
1

USC/ISI Technical Report 2002-556

Diffusion Filters as a Flexible Architecture for
Event Notification in Wireless Sensor Networks

John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, Padmaparna Haldar

Abstract—Wireless sensor networks represent an increasingly important
example of distributed event systems. Unlike Internet-based distributed
event systems, sensor networks are very bandwidth constrained and use
sensor nodes that are often dedicated to the network and controlled by a
single organization. Bandwidth constraints require, and administrative ho-
mogeneity allows, sensor networks to employ in-network processing, where
application-specific code is used in the network to optimize data movement.
The contribution of this paper is to describe the diffusion filter architecture, a
software structure for a distributed event system that allows user-supplied
software to interact with event routing. Sensor network nodes will span a
wide range of capabilities, from tiny single-address space embedded pro-
cessors to to desktop-class 32-bit computers. A second contribution of our
architecture that it scales from 16- to 32-bit computers with OS support for
single or multiple address spaces. We describe what software approaches
facilitate this flexibility and quantify the performance differences.

Keywords: Functionality and APIs of event services and pub-
lish/subscribe systems; Design, architecture, and engineering of
event-based applications; Algorithms for distributed event pro-
cessing (e.g. filtering, routing, composition, ordering)

I. INTRODUCTION

Wireless sensor networks represent an increasingly important
example of distributed event systems. Sensor networks provide
a good solution to the problems posed by applications such as
environment monitoring and tracking because they fundamen-
tally change the sensing problem both at individual sensors and
collaboratively. By using a flock of small, inexpensive sensors
with wireless communication, individual sensors can be posi-
tioned to be physically close to the objects being sensed, simpli-
fying the signal processing problem. By communicating, groups
of sensors can collaborate to reduce noise and false detections.

From the point of view of systems design, wireless sensor
networks are important because they have very different con-
straints than Internet-based distributed event systems. Internet-
based systems are typically constructed using end-to-end mech-
anisms (either organized as peers, with a central server, or with
some hybrid in between), are connected by high-bandwidth net-
works (possibly 30–50kb/s at the edge, but certainly more than
1Mb/s in the network “core”), and have relatively low latencies
(less than 1 second between any nodes). In sensor networks,
by comparison, the emphasis is on moving processing in-the-
network (as opposed to end-to-end) to compensate for very low
bandwidths (10–20kb/s maximum radios) and potentially long
delays (100ms or more due to energy-conserving radio proto-

This work was supported by DARPA under grant DABT63-99-1-0011 as part
of the SCAADS project, NSF grant ANI-9979457 as part of the SCOWR project,
and was also made possible in part due to support from Cisco Systems.

John Heidemann, Fabio Silva, and Padmaparna Haladr are with
USC/Information Sciences Institute, 4676 Admirality Way, Marina del
Rey, CA, USA. Deborah Estrin and Yan Yu are with USC/ISI and also the
Computer Science Department, University of California, Los Angeles, USA.
E-mail:

�
johnh,fabio,yanyu,estrin,haldar � @isi.edu.

cols such as TDMA [19] or S-MAC [28]). Moreover, Inter-
net systems focus on adding an event notification system to an
existing, very large network (the Internet) spanning many ad-
ministrative domains, where end-nodes are already being used
for many applications and possess relatively immutable oper-
ating systems. Sensor networks instead are relatively smaller
networks of nodes (10s to 1000s) deployed by a single adminis-
trative entity, dedicated to a single or a few related applications,
with substantial control over system software.

The difference in constraints of sensor networks compared to
the Internet focus a very different software architecture. Many
successful Internet systems can nearly ignore the network topol-
ogy (for example, Chord [24] and FreeNet [9]), and find that a
strictly end-to-end architecture is important for rapid deploy-
ment in the heterogeneous Internet. By contrast, the use of in-
network processing is critical to sensor networks to reduce com-
munications costs [19], [17], [13], since every packet sent brings
that node closer to death.

Although the constraints of sensor networks force an archi-
tecture different from that used for event-notification services in
traditional networks, some of the design lessons learned may be
applicable there. For example, as Internet-based event services
become very large and distributed, in-network processing can
aid scalability.

We have previously described the routing [17] and nam-
ing [13] approaches used in directed diffusion. The contribu-
tion of this paper is to describe the diffusion filter architecture,
an approach to allow user-supplied software to influence how
data is moved through the network. Sensor network nodes will
span a wide range of capabilities, from 8-bit computers in “smart
dust” [27] to desktop-class 32-bit computers. A second contri-
bution of our architecture that it scales from 16- to 32-bit com-
puters with OS support for single or multiple address spaces.
We describe what software approaches facilitate this flexibility
and quantify the performance differences.

II. THE DIFFUSION FILTER ARCHITECTURE

Directed diffusion is used to disseminate information in the
distributed system [17]. Filters are software modules that pro-
cess data as it moves through the network. Matching rules con-
trol which filters are triggered and how data sources and sinks
are related. We have previously described matching rules and
filters [13]; in this paper we focus on how filters can interact and
how they can be configured for different platforms. For context,
we briefly summarize prior work on diffusion, filters, and the
matching rules here.



2

A. Directed Diffusion

Directed diffusion is a data communication mechanism for
sensor networks [17]. Data sources and sinks use attributes to
identify what information they provide or are interested in. The
goal of directed diffusion is to establish efficient n-way commu-
nication between one or more sources and sinks. We illustrate
directed diffusion’s data-centric approach with a brief example
where a user tracks animals.

A user’s application (the data sink) begins communication
by subscribing to information, specified by a combination of
generic and application-specific attributes. These attributes
identify the desired data, specifying for example the sensor
types and region of interest. This subscription causes an interest
with these attributes to be propagated through the network. As
the interest travels through the network, each node establishes a
gradient, state that represents where data should flow.

When the interest reaches an appropriate region, zero, one or
more matching sensors there are activated, becoming sources.
These sensors then generate data messages that flow back to-
ward the source. Data messages are occasionally marked ex-
ploratory; these messages trigger reinforcement messages that
select a low-latency path through the network. Non-exploratory
messages travel only on these reinforced paths.

As data flows through the network it may be cached at in-
termediate nodes. Cached data is used for several purposes at
different levels of diffusion. The core diffusion mechanism uses
the cache to suppress duplicate messages and prevent loops, and
it can be used to preferentially forward interests. Cached data
is also used for application-specific, in-network processing. For
example, data from detections of a single object by different
sensors may be merged to a single response based on sensor-
specific criteria, or data may be replayed from the cache if it
was unsuccessfully transfered downstream.

B. Filters and Matching Rules

If directed diffusion is the underlying algorithm that allows
data to move from node to node, filters, attributes and matching
rules are the mechanisms that make it possible [13].

Filters are application-provided software modules that are
allow applications to influence diffusion and data processing.
Uses of filters include in-network aggregation, collaborative sig-
nal processing, caching, and similar tasks that benefit from con-
trol over data movement, as well as debugging and monitor-
ing. We describe the specific filters we have implemented or
designed in Section IV.

Data is specified as attributes. Each message consists of a list
of key-value-operation attribute tuples. The key identifies the
type of the attribute (latitude, sensor type, target, etc.), the value
is its quantity (34.33, seismic, “four-legged animals”, etc.). The
operation specifies either a conditional (EQ, NE, LE, corre-
sponding to equality, inequality, less than, etc.), a formal value,
or IS, that specifies constant data, an actual value.

A message entering a node triggers a filter if the the at-
tributes specified by the filter match the attributes in the mes-
sage. Matching rules have been previously specified [13], [10];
briefly, each formal in one set of attributes must match some ac-
tual in the other set of attributes. For example, a user’s request to

Apps and filter APIs:

handle NR::subscribe(NRAttrVec *subscribeAttrs,
const NR::Callback * cb);

int NR::unsubscribe(handle subscription_handle);
handle NR::publish(NRAttrVec *publishAttrs);
int NR::unpublish(handle publication_handle);
int NR::send(handle publication_handle,

NRAttrVec *sendAttrs);

Filter-specific APIs:

handle addFilter(NRAttrVec *filterAttrs,
int16_t priority, FilterCallback *cb);

int NR::removeFilter(handle filter_handle);
void sendMessage(Message *msg, handle h,

int16_t priority = 0);

Fig. 1. Basic diffusion APIs.

search for certain animals might be the attributes (type EQ four-
legged-animal-search, interval IS 20ms, duration IS 10 seconds,
x GE –100, x LE 200, y GE 100, y LE 400), this would match
a sensor with data (type IS four-legged-animal-search, instance
IS elephant, x IS 125, y IS 220, intensity IS 0.6, confidence IS
0.85, timestamp IS 1:20, class IS data).

III. DIFFUSION APIS

We have developed a very simple API for applications and
filters (see [10] for a complete specification and example source
code, and [13] for a description of an earlier version of these
APIs). The APIs define a publish/subscribe approach to origi-
nating data, plus mechanisms for filters. Figure 1 shows the C++
APIs.

To receive data, nodes subscribe to particular set of attributes.
A subscription results in interests being sent through the net-
work and sets up gradients. A callback function is then invoked
whenever relevant data arrives at the node.

Applications that generate information publish that fact, and
then send specific data. The attributes specified in the publish
call must match those of prior subscriptions. If there are no
active subscriptions, published data does not leave the node.

There are also operations to add and remove filters, and for
filters to forward messages between each other. Although logi-
cally messages pass from filter to filter, in practice all messages
pass through the diffusion core which shepherds messages from
filter to filter as specified by filter priorities. SendMessage uses
filter priorities to indicate how filters are ordered when they are
configured, and how messages should pass through the filter
stack. Priorities are simple integers that define a total ordering of
filters (duplicate priorities are not allowed). Because filters can
arbitrarily manipulate messages (changing the attributes or sup-
pressing or sending additional messages), the “set” of relevant
filters may change as the message moves through the system.
We describe how priorities are handled in Section V-A in light
of our experiences with multi-filter configurations.

IV. CURRENTLY DESIGNED AND IMPLEMENTED FILTERS

Filters are an important part of the diffusion architecture be-
cause they provide a modular way to allow application-specific
code to influence event routing. The important design question
in filter modularity is to select an API that is rich enough to let



3

filters accomplish what they need to, but one that hides enough
data that filters do not interfere with each other. This section lists
the modules we have written or designed and we then consider
the filter API we settled upon. In Section V we then evaluate
these choices.

Figure 2 shows the set of filters that we have implemented
and designed. The diffusion core interacts with all filters (rect-
angles), applications (circles at the top right), and radio hard-
ware (the lozenge at the bottom). Solid and dashed rectangles
represent existing and planned filters, respectively. The core is
responsible for dispatching all messages as they pass through
the system and for suppressing duplicate messages.

A. Filters

Basic diffusion is implemented in the gradient filter. This
filter maintains gradients representing the state of any existing
flows to all neighbors and is responsible for periodically sending
out reinforcement messages and interests.

GEAR is a pair of filters that can optionally surround diffu-
sion to implement Geographic and Energy-Aware Routing [29].
Lacking prior information (such as geographic information or
prior saved state), basic diffusion floods interests to all nodes
in the network. GEAR overrides this behavior to forward mes-
sages with geographic assistance (interests are sent basically to-
ward their geographic destination, but around any holes in the
topology). GEAR consists of two filters, a pre-processing fil-
ter that sits above the gradient module to handle GEAR-specific
beacon messages and to remove transient geographic informa-
tion on arrival, and a geographic routing filter that acts after the
gradient model to forward interests in a good direction. The two
filters that make up GEAR share information (such as the list of
neighbors); we describe this unusual structure and how it illus-
trates the flexibility of our filter architecture in Section V-C.

Reliable big blob is a module that allows reliable transfer of
large (multi-packet), uninterpreted data across unreliable links.
It caches data locally to support loss recovery, similar to ap-
proaches taken in reliable multicast [12] and SNOOP TCP [2].
We are currently implementing this filter.

The information-driven tracking filter is an example of how
application-specific information can assist routing proposed by
researchers at Xerox PARC [30]. An important application of
sensor networks is object tracking—multiple sensors may col-
laborate to identify one or more vehicles, estimating their po-
sition and velocity. Which sensors collaborate in this case is
dependent on the direction of vehicle movement. They have
proposed using current vehicle estimates (or “belief state”) to
involve the relevant sensors in this collaboration while allow-
ing other sensors to remain inactive (conserving network band-
width and battery power). While GEAR uses generic (geo-
graphic) information to reduce unnecessary communication, the
information-driven tracking filter uses application-specific in-
formation to further reduce communication. As other appli-
cations are explored we expect to develop other application-
specific filters similar to the information-driving tracking filter.

One use of filters is logging information for debugging. We
have implemented a logging filter for this purpose, and we
are considering implementing an ns-logging filter for simulator-
specific logging. These filters are shown to the left of diffusion

stack because they can be placed between any two modules.
Although this architecture was built to explore diffusion-style

routing, for debugging purposes we also developed support for
source routing. Source routing is provided as two filters: the
source tagging filter functions similar to the logging filters in
that it can be configured anywhere in the diffusion stack. This
filter adds a record of each node that the message passes through,
much like the traceroute command used on the Internet.
The source routing filter provides the opposite function. It takes
a message that includes an attribute listing the path of nodes
the message should take through the network and dispatches it
along that path. A design principle of directed diffusion is local
operation—nodes should not need to know information about
neighbors multiple hops away. While source routing is directly
opposite to this goal, it can be provided within our software
framework, and is still sometimes a useful debugging tool.

B. Communications Modules and Applications

In addition to interacting with filters, the diffusion core inter-
acts with user applications and communications devices such as
radios.

We currently support three different radios: the Radiometrix
Radio Packet Controller, an off-the-shelf packet-based radio at
418MHz, providing about 13kb/s throughput; MoteNICs, a UC
Berkeley Mote [15] with an RF Monolithics radio running soft-
ware designed at UCLA to operate as a network interface card;
and the Sensoria WINSng 2.0 radios, a TDMA-based radio
providing about 20kb/s throughput. For desktop development,
TCP- or UDP-based links can substitute for radios.

The diffusion core also dispatches messages to applications.
Both applications and filters identify the messages they wish to
receive with attributes and matching; the primary difference be-
tween them is that applications can only send messages to the
“top” of the diffusion stack while filters can send messages from
filter to filter. We describe this process next.

V. EXPERIENCES WITH FILTERS

The major contribution of this paper is a better understanding
of how filters interact and what they are capable of. Although we
have previously defined the Filter APIs, recent experience with
multiple filters provides a more complete picture about filter op-
erations. Below we describe our conclusions about how filter
ordering should operate, how diffusion can be configured to run
in single and multiple address spaces (for PC-class or very small
computers), how much filters can influence the basic diffusion
algorithms.

A. Filter Ordering

Priorities, defined at filter configuration, give a total order-
ing of all filters in a system. While message attributes select
which filters can process a message, priorities specify the order
in which those filters act.

Priorities are needed because the attributes of an incoming
message may match multiple filters. In this case, filter prior-
ities indicate which filter is invoked first. That filter will call
sendMessage to forward the message on. By default, if that fil-
ter doesn’t specify a priority in sendMessage, the message goes



4

gradient

GEAR:geo rtg

reliable big blob

GEAR:pre−proc.

source routing

source tagging

logging

diffusion core

ns−logging

info−driven tracking (or other app−specfic filters)

user
apps

communications
modules:

Radiometrix radios
MoteNic radios

Internet sockets (for development)
Sensoria WINSng 2.0 radios

Fig. 2. Current and planned filters in diffusion and how they interact.

to the filter with the next lower priority. For example, in Fig-
ure 2, an interest message that includes geographic information
would be passed to the GEAR pre-processor with highest pri-
ority, that would forward it to the gradient filter and on to the
GEAR geographic routing filter.

Although this simple case handles a single message passing
through a series of filters, filters can do any kind of process-
ing on receipt of a message, including responding with multiple
messages or changing message attributes in a way that the set of
relevant filters changes. For example, consider a message con-
taining a segment of data that arrives at the the reliable big blob
filter. Information in this message might indicate that a prior
segment of data was lost, so in addition to forwarding the new
message the filter may send a negative acknowledgment mes-
sage asking for replay of the missing data.

The sendMessage API allows filters to override the order of
message processing by changing the priority field or message at-
tributes. Thus a knowledgeable filter can direct a message any-
where in the diffusion stack. Since the contents or priority can
change any time a message leaves a filter, all messages are al-
ways sent to the diffusion core, not immediately to the next filter.
Thus the arrows connecting filters in Figure 2 represent the typ-
ical and logical message path, not the exact or literal path. The
diffusion core recomputes the next filter each time it receives the
message. (An obvious optimization that we have not yet imple-
mented is to cache this computation for the common case where
the filter list does not change.)

B. Filter Operation in Single and Multiple Address Spaces

We expect diffusion to operate with all filters and applica-
tions in a single address space where necessary, but we would
also like it to operate in multiple address spaces where possi-

ble. This section describes how we are able to do that and how
performance compares with each option.

B.1 The need for both options

Filters play an important role in our architecture, allowing
application-specific code to be deployed throughout the net-
work. They are used to minimize communication costs with
techniques such as data aggregation, and to improve sensor ef-
fectiveness with collaborative signal processing. An important
design question when introducing user-provided code into a sys-
tem is how to isolate that code from the rest of the system.
Operating systems provide the abstraction of a process to com-
partmentalize software, allowing individual components to fail
independently (in the case of bugs) and preventing them from
accidentally or maliciously interfering with each other.

We expect diffusion to run over a wide range of sensor hard-
ware, from very small hardware where there may be no support
for multiple address spaces, or it where it is too expensive, to
larger platforms where such protection is available. Sensoria
WINSng 1.0, one of our early platforms ran Windows CE with
all components in a single process1. More recent platforms in-
cluding WINSng 2.0 nodes and our PC/104 nodes were able to
support multiple address spaces, greatly simplifying develop-
ment and debugging.

B.2 Filter structure to support both options

Filters move relatively smoothly between single or multiple
address spaces due three software design choices. First, we
structured the software to be completely event driven, rather
than multi-threaded. Flow-of-control is centralized in an event

1Windows CE supports multiple processes, but hardware-specific libraries
forced us into a monolithic architecture.



5

loop, I/O and timers are provided with callbacks. This approach
allows us to avoid explicit contention for data structures and iso-
lates the diffusion algorithms from direct interaction with the
operating system.

Second, we implemented a small IPC system to move data
between processes when filters run in multi-process model. Be-
cause diffusion already needs to marshal data to send it between
different nodes, there was little additional code required to use
this mechanism between different processes on the same ma-
chine. As an optimization, marshaling should not be used when
all filters run in a single address space. We are in the process of
implementing this optimization.

Finally, we had to avoid unqualified global state, since global
variables for different filters could conflict. Filters are imple-
mented in C++, so a simple solution is to keep all filter state as
instance variables of the class.

An unexpected benefit of our design to support single- or
multiple-address space operation is that it was quite easy to port
diffusion to run inside the ns network simulator [6], that is struc-
tured as a single-process, event-driven simulator.

Although our implementation was able to support both single
and multiple address spaces and 16- to 32-bit computers, it is not
currently possible to scale this approach directly down to 8-bit
embedded processors with working memories measured in 100s
of bytes. Micro-diffusion subsets the diffusion filter architec-
ture, providing only a few active gradients, a very small packet
cache, and hard-coded filters [13]. This class of compile-time
subsetting is necessary to scale to these very small platforms.
Although a complete re-implementation as a TinyOS compo-
nent [15], it shares many of the design principles of full diffu-
sion.

B.3 Relative Performance

Since we were able to provide both single- and multiple-
address space option, we are interested in comparing the per-
formance of each configuration. To evaluate processing perfor-
mance, we sent message through diffusion stacks where they
match from 1 to 5 filters. For simplicity we used multiple copies
of the logging filter (configured at different priorities), since it
records a simple message and passes the message unchanged to
the next filter. We measured the time it takes for a packet to start
from a local application, pass through all the log filters, and then
pass through a lowest filter that records the time the message
exits the system just before going out the radio. (We have previ-
ously described basic matching performance in a single address
space [13].)

In this experiment, we used a 160-byte long, 8-element data
message, whose attributes are shown in Figure 3. Note that in
each message, the time attribute contained the actual time the
message was sent by the local application. This experiment was
done on our Sensoria WINSng 2.0 sensor node, with a 166Mhz
Hitachi SH-4-class CPU, 32MB of Flash storage and 64MB of
RAM. Because message processing is quite fast, even on this
relatively slow machine, we sent 2000 messages and plot the
mean transit time of each message. (This approach may slightly
overestimate the speed of the system due to favorable memory
cache effects.) We also show 95% confidence intervals, even
though they are less than 5% of the mean for all points in the

class IS data
scope IS global
latitude IS 60.0
longitude IS 130.0
target IS “4-leg”
det id IS 4
time IS TIME
task EQ “detectAnimal”

Fig. 3. Attributes used for filter performance experiments.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1 2 3 4 5 6

P
ro

ce
ss

in
g 

T
im

e 
(s

)
Number of Filters

Separate Address Spaces
Single Address Space

Fig. 4. Processing performance as the number of filters grow.

graph.
Our expectation is that the processing cost of filters is linear

with the number of filters matching the incoming message. This
is confirmed in Figure 4 that shows the processing cost of filters
as the number of filters matching the message increases from 1
to 5. The lower line shows the case where all pieces of software
are compiled in a single application and run in the same address
space. The upper line shows the case where each piece of the
code (the main diffusion module, the local application sending
the messages, the filter collecting the messages at the end and
each log filter) each run in a separate address space.

We also observe the performance benefits of operating in a
single address space: transit time for the system with multiple
address spaces is about twice that of the monolithic configura-
tion. On some very small hardware platforms without memory
protection, this ability to run in a single address space is a ne-
cessity.

Although twice the performance is an improvement, we ex-
pected single-address-space operation to be considerably faster.
Part of the reason gains are currently modest is that the cur-
rent implementation does full data marshaling and a fair amount
of copying even when all processes run in the same address
space. While this implementation choice speeded development,
it greatly reduces single-address-space performance. We are in
the process of removing this unnecessary overhead.

We suggest that it is also important to have the option of
the opposite configuration. Sensor networks will depend on
application-specific code for efficient communication, and as
embedded systems they must remain highly available in spite
of software failures. For hardware platforms powerful enough
to provide multiple address spaces, the ability to isolate user-
supplied code in a separate address space provides an important



6

level of robustness since individual filters can fail but the overall
system can keep functioning.

C. Other Comments About Filters

We have designed the diffusion filter architecture to support
a very high-level of user configurability. An important question
is if we have accomplished this goal. Further experience is re-
quired here, but so far our experiences have been promising.

GEAR provides a good example as a filter that fundamentally
changes how the gradient module processes messages. GEAR
requires two filters, a pre-processing filters above the gradient
to handle beacon messages, and a geographic-routing module
below diffusion to redirect outgoing interests. Early in the dif-
fusion architecture design we were concerned that GEAR would
require detailed access to internal gradient data structures and so
the two necessarily be closely intertwined. Fortunately, we were
able to avoid that loss of modularity at with only slight duplica-
tion of information: both GEAR and the gradient module keep
lists of neighboring nodes.

Another challenge of GEAR is that the two haves of GEAR
need to share information and data structures. We chose to place
both filters in the same address space to allow shared data struc-
tures. Since each filter specifies a different callback function,
this structure is easily supported, even if the gradient module
runs in a separate address space.

D. Future Directions

Although we are happy with our current architecture, some
questions remain unresolved. An important open question is
how to mitigate duplication of data structures and caches in dif-
ferent filters. Several filters benefit from neighbor information
that currently is maintained separately. As we develop addi-
tional application-specific filters we expect to see an increasing
need to cache message contents in different filters. Cache sizes
will be maximized if caches in different filters can be shared.

A more general question is more sophisticated control inter-
faces will be required between modules. For example, if neigh-
bor lists were provided directly, a new API might cause call-
backs when the set of neighbors changed. These APIs can be
approximated with internal messages and attributes, but it is not
clear how effective that will be in the long term.

Another option to explore is run-time deployment of new fil-
ters. We currently pre-configure filters when nodes are started,
or manually reconfigure them between runs. Although we have
not yet experimented with it, run-time deployment of new fil-
ters is both possible and fairly easy when filters run in multi-
ple address spaces. On-the-fly deployment of filters would re-
quire reliable delivery of the code (possibly with our “reliable
big blob” module) and security provisions such as signed code
or safe execution environments such as have been explored in
active networking [25].

VI. RELATED WORK

The work described in this paper builds on a very broad base
of related work, from existing distributed event systems to pre-
vious approaches to structure network and operating systems,
and on other sensor network systems. Due to space limitations
we summarize only the most closely related work here.

A. Distributed Event Systems

The publish/subscribe paradigm has long been studied as the
basis of a distributed event system. Linda proposed structuring
distributed programs using several CPUs around an attribute-
indexed common memory called a tuple space [7]. For the
S/Net implementation this was the basic communication mech-
anism, but proposed implementations assume uniform and rapid
communications between all processors. Later systems such as
ISIS [4] and the Information Bus [18] provide a “publish and
subscribe” approach where information providers publish infor-
mation and clients subscribe to attribute-specified subsets of that
information. These systems are designed to be robust to failure,
but again assume reasonably fast, plentiful, and expensive com-
munications between nodes.

More recently, systems such as Sienna [8] have focused on
wide-area systems where data bandwidth is of concern; inde-
pendently adopting an attribute based approach very similar to
ours. Content routing systems such as that of Snoeren et al.
adopt an XML-based filtering approach [23]. Like our system,
these systems allow the user to filter data in the network; a major
difference however is their focus on Internet applications with
relatively high bandwidth while we target sensor networks with
bandwidths often less than 20kb/s.

A second trust of research research has focused on peer ob-
ject location system where events may be very simply identified
(perhaps by a hash value) and are distributed across the network.
Examples include FreeNet [9] and Chord [24]. One application
of these systems is a distributed, peer-to-peer storage system.
Unlike these systems, we focus on communication of transient,
not persistent data, and in sensor networks locality is quite im-
portant while these systems are much less concerned with net-
work locality.

Another class of distributed event systems are resource
discovery systems. Recent examples include as Jini [26],
Ninja [11], and INS [1]. These systems typically focus on sup-
port for frequent device arrival and departure and support for
user interaction and operating system configuration. Unlike our
system, they are often less limited by network capacity.

B. Software Structure for Communications and Operating Sys-
tems

How to structure system software such as operating systems
and communications has been a topic of study for the last thirty
years. Relevant related work from the communications domain
includes Streams [20] and the x-kernel [16], as well as from
other fields such as databases [3] and file systems [21], [14],
each of which faced similar problems in module configuration.
Although many of the issues are similar, our approach to routing
messages through filters based on possibly changing message
contents is much more dynamic than most of these systems.

Microkernels face the similar issues to running in single or
multiple address spaces as we do. Systems such as Mach [5]
argued for the benefits of running modules in separate address
spaces and suggested many ways to optimize IPC. The Cho-
rus System [22] provided some flexibility as to where individual
components could run. Unlike our work they were not forced to
support single address space operation to run on very low-end



7

hardware.

VII. CONCLUSIONS

We have described our experiences using the diffusion filter
architecture. Our target application domain is sensor networks,
where limitations of network bandwidth encourage wide use of
application-specific code. Our growing experience with the sys-
tem suggests that this architecture is flexible enough to handle a
range of filters and hardware platforms.

ACKNOWLEDGMENTS

Ramesh Govindan also contributed to the design of the dif-
fusion APIs and code structure; the authors thank him for his
contributions. We would also like to thank Fred Stann who is
currently implementing the Reliable Big Blob module.

REFERENCES

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy
Lilley. The design and implementation of an intentional naming system.
In Proceedings of the 17th Symposium on Operating Systems Principles,
pages 186–201, Kiawah Island, SC, USA, December 1999. ACM.

[2] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz.
Improving TCP/IP performance over wireless networks. In Proceedings
of the First ACM Conference on Mobile Computing and Networking, pages
2–11, Berkeley, CA, USA, November 1995. ACM.

[3] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C.
Twichell, and T. E. Wise. GENESIS: An extensible database management
system. IEEE Transactions on Software Engineering, 14(11):1711–1730,
November 1988.

[4] K. P. Birman. The process group approach to reliable distributed comput-
ing. Communications of the ACM, 36(12):36–53, December 1993.

[5] David L. Black, David B. Golub, Daniel P. Julin, Richard F. Rashid,
Richard P. Draves, Randall W. Dean, Alessandro Forin, Joseph Barrera,
Hideyuki Tokuda, Gerald Malan, and David Bohman. Microkernel operat-
ing system architecture and Mach. In Proceedings of the USENIX Sympo-
sium on Microkernels and Other Kernel Architectures, pages 11–30, April
1992.

[6] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
and Haobo Yu. Advances in network simulation. IEEE Computer,
33(5):59–67, May 2000. (An expanded version is available as USC CSD
TR 99-702b.).

[7] Nicholas Carriero and David Gelernter. The S/Net’s Linda kernel. In Pro-
ceedings of the Tenth Symposium on Operating Systems Principles, pages
110–129. ACM, December 1985.

[8] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design
and evaluation of a wide-area event notification service. ACM Transac-
tions on Computer Systems, 19(3):332–383, August 2001.

[9] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage retrieval system.
In Proceedings of the ICSI Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, CA, USA, July 2000.

[10] Dan Coffin, Dan Van Hook, Ramesh Govindan, John Heidemann, and
Fabio Silva. Network Routing Application Programmer’s Interface (API)
and Walk Through. MIT/LL and USC/ISI, December 2000.

[11] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,
and Randy H. Katz. An architecture for a secure service discovery ser-
vice. In Proceedings of the ACM/IEEE International Conference on Mo-
bile Computing and Networking, pages 24–35, Seattle, WA, USA, August
1999. ACM.

[12] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level fram-
ing. In Proceedings of the ACM SIGCOMM Conference, pages 342–356,
Cambridge, Massachusetts, August 1995. ACM.

[13] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh
Govindan, Deborah Estrin, and Deepak Ganesan. Building efficient wire-
less sensor networks with low-level naming. In Proceedings of the Sym-
posium on Operating Systems Principles, pages 146–159, Chateau Lake
Louise, Banff, Alberta, Canada, October 2001. ACM.

[14] John S. Heidemann and Gerald J. Popek. File-system development with
stackable layers. ACM Transactions on Computer Systems, 12(1):58–

89, 1994. Preliminary version available as UCLA technical report CSD-
930019.

[15] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for network sensors. In
Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 93–104, Cam-
bridge, MA, USA, November 2000. ACM.

[16] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An architec-
ture for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[17] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected diffusion: A scalable and robust communication paradigm for sen-
sor networks. In Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, pages 56–67, Boston, MA, USA,
August 2000. ACM.

[18] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information
Bus—an architecture for extensible distributed systems. In Proceedings
of the 14th Symposium on Operating Systems Principles, pages 58–68,
Asheville, North Carolina, USC, December 1993. ACM.

[19] Gregory J. Pottie and William J. Kaiser. Embedding the internet: wireless
integrated network sensors. Communications of the ACM, 43(5):51–58,
May 2000.

[20] Dennis M. Ritchie. A stream input-output system. AT&T Bell Laborato-
ries Technical Journal, 63(8):1897–1910, October 1984.

[21] David S. H. Rosenthal. Evolving the vnode interface. In USENIX Confer-
ence Proceedings, pages 107–118. USENIX, June 1990.

[22] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, and W. Neuhauser. Cho-
rus distributed operating systems. Computing Systems, 1(4):305–370, Fall
1988.

[23] Alex C. Snoeren, Kenneth Conley, and David K. Gifford. Mesh-based
content routing using XML. In Proceedings of the Symposium on Oper-
ating Systems Principles, pages 160–173, Chateau Lake Louise, Alberta,
Canada, October 2001. ACM.

[24] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the ACM SIGCOMM Conference, Stock-
holm, Sweden, September 2000. ACM.

[25] David L. Tennenhouse and David J. Wetherall. Towards an active network
architecture. ACM Computer Communication Review, 26(2):5–18, April
1996.

[26] Jim Waldo. The Jini architecture for network-centric computing. Commu-
nications of the ACM, 42(10):76–82, October 1999.

[27] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pister. Smart
dust: Communicating with a cubic-millimeter computer. IEEE Computer,
34(1):44–51, January 2001.

[28] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac
protocol for wireless sensor networks. In Proceedings of the IEEE Info-
com, page to appear, New York, NY, USA, 2002. USC/Information Sci-
ences Institute, IEEE.

[29] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and energy
aware routing: A recursive data dissemination protocol for wireless sensor
networks. Technical Report TR-01-0023, University of California, Los
Angeles, Computer Science Department, 2001.

[30] Feng Zhao, Jaewon Shin, and James Reich. Information-driven dynamic
sensor collaboration for tracking applications. IEEE Signal Processing
Magazine, page to appear, March 2002.


