5/10/2014

T-DNS: Connection Oriented DNS
to Improve Privacy and Security

John Heidemann'
joint work with Liang Zhu!, Zi Hu!,
Duane ellessels‘z‘, Allison Ma%kiny, Nikita Somaiya'
- USC/IS, % Verisign Labs

10 May 2014
©

Copyright © 2014 by John Heidemann
Release terms: CC-BY-NC 4.0 international

USCViterbi ¢

don’t fear
connections

for DNS

USCViterbi ¢

DNS Basics

since 1987 (RFC-1034)
DNS is simple request-response:

client: A www.example.com ?
server: 192.0.2.1

perfect for UDP

(TCP supported too, but as fallback and zone transfers)

T-DNS / DNS-OARC

Fear of DNS over TCP

* TCP is horribly slow: bad client latency
* TCP => server state : server memory explodes

community -eensensus+ -orthedexy dogma
don tuse TCP* UDP’s constraints are OK

* except for fallback and zone transfers

T-DNS / DNS-OARC

USCViterbi ¢

USCViterbi ¢

Our Contributions

* analysis: don’t fear connections for DNS
— client latency: only modestly more
— server memory: well within current hardware

* implementation choices to get here
 small protocol addition: TLS upgrade

=> T-DNS: DNS over TCP+TLS

USCViterbi ¢

T-DNS / DNS-OARC

T-DNS: TCP and TLS Connections

* introduction

* why

* how

 at minimal cost

* better than alternatives
* next steps

1SCViterbi P
USC Viterbi Ly T-DNS / DNS-OARC

Why T-DNS

* protecting privacy

— connections -> encryption -> privacy
* denying DoS (Denial of Service)

— connections -> spoof-proof -> no amplification attacks
* leaving limits

— connections -> UDP limits don’t drive policies

1SC Viterhi a
USC Viterbi Ly T-DNS / DNS-OARC

5/10/2014

Protecting Privacy

principle: a/l traffic should be private (=> encrypted)

« rise of public DNS means many can snoop
— Google Public DNS, OpenDNS, others
— traffic over WAN should be private!

« individuals avoiding transparent proxies
— multiple ISPs intercept DNS to add ads

. avoid Turkish censorship of Twitter,
* DNS is more than addresses 2014-03-21

— anti-spam (DNSBL), embedded user IDs (facebook, etc.)
+ ex: DNSBL’s spam check sends IP address of every incoming mail server over the WAN
— even on LAN (where destinations are visible),
should protect other content

T-DNS / DNS-OARC

Denying DoS

* problem: DNS attacks others
— DNS amplification attacks

an amplification attack:
attacker, forging IP of victim
Q: ANY for example.com ?

— a growth industry in 2013: (~60 bytes)
>100Gb/s attacks server: let me help you,
* problem: DoS on DNS servers ﬁ;ff}:aj’;ﬁ:ﬁ’zom

— work-around: massive over-capacity
* solution: TCP

— well understood anti-DoS methods:

— 3-way handshake precludes spoofing

— TCP cookies shift state to client for non-
spoofed

example.com
result: 60x more bits on victim

USCViterbi €

T-DNS / DNS-OARC

USCViterbi €

Leaving Limits

 for >25 years, policy decisions forced !

by UDP packet sizes o
— number of root servers: all fit in 512B ZE (
— DNSsec: required EDNS for >512B Hos (f | mexatontoon
— crypto algs and key sizes: pkt size o i~
limited 02 /
— key rollover: temporary 2x size o S
. % 200 400 600 BOG 10
* partial fix: EDNSO deployment (10+ Tosponse 570 (byics)
years, since 1999) response sizes today

» what uses already discarded as too big?
=> enough already!

1SC Viterhi -
USC Viterbi Ly T-DNS / DNS-OARC

Doesn’t DNSsec already

“‘Secure DNS”?

A: yes, but...
» DNSsec is about query integrity

— that is: if you are told X, is X true?

— it signs answers; signatures prove X is true
* DNSsec does nothing for problems

— everything sent in the clear: no privacy

— nothing about DoS

— large signatures stress UDP size limits

=>need DNSsec’s integrity and T-DNS’ privacy

T-DNS / DNS-O

USCViterbi €

T-DNS: TCP and TLS Connections

introduction
* why
* how

* at minimal cost

better than alternatives
* next steps

1ISC'Viterbi a
USCViterbi ¢ T-DNS / DN:

(Review) Our Contributions

* analysis: don’t fear connections for DNS
— client latency: only modestly more
— server memory: well within current hardware
* implementation choices to get here
 small protocol addition: TLS upgrade

USCViterbi €

T-DNS / DNS-OARC

5/10/2014

(Review) Our Contributions

3. analysis: don’t fear connections for DNS
— client latency: only modestly more
— server memory: well within current hardware

2. implementation choices to get here
1. small protocol addition: TLS upgrade

(going in reverse order)

Protocol Changes: Goals

* minimize change (as bori
as boring

* reuse existing approaches .
£4app as possible)

* follow IETF patterns

T-DNS / DNS-OARC

USCViterbi €

Protocol Changes: Goals

* minimize change (as bori
as boring

* reuse existing approaches .
£4app as possible)

* follow IETF patterns

* implications:
—reuse TLS: Transport Layer Security
—add a STARTTLS-like “upgrade”
— innovation: careful implementation

USCViterbi €

SMTP before STARTTLS

C & S: open TCP connection
8: 220 mail.imc.org SMTP service ready
C: EHLO mail.example.com
8: 250-mail.imc.org hi, extensions are: -SBITMIME -STARTTLS DSN

problem: cleartext
mail is snoop-able
(fix: TLS)

C: MAIL FROM:<sender@mail.example.com>

8: 250 2.1.0 <sender@mail.example.com™... Sender OK
C: RCPT TO:<destination@mail.example.com>

S: 250 2.1.5 <destination@mail.example.com>
C: <send mail contents>

USCViterbi €

SMTP with STARTTLS

C & S: open TCP connection prologue.‘ in clear

8: 220 mail.imc.org SMTP service ready .
N n 1Y her
C: EHLO mail.example.com (0 privacy nel e)

8: 250-mail.imc.org hi, extensions are: -SBITMIME -STARTTLS DSN

C: STARTTLS i
S: 220 Go ahead transition to TLS

C & S: <negotiate a TLS session with a new session key, in binary>

C: EHLO mail.example.com contents now p”vate
S: 250-mail.imc.org hello, extensions are: -8BITMIME DSN

C: MAIL FROM:<sender@mail.example.com>
8: 250 2.1.0 <sender@mail.example.com>... Sender OK

C: RCPT TO:<destination@mail.example.com>

S: 250 2.1.5 <destination@mail.example.com>
C: <send mail contents> this example' SMTP:
. >

idea used for IMAP, POP3, FTP,
XMPP, LDAP, NNTP...

Our STARTTLS for DNS

(in draft-hzhwm-start-tls-for-dns-01)
C & S: open TCP connection prologue
transition to TLS

C: QNAME=“STARTTLS”, QCLASS=CH, QTYPE=TXT
with the new TO bit set in EDNS options

S: RCODE=0, TXT="STARTTLS”, with the TO bit set
C & S: <negotiate a TLS session, get new session key, in
binary>
contents now private
C: <send actual query>
S: <reply to actual query>
pros: no new port (from IANA, or in firewalls)
cons: extra RTT; middleboxes may not like encrypted tfc

T-DNS / DNS-OARC

USCViterbi €

5/10/2014

(Review) Our Contributions

3. analysis: don’t fear the DNS connection
— client latency: only modestly more
— server memory: well within current hardware

2. implementation choices to get here
1. small protocol addition: TLS upgrade

(going in reverse order)

Careful Implementation Choices

* problem: no tuning of DNS TCP for queries
(until now!)

* connection reuse (or restart)
— persistent connections
— TCP fast open
— TLS resumption

* query pipelining

* out-of-order processing

USCViterbi €

T-DNS / DNS-OARC

USCViterbi €

Latency in DNS/TLS

C & S: open TCP connection TCP 3wh: +1 RTT

STARTTLS: +1 RTT
C: QNAME=“STARTTLS”, QCLASS=CH, QTYrr=1X1
with the new TO bit set in EDNS options

S: RCODE=0, TXT="STARTTLS” with the TO bit set
C & S: <negotiate a TLS session with a new session kev. in binarv>

TLS handshake:
+2 RTTs

C: <send actual query>
S: <reply to actual query>

query: 1 RTT

Connection Reuse

* basic idea:
reuse connection -> no setup cost

* secondary idea:
if must close, client keeps state to restart quickly

USCViterbi €

USCViterbi €

Connection Reuse

* basic idea:
reuse connection -> no setup cost
— persistent connections (in client and server)
* secondary idea:
if must close, client keeps state to restart quickly
— TCP fast open: client has cookie to send data in 3wh
e drafi-ietf-tcpm-fastopen-08: in Linux-3.6, default 3.13
— TLS resumption (RFC-5077): client keeps
* RFC-5077: in OpenSSL and GnuTLS

1SC Viterhi a
USC Viterbi Ly T-DNS / DNS-OARC

5/10/2014

Query Pipelining
send several queries immediately (not stop-and-wait)
before pipelining with pipelining

q1,42f..

a1, q2l...

' N ’ '
4 @ 0 extra

(recursive) RTT

q2 delayed
waiting for ql
(+1 RTT)

&)

(stub)

pipelining matters:
62% of web has 4+ domain names

(datset: common crawl)

q2 delayed
waiting for al

Out-of-Order Processing

process queries on same connection in parallel
out-of-order processin,
(st . (authortative)
% (recursive) — (for 01) (for 02)
q1, 2>

in-order (only)
. (authortative)
(recursive) - (for Q1) (for 02)

g

(+1 RTT)

reply as soon as possible
(maybe reorder)

el ‘ l

out-of-order matters:

avoid head-of-line blocking

T-DNS: TCP and TLS Connections

introduction
* why
* how

e at minimal cost

better than alternatives
* next steps

T-DNS / DNS-OARC

USCViterbi €

USCViterbi €

(Review) Our Contributions

3. analysis: don’t fear connections for DNS
— client latency: only modestly more
—server memory: well within current hardware

2. implementation choices to get here
1. small protocol addition: TLS upgrade

(going in reverse order)

T-DNS / DNS-OARC

(Review) Our Contributions

3. analysis: don’t fear connections for DNS
— client latency: only modestly more
— server memory: well within current hardware

questions:
a. connection reuse: hit rate? memory?
b. CPU cost?
c. latency:

i. stub-recursive?

ii. recursive-authoritative?

iii. end-to-end?

connection hit fractions

Connection Reuse Helps? (YES!)

1 —T — —T—— S what fraction of queries
find open TCP
connections?

120s timeout =>
>94% connection reuse
(reuse is effective!)

method: replay 3 traces:
recursive (DNSchanger,
Level3) and authoritative
DNSChanger/alito-all - - = (B-Root)
DITL/B-Root — =
Level 3, cnsd.lax! —=

L . (graph shows medians,
100 150 200 250 300 350 400 450 sop duwrtlesarcting
conds)

conclusion: connection reuse is
often helpful

we propose 30s/60s (conservative)
=> still >85% connection reuse

5/10/2014

Cost of Connection Reuse? (ok!)

120s timeout =>

Latency: CPU Cost

» we used micro-benchmarks to study CPU cost

step OpenSSL GnuTLS

TCP handshake processing 0.15ms

TCP packet handling 0.12ms

TLS connection establishment 8ms
key exchange 6.5 ms
CA validation 1.5ms

TLS connection resum 1.4ms

<
S 350000 — . 9
B [16 to 40GB RAM @ how many connections?
2 300000 1A [CA " 9

£ DITUB Root | | 100 ¢ how much memory?

8 250000 | 1 i S

E 8 80 2 -

5 200000 1 g method: replay same 3

H # s @ traces (here we show 2

8 150000 | S biggest)

8 100000 ! LS

- [l] -

] e S i i

o 50000 ,,L o 20 B experimental estimate of.
2 a‘[s) 'é, memory: 360kB/connection
E 0 (very conservative)

13 100 150 200 250 300 350 400 450 500

out window (seconds) (graph shows medians and quartiles)

conclusion: connection reuse is

often helpful and it’s not too costly
(easy to add server parallelism if needed)

we propose 30s/60s (conservative)
=>9GB for L3, 18 for B-Root

T-DNS / DNS-

USCViterbi €

0.1-0.5ms

DNS resolution (from

TLS setup is noticeable,
but RTT (40-100+ms) more impt.

e
USCViterbi]

Latency: Stub to Recursive

TCP and TLS: TCP and TLS vs. UDP?
= as fast as UDP effects of implementation
hy? i o
% why? Ims RTT is ~free choices?
E ls0 with short RTT (Ims)
g,E; gl @ B ©))
o method: live experiments of
g random 140 names from
worll B B Alexa top 1000; stub-
recursive RTT=1ms
Uop TeP TS s proe
connection:
handshake - full ol ful - (graph shows medians and quartiles)
reuse noteuse reuse reuse rouse
sending stop-and-wait stop-and-wait ppeine pipeline
processing in-order in-order inorder out-of-arder

USCViterbi €

T-DNS / DNS-OARC

Latency: Stub to Recursive

pipelining | 7cp and TLS vs. UDP?
requires OUt-0f- | o et of implementation

= . 5

%] dcr/n acessing | . qices?

E 1600 eV with short RTT (Ims)

e 1200 @ (o o @ o o

§ method: live experiments of

g L random 140 names from
4001 HH Alexa top 1000; stub-

recursive RTT=1ms

UoP TeP TS pTCP
connection:
handshake - full full <l (graph shows medians and quartiles)
rouse noreuse euse use rouse
sending stop-and-wait stop-and-wait pipeline pipeline
processing in-order in-order inorder out-of-order

1SC Viterhi -
USCViterbi Ly T-DNS / DNS-OARC

Latency: Recursive to Authoritative

new connections

are expensive TCP and TLS vs. UDP?
(RTTs exactly as | = SATTs effects of implementation
predicted!) . choices?
H 2 T \vith long RTT (=35ms)
2100 3RTTs
- method: live experiments of
F e dom 140 names, each
5 s0 random 5
B L] 1RTT repeaed 10x; recursive-
£ authoritative RTT=35ms

UOP TCP TLS TCP

connection: (graph shows medians and quartiles
handshake - full fastopen full - full

e rase e rouse for (h) and (i), or bars where median
sending stop-and-wait stop-and-wail pipeline and quartiles are the same)
processing in-order in-order out-of-order

USCViterbi €

T-DNS / DN

Latency: Recursive to Authoritative

new connections
are expensive

reusing connections
avoids much

TCP and TLS vs. UDP?

(RTTs exactly as | = overhead SATTs effects of implementation
predicted!) \ N choices?
i \ ® 4RTTs
a with long RTT (=35ms)
1 3RTTs

\ " method: live experiments of
2RTTs
random 140 names, each
1RTT repeaed 10x; recursive-

median per query ti

2 B authoritative RTT=35ms
UoP TCP TS TeR
connection: (graph shows medians and quartiles
hake -~ fl fasiopen ful -
T T e T ke rouse for (h) and (i), or bars where median
sonding stop-and wait stop-and-wall pipeline and quartiles are the same)
processing in-order in-order out-of-order

1SC Viterbi P
USCViterbi ¢ T-DNS / DNS-

5/10/2014

End-to-End Latency: Methodology

* controlled experiments are hard

— variable stub query timing

— caching at recursive resolver

— different RTTs (many stubs and authoritatives)
* approach: model expected latency

— i.e., just averages

— median connection reuse from trace replay

— other parameters from experiments

T-DNS / DNS-OARC

USCViterbi €

End-to-End Latency: Results

450 .
s RTT (in ms) | protocol choices: stub-

400 woges
350

"B o recursive and recursive-
o authoritative

method: modeling; vary
stub-recursive RTT; assumes
all optimizations (TCP FO,
TLS resumption, pipelining,
000P)

latency (ms)

(graph shows expected values, plus
slowdown relative to case (a),

UDP/UDP)
TLS (s-r, 30s t.0.) + TCP (r-a, 60s t.0.)
19 to 33% slower: modest cost -> most benefit

1SC Viterhi a
USC Viterbi Ly T-DNS / DNS-OARC

T-DNS: TCP and TLS Connections

* introduction

* why

* how

 at minimal cost

* better than alternatives
* next steps

USCViterbi €

Alternatives

* for improving privacy
— DNScurve/DNScrypt: some neat optimizations to
reduce RTTs, but new and fixed stack

— DNS over DTLS: adds back UDP limits but still
stuck with most TLS RTTs

* for anti-DoS
— on others: rate limiting
* for relaxing limits:
— seeming alternative: live within UDP limits

USCViterbi €

T-DNS: TCP and TLS Connections

* introduction

* why

* how

 at minimal cost

* better than alternatives

* next steps

USCViterbi €

T-DNS Next Steps

e more information:

— tech report ISI-TR-2014-688
(www.isi.edu/~johnh/PAPERS/Zhul4a/)
— internet-draft: draft-hzhwm-start-tls-for-dns-01

* code:
— client, client & server proxies, unbound patch
— http://www.isi.edu/ant/software/

* do you want DNS privacy? share feedback?
— johnh@isi.edu

1SC Viterhi a
USC Viterbi Ly T-DNS / DNS-OARC

