shown by colored areas.



Back Out: End-to-end Inference of Common Points. . . ISI-TR-724, Feb. 2018,

(a) The largest cluster for J-Root.

(b) The second cluster for J-Root.

Figure 11: The largest two clusters in J-Root
with similar anycast catchment choices. Colors
indicate anycast site: yellow is AMS, red is
Frankfurt. Black represents observations with no
data.


	Abstract
	1 Introduction
	2 Efficient Linear Ordering
	2.1 The Problem and Prior Approaches
	2.2 Other Input: Routing and Anycast
	2.3 The Linear Ordering Algorithm
	2.4 Linear Ordering Performance

	3 Event Clustering
	3.1 Definitions and Overview
	3.2 Event Clustering, Formally
	3.3 An Example of Event Clustering
	3.4 Event Clustering Performance

	4 Clustering 2014q3 Outages
	4.1 Datasets and Events
	4.2 Linear Ordering for Visualization
	4.3 Event Clustering in 172/8
	4.4 Clustering All Blocks of 2014q3
	4.5 Revealing Unknown Dependencies
	4.6 The Need for Long Observation

	5 Clustering to Study Routing and Anycast
	6 Related Work
	7 Conclusion
	References
	A Clustering of the Time Warner Outage
	B More About Clustering Anycast Catchments

