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Abstract

Thispaperdescribesseveralwayssensornetworkscanben-
efit from geospatialinformationandidentifiestwo research
directions. First, bettermodelsof localizationerror, logi-
cal location,andcommunications costsarerequired to un-
derstandthe interactions betweenspatial informationand
control andcommunicationsalgorithmsin sensornetworks.
Second, wider use of spatial information in denselyde-
ployed sensornetworks will move sensornetworking ap-
plicationsfrom simpletrackingto objectcounting andarea
monitoring, andcanenabledatamining techniquessensor
networks to accomplish “spatialsensormining”.

1 Introduction

Recentdevelopments in inexpensive, short-rangewireless
communicationandsensorshavebuilt oninexpensivecom-
putersto enablesensor networks: collections of small de-
vices spatially distributed around an environment. Sen-
sornetworks arebeingappliedin areasincluding environ-
mentalmonitoring,conditionalbasedmaintenance,surveil-
lance,computeraugmentedor smartspaces,andinventory
tracking; we expect many otherapplications to appearas
thetechnology becomesmorewidely available.

Unlike traditional sensorsystems,sensornetworks de-
pendon dense sensor deployment andphysical co-location
with their targetsto accomplish their goals.Dense deploy-
ment implies the useof 100s or 1000s of sensornodesin
small areasandis enabled by low-cost devicesandshort-
rangewirelesscommunication. With physical co-location,
sensorsare tightly coupled with their environment: they
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maybe attachedto packagesbeingtracked,or deployed a
few metersapart to cover an intersectionor field. Physi-
cal co-locationsimplifiessignalprocessingproblems[15].
Densedeploymentallows useof redundancy [20], canre-
duce communication costs [15], and provides sufficient
nodesto allow physicalco-location.

Spatial location is centralto sensornetwork operation.
The purposeof sensornetworks is often to answerspatial
queriessuchas“what is movingdowntheroadandhow fast
is it?” or “how many animalsarein thenorthwestfield?”.
Sensornetworksalsomakeuseof spatialinformationto fa-
cilitate self-organizationandconfiguration.Sensordeploy-
mentrequireslocalizationto determinethequalityof cover-
age[14, 6] andto constraincommunications to geographic
areas[13, 11, 22]. Collaborative signal processingtech-
niquessuchas beam-forming [21] and information-based
approaches(for example, [4, 10]) combine the resultsof
multiplesensorsto provideacombinedresultstronger than
thaton any individual sensor. At anoperationallevel, spa-
tial informationcanbeusedto conserveenergy by loadbal-
ancing(for example,[8, 20]) andto control network utiliza-
tion [7].

Although sensornetwork todayusespatialinformation
aspartof researchprototypeapplications andoperation,a
moresolid foundationis requiredto systematizeandfirmly
ground theseapproaches,andnew techniquescanenable
new applications. We suggesttwo directions of research:
first, representative models of spatial information in sensor
networks are needed. We must understandthe error pat-
ternsof currentlocalizationsystemsandhow locationinter-
actswith sensingandcommunication. Second, we suggest
that spatial sensor mining is a promising directionof re-
search.Long-termdatacollectionfrom denselydeployed,
spatiallydistributedsensorscanenable fine-grained trend
analysisif we cancope with datacollectionandprocess-
ing constraints. We describetheseproblemsin moredetail
below.
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2 Modeling Spatial Information in
Sensor Networks

Much recentresearchhas focused on how to determine
nodelocationin a rangeof circumstances. In somecases
GPSmay be used,but othersolutions arerequired for in-
dooruseandin caseswherethepoweror sizerequirements
of GPSareexcessive (examplesinclude[18, 19,1, 5, 16]).
Although thesesystemsdemonstratethe feasibility of sev-
eral approachesto localization, we lack a systematicun-
derstanding of localizationerror andhow it interactswith
applications,sensingandcommunication.

Most existing localizationsystemsquantify error in po-
sitionestimatesstatistically. Figure1 shows theprobability
of a givenlevel of localizationerror in a simpleproximity-
basedlocalizationsystem,bothfromexperimentandaspre-
dictedby asimplespherical radiopropagationmodel. Sim-
ilar studieshave beendone for mostotherlocalization sys-
tems(for example, GPS[9]). Although statisticalstudies
of localizationerrorexist, simplestatisticalmodelsarenot
sufficient to understandthe impactof localizationerror on
applications that depend on spatialinformation. Is the er-
ror independent acrossall nodes,or do two nodes in close
proximity exhibit positively or negatively correlatederror?
For GPS,we know that closely placednodes tend to ex-
hibit correlatedabsoluteerror (hence the ability to do dif-
ferentialGPS),andsotheirrelativepositionsarequitegood
eventhough absolutepositionsmy beoff by 10–100m [9].
Otherlocalizationsystemsexhibit verydifferent patternsof
error. For example, error in the systemdescribedearlier
is stronglydependenton node location(asshown in Fig-
ure2), sonearbynodesmayobserveverydifferentlevelsof
absolutepositionerrorandhencelarge errors in their rela-
tivepositions. Withoutsoliderrormodelsfor a rangeof lo-
calizationsystemsresearchers will beunable to predict the
behavior of application andalgorithmsthatbuild onspatial
information.

Localizationsystemstodayprovide thephysicallocation
of a node. Thenext steprequired in theintegration of spa-
tial information with sensornetworks is an understanding
logical node locations: not just wheretheuseror sensoris,
but is what is affectedor observed. For example, consider
the“museumguide”context-awareapplication. In addition
to wheretheuseris located, it needsto know hisor herori-
entationto describethe correct artwork beingviewed. In
a sensornetwork, node locationmay be a point, but seis-
mic or acoustic sensorcoveragemaybea muchlarger disk
or conedepending on the typeof sensorandthedetailsof
its physicalplacement. Algorithm correctnesscanbeguar-
anteedby assumingmaximum sensorrangeandcorrecting
after-the-fact. But sinceactualsensorcoveragemay be a
fraction(10–20%or less)of thetotalpossiblearea,thisap-
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Figure 1: Cumulative distribution of localization error,
both experimentalandtheoretically predicted, in a simple
proximity-basedlocalizationsystem(Figure 5 from [5]).
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Figure 2: Localization error as a function of position in
a simple proximity-based localization system(Figure 4
from [5]).
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proac� h canneedlessly involve far morenodesthanarere-
quired, rapidly depleting energy reserves. Spatialmodels
andcommunications algorithms of thatconsider logical lo-
cationsof sensorcoverageareneeded to reduce or avoid
this expense.

Finally, thereis considerable latitude to optimize com-
munication basedon spatialinformation. If you askfor in-
formation to the west, thereis no needto propagatethat
queryto theeast(examplesusingthis principle include ad
hocrouting[13], directeddiffusion[11, 22] andcollabora-
tive signalprocessing[10]). However, onemustconsider
communicationsoverheadswhen evaluating thesecosts.
For example,geographic-assistedrouting mustberobust to
“holes” in thetopology thatproducelocal routingminima,
andthe costof adjustingandreadjusting a geographically
scopedquery mustbe weighed againstthe overheadof an
excessively large query or thepenaltyof an inaccuratean-
swer. To our knowledge, no adequatemodels of commu-
nications protocols for sensornetworks exist today; such
communicationsmodels mustbe createdto allow applica-
tion designersto understandhow communications andspa-
tial optimizationsaffect performance.

3 Spatial Sensor Mining

In addition to a solid understandingof how localization
and spatial information interactswith applications, dense
andlong-term sensordeployment enablenew applications
of sensornetworks. Challengeshereinclude moving from
sensornetwork tracking of oneor a small number of tar-
getsto monitoring an area with many objects (distributed
in space)andspatial sensor mining: drawing conclusions
from distributedinformationgatheredover time.

Currentusesof sensornetworks focus on object track-
ing: using a group of sensornodesto identify an object
suchasavehicle. Moresophisticatedversionsof thisprob-
lem considertracking multiple objectsmoving together, or
objectsthatmeetanddisperse.Betterintegrationof sensing
andlocationallow examinationof propertiesof areasasa
wholeandgroups of objectsratherthanindividual objects.
Ratherthanfocusing many sensorson a single target, the
challenge is how to focus many sensorson many targets.
Algorithms includedetermining object population (count-
ing) and density, object flows or movementtrends,with
applicationsto theenvironment (wildlife tracking), society
(tracking crowds of people in buildings), andthe military.
Earlydevelopments hereincludessensortomography(sen-
sornetwork self-monitoring) [23], anddistributeddatabase
techniquesfor sensornetworks[2, 3].

More challenging still is the goal of monitoring sensor
fields over time. If collaborative signal processinguses
multiple sensorsto tracka target or areaat a point in time,

spatial sensor mining is theuseof sensorsto trackanarea
over a long duration, combining datafrom boththespatial
andtemporal domains.

We illustratespatialsensormining with two examples.
First, considera rapidly deployed field of visual or infra-
redsensorsthatwill operate for aboutaweek.Thefirst day
of readings canaccumulate dataabout how the sensornet
changesasa function of time-of-day. Although the broad
arcof variationis dominatedby thetime,individualsensors
will behavedifferentlygivenplacement (for example,while
all will experiencedaylight at thebasicallythesametime,
somemaybe in theshadow of a hill or treefor partof the
day). This baselineallows sensorsto learnabout their en-
vironmentandjudgewhetherchangeson subsequent days
areappropriateor abnormal.

Second,consider a wired sensornetwork deployed for
longer terms(months or years),perhapsmonitoring util-
ity systemssuchaswateror power [17], or a fixedregion.
Sucha systemis unlike traditional sensornetworks in that
someelementsmay be wired and powered, but it shares
thegoals of densesensordeployment,spatiallydistributed
nature,and physical co-location with the sensedtargets.
It also benefits from sensornetwork approachessuchas
datadiffusion that allow easydeploymentand reconfigu-
ration anddata-centric operation. A primary constraint in
suchsystemsis communications bandwidth: clearly sen-
sorsplacedon every meterof pipecannot reportflow rates
everyfew secondsto acentralsite,sotraditionalcentralized
dataminingtechniquesarenotdirectlyapplicable. Instead,
techniques for distributeddataprocessingandmining are
needed. Approachessuchas filters to allow in-network-
processing[12] andsensornetwork tomography [23] offer
promiseto minimizecommunicationsby aggregatinginfor-
mation. Theseapproachesmust be combined with capa-
bilities for “drill-down” on unusualphenomena,andwith
appropriatedataminingandanalysistechniques.

Spatialsensormining in someways is similar to con-
dition basedmaintenance: the general approach is to use
long-term monitoring to detectproblems. The approaches
differ, however, in termsof sensordensityandamount of
pre-planning. Conditionbasedmaintenancemay employ
one or a few sensorsper monitored object, and sensors
aredeployedwith hand-configuredcodeto watchthatspe-
cific object. Spatialsensormining insteadconsiderssen-
sorsdenselydeployed in theenvironment,but perhapsnot
attachedto specificequipment or pre-programmedto de-
tectspecificconditions. Instead,sensorswill collaborateto
monitor objects,andautomatedtechniquesfrom datamin-
ing maybeusedto detectlong-termtrendsandanomalies.
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4 Conclusions

Sensornetworksdepend onspatialinformation;theirphys-
ically distributednatureprovidesadvantagesin energy effi-
ciency andsignalprocessingcomparedto centralized sys-
tems.Current sensornetworks too oftendependon adhoc
or non-existingmodelsof localization, logical location,and
communicationscosts.Bettermodels arerequired in each
of theseareasto achieve bestoperation. Moreover, better
integration betweenspatialandsensorinformationis nec-
essaryfor sensornetworks to movefrom simplytrackingto
counting andmonitoringareas,andapproachessuchasspa-
tial sensorminingsuggestarolefor adhocsensornetworks
in long-term dataanalysisandproblemdetection.

Although there is great industry interestin computing
in the “post-PC” world, mostof industry remains focused
on user-centric computing platforms suchaspersonal dig-
ital assistantsor network computers. Continuedresearch
andacademic leadership in sensornetworks is necessaryto
explore the muchdifferent domain of spatiallyandphysi-
cally distributedcomputersthat interactfirst with theenvi-
ronment andonly secondarily (andin the aggregate)with
human users.
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