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Abstract

Experiencavith wired networkshasprovidesguidanceabout
whatlevel of detailis appropriatdor simulation-basegroto-
col studies. Wirelesssimulationsraisemary new questions
aboutappropriatelevels of detail in simulation modelsfor
radio propagatiorand enegy consumption. This paperde-
scribeghetrade-ofs associateavith addingdetailto simula-
tion models.We evaluatethe effectsof detailin five casestud-
ies of wirelesssimulationsfor protocol design. Ultimately
theresearchemustjudgewhatlevel of detailis requiredfor
agivenquestionjput we suggestwo approacheto copewith
varying levels of detail. When error is not correlated,net-
working algorithmsthat are robust to a rangeof errorsare
oftenstressedn similar waysby randomerrorasby detailed
models. We also suggestvisualizationtechniqueghat can
help pinpointincorrectdetailsandmanagedetail overload.

Keywords: wirelessnetwork simulation; simulationval-
idation, detail, accuray; enegy-avaread hoc routing; data
diffusion; localization;robotics;network protocolvisualiza-
tion

1 INTRODUCTION

Selectinghecorrectievel of detail(or level of abstractionjor
a simulationis a difficult problem. Too little detail canpro-
ducesimulationsthatare misleadingor incorrect,but adding
detailrequirestime to implement,dehug, andlaterchangejt
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slows down simulation,andit candistractfrom theresearch
problemat hand. Designingsimulationsto studya protocol

inherentlyinvolvesmakingchoicesin which protocoldetails

to implementor use.

Although a numberof network simulation packagesare
available,they do not remove this burdenfrom the designer
In customsimulators,researchergypically include only the
minimum possible details outside the immediate area of
study Existing simulators(such as Opnet, ns-2 [5], Par
sec[2], andSSF[8]) provide detailedprotocolimplementa-
tions, but whatlevel of detailis requiredin new protocols,or
in adaptingexisting protocolsto modelnew hardware?Some
simulatorseasethe costof changingabstractiorwith multi-
ple, selectabldevels of detail (for example,ns[17]), but the
designchoicemuststill be made.

Choicesaboutdetail are particularly difficult for wireless
network simulations. Wide experiencewith the important
component®f wired networks over the last 30 yearsallows
significantabstraction.For example,point-to-pointlinks are
often representecds a simply by bandwidthand delay with
a queue;framing, coding, and transmissiorerrorsare sim-
ply ignoredor mathematicallymodeled. The youngerfield
of wirelessnetworking provides lessguidanceon what ab-
stractionsareappropriate Low-level detailscanhave a large
effect on performanceput detailedsimulationscan be very
expensve (for example,radiopropagation).

This paperexploresthe questionof what level of detail
is neededfor simulationsof network protocolsin wireless
domains. We beggin by looking at the trade-ofs in differ-
ent levels of detail in simulations. We then considerfive
casestudies: enegy consumptionin ad hoc routing, data
diffusion,radio-base@utdoorlocalization,communications-
drivenrobotfollowing algorithms,andvisualizationof wire-
lesssimulations. The contribution of this paperis two-fold:
first, by examining the effects of detailson wirelesssimu-



lationswe help the networking simulationcommunityjudge
therelevanceof simulationstudies.Secondwe identify two
differentways simulationresultscanbe spoiledby too little
detail, and two caseswherefairly abstractsimulationssuc-
cessfullymodelreal-world behaior.

2 TRADE-OFFSOF DETAIL IN
WIRELESS SIMULATION

We next considetthetrade-ofs of moredetailedor abstract
simulations.

A commongoalis to infusethe simulationwith asmuch
detail as possibleto provide a “realistic” simulation. This
approachis attractve: afully realisticsimulationoughtto be
ableto reproduceheresultsof laboratoryexperimentsor net-
work useby end-usersFailing to implementdetailsguaran-
teesthatthey won't bereflectedin a simulation;for example
a wirelesspropagationrmodel that doesnt considerconcur
renttransmissionsvill not modelthe hiddenterminaleffect.
Furthermoredetailsatmultiple protocollevelscanrevealim-
portantinteractionsbetweerlayers.For example,routersyn-
chronizationwasfirst studiedin simulation[14].

Yeta“fully realistic” simulationis not possible—doesne
stopat the network layer? they physicallayer? electronsor
photons?Simulationdesignersnustlimit the level of detail
somavhere. The challengeis to identify what level of de-
tail doesnot affect answergo the designquestionsat hand.
For example,we know of no network simulatorthat consid-
ersdetailsof a CPU’s instructionsetor memoryhierarchy—
thesedo notaffectdesignquestionselevantto wirelesssimu-
lations. Yettheseadetailsarecritical to othernetworking prob-
lemssuchasvery rapidrouting[11].

Thereare several reasongdo avoid excessve detail. Sim-
ulation run-timeis adwerselyaffectedby detail. Implemen-
tationanddehuggingtime is increasedandundetectedugs
in distantlayerscanproduceinaccuracieskvenif dehugged,
protocoldetailschangeovertime. For example anextremely
detailedimplementatiorof WaveLAN from a few yearsago
would today be supersededy the 802.11 standardtoday
Sometimegettingall the detailsmay be impossible,if they
areleft open(or implementation-dependerit) the specifica-
tion, or whentrying to predictfuture behaior with protocols
not yet implementedor standardized.Finally, for mary of
thesereasonsimulationsoften mix levels of detailin differ-
ent components.A very detailed, microsecond-leel MAC
simulation may be forced to use a more abstractpropaga-
tion model(becausell objectsin theterrainwerenot spec-
ified) andanolder TCPimplementation(perhapsotinclud-
ing SACK or recentlystandardize@xtensions).Simulations
with detailedhardware modelsmay have abstract(perhaps
randomizedycenario®of nodeplacementfransmissionand

movement.

Therearesereralreasongor intentionallychoosinga high
level of abstractiorfor simulation. Distillation of aresearch
questionto its essenceanprovide insight not coloredby ar-
bitrary detailsof specificproposedsolutions. For example,
althoughmultiple resourcaesenationandquality-of-service
protocolshave beenproposed,Breslauand Shenler usea
very abstractservicemodelto focuson the centralissueof
the benefitsof resenations[6]. Whenexploring a new area
wheremary issuesareunclear the needto quickly explorea
variety of alternatvescanbe moreimportantthana detailed
resultfor a specificscenario. For this kind of nimble sim-
ulation, relative comparisonf alternatves are often more
importantthana single detailedquantitatve result. A more
abstractsimulationcanalso make the effectsof a changen
algorithm distinct, wherethey would be obscuredby other
effectsin a more detailedsimulation. Finally, omissionof
simulation detail canimprove performanceby multiple or-
dersof magnitudg17]. Memoryandrun-timeimprovements
duecanoffer resultssooney or allow larger or longerexper
iments,revealingdifferentaspectf protocolbehaior. For
example therelative performancef adhocroutingprotocols
differswith largenumbersof noded10].

Theprimaryrisk of simulationabstractioris theunknown.
Would additionaldetail changethe conclusionof the simu-
lation study? This problemis particularly challengingwhen
enteringa relatively unexploredareawhereresearches in-
tuitions may be underdeeloped. Validation of simulations
againsimoredetailedsimulationsandexperimentaimeasure-
mentscan answerthis question. But the cost of validation
is fairly high: carefulexperimentsrequireimplementingthe
detailsin questionor purchasingsuficient hardwarefor real-
world experiments.

Overtime, theresultsof validationexperimentswill allow
the communityto build anunderstandin@f whatdetailsare
important. The communityhasbegun sharingthis informa-
tion throughworkshopssuchasthe DARPA/NIST Network
SimulationValidationWorkshop[9]. We next considerser-
eral casestudiesthat have arisenin our researchas further
examples.

Tablel summarizeshe casesve examine therelevantde-
tails thatwereconsideredandhow thosedetailsaffectedthe
resultsof the simulationstudy We found that choiceof de-
tail hadseveraldifferentresultson the studies.Lack of detail
causedvronganswersn two ways,eitherbecausehey were
simply incorrect, wrong or actively misleading,or because
they wereinapplicable: technicallycorrectbut providing an
answerto part of the designspacethat may not be sensible
or relevant. In two othercasesrelatively abstracapproaches
werefoundto producecorrectresults,eitherbecausehe ap-
plication was insensitive to the detailsat hand,the outputs
of the applicationhad an existing componentof noisethat



Case Relevant detail
enepgy-consciousad-hocrouting(§3)  enegy consumptiormodel(idle behaior)
datadiffusion (§3) MAC protocol

localization(§4.1)
robotfollowing (§4.2)
protocolvisualization(§5)

radiopropagatiormodel
radiopropagatiormodel
pacletvisualizationstratgy

Effects

incorrectresults

inapplicableresults

correctresults applicationinsensitve to detail
correctresults applicationrobustto error
utility of visualization

Tablel: Casestudiesexaminedin this paperandhow detailaffectedstudyresults.

swampedary variationadditionaldetailsprovide, or because
the application was robust to details,the algorithmwasself-
correctingto errors. Finally, for the caseof visualizationwe
foundtheapproacheto handlingdetailsimply affectthe use-
fulnessof thevisualization.

3 ENERGY CONSUMPTION IN AD
HOC ROUTING

Ouir first casestudy considersenegy consumptiorwhen
routing datain ad hoc networks. We examinetwo recent
studiesin this area:an evaluationof datadiffusion[18], and
a studyof an enegy-saving variationsof on-demandad hoc
routing protocols[24]. Choiceof appropriatemodelsof ra-
dio enegy consumptiorandMA C protocolsmake cancom-
pletely changethe conclusionof thesestudies.

Several modelsof enegy consumptiorfor wirelesscom-
municationhave beenusedin literature:

¢ Successfullysentor receved paclets incur an enegy

cost.

e MAC-level costs can be considered—MA-level re-
transmissionsCTS/RT'S, and paclets that are unsuc-
cessfullysentor recevvedincur a cost.

¢ Enegy consumeadnhile listening(or “idle”, having the
radio poweredon but not actively sendingor receving)
canalsobemodeled.

e Non-radio system costs can be considered(display
CPU,diskdrive).

e Batteryinternals(non-linearity temperaturesensitvity,
batterymemory etc.)canbeconsidered.

Selectingthe right level of detail dependsn the research
guestiorbeingconsideredFor mostresearchyuestionsabout
networking protocols,non-radiocomponentgfor example,
thedisplay)canbefactoredout asafixedoverheadalthough
in somecasesCPU-intensie work mustbe consideredfor
example,softwareradios[4], or MPEG playout). Similarly,
for roughcomparison®f protocols,detailedbatterymodels
arenotrequired—aeasonablsimplifying assumptioris that
memoryor temperaturevill affectall protocolsequally
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Figure 1: Comparisorof enegy consumedor four ad hoc
routing protocolswith differentenegy models(left, black
barsare without consideringenegy consumedvhenlisten-
ing; right, graybarsincludethis consumption).

We have found modelingidle time makes a large differ-
encein protocolcomparisonsWe studiedenegy consump-
tion of four ad hoc routing protocols(AODV, DSR, DSDV,
and TORA) with a simpletraffic modelwherea few nodes
senddataover a multi-hop path [24]. Using a simple en-
ergy modelthat doesnot consideridle-time costs,we found
thaton-demandrotocolssuchasAODV andDSR consume
much less enegy than a priori protocols such as DSDV
and TORA/IMEP (the left, black barsin Figure1). A pri-
ori protocolsareconstantlyexpendingenegy pre-computing
routes,while nodesthat do not sourcedatado not usethese
routes. Thesedifferencesranish,however, whenwe adopta
more detailedenegy modelthat considersdle-time enegy
consumption. WaveLAN radioshave a 1:1.05:1.4ratio of
idle:receve:sendenegy costs[23]. With this radio model
all adhocrouting protocolsconsiderecconsumeaoughly the
sameamountof enegy (within a few percent). In this sce-
nario, idle time completelydominatessystemenepgy con-
sumptionsoaninsuficiently detailedenegy model(notcon-
sideringidle time) completelychangeghe studyresults.

This exampleillustratesthe casewhereinsufiicient detail
can producean incorrect result. Not modelingidle enegy



consumptionindicatesminimal differencesbetweenad hoc
routing protocols,while addingidle enegy shows cleardif-

ferences.Futurewirelessnetworking researchershouldin-

cludethesedetailsin their power modelsandshouldusecare
wheninterpretingprior publishedresultsthatuseoverly sim-
plified models.

Choiceof MAC protocolis alsocloselytied with radioen-
ergy consumption\We have studieddatadiffusionprotocols,
evaluatingthe power consumptiorof datadiffusionascom-
paredto simplefloodingandanidealizedmulticast[18]. The
goal of theseexperimentswasto provide enegy-conserving
protocolsfor long-livedsensonetworks. Againwe hadtrou-
ble with inappropriatemodelsof radio enegy consumption;
all protocolshehaed similarly whenidle costswere consid-
ered. In this case,the problemwas an inappropriateMAC
protocol.

Figure 2 shows the comparisorof datadiffusion andtwo
alternatves, with a TDMA-lik e enegy model (Figure 2(a))
andan 802.11enegy model(Figure 2(b)). (Becauseat this
time we did not have a TDMA modelin our simulator we
approximatedt by adjustingthe enegy model. We planto
redotheseexperimentswith differentmodel MAC models.)
As shawn in the figure, choiceof the MAC layer produces
very different conclusionswhen comparingthe algorithms,
Figure2(b) suggestshereis no significantdifference while
Figure2(a) shaovs a noticeabldifference.

In this case the conclusionis somavhatmoresubtle. Re-
sultsof simulationswith 802.11protocolsarenottechnically
wrong, but they areinappropriate. While one could usean
802.11MAC for theseapplications that would be poor de-
signchoicesincelong-livedsensonetworksneedanenepgy-
conservingMAC like TDMA. Becausedhe detailsareinap-
propriate,they resultin conclusions(the algorithmsare all
equivalent)thatareincorrectfor a well-designedsystem.

Theseexamplessuggesthatidle-timeandMA C protocols
areimportantdetailsfor wirelesscommunicatiorstudieswith
PC-like network nodes.We have not seenevidencethat fur-
therdetails(power consumptiorof othersystemcomponents
or modelsof batteryinternals)alter researchresultsin this
domain. Additional experienceis neededo validatethis as-
sumption. Theseassumptionsnay not hold for studiesof
increasinglytiny (dust-mote-sizedhodes21]. We hypothe-
sizethatasnodeandradio power consumptiorshrinks,and
asnodelifetime increasesadditionaldetailswill becomém-
portant.

4 RADIO PROPAGATION MODELS

Ournext two studiesconsideithe problemsof radio-basedb-
calization(determininga nodes location) and robot follow-
ing. In both caseswe found the level of detail of the radio
propagatiormodelimportant.

Even morethanenegy models,mary levels of detail are
employedin radio propagatiormodelswith a single sender
andrecever:

e Thesimplestmodelsconsidemnly propagatiordistance
from senderto recever with a fixed formula for signal
loss.

¢ Slightly moredetailedmodelsmight usedifferentmod-
elsfor nearandfar recevers(for example,the Friis and
two-ray groundreflectionapproximations).

e A statistical approximation of shadeving might be
added.

e A more detailedmodel might considersignal attenu-
ation from large obstacles perhapsmodeling line-of-
sight communicatiordifferently from indirect commu-
nication.

o Very detailedmodelswould considerantennageome-
tries (orientation,distanceoff ground)andperformde-
tailedradioray-tracingto estimatereflection.

In addition,modelsmayor maynottake in therelative power
of interferingtransmissions.

Radio propagationvariesgreatly especiallyindoors,mo-
tiving very detailedpropagatiormodels. Unfortunately ac-
curatemodelsbecomevery computationallyexpensie and
requiremuchmoredetailaboutthe environmentthanis typi-
cally available.

An attractve alternatve is to couplea simple modelwith
somelevel of statisticalloss, but therehasbeenlimited ex-
periencewith how lessdetailedmodelschangenetwork be-
havior. We have evaluatedthis questionin two casestudies,
onewherea very simplemodelprovedsurprisinglyeffective
in arestricteddomain,andthenarobotics-inspirecapproach
to designingsoftwareto berobustto modelerror.

4.1 Radio-based outdoor localization

Sometimesimpleradio propagatiormodelscanbe quite ef-
fective for the purposef a problem. We areexploring the
taskof spatial localization, determininganodesapproximate
location, using only radio connectvity to a setof beacons
with well known locations[7]. This approachwould beim-
portantfor nodestoo smallor inexpensveto useGPS.

Radio propagationis a critical aspectof this kind of
network-basedocalization.We beganthis work usinga sim-
ple, idealizedradio model—we assumeeachradio has an
identical, sphericalpropagation.We selectedhis modelbe-
causet wassimpleto reasoraboutandevaluatemathemati-
cally. We expectedthatthis model,at best,would allow usto
selectalgorithmsand establishperformancebounds. To our
surprise,it comparegjuite well to experimentallymeasured
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(From[18], Figures4aand6c.)

propagatiorin open,outdoorareas.Not sounsurprisinglyit
doesnot modelindoorpropagatiorwell atall.

We evaluatethe effectivenessf this modelboth by com-
paringits accurag to experimentalmeasurementand then
by consideringts effect on our estimatesf localizationac-
curag. First, to compareits accuray to measurementsye
evaluatedoropagatiorbetweertwo Radiometrixradio paclet
controllers(modelRPC-418)operatingat 418 MHz. A node S Theory +
periodically sent27-bytebeaconswe definea 90% paclet | T Median range -~
receptionrate as “connected’and empirically measuredan )
8.94msphericakangefor our simplemodel. To evaluatehow
well this simplemodelcompareso areal-world scenariove N 1

10

placedaradioin thecornerof anemptyparkinglot thenmea- £ F

suredconnectvity at 1m intervals over a 10m squarequad- N

rant. Figure3 compareshesemeasurementsith connect- R S

ity aspredictecby themodel. Amongthe78 pointsmeasured, L T

thesimplesphericamodelmatchesorrectlyat 68 pointsand P P P

mismatchegt10,all attheedgeof therange.Errorwasnever

morethan2m. eor e
Although we have evaluatedthe accuray of our radio T T T T e 10

model, a moreimportantmetric is the influencethat model X(inm)

hason the accurag of localizationandour evaluationof al- ] ] B ]

ternative localizationalgorithms. We evaluatedour network Figure3: 90%radioconnecwity for atransmitterat (0,0)

localizationalgorithmsby placing beaconsat the cornersof
a 1l0msquarein anoutdoorparkinglot. We thenestimatech
nodes positionat 1m intervalswithin this squarebothexper
imentally andusingour sphericalmodel. Localizationalgo-
rithmstypically evaluatethe errorbetweerpredictedandac-
tual position. Figure4 shaws this metricfrom the modeland
experiment.They trackeachotherclosely includingplateaus
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is the error levels, althoughsphericalmodelis consistently
slightly optimistic.

From these experimentswe conclude that very simple
propagatiormodelscanbe effective whensimulatingproto-
colsin restricteddomains. We cautionthat this approxima-
tion is not appropriatefor indoors (as would be expected)
where reflection and occlusionis common. Our indoors
measurementsf propagatiorrangevariedwidely from 4.6—
22.3mdependingon walls andexact nodelocationsandori-
entations Thevalidatedoutdoormodelallows usto explorea
muchwider rangeof scenariogshroughsimulationthancould
be donethroughphysicalexperimentation.

More generally this example shavs that in some cases
application-leel metrics(suchaslocalizationerror) are not
strongly influencedby lack of detail in lowerlevel simula-
tion componentsln this case|t is becausehis approacho
proximity-basedocalizationhasaninherentmeasuremerar
ror thatis muchlargerthantheinaccurag our simpleoutdoor
radio propagatiormodel. We concludethat whenthe appli-
cationis insensitive to detail, abstracsimulationscanbe ef-
fectively applied.

4.2 Radio-based robot following

A centralchallengeto practicalroboticsis coping with er
ror in robotic interactionswith the realworld. Roboticsen-
sorsarenoisy and actuatorqwheels,etc.) ofteninaccurate.
Oneapproachto accommodat¢hesemary sourcesof ervi-
ronmentalerror is to designvery robustalgorithms. Instead
of trying to developvery detailedmodelsthe physicsof robot
movement,oneapproacho roboticssimulationis to employ
asimplemodelwith largeamountsof randomerror[19]. We
believe this philosophyis alsoapplicablein networking: net-
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Figure5: Idealizedradio propagatiormodelwith a nominal
transmissiomadiusof 5m.

working algorithmsmustbe robustto network dynamics;ro-
bust algorithmscan often allow randomerrorto replacede-
tailedmodelsin simulation.(Whenerroris not correlated.)

We evaluatethis hypothesisn a hybrid scenario:we have
designedandsimulatedan algorithmto getonerobotto fol-
low anotherat constantdistance[12]. The lead robot cir-
clesa large rectangularcorridor while emitting periodic ra-
dio beacons.The follower adjustsits speedto keepa con-
stantdistancewith theleader Thefollower listensto beacon
messageandincreasespeedwhenthelossrateis high and
decrease#t whenlossrateis low. This algorithmassumes
a short-rangeadio wherelossrate correspondgo distance.
Figure5 shavs anidealizedradiopropagatiormodel.

Indoor radio propagationis much lessthan ideal due to
multipathreflections.To investigateheseeffectswithout ex-
tremelydetailedmodelsof theinterior of ourbuilding, weadd
arandomerrorcomponenbasednan* (r + percent-erroy2”
model.With this model,apacletis alwaysrecevedby nodes
within radiusr, but we add a randomerror to this radius
beforethresholding. This error is uniformly chosenwithin
somepercentag®f actualdistance;for example,at 25% er-
ror, ' = r + .25ru whereu is arandomnumberbetween-1
and1. Figure6 showvsouradjustedpropagatioomodelat0, 5,
15,and50%errorlevels. Notethat0% erroris actuallybetter
thanouridealizedpropagatiormodel.

We evaluatethe quality of distancekeepingwith eachof
theseerror modelsin Figure7. We were surprisedthat dis-
tance keeping performanceis essentiallythe samefor all
propagationmodels. This arguesthat, for this experiment,
additionaldetail in the propagationmodel would not offer
additionalinsight into the tracking algorithm. This resultis
independenbf the underlyingmodelfor two reasons.First,
the algorithmis robustto error; its decisionsare simpleand
returnit to steadydistance Secondpur expectationsn eval-
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uatingthis algorithmallow error; reasonablclosefollowing
(within ameter)mostof thetime (90%)is good.

Thisexperimentsuggestshatqualitative evaluationsof ap-
plications are robust to error cantolerateabstractmodelsof
underlyinglayers. We would lik e to furtherverify this claim
by repeatinghis experimentwith physicalrobots.

This resultis not specificto robotics; we have obsened
similar resultsin experimentsinvolving wired networks and
the SRM protocol[15]. SRM hasthe samepropertiesasour
robot-following algorithm: it usesrandomizedalgorithmsto
repair lost messagesand it can be evaluatedby counting
numbersof duplicaterepairmessagesWe have found that
the numberof duplicaterepairsis similar bothwith detailed
hop-by-hopnetwork simulationsand with abstractsimula-
tionsthatsimulateonly end-to-endielay[17].

5 VISUALIZATION OF WIRELESS
SIMULATIONS

Finally, we considerthe effect of detailsin visualization.
We have developednam asa generictool for visualizingthe
outputof network simulations[13]. We find visualizationa
very importanttool for protocoldehugging,but thereis need
to control the amountof detail presentedo the user In this
suggestiorwe examinewayswe usevisualizationto control
details,andwaysthatvisualizationis helpful at selectingthe
right level of detailfor wirelesssimulation.

Easy-to-usevisualizationaloneprovidesa hugesteppro-
viding a large amountof detailedinformationin a manage-
ablefashion.Visualrepresentationsf paclet flow succinctly
capturehigh-level informationabouttraffic rates,congestion,
sourcesnddestinationsandinteractionfor mary nodesand
links. Determiningthe sameinformationfrom textual paclet
tracesfor a singlenodeor link is muchmoredifficult. Once
hot spotsor problemareasarevisually identified,tracescan
be examinedto extractspecificinformation. We stronglyen-
couragesimulationauthorsto visualizetheir protocolsearly
in developmento aid dehugging,andtheuseof agenerictool
like namcanreducethis effort.

Recentwork in datadiffusionprovidesoneexampleof the
importanceof visualization[18]. Our early experimentswith
datadiffusionemployedavery hightraffic load (alargefrac-
tion of network capacity). This resultedin MAC-layertime-
outsandanomaloudbehaior completelyunrelatedo the pro-
tocol we were studying simply becauseve were out of an
acceptable®peratingregion. This statuswould have quickly
andeasilybeendeterminedrom a protocolvisualization but
waslostin theaggreyatestatisticswe considered.

Even with visualizations, the detail can becomeover
whelming. We are exploring two waysto control this detail
in nam. First, we provide differentkinds of visualizationfor
differentkindsof wirelesscommunication Secondwe allow
theuserto controlthelevel of detailnampresents.

Nam hastwo waysto visualizewirelesscommunications.
First, we canvisualizepaclet flow asrectangleghatarean-
imatedandmove directly from the sourceto destination(the
lines from nodel to nodes2 and 3 in Figure 8). This rep-
resentatiorhas evolved from nam’s useto visualize wired
point-to-pointnetworkswherepacletsflow onlinks. Thisap-
proachclearlyidentifiesthesenderandreceverof the paclet,
thedirectionof pacletflow, andthetime of transmissiorand
receipt. However, this visualizationdoesnot easilyadaptto
supportbroadcastraffic. Representing broadcaspacletas
multiple rectanglesvisually suggestsnultiple paclets. This
approachalso doesnot easily shov when concurrenttrans-
missionsfrom differentnodesinterferewith eachother

An alternatevisualizationapproachis to shov wireless
paclets as expandingcircles (the circlesin Figure8). This
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clearly shows the paclet sourceand interferencewith other
paclets,but it doesnot shown destinationslf theringsdisap-
pearor fadewith distanceijt alsoshovs nominalradiorange.
Currentlywe usebothapproaches nam:unicasipacletsare
sentusingrectangleswhile broadcastaresentwith expand-
ing circles.

In additionto choosingbetweentwo visualizationmeth-

ods,we allow theuserto controlthelevel of detailpresented.

We are adding supportfor both transport-and MAC-level

tracecollectionin ns. Transport-l@el tracesshov paclets
traveling from sourcego destinationsMAC-level tracesadd
MAC-layer retransmitsand losses. Usersof nam can also
selectandfilter dataat run-time,focusingon datafor a par

ticular sendeyrecever, flow, paclet-type,or similar charac-
teristics.

6 RELATED WORK

The wired networking world hasdependedn yearsof ex-
perienceto guide detail in networking simulations. Ahn et
al. werethe first to suggestexplicitly using abstractrepre-
sentationsof paclet trainsto speedsimulation[1]. Huang
et al. have examinedthe use of selectve levels of detail
or abstractionin wired multicast simulations,and demon-
stratedthatabstractiorcausesninimal change$o SRM eval-
uations[17]. Ourwork differsfrom this work in focusingon
therelatively unexploredareaof fidelity of wirelesssimula-

tions.

The difficulty of radio propagationhas long forced the
wirelessnetworking communityto multiple levels of detail.
Recentlythe communityhasfocusedon the questionof vali-
dationand levels of detail in wirelesssimulationsat events
such as the DARPA/NIST Network Simulation Validation
Workshop([9, 16]. Although somestudieshave compared
wirelesssimulationswith real-world experimentgfor exam-
ple, Johnson20] for wirelessad hoc routing), thereis still
relatively little experiencein this area. Our work builds on
this prior work by examining five different casestudiesin
wirelessnetworking.

Of course,simulationvalidation hasits rootsin general
simulation and other domains. Somerecentwork in the
areaincludesdefenseapplications[22, 3]. Our work can
be thoughtof asapplyingthesetechniquesn the context of
wirelessnetworking. Our work is similar to Jalobi’'s work
in roboticssimulationg[19] in thatwe areexploring the sub-
stitution of randomizednoisefor systematicervironmental
noise. Unlike his work we are investigatingthat hypothesis
for wirelessnetworking.

7/ CONCLUSIONS

Choosingthe right level of detail for network simulationis
difficult. Sincethe networking community haslessexperi-
encen thewirelessdomainthanwith wired networks,choos-
ing abstractionshereis evenmoredifficult.

There are risks both in simulatingwith too much detail
or too little. Too much detail resultsin slow simulations
and cumbersomesimulators. A very detailed simulation
may accuratelypredicttoday’s performanceput it may not
predicttomorravs protocol variationsor be easily adaptto
quickly explore alternatves. Simulationswhich lack neces-
sarydetailscanresultin misleadingor incorrectanswersRe-
searchermustchoseheirlevel of simulationdetailwith care.

We have offered several casestudiesin wirelessnetwork
simulationto offer guidancefor whendetail is or is not re-
quired.Evenwhenexamplesarenotdirectly applicable sim-
ilar validationapproachesnay be. We have also suggested
two approacheso copewith varyinglevels of detail. When
erroris not correlated networking algorithmsthat arerobust
to arangeof errorsareoftenstressedn similar waysby ran-
domerrorasby detailedmodels.Finally, visualizationtech-
niquescan help pinpoint incorrectdetailsand control detail
overload.
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