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Abstract

Thispaperescribeseseralwayssensonetworks canben-
efit from geospatialinformationandidentifiestwo research
directiors. First, bettermodelsof localizationerror, logi-
cal location,andcomrunicatiors costsarerequred to un-
derstandhe interactiors betweenspatialinformation and
contrd andcommunicationsalgorithnmsin sensonetworks.
Second wider use of spatial information in denselyde-
ployed sensometworks will move sensometworking ap-
plicationsfrom simpletrackingto objectcourting andarea
monitaing, and can enablethe use of datamining tech-
nigues to sensomnetworks for “spatialsensomining’.

1 Introduction

Recentdevelopmerts in inexpensve, shortrangewireless
commuicationandsensorfiave built oninexpensive com-
putersto enablesensor networks. collectiors of small de-
vices spatially distributed arourd an environmen. Sen-
sor networks arebeingappliedin areasncluding erviron-

mentalmonitaing, corditional basednaintenane,suneil-

lance,computeraugnentedor smartspacesandinvertory
tracking we expect mary otherapplicatiors to appearas
thetechnol@y beconesmorewidely available.

Unlike traditional sensorsystems,sensometworks de-
pendon dense sensor deployment andphysical co-location
with their targetsto accomgtish their goals. Dense deploy-
ment implies the useof 100s or 100G of sensomodesin
small areasandis enalted by low-cost devicesandshort-
rangewirelesscommunication. With physical co-location,
sensorsare tightly couged with their ervironment: they
may be attachedo paclagesbeingtracked or deplojed a
few metersapartto cover an intersectio or field. Physi-
cal co-locatio simplifiessignalprocessingprodems[15].
Densedeployment allows useof reduindang [20], canre-
duce communication costs[15], and provides sufficient
nodes to allow physical co-location.
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Soatial location is centralto sensometwork opeation.
The purposeof sensometworks is oftento answerspatial
gueriessuchas"whatis moving down theroadandhow fast
is it?” or “how mary animalsarein the nothwestfield?”.
Sensornetworks also make use of spatialinformation to
simplify their prodems. Sensodefdoymentrequreslocal-
izationto determire the quality of coverage[14, 6] andto
constraircommunicationsto geayraphc areaq13, 11, 27.
Collaboratve signal processingtechnquessuchas beam
forming [21] andinformation-tasedapprachegfor exam:
ple, [4, 10]) to comhne the resultsof multiple sensordo
provide a whole greaterthanthe sumof the parts. At an
operatimal level, spatialinformation can be usedto con-
sene enepgy by load balancimy (for examge, [8, 20]) and
to controlnetwork utilization[7].

Although sensometworks todayusespatialinformation
aspartof curren apgicationsandopertions,additioral re-
searchs requredto systematizéhesegairs andenatbe new
applicatiors. We suggestwo directiors of researchfirst,
better models of spatial information in sensomnetworks are
needed We mustundestandthe erra patternsof current
localizationsystemsandhow locationinteractswith sens-
ing and comnunication Second we suggesthat spatial
sensor mining is a promising directian of research Long-
term datacollectionfrom dersely deployed, spatially dis-
tributedsensorganenabldine-gainedtrendanalysisf we
can copewith datacollectionand processingcorstraints.
We describeheseprodemsin moredetailbelow.

2 Modeing Spatial Information in
Sensor Networks

Much recentresearchhas focusedon how to determire
nodelocationin a rangeof circumstanes. In somecases
GPSmay be used,but othersolutionsarerequred for in-
dooruseor for casesvherethe power or sizerequrements
GPSareexcessie (examplesinclude[18, 19, 1, 5, 16]). To
build on this promising researctwe mustnext uncerstand
the error patternsof current localizationsystemsand how
locationinteractswith sensingandcommunication.
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Figure 1: Cumulative distribution of localization error,

both expetimental andtheoetically predcted, in a simple
proximity-basedocalizationsystem(Figure5 from [5]).

Existinglocalizationsystemdave quantifiedlocalization
error  Figure 1 shaws the prabability of a given level of
localizationerrorin a simple proximity-basedlocalization
system,both from expeliment and as predcted by a sim-
ple sphericafradiopropagationmodd. Similar studieshave
beendonefor mostotherlocalizationsystemg(for exam:
ple, GPS[9]). Although statisticalstudiesof localization
error exist, simple statisticalmodds are not sufficient to
undestandthe impactof localizationerroron applicdions
that dependon spatialinformation. Is the errorindepen
dentacrossall noces, or do two nodesin closeproximity
exhibit positively or negatively correlatederror? For GPS,
weknow thatcloselyplacedhodestendto exhibit corrdated
absoluteerror(henceheability to dodifferential GPS),and
sotheirrelative positionsarequite goodeventhough abso-
lute positiors my be off by 10—1®m|[9]. Otherlocalization
systemsxhibit very different patternsof erra. For exam
ple, errar in thesystemdescribeckarlieris strondy depen
denton nock location (as shovn in Figure 2), so nearly
nodes may obsere very differert levels of absolte posi-
tion errorandhencelarge errorsin their relative positions.
Good error modds for a rangeof localizationsystemsis
necessaryo understandthe effects of erroron algoithms
thatbuild on spatialinformation.

Although alocalizationsystemmay provide the physical
locationof anode abetteruncerstandings neededf node
logical locatiors: notjustwherethe useror sensois, but is
affectedor obsenred. For exanple, cordsiderthe “museum
guid€ contet-awareapplication In additionto wherethe
useris locatedjt needdo know whereheor shefacego de-
scribethe correctartwork. In a sensometwork, noce loca-
tion maybea point, but seismicor acotstic sensocoverage
maybeamud largerdisk or conedepadingonthetypeof
sensorandthe detailsof its physical placemen Algorithm

o= hw

Figure 2: Localization error as a fundion of positionin
a simple proximity-based localization system (Figure 4
from[5]).

correctresscanbe guaanteedoy assumingnaximun sen-
sorrangeand correcting afterthe-fact, but with large sen-
sorrangesanddenseadeploymentthisappr@achmaybevery
costly We needbettermodelsof sensorcoverage andbet-
tertechniqesfor propagatingthis informationthrough ap-
plications.

Finally, thereis consideable latitude to optimize com-
munication basedon spatialinformation. If you askfor in-
formation to the west, thereis no needto propagatethat
gueryto the east(exampges usingthis principle include ad
hocrouting [13], directeddiffusion[11, 22] andcollaboi-
tive signal processing[10]). However, one mustconsicer
communications ovetheadswhen evaluating these costs.
For exanple, geogaphicassistedouting mustberobustto
“holes” in the topdogy thatproducelocal routing minima,
andthe costof adjustingandreadijisting a ge@raphially
scopedquely mustbe weighel againstthe overtheadof an
excessiely large queryor the penaltyof aninaccurae an-
swer Better mockls of protacol overheadsare neededo
undestandthe benefitsof pratocolsandalgorittmsthatuse
spatialinformationto optimize communication.

3 Spatial Sensor Mining

In addtion to a betterundestandingof spatialinformation,
denseandlong+term sensomeplgymentallows new appli-
cations. Challengesereinclude moving from sensomet-
work trackingof oneor a smallnumter of targetsto moni-
toring an area with many objects (distributedin spaceand
spatial sensor mining: draving conclusias from informa-
tion gatheedovertime.

Currentusesof sensometworks focus on object track-
ing: usinga groy of sensomodesto identify an object



suchasavehicle More sophisticatedersionsof this prob-
lem corsidertracking multiple objectsmoving togetter, or
objectsthatmeetanddisperseBetterintegrationof sensing
andlocationallow examnation of propertiesof areasasa
wholeandgrouys of objectsratherthanindividual objects.
Ratherthanfocusirg mary sensorn a single target, the
challeng is how to focus mary sensoron mary tamgets.
Algorithms include determiring objed population (court-
ing) and density object flows or movementtrends, with
applicatimsto the ervironmert (wildlife trackirg), society
(tracking crowds of pemle in buildings), andthe military.
Early developmeris hereincludessensotomogaphy(sen-
sornetwork self-moritoring) [23], anddistributeddatabase
techniqiesfor sensonetworks[2, 3].

More challerging still is the goal of monitaing sensor
fields over time. If collaboative signal processinguses
multiple sensorgo trackatarget or areaat a poirt in time,
spatial sensor mining is the useof sensorgo trackanarea
over alongduration, combiring datafrom boththe spatial
andtempaal donains.

We illustrate spatial sensommining with two exanples.
First, considera rapidy deplg/ed field of visual or infra-
redsensorshatwill opeatefor aboutaweek. Thefirst day
of readirgs canaccunulate dataabou how the sensomet
changsasa function of time-d-day. Although the broad
arcof variationis dominatel by thetime, individual sensors
will behaedifferently givenplacenent(for exanple, while
all will experiencedaylight at the basicallythe sametime,
somemay bein the shadw of a hill or treefor partof the
day). This baselinecanthenbe usedon subseqantdaysto
judgewhetherchangesareappopriateor abnomal.

Second considera wired sensometwork deployed for
longe terms(monthsor years),perhag monitoting utility
systemsuchaswateror power[17], or afixedregion. Such
a systemis unlike traditioral sensometworksin thatsome
elementsnaybewired andpowered but it sharegshegods
of densesensordeployment, spatially distributed natue,
and physical co-loation with the sensedargets. It also
benefitsfrom sensometwork appro@hessuchasdatadif-
fusionthatallow easydeploymentandreconfiguationand
data-cetric operatim. A primary constraim in suchsys-
temsis commuicationsbandwidh: clearlysensorglaced
on every meterof pipe cannotrepot flow ratesevery few
secondgo a centralsite. Insteadtechniqiesfor distributed
dataprocessingand mining are needed Approachessuch
asfilters to allow in-network-processing[12] and sensor
network tomagraply [23] offer promiseto minimize com-
municadionsby aggrgatinginformation. Theseappraches
mustbe combiredwith capabilitiesfor “drill-d own” onun-
usual pheromena,and with appopriate data mining and
analysigechniges.

Spatial sensormining in someways is similar to con-

dition basedmaintenane: the geneal apprachis to use
longterm moritoring to detectproblems. The appoaches
differ, however, in termsof sensordensityandamouwnt of
pre-panning Condition basedmainterancemay emplg
one or a few sensorsper monitored object, and sensors
aredepoyedwith handconfiguredcodeto watchthatspe-
cific object. Spatialsensomining insteadconsiderssen-
sorsdenselydeployedin the environment,but pertapsnot
attachedto specificequipnent or preprogammedto de-
tectspecificconditins. Instead sensorwill collaboateto
monita objects,andautonatedtechnigesfrom datamin-
ing maybeusedto detecongtermtrendsandananalies.

4 Conclusions

Sensomnetworksdependn spatialinformation;their phys-
ically distributednatureprovidesadwentagesn enegy effi-

cieng/ andsignalprocessingcompaed to centralizel sys-
tems. Current sensometworks too oftendependon adhoc
or nontexisting mockelsof localization logicallocation,and
communicationscosts. Bettermockls arerequiredin each
of theseareasto achieve bestopeation. Moreover, better
integration betweerspatialand sensolinformationis nec-
essaryfor sensonetworks to move from simply trackingto

countirgandmonitaing areasandapprachesuchasspa-
tial sensomining suggstarole for adhocsensonetworks
in long-tem dataanalysisandprablemdetection

Although thereis greatindustry interestin compting
in the “post-PC” world, mostof industry remairs focused
on usercertric computing platforms suchas personadig-
ital assistantor network compuers. Continuedresearch
andacaderit leaderslp in sensonetworks is necessaryo
explore the muchdifferent doman of spatially and physi-
cally distributedcomputersthatinteractfirst with the envi-
ronment andonly secondaly (andin the aggrejate)with
humanusers.
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