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Abstract

Thispaperdescribesseveralwayssensornetworkscanben-
efit from geospatialinformationandidentifiestwo research
directions. First, bettermodelsof localizationerror, logi-
cal location,andcommunications costsarerequired to un-
derstandthe interactions betweenspatial informationand
control andcommunicationsalgorithmsin sensornetworks.
Second, wider use of spatial information in denselyde-
ployed sensornetworks will move sensornetworking ap-
plicationsfrom simpletrackingto objectcounting andarea
monitoring, and can enablethe useof datamining tech-
niques to sensornetworks for “spatialsensormining”.

1 Introduction

Recentdevelopments in inexpensive, short-rangewireless
communicationandsensorshavebuilt oninexpensivecom-
putersto enablesensor networks: collections of small de-
vices spatially distributed around an environment. Sen-
sornetworks arebeingappliedin areasincluding environ-
mentalmonitoring,conditionalbasedmaintenance,surveil-
lance,computeraugmentedor smartspaces,andinventory
tracking; we expect many otherapplications to appearas
thetechnology becomesmorewidely available.

Unlike traditional sensorsystems,sensornetworks de-
pendon dense sensor deployment andphysical co-location
with their targetsto accomplish their goals.Dense deploy-
ment implies the useof 100s or 1000s of sensornodesin
small areasandis enabled by low-cost devicesandshort-
rangewirelesscommunication. With physical co-location,
sensorsare tightly coupled with their environment: they
maybe attachedto packagesbeingtracked, or deployed a
few metersapartto cover an intersection or field. Physi-
cal co-location simplifiessignalprocessingproblems[15].
Densedeployment allows useof redundancy [20], canre-
duce communication costs [15], and provides sufficient
nodes to allow physicalco-location.

�
Thiswork wassupportedby DARPA undergrantDABT63-99-1-0011

aspartof theSCAADSproject.
Theauthor canbecontactedby e-mailat johnh@isi.edu.

Spatial location is centralto sensornetwork operation.
The purposeof sensornetworks is often to answerspatial
queriessuchas“what is movingdowntheroadandhow fast
is it?” or “how many animalsarein thenorthwestfield?”.
Sensornetworks also make useof spatial information to
simplify theirproblems.Sensordeploymentrequireslocal-
ization to determine thequality of coverage[14, 6] andto
constraincommunicationsto geographic areas[13, 11, 22].
Collaborative signalprocessingtechniquessuchasbeam-
forming [21] andinformation-basedapproaches(for exam-
ple, [4, 10]) to combine the resultsof multiple sensorsto
provide a whole greaterthanthe sumof the parts. At an
operational level, spatialinformation canbe usedto con-
serve energy by load balancing (for example, [8, 20]) and
to controlnetwork utilization [7].

Although sensornetworks todayusespatialinformation
aspartof current applicationsandoperations,additional re-
searchis requiredtosystematizethesegainsandenable new
applications. We suggesttwo directions of research:first,
better models of spatial information in sensornetworks are
needed. We mustunderstandthe error patternsof current
localizationsystemsandhow locationinteractswith sens-
ing andcommunication. Second, we suggestthat spatial
sensor mining is a promising direction of research. Long-
term datacollectionfrom densely deployed, spatiallydis-
tributedsensorscanenablefine-grainedtrendanalysisif we
can copewith datacollectionand processingconstraints.
We describetheseproblemsin moredetailbelow.

2 Modeling Spatial Information in
Sensor Networks

Much recentresearchhas focusedon how to determine
nodelocationin a rangeof circumstances. In somecases
GPSmay be used,but othersolutionsarerequired for in-
dooruseor for caseswherethepower or sizerequirements
GPSareexcessive(examplesinclude [18, 19, 1, 5, 16]). To
build on this promising researchwe mustnext understand
the error patternsof current localizationsystemsandhow
locationinteractswith sensingandcommunication.
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Figure 1: Cumulative distribution of localization error,
both experimentalandtheoretically predicted, in a simple
proximity-basedlocalizationsystem(Figure5 from [5]).

Existinglocalizationsystemshavequantifiedlocalization
error. Figure 1 shows the probability of a given level of
localizationerror in a simpleproximity-basedlocalization
system,both from experiment andaspredicted by a sim-
plesphericalradiopropagationmodel. Similarstudieshave
beendonefor mostother localizationsystems(for exam-
ple, GPS[9]). Although statisticalstudiesof localization
error exist, simple statisticalmodels are not sufficient to
understandthe impactof localizationerroron applications
that dependon spatial information. Is the error indepen-
dentacrossall nodes,or do two nodesin closeproximity
exhibit positively or negatively correlatederror? For GPS,
weknow thatcloselyplacednodestendtoexhibit correlated
absoluteerror(hencetheability to dodifferentialGPS),and
sotheir relativepositionsarequitegoodeventhough abso-
lutepositionsmy beoff by 10–100m[9]. Otherlocalization
systemsexhibit very differentpatternsof error. For exam-
ple,error in thesystemdescribedearlieris strongly depen-
dent on node location (as shown in Figure 2), so nearby
nodes may observe very different levels of absolute posi-
tion errorandhencelarge errorsin their relative positions.
Gooderror models for a rangeof localizationsystemsis
necessaryto understandthe effectsof error on algorithms
thatbuild onspatialinformation.

Although a localizationsystemmayprovidethephysical
locationof anode,abetterunderstandingis neededof node
logical locations: not justwheretheuseror sensoris, but is
affectedor observed. For example,condsiderthe“museum
guide” context-awareapplication. In additionto wherethe
useris located,it needsto know whereheorshefacesto de-
scribethecorrectartwork. In a sensornetwork, node loca-
tion maybeapoint,but seismicor acousticsensorcoverage
maybeamuch largerdiskor conedependingonthetypeof
sensorandthedetailsof its physicalplacement. Algorithm
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Figure 2: Localization error as a function of position in
a simple proximity-based localization system(Figure 4
from [5]).

correctnesscanbeguaranteedby assumingmaximum sen-
sor rangeandcorrectingafter-the-fact,but with large sen-
sorrangesanddensedeploymentthisapproachmaybevery
costly. We needbettermodelsof sensorcoverage,andbet-
ter techniquesfor propagatingthis informationthrough ap-
plications.

Finally, thereis considerable latitude to optimize com-
munication basedon spatialinformation.If you askfor in-
formation to the west, thereis no needto propagatethat
queryto theeast(examplesusingthis principle include ad
hocrouting [13], directeddiffusion[11, 22] andcollabora-
tive signalprocessing[10]). However, onemustconsider
communicationsoverheadswhen evaluating thesecosts.
For example,geographic-assistedrouting mustberobustto
“holes” in thetopology thatproducelocal routing minima,
andthe costof adjustingandreadjusting a geographically
scopedquery mustbe weighed againstthe overheadof an
excessively largequeryor thepenaltyof an inaccurate an-
swer. Better models of protocol overheadsareneededto
understandthebenefitsof protocolsandalgorithmsthatuse
spatialinformationto optimize communication.

3 Spatial Sensor Mining

In addition to abetterunderstandingof spatialinformation,
denseandlong-termsensordeploymentallows new appli-
cations.Challengeshereincludemoving from sensornet-
work trackingof oneor a smallnumber of targetsto moni-
toring an area with many objects (distributedin space)and
spatial sensor mining: drawing conclusions from informa-
tion gatheredover time.

Currentusesof sensornetworks focus on object track-
ing: using a group of sensornodesto identify an object
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asavehicle. Moresophisticatedversionsof thisprob-
lem considertracking multiple objectsmoving together, or
objectsthatmeetanddisperse.Betterintegrationof sensing
andlocationallow examinationof propertiesof areasasa
wholeandgroups of objectsratherthanindividual objects.
Ratherthanfocusing many sensorson a single target, the
challenge is how to focus many sensorson many targets.
Algorithms includedetermining object population (count-
ing) and density, object flows or movementtrends,with
applicationsto theenvironment (wildlife tracking), society
(tracking crowds of people in buildings), andthe military.
Earlydevelopments hereincludessensortomography(sen-
sornetwork self-monitoring) [23], anddistributeddatabase
techniquesfor sensornetworks[2, 3].

More challenging still is the goal of monitoring sensor
fields over time. If collaborative signal processinguses
multiple sensorsto tracka target or areaat a point in time,
spatial sensor mining is theuseof sensorsto trackanarea
over a long duration, combining datafrom boththespatial
andtemporal domains.

We illustratespatialsensormining with two examples.
First, considera rapidly deployed field of visual or infra-
redsensorsthatwill operatefor aboutaweek.Thefirst day
of readings canaccumulatedataabout how the sensornet
changesasa function of time-of-day. Although the broad
arcof variationis dominated by thetime,individualsensors
will behavedifferentlygivenplacement(for example,while
all will experiencedaylight at thebasicallythesametime,
somemaybe in theshadow of a hill or treefor partof the
day).This baselinecanthenbeusedonsubsequentdaysto
judgewhetherchangesareappropriateor abnormal.

Second, considera wired sensornetwork deployed for
longer terms(monthsor years),perhaps monitoring utility
systemssuchaswaterorpower[17], orafixedregion. Such
a systemis unlike traditional sensornetworksin thatsome
elementsmaybewiredandpowered, but it sharesthegoals
of densesensordeployment, spatially distributed nature,
and physical co-location with the sensedtargets. It also
benefitsfrom sensornetwork approachessuchasdatadif-
fusionthatallow easydeploymentandreconfigurationand
data-centric operation. A primary constraint in suchsys-
temsis communicationsbandwidth: clearlysensorsplaced
on every meterof pipe cannotreport flow ratesevery few
secondsto acentralsite. Instead,techniquesfor distributed
dataprocessingandmining areneeded. Approachessuch
as filters to allow in-network-processing[12] and sensor
network tomography [23] offer promiseto minimizecom-
municationsby aggregatinginformation.Theseapproaches
mustbecombinedwith capabilitiesfor “drill-d own” onun-
usualphenomena,and with appropriatedatamining and
analysistechniques.

Spatialsensormining in someways is similar to con-

dition basedmaintenance: the general approach is to use
long-term monitoring to detectproblems. The approaches
differ, however, in termsof sensordensityandamount of
pre-planning. Conditionbasedmaintenancemay employ
one or a few sensorsper monitored object, and sensors
aredeployedwith hand-configuredcodeto watchthatspe-
cific object. Spatialsensormining insteadconsiderssen-
sorsdenselydeployed in theenvironment,but perhapsnot
attachedto specificequipment or pre-programmedto de-
tectspecificconditions. Instead,sensorswill collaborateto
monitor objects,andautomatedtechniquesfrom datamin-
ing maybeusedto detectlong-termtrendsandanomalies.

4 Conclusions

Sensornetworksdependonspatialinformation;theirphys-
ically distributednatureprovidesadvantagesin energy effi-
ciency andsignalprocessingcompared to centralized sys-
tems.Current sensornetworks too oftendependon adhoc
or non-existingmodelsof localization, logical location,and
communicationscosts.Bettermodels arerequiredin each
of theseareasto achieve bestoperation. Moreover, better
integration betweenspatialandsensorinformationis nec-
essaryfor sensornetworks to movefrom simplytrackingto
counting andmonitoring areas,andapproachessuchasspa-
tial sensorminingsuggestarolefor adhocsensornetworks
in long-term dataanalysisandproblemdetection.

Although there is great industry interestin computing
in the “post-PC” world, mostof industry remains focused
on user-centric computing platforms suchaspersonal dig-
ital assistantsor network computers. Continuedresearch
andacademic leadership in sensornetworks is necessaryto
explore the muchdifferent domain of spatiallyandphysi-
cally distributedcomputersthat interactfirst with theenvi-
ronment andonly secondarily (andin the aggregate)with
humanusers.
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