Using Geospatl Informationin SensomNetworks*

JohnHeidemann

NirupamaBulusu

USC/Information Sciences I nstitute
ISI-TR-546

20 Septembe001

Abstract

Thispaperescribesereralwayssensonetworks canben-
efit from geospatialinformationandidentifiestwo research
directiors. First, bettermodelsof localizationerror, logi-
cal location,andcomrunicatiors costsarerequred to un-
derstandhe interactiors betweenspatialinformation and
contrd andcommunicationsalgorithnsin sensonetworks.
Second wider use of spatial information in denselyde-
ployed sensometworks will move sensometworking ap-
plicationsfrom simpletrackingto objectcourting andarea
monitaing, andcanenabledatamining techniqiessensor
networks to acconplish “spatialsensomining’.

1 Introduction

Recentdevelopmerts in inexpensve, shortrangewireless
commuicationandsensordiave built oninexpensive com-
putersto enablesensor networks: collectiors of small de-
vices spatially distributed arourd an environmen. Sen-
sor networks arebeingappliedin areasncluding erviron-

mentalmonitaing, corditional basednaintenane,suneil-

lance,computeraugnentedor smartspacesandinvertory

tracking we expect mary otherapplicatiors to appearas
thetechnol@y beconesmorewidely available.

Unlike traditional sensorsystems,sensometworks de-
pendon dense sensor deployment andphysical co-location
with their targetsto accomgtish their goals. Dense deploy-
ment implies the useof 100s or 100G of sensomodesin
small areasandis enalted by low-cost devicesand short-
rangewirelesscommunication. With physical co-location,
sensorsare tightly couged with their ervironment: they
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may be attachedo paclagesbeingtracked, or deployed a
few metersapat to cover an intersectionor field. Physi-
cal co-locationsimplifiessignalprocessingprodems[15].
Densedepoymentallows useof redurdang [20], canre-
duce communication costs[15], and provides sufficient
nodesto allow physical co-locdion.

Soatial location is centralto sensometwork opeation.
The purposeof sensometworks is oftento answerspatial
gueriessuchas"whatis moving downtheroadandhow fast
is it?” or “how mary animalsarein the nothwestfield?”.
Sensomnetworks alsomalke useof spatialinformationto fa-
cilitate self-oiganzationandconfiguation. Sensoideploy-
mentrequireslocalizationto deternine thequality of cover-
age[14, 6] andto constraincomnunicatiors to geogaphic
areas[13, 11, 22]. Collaboative signal processingech-
niguessuchas beamforming [21] andinformation-tased
appraches(for exanple, [4, 10]) combire the resultsof
multiple sensorgo provide acombnedresultstrongerthan
thaton ary individual sensor At anopeationallevel, spa-
tial informationcanbeusedto consere enegy by loadbal-
ancing(for exanple, [8, 20]) andto contrd network utiliza-
tion [7].

Although sensometwork today usespatialinformation
aspartof researctpraotypeapplications and opegtion, a
moresolid foundationis requiredto systematizendfirmly
ground theseappraches,and new techniquescan enable
new applicdions. We suggestwo directiors of research:
first, representative models of spatial information in sensor
networks are neeeéd. We mustundestandthe error pat-
ternsof currentlocalizationsystemsandhow locationinter-
actswith sensingandcomnunication Secongdwe suggest
that spatial sensor mining is a promising direction of re-
search.Longterm datacollectionfrom denselydeplo/ed,
spatially distributed sensorscan enalte fine-graned trend
analysisif we cancope with datacollectionandprocess-
ing constraims. We describeheseproblemsin moredetail
below.



2 Modeding Spatial Information in
Sensor Networks

Much recentresearchhas focused on how to deternine
nodelocationin a rangeof circumstages. In somecases
GPSmay be used,but othersolutiors arerequred for in-
dooruseandin casesvherethepower or sizerequirenents
of GPSareexcessve (examplesinclude[18, 19,1, 5, 16]).
Although thesesystemsdemorstratethe feasibility of sev-
eral approa&hesto localization, we lack a systematicun-
derstanihg of localizationerrorandhow it interactswith
applicatins, sensingandcommunication.

Most existing localizationsystemsquariify errar in po-
sition estimatestatistically Figurel shavs theprobalility
of agivenlevel of localizationerra in a simple proximity-
basedocalizationsystempothfrom expeiimentandaspre-
dictedby a simplesphercal radiopropagationmodcel. Sim-
ilar studieshave beendore for mostotherlocalizatian sys-
tems(for examge, GPS[9]). Although statisticalstudies
of localizationerrorexist, simplestatisticalmodelsarenot
sufficient to undestandthe impactof localizationerra on
applications that depend on spatialinformation. Is the er
ror independen acrassall nodes,or do two nodes in close
proximity exhibit positively or negatively correlatederra?
For GPS,we know that closely placednodes tendto ex-
hibit correlatedabsoluteerror (hene the ability to do dif-
ferentialGPS),andsotheirrelative positionsarequitegoad
eventhough absolutepositionsmy be off by 10-1®@m [9].
Otherlocalizationsystemsexhibit very differert patternsof
error  For exanple, erra in the systemdescribedearlier
is strongly deperenton noce location (as shawvn in Fig-
ure2), sonearbynodesmayobsere very differentlevelsof
absolutepositionerrorandhencelarge errois in theirrela-
tive positiors. Withoutsolid errormodelsfor arangeof lo-
calizationsystemgesearchexwill be unabe to predct the
behaior of application andalgoithmsthatbuild on spatial
information.

Localizationsystemgodayprovide the physicallocation
of anoce. The next steprequred in theintegraion of spa-
tial information with sensometworks is an understading
logical nock locatiors: not justwherethe useror sensoiis,
but is whatis affectedor obsened. For examge, corsider
the“museumguide” contet-awareapplication. In addition
to wheretheuseris located it needgo know his or herori-
entationto describethe correct artwork beingviewed. In
a sensometwork, nock locationmay be a point, but seis-
mic or acotstic sensoicaveragemay bea muchlarger disk
or conedepeiing on the type of sensorandthe detailsof
its physicalplacemen Algorithm correctnesscanbe guar
anteedby assumingmaxinmum sensorrangeandcorrectirg
afterthefact. But sinceactualsensorcoveragemay be a
fraction(10-20%or less)of thetotal possiblearea this ap-
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Figure 1: Cumulative distribution of localization error,

both experimentalandtheordically predcted, in a simple
proximity-basedocalizationsystem(Figure 5 from [5]).
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Figure 2: Localization error as a fundion of positionin
a simple proximity-based localization system (Figure 4
from[5]).



proad canneedesslyinvolve far morenodesthanarere-
quired rapidly deplging enegy reseres. Spatialmodds
andcomnunicatiors algorithns of thatconsickr logical lo-
cationsof sensorcoverageare neeed to redwce or avoid
this expense.

Finally, thereis consideable latitude to optimize com-
municdion basedn spatialinformation. If you askfor in-
formation to the west, thereis no needto propagatethat
gueryto the east(exampges usingthis prindple include ad
hocrouting[13], directeddiffusion[11, 22] andcollaboi-
tive signal processing[10]). However, one mustcorsider
communications overheadswhen evaluating these costs.
For example,geogaphicassistedouting mustberobustto
“holes” in thetopology thatprodice local routingminima,
andthe costof adjustingandreadijisting a geograhically
scopedquely mustbe weighel againstthe overheadof an
excessiely large quel or the penaltyof aninaccuatean-
swer To our knowledge, no adegiatemockls of commu
nicatiors protols for sensometworks exist today; such
commuicationsmocels mustbe createdo allow applica-
tion desigrersto understanchow communicatiors andspa-
tial optimizaionsaffed perfamance.

3 Spatial Sensor Mining

In addtion to a solid undestandingof how localization
and spatialinformation interactswith applicatiors, dense
andlongterm sensormdeployment enablenew applicdions
of sensometworks. Challengedereinclude moving from
sensometwork trackirg of one or a small numter of tar
getsto monitoring an area with many objects (distributed
in space)andspatial sensor mining: drawing conclwsions
from distributedinformationgatheedovertime.

Currentusesof sensometworks focus on object track-
ing: usinga grouy of sensomodesto identify an object
suchasavehicle More sophisticatedersionsof this prob-
lem corsidertracking multiple objectsmoving togetter, or
objectsthatmeetanddisperseBetterintegrationof sensing
andlocationallow examnation of propertiesof areasasa
wholeandgrouys of objectsratherthanindividual objects.
Ratherthanfocusirg mary sensoron a single target, the
challeng is how to focus mary sensorson mary tamets.
Algorithms include determiring objed population (court-
ing) and density object flows or movementtrends, with
applicatimsto the ervironmert (wildlife trackirg), society
(tracking crowds of pele in buildings), andthe military.
Early developmeris hereincludessensotomogaphy(sen-
sornetwork self-moritoring) [23], anddistributeddatabase
techniqiesfor sensomnetworks[2, 3].

More challerging still is the goal of monitaing sensor
fields over time. If collaboative signal processinguses
multiple sensorgo tracka target or areaat a poirt in time,

spatial sensor mining is the useof sensorgo trackanarea
over along duration, combiring datafrom boththe spatial
andtempaal domains.

We illustrate spatial sensomining with two exanples.
First, considera rapidy deployed field of visual or infra-
redsensorshatwill operae for aboutaweek. Thefirst day
of readirgs canaccumiate dataabou how the sensomet
changsasa function of time-ofday Although the broad
arcof variationis dominatedby thetime,individual sensors
will behaedifferently givenplacemat (for exanple, while
all will experiencedaylight at the basicallythe sametime,
somemay bein the shadev of a hill or treefor partof the
day). This baselineallows sensorgo learnabaut their en-
vironmentandjudgewhetherchan@s on subsequerdays
areapprriateor abnamal.

Second,corsider a wired sensometwork deployed for
longerterms (morths or years), pertaps monitoing util-
ity systemssuchaswateror power [17], or a fixed region.
Sucha systemis unlike traditional sensometworks in that
someelementsmay be wired and powvered but it shares
the gods of densesensomeployment,spatiallydistributed
nature,and physical co-location with the sensedargets.
It also bendits from sensornetwork appr@chessuchas
datadiffusion that allow easydeploymentand recorfigu-
ration anddata-cetric operatim. A primay constraim in
suchsystemsis conmunicatiors bandvidth: clearly sen-
sorsplacedon every meterof pipe canrot reportflow rates
everyfew secondto acentralsite,sotraditionalcentralizel
dataminingtechnigesarenotdirectly applicdle. Instead,
techniqees for distributed dataprocessingand mining are
needed Approachessuchasfilters to allow in-nework-
processing12] andsensometwork tomagraply [23] offer
promiseto minimizecomnunicatiors by aggrejatinginfor-
mation. Theseappr@achesmustbe combned with capa-
bilities for “drill-down” on unusualpheromena,and with
apprgriatedatamining andanalysigechniaqies.

Spatial sensormining in someways is similar to con-
dition basedmaintenane: the geneal apprachis to use
longterm mornitoring to detectproblems. The appoaches
differ, however, in termsof sensordensityandamouwnt of
pre-panning Condition basedmainterancemay emplo
one or a few sensorsper monitoted object, and sensors
aredepoyedwith handconfiguredcodeto watchthatspe-
cific object. Spatialsensomining insteadconsiderssen-
sorsdenselydeployedin the environment,but pertapsnot
attachedto specificequipnent or preprogammedto de-
tectspecificconditinns. Instead sensorwill collaboateto
monita objects,andautonatedtechnigesfrom datamin-
ing maybeusedto detecongtermtrendsandananalies.



4 Conclusions

Sensomnetworksdeperl on spatialinformation;their phys-
ically distributednatureprovidesadwantagesn enegy effi-
cieng/ andsignalprocessingcomparedto centrdized sys-
tems. Current sensometworks too oftendependbn ad hoc
or non-«isting modelsof localization logicallocation,and
commuicationscosts. Bettermockls arerequiral in each
of theseareasto achiere bestopeation. Moreover, better
integration betweenspatialand sensolinformationis nec-
essanyfor sensonetworks to move from simplytrackingto
courting andmonitaing areasandappoachesuchasspa-
tial sensomining suggestarole for adhocsensonetworks
in long-tem dataanalysis andproblemdetection

Although thereis greatindustry interestin compting
in the “post-PC” world, mostof industry remairs focused
on usercertric computing platforms suchas persoml dig-
ital assistantor network compuers. Continuedresearch
andacaderit leaderslp in sensonetworks is necessaryo
explore the muchdifferent domain of spatiallyand physi-
cally distributedcomputersthatinteractfirst with the envi-
ronment andonly secondely (andin the aggreate)with
human users.
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