

don't fear connections for DNS

since 1987 (RFC-1034) DNS is simple request-response: client: A www.example.com? server: 192.0.2.1 perfect for UDP (TCP supported too, but as fallback and zone transfers)

Our Contributions • analysis: don't fear connections for DNS – client latency: only modestly more – server memory: well within current hardware • implementation choices to get here • small protocol addition: TLS upgrade => T-DNS: DNS over TCP+TLS

Doesn't DNSsec already "Secure DNS"? A: yes, but... • DNSsec is about query integrity - that is: if you are told X, is X true? - it signs answers; signatures prove X is true • DNSsec does nothing for problems - everything sent in the clear: no privacy - nothing about DoS - large signatures stress UDP size limits => need DNSsec's integrity and T-DNS' privacy

T-DNS: TCP and TLS Connections • introduction • why • how • at minimal cost • better than alternatives • next steps

Connection Reuse basic idea: reuse connection -> no setup cost secondary idea: if must close, client keeps state to restart quickly USC Viterbit TONS/DNS-OARC

T-DNS: TCP and TLS Connections introduction why how at minimal cost better than alternatives next steps

(Review) Our Contributions

3. analysis: don't fear connections for DNS

- client latency: only modestly more

- server memory: well within current hardware

questions:

a. connection reuse: hit rate? memory?

b. CPU cost?

c. latency:
i. stub-recursive?
ii. recursive-authoritative?

End-to-End Latency: Methodology controlled experiments are hard variable stub query timing caching at recursive resolver different RTTs (many stubs and authoritatives) approach: model expected latency i.e., just averages median connection reuse from trace replay other parameters from experiments

T-DNS: TCP and TLS Connections

- introduction
- why
- how
- · at minimal cost
- · better than alternatives
- next steps

USC Viterbi

Consider Expension Framework

T-DNS / DNS-OARC

Alternatives

- · for improving privacy
 - DNScurve/DNScrypt: some neat optimizations to reduce RTTs, but new and fixed stack
 - DNS over DTLS: adds back UDP limits but still stuck with most TLS RTTs
- · for anti-DoS
 - on others: rate limiting
- for relaxing limits:
 - seeming alternative: live within UDP limits

USC Viterbi

Source Company Co

T-DNS: TCP and TLS Connections

- introduction
- why
- how
- · at minimal cost
- better than alternatives
- next steps

USC Viterbi

T-DNS / DNS-OARC

T-DNS Next Steps

- · more information:
 - tech report ISI-TR-2014-688 (www.isi.edu/~johnh/PAPERS/Zhu14a/)
 - internet-draft: draft-hzhwm-start-tls-for-dns-01
- code
 - client, client & server proxies, unbound patch
 - http://www.isi.edu/ant/software/
- do you want DNS privacy? share feedback?
 - johnh@isi.edu

USC Viterbi T-DNS / DNS-O