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Abstract

Network datasets are necessary for many types of net-

work research. While there has been significant discussion

about specific datasets, there has been less about the overall

state of network data collection. The goal of this paper is

to explore the research questions facing the Internet today,

the datasets needed to answer those questions, and the chal-

lenges to using those datasets. We suggest several practices

that have proven important in use of current data sets, and

open challenges to improve use of network data.

1 Introduction

Computer network research has long depended on a

number of techniques, from reasoning and proof; to mod-

eling and simulation; to experiments, from small-scale lab-

oratories of a few PCs to large-scale testbeds such as Emu-

lab [73] and PlanetLab [4]. While these tools all have a role,

experience has shown that the Internet is inevitably more di-

verse and variable than we anticipate [55]. Direct study of

the Internet itself is therefore an essential complement to

the above tools—observation can provide the data to feed

models, simulations, and experiments.

Unfortunately, direct observation of the Internet is quite

challenging. The Internet is highly distributed—no central

measurements have been possible since the NSFnet back-

bone was superseded in the mid-1990s [13]. In addition, as

the Internet has been integrated with people’s lives and busi-

nesses, very important privacy and legal protections have

arisen [47].

Yet when gathered, data can be quite influential. As

some examples: Paxon’s study of pairwise TCP exchanges

influenced TCP design and our understanding of network

traffic [53]. Access to BGP routing updates made possi-

ble with the Route Views Project [58] and has advanced

research and practice through scores of papers and new ap-

proaches to ISP relationships [20], routing [38], network

efficiency [63], problem detection [12], and related topics.

While relatively few packet traces are available, they have

been very influential in denial-of-service, worm, and virus

detection. While Route Views and packet traces shine

light on only a fraction of the Internet today, their wide use

and impact illustrates the promise of relevant network data.

The goal of this paper is to explore some of the research

questions facing the Internet today, the datasets needed to

answer those questions, and the challenges to using those

datasets. Our thesis is that recently available datasets enable

new research, but that continued work is needed to make

new data available to address open research needs.

2 Research Questions

What are the key research questions that should drive

Internet research today? A U.S. National Research Coun-

cil report posed three grand goals: measuring the Inter-

net, modeling networks, and disruptive prototypes [52]. In-

spired by this report, CAIDA has conducted two “Day in the

Life of the Internet” collection events [33]. But what are the

more specific questions we should look for, and what data

to answer them? Table 1 summarizes a number of important

research topics, some of which we expand below.

Answering the overall question of what networking re-

search is both very important and very difficult; we can-

not possibly provide a complete description of the research

space here. Instead, we seek to highlight a range of key

questions that hopefully illustrate the space. We refer in-

terested readers to the above NRC report [52] and other

concurrent and subsequent reports for a fuller picture (for

example, [60]).

2.1 Understanding Network Traffic

Network traffic has long been an area of study. Just as

topology is studied at different levels, traffic has been stud-

ied as individual flows, aggregates on a link, or traffic ma-

trices of the Internet.

Study of network traffic has had two main goals: char-

acterizing typical traffic, and characterizing atypical, often

malicious, traffic. The overall goal is to understand what
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Table 1. General topics in network research and applications in those topics.
topic applications

network traffic

typical traffic protocol design, congestion control, router buffer sizing, traffic modeling, new traffic types

atypical traffic malware detection: denial-of-service attacks, worm, virus spread, malware; spyware; unusual

traffic types; protocol verification

network topology

AS-level understanding business relationships

router- or link-level evaluation of network robustness, cross-section throughput, network coordinate systems

address-level evaluation of network size

topology and traffic localizing attack sources, mapping network to geography, physical cross-section throughput

traffic dominates the Internet and how it affects traffic en-

gineering, network architectures, and design of protocols,

routers, firewalls, and other network appliances. Of course,

understanding typical network traffic is a very broad re-

search area; we provide a few representative examples be-

low to illustrate how traces are used here.

Examples of studies of individual flows have often fo-

cused on TCP [53], or characterization of flows by size [69],

duration [8], burstiness [59], or combinations of these [39].

Studies of individual flows are important to improve cur-

rent protocols and understand how they will interact with

new protocols. Studies of aggregate traffic include statis-

tics of NSFnet [13], discovery of self-similarity in network

traffic [40], to characterizations of traffic matrices [44]. An

understanding of aggregate traffic is essential for medium-

and long-term planning and traffic engineering [17, 19]. To

date, study of network traffic has typically been done in

consort with creation of new measurement infrastructure,

or inside commercial ISPs. While the creation of trace in-

frastructure is understood relatively well today, we suggest

that long-term evaluation of network trends requires analy-

sis of through common datasets by multiple parties, some-

thing not generally possible today.

Internet traffic has been long studied; it might seem that

there is little more to learn. However, the openness of

the Internet means new applications constantly arise. Re-

cent study of individual traffic has focused on new applica-

tions such as peer-to-peer file sharing [31, 14, 3], VOIP [6],

YouTube video [10] and IPTV [11]. While studies of ag-

gregate traffic have examined how these new applications

have changed the traffic mix, we believe their is benefit to

observing their behavior as they evolve from niche to main-

stream. Part of the benefit includes new traffic models and

user behavior, which are helpful in tuning anomaly detec-

tion.

Growth of malware and spam have prompted the detec-

tion of atypical Internet traffic. Several broad approaches

have been considered, including entropy-based [22],

change-point [64], parametric methods [24, 65] While these

approaches use very different mathematical models to dis-

tinguish between typical and atypical traffic, all require ex-

amples of both attack and known non-attack traffic to eval-

uate their effectiveness and their rate of false positives.

Complementary to traffic detection, problems from mal-

ware can be avoided through protocol verification and soft-

ware engineering techniques that reduce the number of

bugs. In this case, traces can provide examples of protocols

operating in unexpected ways, or of bugs being exploited.

In addition, characterizations of atypical traffic are con-

stantly changing. Atypical traffic is often malicious; the

adversarial relationship between malware authors and net-

work operators leads to an arms race of continual evolution.

This interaction stresses the importance of not just getting

traces, but continuing to get new traces (Section 4.4).

2.2 Understanding Network Topology

That traffic must run over some network topology—a

collection of links, LANs, and routers. Understanding the

network topology is essential to understand the fragility or

resilience of the Internet to attack or failure, developing

models of network economics, developing services depen-

dent on network location such as caching or replication, and

other similar problems.

Internet topology was of wide interest in 2001–2002,

with Skitter [27], Rocketfuel [62] and Mercator [63]. Stud-

ies considered both topology at the AS-level and router-

level. Data from those studies has been essential to refine

earlier observations about Internet topology [18] to reflect

physical constraints [41].

Although the core Internet topology has been widely

studied, some questions remain open, such as what is the

least-cut diameter of the Internet, particularly when routing

policies are considered. A full understanding of interac-

tions between routing policy and raw connectivity is also

pending.

We see a resurgence in interest in Internet topology, but

now going to the edges of the network. While a num-
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ber of groups have maintained manual lists of dynamically-

assigned addresses, Xie et al. have inferred this information

for accesses to e-mail provider logs [74]. Trestian et al. de-

veloped a classification method for addresses based on their

presence on the web, as shown through the Google search

engine [70]. We have been conducting census of all Internet

addresses for several years [26]. Each of these approaches

propose a new methodology and some direct applications;

we believe their real power will arise as others apply the

data in new ways.

Open questions in the core topology of the Internet are:

how many Internet hosts are there, really? How many

clients or servers?

2.3 Where Topology and Traffic Meet

Although traffic and topology have been studied in iso-

lation, their combination provides a very compelling open

area of research. The interaction of traffic is at the core of

traffic engineering, and it also has bearing on policy issues

such as network neutrality.

The traffic matrix is the first step in this direction [44],

but traffic matrices have usually been studied only in the

context of a single ISP. What is Internet-wide traffic like?

A second open area at the intersection of traffic and

topology is to bring traffic into the physical world. Can

we relate traffic with its geographic location? What will

this tell us about caching policies, network provisioning, or

geolocation of specific flows?

Finally, while the rest of Section 2 has focused on using

network data to directly address problems facing the Inter-

net today, there is an important indirect effect as well: data

can be used to design, populate, and validate network simu-

lations and models. Since simulation and modeling creates

an isolated, malleable version of a subset Internet, it can be

incredibly valuable in studying focused research questions.

However, researchers must understand the relationship be-

tween what is modeled and the real world, if they expect

their conclusions to reflect those constraints. The field of

verification, validation, and accreditation of network simu-

lations is an important area [25], yet one that can be chal-

lenging to apply in practice [37].

3 Classes of Data

Today, several research groups collect various types of

data, both for their own research purposes and to provide

data to the community through repositories such as PRE-

DICT [68], for general Internet data, and CRAWDAD [35],

for wireless networking. These systems store a large vari-

ety of data. As one example, PREDICT’s privacy impact

assessment lists 17 types of data [43].

To make sense of this data, we group these examples into

several classes in Table 2 (this table is a new organization

based on data assembled by Jody Westby and contributed

by PREDICT participants). We consider data that is either

local or network-wide, and either directly observed, or in-

ferred from some analysis. Our focus in this paper and this

table is on real-world datasets; we omit artificial or simu-

lated approximations of these datasets here.

Each class of data can address different type of research

questions. For example, locally observed data allows de-

tailed drill-down into communication, providing a play-by-

play account of security events, and in conjunction with

packet-level traces, enabling the modeling or detection of

malicious traffic. Locally observed events can provide a

high-level description of ”what happened”, and network-

wide observed data can observe global events such as worm

outbreaks, routing failures and prefix hijacks.

The table lists providers of particular data types, both as

part of the PREDICT program [68], or other public sources.

It’s important that several important data types are unavail-

able (to the best of our knowledge). Typically this data

is limited because of privacy concerns; we expand on this

point below in Section 4.2.

Finally, it is important that these data sources not sim-

ply be available in passing, but that there be datasets that

large, representative, and public. Anyone can take full,

unanonymized packet headers or system logs from their

own computer, yet the generality of results drawn from such

a dataset is much more limited than that taken from a large

public network, or better still, from several different cate-

gories of large networks.

4 Lessons Learned

We next reflect on our experiences using trace data in

research to find common problems that cut across types of

data. We consider privacy issues, research requirements,

and the nature of what we are observing.

4.1 Privacy and Anonymization

The data classes presented in Section 3 pose quite differ-

ent privacy challenges; we next consider several categories

of challenges.

First, observations that capture user data are most sen-

sitive. This category includes locally observed data such as

full packet contents (including data payloads). While poten-

tially very useful, since it would enable deep packet inspec-

tion and so could provide ground truth for application or

malware detection, this data is not currently available. The

problem is that user data poses significant privacy and legal

issues (see [47] for a discussion of these issues), thus such

data can rarely be provided to researchers, and is almost
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Table 2. List of data classes, instances of that class, and providers of that data (partially derived from

data assembled by Jody Westby).

class examples (formats) Providers Privacy Concerns

local observations packet headers for general links CAIDA [9], LANDER [72], addresses

(pcap or ERF) LBNL [54]

packet headers for events such as attacks or CAIDA, LANDER, addresses

worm spread (pcap or ERF) MERIT [71], LBNL

full packet contents (pcap or ERF) unavailable user data and addresses

flow-level traces (netflow) MERIT addresses

router statistics (SNMP) - -

local inferences intrusion detection alerts (Snort, Bro, etc.) unavailable addresses and system data

logs (syslog, firewall, spam) LogAnalysis.org [5] addresses and system data

network-wide active IP addresses unavailable general addresses

observations DNS requests unavailable user data

BGP tables MERIT, RouteViews [58] -

end-host scans (ping or nmap) LANDER addresses

topology scans (traceroute) CAIDA general addresses

VOIP call records PCH [48] addresses

network-wide BGP hijackings (PHAS, bgpmon) unavailable -

inferences darknet/telescope packet headers (pcap) CAIDA, MERIT addresses

darknet/telescope full packets (pcap) CAIDA, MERIT addresses and user data

IP reputations Spamhaus [1] addresses

never shared without a legal warrant. We are not aware of

any such data being available to researchers, even from their

home institution.

Second is data that contains IP or MAC addresses (but

not user data); examples include packet headers, flow

records, and system logs. IP addresses pose a privacy con-

cern because it is sometimes possible to relate them to

the identities of individual humans; although not explic-

itly listed in relevant laws, there is general consensus that

they constitute “personally identifying information” for pur-

poses of U.S. and E.U. privacy laws. It is important to note

that IP addresses by themselves do not identify users. Par-

ticularly with widespread use of dynamic addresses, IP ad-

dresses often must be combined with external information,

such as user registration, DHCP logs, or application specific

cookies, to map them to users. However, such mapping in-

formation is often maintained (sometimes to satisfy legal or

operational requirements), and has been used under warrant

to resolve IP addresses to users (even if incorrectly [56]).

Because of privacy concerns about IP addresses, sev-

eral anonymization techniques have been proposed, such

as prefix-preserving cryptographic-based renumbering [75].

Prefix preserving techniques are very useful to researchers

because they preserve the structure of the network. Such ap-

proaches must be applied carefully, however, renumbering

all user-specific fields (IP and MAC addresses) in headers

and packet contents. Consistent renumbering schemes are

also subject to attacks using external information (possibly

injected by the attacker), or statistical analysis searching for

well known, popular hosts [15], or common patterns such as

sequential scans [49]. For MAC addresses, the options are

to scramble the vendor and address portions of the addresses

as one unit or independently [49].

Full address anonymization makes it difficult to as-

sociate traffic with organizations and makes some kinds

of research impossible. For example, reverse engineer-

ing worm random-number generators [36] requires full,

unanonymized addresses. An option is to anonymize or

zero only part of the IP address (for example, as an op-

tional in LANDER [28]). Such an approach confounds

some number of addresses (256 or 65,000), balancing pri-

vacy while allowing traffic to be matched with large orga-

nizations. Matching data to organizations facilities some

kinds of research, such as that comparing home, business,

or academic use.

We classify two types of data (address scans and active

IP addresses) as containing general addresses. By this term

we mean they are IP addresses that are in use over some

period but they are not associated with any other network

information. In this sense, we believe they represent a re-

duced threat against privacy, particular if the period of use

is broad (say, one week) and the survey size large. A good

analogy is a list of phone numbers in a large city that were

allocated or placed calls some time over a week—without
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specific times, call durations, or destinations, it is hard to

see how they could be resolved to identification of an indi-

vidual. Yet, there is significant value in this kind of infor-

mation to addressing basic questions about Internet demo-

graphics and address utilization [26].

Finally, it is important to note that even without user data

and with anonymized addresses, some information may

leak. For example, OS fingerprinting tools such as p0f may

still be used on a trace to determine the type of OS of a par-

ticular sender. Others have shown that clock drift can be an-

alyzed and used to characterize hosts traces, including some

based on clock drift analysis [34], or inference from regu-

lar patterns in scanners [49]. While researchers typically

respond to fix explicit vulnerabilities relatively quickly, it is

much harder to defend against unknown attacks that may be

devised in the future [49].

The tension between analysis and privacy creates many

difficult challenges. How much privacy are we willing to

trade-off for better analysis? The answer can change dras-

tically based on the context. This range of challenges has

suggested that, rather than a simple policy (for example,

renumber all IP addresses), a set of anonymization rules

are required that can reflect context and more complex

anonymization policies [50, 7, 49]. Such a framework is

important, but leaves open how policies are to be defined. It

also assumes well known, pre-defined data structures; such

systems cannot cover transfer of unstructured or unknown

user data, and so in these cases they must fall back to either

removing, replacing with a hash, or encrypting such data.

Finally, covert channels of information leakage may still ex-

ist even after anonymization. For example, identifying the

busiest machine as a web or file server.

4.2 Unavailable Data

Table 2 lists several data types as currently unavailable.

Typically this limitation is because of concerns about pri-

vacy, unknown approaches to anonymization, or availability

of data only to commercial sources.

Full packet contents are unavailable because of clear pri-

vacy concerns. While it seems unlikely that full packet

contents can be made available in general in any but un-

usual situations, some consideration has been given to how

to anonymize full packet contents, although they have not

yet reached their goal [49].

Local inference, either alerts from intrusion detection

systems, or system logs is somewhat more promising. In

fact, LogAnalysis provides sample system logs [5], but ap-

parently with quite limited coverage. Other community

supported repositories such as Dshield [66] provide user-

contributed firewall logs and some analysis tools. Such ef-

forts are invaluable, but information is not available in real-

time making them better suited for post-mortem analysis.

To the extent they represent criminal behavior (for exam-

ple, spam, or break-in or denial-of-service attempts), it is

possible they have lowered guarantees of privacy. However,

potential false positives mean even this assumption must be

taken carefully.

DNS requests, or other similar types of network infras-

tructure (perhaps NTP traffic) are again not currently avail-

able because of their uncertain privacy or anonymization

methods. For example, DNS records suggest web browsing

habits that could be tied to individuals or reveal sensitive

information (for example, employees browsing job posting

sites). Yet information about how network infrastructure

is used is of great value in improving network operation.

For example, early studies of DNS revealed several types

of pathological behavior that significantly stress on the sys-

tem [16], and recent work has used this infrastructure traffic

to detect spam sources [30]. We hypothesize that they could

be completely divorced of IP addresses and be left without

any way to be identify individuals. However, caution is re-

quired, because prior experience suggests that often careful

analysis can connect seemingly well-anonymized informa-

tion to individuals, as shown when AOL’s release of search

engine records [23].

Finally, in most of these cases large datasets do exist,

but they are only privately available. Often datasets are

kept private because of legal concerns, concerns that they

would release user or company private information, or be-

cause their owners consider them to represent commercially

exploitable information.

4.3 Research Practices

We distinguish research from operations by its focus on

developing new techniques as opposed to applying existing

techniques to new networks. Since the goal of research is to

discover something new, it poses two particular problems in

data collection and analysis.

First, validation of new approaches is difficult yet essen-

tial. While it is relatively easy to guess and try new ap-

proaches, an approach is not solid science until researchers

have been validated that it works, and more importantly,

why it works. The process of defining a hypothesis, and test-

ing it against known data to confirm it behaves as expected.

While in some cases validation can be done “in the lab”

with artificially generated data or simulations, comparisons

against real-world data are often required to strengthen

claims of correctness and accuracy (we give specific ex-

amples below). When comparing to ground truth derived

from existing approaches or outside knowledge, validation

almost always requires less strict anonymization. While fu-

ture data collection may target strong anonymization for op-

erations, it must leave opportunities for alternatives, at least

with controlled subsets of data or populations of volunteers.
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Two examples illustrate how validation often requires

weaker anonymization. Spectral approaches to classifica-

tion of denial-of-service attacks into single-source and dis-

tributed are advantageous because they are blind—the op-

erate only on packet timing, not contents [29]. Developing

this approach required knowledge of the behavior of single-

and multi-source attacks, knowledge we could only get if

they were already identified. In our case, we bootstrapped

our analysis with header-based (non-blind) identification,

and followed with simulation and experimental studies.

But header-based analysis depends on more information

(weaker anonymization) than bind spectral analysis—this

approach to validation would have been impossible with

a more adversarial foe. As a second approach, we devel-

oped a blind technique to detect peer-to-peer file sharing [3].

Ideally we would validate this against known peer-to-peer

users, but strong evidence of such activity requires deep

packet inspection. In this example, only packet headers

were available to us, so we fell back on port-based identi-

fication, although we know many peer-to-peer approaches

now avoid well known ports. This case illustrates how

greater information would have lead to a more definitive

result.

Second, development of new approaches always requires

iteration in what data is collected. Unless one can store

all observations for all time, data collection always requires

summarizing what is observed, omitting some information.

Anonymization adds another level of intentional omission.

Unfortunately, all too often, important details of the data are

omitted. Although researchers plan data summarization and

anonymization carefully, research is, by definition, discov-

ering the unknown, so these plans nearly always fall short.

Chances of incomplete can be minimized by extensive plan-

ning before data collection, but this approach greatly in-

creases the cost of research and inevitably decreases the

ability to pursue interesting but unexpected phenomena. Fi-

nally, often researchers simply do not know what data is

important until after several iterations (we thank an anony-

mous reviewer for this observation). We suggest that flexi-

bility and correctness are best when researchers iterate with

data collection and analysis, since iteration means that col-

lection strategies can change as becomes necessary.

We found iteration was essential in our study of Inter-

net address space usage [26]. Table 3 shows the evolution

of the data we save, with significant changes as we tried to

use the data to reach conclusions and found that what we

saved was insufficient. We have been studying the Internet

address space for five years, but our earliest measurements

preserved very little information—just a bitmap of respon-

sive addresses. While responsiveness is the most important

information, it is far from the only information; we have

extended our storage format four times to date. We added

recording of negative (error) replies to understand measure-

ment errors, and then later found negative replies reveal in-

formation about use of router access control lists. This re-

sult was an opportunistic side-effect of the core research

made possible by iteration of analysis and data collection.

Our current format is much more careful to save all data we

receive, even unexpected or invalid data, for future evalua-

tion. While it is possible we were overly naı̈ve in our initial

data formats, we think it is more likely that this kind of iter-

ation is inherent to the development of data collection. Just

as extensive use of software is part of debugging, use of data

is essential to debugging what is collected.

4.4 A Moving Target and Coverage

Finally, we suggest that continued observation is impor-

tant even when some data already exists.

First, evolving areas of the Internet need continuous data

collection Data collection should not be considered a one-

time activity, but needs to evolve as the Internet does. Re-

peated data collection is essential because most interesting

aspects of the Internet continue to change. Malware, such as

denial-of-service attacks and spam, provide a clear example

of this problem. At one time DoS and spam were quite sim-

ple, depending on floods from a single host or using open

mail relays. As defenses have improved, these attacks have

evolved. As a result, traces showing this previously com-

mon behavior no longer reflect techniques currently in use.

Second, multiple datasets of the same type provide ad-

ditional value. Because of the incredible diversity of the

Internet [55], apparent redundancy in datasets provides an

important ability to confirm observations from one dataset

apply elsewhere. Furthermore, observations from any one

location may be biased by the local traffic mix, network

connectivity, or other factors. Multiple view points are es-

sential. One specific example of this need has been seen in

studies of AS topologies [57].

5 Open Research Directions

We have made significant progress in distributed

datasets, but further work remains.

Better anonymization approaches are still needed. Al-

though current prefix-preserving IP addresses anonymiza-

tion seems to work reasonably well, provided care is taken,

additional work is needed to understand how to anonymize

other types of data, potentially including user data [49],

or application-level headers. The ability of HTTP to pass

through firewalls has made it a convenient encoding for

non-web applications (including streaming media, RealAu-

dio; voice-over-IP, Skype; virtual-private network proto-

cols, and other media). There would be significant value

to separating these uses of HTTP as a transport layer from
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Table 3. Evolution of information saved in address scans.
version year information

0 2003 bit per responding addresses, for ICMP echo reply only

0.1 2004 adds TTL, RTT

1 2005 new format: encoded ICMP type and reply code (not all saved), TTL, RTT, for three ICMP message types only

2 2007 new format: full ICMP type and reply code, TTL, RTT, for all valid ICMP message types

2.1 2008 adds pcap capture of all invalid ICMP message types

HTTP as a web application. Better anonymization ap-

proaches have just begun to be explored in recent work-

shops [2, 51].

Complementing anonymization must be understanding

of privacy attacks. As we describe above (Section 4.1),

even widely used anonymization schemes leak some infor-

mation. Understanding how to characterize and mitigate

these kinds of attacks is essential, particularly if we are

to explore weaker forms of anonymization for subsets of

data. The database community has been successful estab-

lishing principles to contain information leakage (for ex-

ample, [45, 42]). Networking researchers have just begun

exploring how these approaches apply to trace analysis, and

if new tools can contain information leakage [46].

Dataset annotations and metadata become increasingly

important as datasets are used and researchers identify pos-

itive or negative features. This problem is well known in

data curation; network-central systems such as DatCat pro-

vide facilities for shared annotations [61]. Metadata is par-

ticularly challenging because, as with what basic data to

capture (Section 4.3), there are many details that could be

captured and only the iteration of multiple research users

identify what is important.

We have focused on datasets for the traditional, wired In-

ternet. Data specific to other access types—wireless mesh

networks, telephone networks, or even SCADA or sensor

networks. Wireless and telephone networks are increasingly

IP-based, but the different mix of applications and use pat-

terns may influence observations. Some dataset providers

have already focused on wireless-specific datasets [35].

Finally, although outside the scope of technical chal-

lenges, revisiting the social and legal scope of network trac-

ing is important. Well understood best practices are needed

in passive data observation and in active probing and partic-

ipation: what is it acceptable to observe with what level of

aggregation or anonymization? Even careful active probing

incurs cost on the target, particularly when it is or could be

misunderstood as malicious. What are standards for how to

balance these costs and benefits? When is participation in a

network of malware for research appropriate? When should

network monitoring be subject to human-subjects review

processes such as Institutional Review Boards [67, 21]? Fi-

nally, what are the legal frameworks for data collection, and

what grey areas need clarification? And given that the Inter-

net spans international borders, how does one consolidate

legal frameworks from different countries? Early explo-

ration here has begun to explore legal questions, but opened

many more [47, 32].

6 Conclusion

This paper has outlined classes of available network

datasets and how that data can support network research.

While there is more data available today than in the past,

supporting new kinds of research will require both new

datasets and new approaches to managing anonymization,

privacy, and the social framework of research. The key

to moving research progress forward is the iteration be-

tween application-driven researcher needs (Section 2 and

new approaches (Section 5) in the context of growing expe-

rience (Section 4). Finally, an important non-technical issue

is developing the appropriate national and international le-

gal framework for distributing network traces, necessitating

close collaboration between researchers, lawyers and policy

makers.
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