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Abstract

Experiencewith wirednetworkshasprovidesguidanceabout
whatlevel of detailis appropriatefor simulation-basedproto-
col studies. Wirelesssimulationsraisemany new questions
aboutappropriatelevels of detail in simulationmodelsfor
radio propagationandenergy consumption.This paperde-
scribesthetrade-offs associatedwith addingdetailto simula-
tionmodels.Weevaluatetheeffectsof detailin fivecasestud-
ies of wirelesssimulationsfor protocol design. Ultimately
theresearchermustjudgewhat level of detail is requiredfor
agivenquestion,but wesuggesttwo approachesto copewith
varying levels of detail. When error is not correlated,net-
working algorithmsthat are robust to a rangeof errorsare
oftenstressedin similar waysby randomerrorasby detailed
models. We also suggestvisualizationtechniquesthat can
helppinpointincorrectdetailsandmanagedetailoverload.

Keywords: wirelessnetwork simulation;simulationval-
idation, detail, accuracy; energy-awaread hoc routing; data
diffusion; localization;robotics;network protocolvisualiza-
tion

1 INTRODUCTION

Selectingthecorrectlevelof detail(or levelof abstraction)for
a simulationis a difficult problem. Too little detail canpro-
ducesimulationsthataremisleadingor incorrect,but adding
detailrequirestime to implement,debug,andlaterchange,it
�
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slows down simulation,andit candistractfrom theresearch
problemat hand. Designingsimulationsto studya protocol
inherentlyinvolvesmakingchoicesin which protocoldetails
to implementor use.

Although a numberof network simulationpackagesare
available,they do not remove this burdenfrom thedesigner.
In customsimulators,researcherstypically includeonly the
minimum possible details outside the immediate area of
study. Existing simulators(such as Opnet, ns-2 [5], Par-
sec[2], andSSF[8]) provide detailedprotocolimplementa-
tions,but whatlevel of detail is requiredin new protocols,or
in adaptingexistingprotocolsto modelnew hardware?Some
simulatorseasethe costof changingabstractionwith multi-
ple, selectablelevelsof detail (for example,ns[17]), but the
designchoicemuststill bemade.

Choicesaboutdetail areparticularlydifficult for wireless
network simulations. Wide experiencewith the important
componentsof wired networksover the last 30 yearsallows
significantabstraction.For example,point-to-pointlinks are
often representedasa simply by bandwidthanddelaywith
a queue;framing, coding, and transmissionerrorsare sim-
ply ignoredor mathematicallymodeled. The youngerfield
of wirelessnetworking provides lessguidanceon what ab-
stractionsareappropriate.Low-level detailscanhave a large
effect on performance,but detailedsimulationscanbe very
expensive(for example,radiopropagation).

This paperexplores the questionof what level of detail
is neededfor simulationsof network protocolsin wireless
domains. We begin by looking at the trade-offs in differ-
ent levels of detail in simulations. We then considerfive
casestudies: energy consumptionin ad hoc routing, data
diffusion,radio-basedoutdoorlocalization,communications-
drivenrobotfollowing algorithms,andvisualizationof wire-
lesssimulations.The contribution of this paperis two-fold:
first, by examining the effects of detailson wirelesssimu-
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lationswe help thenetworking simulationcommunityjudge
therelevanceof simulationstudies.Second,we identify two
differentwayssimulationresultscanbespoiledby too little
detail, and two caseswherefairly abstractsimulationssuc-
cessfullymodelreal-world behavior.

2 TRADE-OFFS OF DETAIL IN
WIRELESS SIMULATION

Wenext considerthetrade-offsof moredetailedor abstract
simulations.

A commongoal is to infusethe simulationwith asmuch
detail as possibleto provide a “realistic” simulation. This
approachis attractive: a fully realisticsimulationoughtto be
ableto reproducetheresultsof laboratoryexperimentsor net-
work useby end-users.Failing to implementdetailsguaran-
teesthat they won’t bereflectedin a simulation;for example
a wirelesspropagationmodel that doesn’t considerconcur-
rent transmissionswill not modelthehiddenterminaleffect.
Furthermore,detailsatmultipleprotocollevelscanrevealim-
portantinteractionsbetweenlayers.For example,routersyn-
chronizationwasfirst studiedin simulation[14].

Yeta “fully realistic” simulationis not possible—doesone
stopat the network layer? they physicallayer? electronsor
photons?Simulationdesignersmustlimit the level of detail
somewhere. The challengeis to identify what level of de-
tail doesnot affect answersto the designquestionsat hand.
For example,we know of no network simulatorthat consid-
ersdetailsof a CPU’s instructionsetor memoryhierarchy—
thesedonotaffectdesignquestionsrelevantto wirelesssimu-
lations.Yetthesedetailsarecritical to othernetworkingprob-
lemssuchasvery rapidrouting[11].

Thereareseveral reasonsto avoid excessive detail. Sim-
ulation run-timeis adverselyaffectedby detail. Implemen-
tationanddebuggingtime is increased,andundetectedbugs
in distantlayerscanproduceinaccuracies.Evenif debugged,
protocoldetailschangeovertime. For example,anextremely
detailedimplementationof WaveLAN from a few yearsago
would today be supersededby the 802.11standardtoday.
Sometimesgettingall the detailsmaybe impossible,if they
areleft open(or implementation-dependent)in thespecifica-
tion, or whentrying to predictfuturebehavior with protocols
not yet implementedor standardized.Finally, for many of
thesereasonssimulationsoftenmix levelsof detail in differ-
ent components.A very detailed,microsecond-level MAC
simulationmay be forced to usea more abstractpropaga-
tion model(becauseall objectsin the terrainwerenot spec-
ified) andanolderTCPimplementation(perhapsnot includ-
ing SACK or recentlystandardizedextensions).Simulations
with detailedhardware modelsmay have abstract(perhaps
randomized)scenariosof nodeplacement,transmission,and

movement.

Thereareseveralreasonsfor intentionallychoosingahigh
level of abstractionfor simulation.Distillation of a research
questionto its essencecanprovide insightnot coloredby ar-
bitrary detailsof specificproposedsolutions. For example,
althoughmultiple resourcereservationandquality-of-service
protocolshave beenproposed,Breslauand Shenker use a
very abstractservicemodel to focuson the centralissueof
the benefitsof reservations[6]. Whenexploring a new area
wheremany issuesareunclear, theneedto quickly explorea
varietyof alternativescanbemoreimportantthana detailed
result for a specificscenario. For this kind of nimble sim-
ulation, relative comparisonsof alternativesare often more
importantthana singledetailedquantitative result. A more
abstractsimulationcanalsomake the effectsof a changein
algorithm distinct, wherethey would be obscuredby other
effects in a more detailedsimulation. Finally, omissionof
simulationdetail can improve performanceby multiple or-
dersof magnitude[17]. Memoryandrun-timeimprovements
duecanoffer resultssooner, or allow largeror longerexper-
iments,revealingdifferentaspectsof protocolbehavior. For
example,therelativeperformanceof adhocroutingprotocols
differswith largenumbersof nodes[10].

Theprimaryrisk of simulationabstractionis theunknown.
Would additionaldetail changethe conclusionsof the simu-
lation study?This problemis particularlychallengingwhen
enteringa relatively unexploredareawhereresearcher’s in-
tuitions may be underdeveloped. Validation of simulations
againstmoredetailedsimulationsandexperimentalmeasure-
mentscan answerthis question. But the cost of validation
is fairly high: carefulexperimentsrequireimplementingthe
detailsin questionor purchasingsufficienthardwarefor real-
world experiments.

Over time, theresultsof validationexperimentswill allow
thecommunityto build anunderstandingof whatdetailsare
important. The communityhasbegun sharingthis informa-
tion throughworkshopssuchasthe DARPA/NIST Network
SimulationValidationWorkshop[9]. We next considersev-
eral casestudiesthat have arisenin our researchas further
examples.

Table1 summarizesthecasesweexamine,therelevantde-
tails thatwereconsidered,andhow thosedetailsaffectedthe
resultsof the simulationstudy. We found that choiceof de-
tail hadseveraldifferentresultson thestudies.Lack of detail
causedwronganswersin two ways,eitherbecausethey were
simply incorrect, wrong or actively misleading,or because
they wereinapplicable: technicallycorrectbut providing an
answerto part of the designspacethat may not be sensible
or relevant. In two othercases,relatively abstractapproaches
werefoundto producecorrectresults,eitherbecausetheap-
plication was insensitive to the detailsat hand,the outputs
of the applicationhad an existing componentof noisethat
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Case Relevant detail Effects
energy-consciousad-hocrouting( � 3) energy consumptionmodel(idle behavior) incorrectresults
datadiffusion( � 3) MAC protocol inapplicableresults
localization( � 4.1) radiopropagationmodel correctresults,applicationinsensitive to detail
robotfollowing ( � 4.2) radiopropagationmodel correctresults,applicationrobustto error
protocolvisualization( � 5) packet visualizationstrategy utility of visualization

Table1: Casestudiesexaminedin thispaperandhow detailaffectedstudyresults.

swampedany variationadditionaldetailsprovide,or because
theapplication was robust to details,thealgorithmwasself-
correctingto errors.Finally, for thecaseof visualizationwe
foundtheapproachesto handlingdetailsimplyaffect theuse-
fulnessof thevisualization.

3 ENERGY CONSUMPTION IN AD
HOC ROUTING

Our first casestudy considersenergy consumptionwhen
routing data in ad hoc networks. We examine two recent
studiesin this area:anevaluationof datadiffusion[18], and
a studyof anenergy-saving variationsof on-demandad hoc
routing protocols[24]. Choiceof appropriatemodelsof ra-
dio energy consumptionandMAC protocolsmake cancom-
pletelychangetheconclusionsof thesestudies.

Several modelsof energy consumptionfor wirelesscom-
municationhavebeenusedin literature:� Successfullysentor received packets incur an energy

cost.

� MAC-level costs can be considered—MAC-level re-
transmissions,CTS/RTS, and packets that are unsuc-
cessfullysentor receivedincura cost.

� Energy consumedwhile listening(or “idle”, having the
radiopoweredon but not actively sendingor receiving)
canalsobemodeled.

� Non-radio system costs can be considered(display,
CPU,diskdrive).

� Batteryinternals(non-linearity, temperaturesensitivity,
batterymemory, etc.)canbeconsidered.

Selectingthe right level of detail dependson the research
questionbeingconsidered.For mostresearchquestionsabout
networking protocols,non-radiocomponents(for example,
thedisplay)canbefactoredoutasafixedoverhead,although
in somecasesCPU-intensive work mustbe considered(for
example,softwareradios[4], or MPEG playout). Similarly,
for roughcomparisonsof protocols,detailedbatterymodels
arenotrequired—areasonablesimplifying assumptionis that
memoryor temperaturewill affectall protocolsequally.

ad hoc routing protocol
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Figure1: Comparisonof energy consumedfor four ad hoc
routing protocolswith different energy models(left, black
barsarewithout consideringenergy consumedwhenlisten-
ing; right, graybarsincludethis consumption).

We have found modelingidle time makesa large differ-
encein protocolcomparisons.We studiedenergy consump-
tion of four ad hoc routing protocols(AODV, DSR, DSDV,
andTORA) with a simple traffic modelwherea few nodes
senddataover a multi-hop path [24]. Using a simple en-
ergy modelthatdoesnot consideridle-time costs,we found
thaton-demandprotocolssuchasAODV andDSRconsume
much less energy than a priori protocols such as DSDV
andTORA/IMEP (the left, black barsin Figure 1). A pri-
ori protocolsareconstantlyexpendingenergy pre-computing
routes,while nodesthatdo not sourcedatado not usethese
routes.Thesedifferencesvanish,however, whenwe adopta
moredetailedenergy model that considersidle-time energy
consumption. WaveLAN radioshave a 1:1.05:1.4ratio of
idle:receive:sendenergy costs[23]. With this radio model
all adhocroutingprotocolsconsideredconsumeroughlythe
sameamountof energy (within a few percent). In this sce-
nario, idle time completelydominatessystemenergy con-
sumption,soaninsufficientlydetailedenergymodel(notcon-
sideringidle time)completelychangesthestudyresults.

This exampleillustratesthe casewhereinsufficient detail
can producean incorrect result. Not modelingidle energy
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consumptionindicatesminimal differencesbetweenad hoc
routing protocols,while addingidle energy shows cleardif-
ferences.Futurewirelessnetworking researchersshouldin-
cludethesedetailsin their powermodelsandshouldusecare
wheninterpretingprior publishedresultsthatuseoverly sim-
plified models.

Choiceof MAC protocolis alsocloselytiedwith radioen-
ergy consumption.We havestudieddatadiffusionprotocols,
evaluatingthe power consumptionof datadiffusionascom-
paredto simplefloodingandanidealizedmulticast[18]. The
goalof theseexperimentswasto provide energy-conserving
protocolsfor long-livedsensornetworks.Againwehadtrou-
ble with inappropriatemodelsof radioenergy consumption;
all protocolsbehavedsimilarly whenidle costswereconsid-
ered. In this case,the problemwasan inappropriateMAC
protocol.

Figure2 shows the comparisonof datadiffusion andtwo
alternatives,with a TDMA-lik e energy model (Figure2(a))
andan 802.11energy model(Figure2(b)). (Becauseat this
time we did not have a TDMA model in our simulator, we
approximatedit by adjustingthe energy model. We plan to
redotheseexperimentswith differentmodelMAC models.)
As shown in the figure, choiceof the MAC layer produces
very different conclusionswhen comparingthe algorithms,
Figure2(b) suggeststhereis no significantdifference,while
Figure2(a)showsa noticeabledifference.

In this case,theconclusionis somewhatmoresubtle.Re-
sultsof simulationswith 802.11protocolsarenot technically
wrong, but they are inappropriate. While onecould usean
802.11MAC for theseapplications,that would be poor de-
signchoicesincelong-livedsensornetworksneedanenergy-
conservingMAC like TDMA. Becausethe detailsareinap-
propriate,they result in conclusions(the algorithmsare all
equivalent)thatareincorrectfor a well-designedsystem.

Theseexamplessuggestthatidle-timeandMAC protocols
areimportantdetailsfor wirelesscommunicationstudieswith
PC-like network nodes.We have not seenevidencethat fur-
therdetails(powerconsumptionof othersystemcomponents
or modelsof batteryinternals)alter researchresultsin this
domain. Additional experienceis neededto validatethis as-
sumption. Theseassumptionsmay not hold for studiesof
increasinglytiny (dust-mote-sized)nodes[21]. We hypothe-
sizethat asnodeandradio power consumptionshrinks,and
asnodelifetime increases,additionaldetailswill becomeim-
portant.

4 RADIO PROPAGATION MODELS

Ournext two studiesconsidertheproblemsof radio-basedlo-
calization(determininga node’s location)androbot follow-
ing. In both cases,we found the level of detail of the radio
propagationmodelimportant.

Even morethanenergy models,many levels of detail are
employed in radio propagationmodelswith a singlesender
andreceiver:

� Thesimplestmodelsconsideronly propagationdistance
from senderto receiver with a fixed formula for signal
loss.

� Slightly moredetailedmodelsmight usedifferentmod-
elsfor nearandfar receivers(for example,theFriis and
two-raygroundreflectionapproximations).

� A statistical approximation of shadowing might be
added.

� A more detailedmodel might considersignal attenu-
ation from large obstacles,perhapsmodeling line-of-
sight communicationdifferently from indirect commu-
nication.

� Very detailedmodelswould considerantennageome-
tries (orientation,distanceoff ground)andperformde-
tailedradioray-tracingto estimatereflection.

In addition,modelsmayor maynot takein therelativepower
of interferingtransmissions.

Radiopropagationvariesgreatly, especiallyindoors,mo-
tiving very detailedpropagationmodels. Unfortunately, ac-
curatemodelsbecomevery computationallyexpensive and
requiremuchmoredetailabouttheenvironmentthanis typi-
cally available.

An attractive alternative is to couplea simplemodelwith
somelevel of statisticalloss,but therehasbeenlimited ex-
periencewith how lessdetailedmodelschangenetwork be-
havior. We have evaluatedthis questionin two casestudies,
onewherea very simplemodelprovedsurprisinglyeffective
in a restricteddomain,andthena robotics-inspiredapproach
to designingsoftwareto berobustto modelerror.

4.1 Radio-based outdoor localization

Sometimessimpleradiopropagationmodelscanbequiteef-
fective for the purposesof a problem. We areexploring the
taskof spatial localization, determininganode’sapproximate
location, using only radio connectivity to a set of beacons
with well known locations[7]. This approachwould be im-
portantfor nodestoo smallor inexpensiveto useGPS.

Radio propagationis a critical aspectof this kind of
network-basedlocalization.We beganthiswork usingasim-
ple, idealizedradio model—weassumeeachradio has an
identical,sphericalpropagation.We selectedthis modelbe-
causeit wassimpleto reasonaboutandevaluatemathemati-
cally. We expectedthatthismodel,at best,wouldallow usto
selectalgorithmsandestablishperformancebounds.To our
surprise,it comparesquite well to experimentallymeasured
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Figure2: Comparisonof datadiffusionalternativeswith TDMA-lik eenergy model(left) and802.11-likeenergy model(right).
(From[18], Figures4aand6c.)

propagationin open,outdoorareas.Not sounsurprisingly, it
doesnot modelindoorpropagationwell at all.

We evaluatethe effectivenessof this modelbothby com-
paring its accuracy to experimentalmeasurementsand then
by consideringits effect on our estimatesof localizationac-
curacy. First, to compareits accuracy to measurements,we
evaluatedpropagationbetweentwo Radiometrixradiopacket
controllers(modelRPC-418)operatingat 418MHz. A node
periodically sent27-bytebeacons;we definea 90% packet
receptionrate as “connected”and empirically measuredan
8.94msphericalrangefor oursimplemodel.To evaluatehow
well this simplemodelcomparesto a real-world scenariowe
placedaradioin thecornerof anemptyparkinglot thenmea-
suredconnectivity at 1m intervals over a 10m squarequad-
rant. Figure3 comparesthesemeasurementswith connectiv-
ity aspredictedby themodel.Amongthe78pointsmeasured,
thesimplesphericalmodelmatchescorrectlyat68pointsand
mismatchesat10,all attheedgeof therange.Errorwasnever
morethan2m.

Although we have evaluatedthe accuracy of our radio
model,a more importantmetric is the influencethat model
hason theaccuracy of localizationandour evaluationof al-
ternative localizationalgorithms.We evaluatedour network
localizationalgorithmsby placingbeaconsat the cornersof
a 10msquarein anoutdoorparkinglot. We thenestimateda
node’spositionat 1m intervalswithin thissquarebothexper-
imentallyandusingour sphericalmodel. Localizationalgo-
rithmstypically evaluatetheerrorbetweenpredictedandac-
tual position.Figure4 shows this metricfrom themodeland
experiment.They trackeachotherclosely, includingplateaus

0

2

4

6

8

10

0 2 4 6 8 10

Y
 (

in
 m

)�

X (in m)

Expt
Theory

Median range

Figure3: 90%radioconnectivity for a transmitterat (0,0)

5



0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

(%
)

Localization Error (m)

theory
experiment

Figure4: A comparisonof localizationerror with spherical
andexperimentalpropagation.

is the error levels, althoughsphericalmodel is consistently
slightly optimistic.

From theseexperimentswe conclude that very simple
propagationmodelscanbe effective whensimulatingproto-
cols in restricteddomains.We cautionthat this approxima-
tion is not appropriatefor indoors (as would be expected)
where reflection and occlusion is common. Our indoors
measurementsof propagationrangevariedwidely from 4.6–
22.3mdependingon walls andexactnodelocationsandori-
entations.Thevalidatedoutdoormodelallowsusto explorea
muchwider rangeof scenariosthroughsimulationthancould
bedonethroughphysicalexperimentation.

More generally, this example shows that in somecases
application-level metrics(suchaslocalizationerror) arenot
strongly influencedby lack of detail in lower-level simula-
tion components.In this case,it is becausethis approachto
proximity-basedlocalizationhasaninherentmeasurementer-
ror thatis muchlargerthantheinaccuracy oursimpleoutdoor
radiopropagationmodel. We concludethatwhenthe appli-
cationis insensitive to detail, abstractsimulationscanbeef-
fectively applied.

4.2 Radio-based robot following

A centralchallengeto practicalroboticsis coping with er-
ror in robotic interactionswith the real world. Roboticsen-
sorsarenoisy andactuators(wheels,etc.) often inaccurate.
Oneapproachto accommodatethesemany sourcesof envi-
ronmentalerror is to designvery robustalgorithms. Instead
of trying to developverydetailedmodelsthephysicsof robot
movement,oneapproachto roboticssimulationis to employ
a simplemodelwith largeamountsof randomerror[19]. We
believe this philosophyis alsoapplicablein networking: net-

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 P
ro

ba
bi

lit
y

�

Transmitter-Receiver Distance (m)

Figure5: Idealizedradiopropagationmodelwith a nominal
transmissionradiusof 5m.

working algorithmsmustberobustto network dynamics;ro-
bust algorithmscanoften allow randomerror to replacede-
tailedmodelsin simulation.(Whenerroris not correlated.)

We evaluatethis hypothesisin a hybrid scenario:we have
designedandsimulatedanalgorithmto getonerobot to fol-
low anotherat constantdistance[12]. The lead robot cir-
clesa large rectangularcorridor while emitting periodic ra-
dio beacons.The follower adjustsits speedto keepa con-
stantdistancewith theleader. Thefollower listensto beacon
messagesandincreasesspeedwhenthe lossrateis high and
decreasesit when loss rate is low. This algorithmassumes
a short-rangeradio wherelossratecorrespondsto distance.
Figure5 showsanidealizedradiopropagationmodel.

Indoor radio propagationis much less than ideal due to
multipathreflections.To investigatetheseeffectswithoutex-
tremelydetailedmodelsof theinteriorof ourbuilding,weadd
arandomerrorcomponentbasedonan“ �	��
 percent-error�� ”
model.With thismodel,apacketis alwaysreceivedby nodes
within radius � , but we add a randomerror to this radius
beforethresholding. This error is uniformly chosenwithin
somepercentageof actualdistance;for example,at 25% er-
ror, ��������
���������� where� is a randomnumberbetween� �
and1. Figure6 showsouradjustedpropagationmodelat0, 5,
15,and50%errorlevels.Notethat0%erroris actuallybetter
thanour idealizedpropagationmodel.

We evaluatethe quality of distancekeepingwith eachof
theseerror modelsin Figure7. We weresurprisedthat dis-
tancekeepingperformanceis essentiallythe samefor all
propagationmodels. This arguesthat, for this experiment,
additionaldetail in the propagationmodel would not offer
additionalinsight into the trackingalgorithm. This result is
independentof the underlyingmodelfor two reasons.First,
the algorithmis robust to error; its decisionsaresimpleand
returnit to steadydistance.Second,our expectationsin eval-
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uatingthis algorithmallow error; reasonablyclosefollowing
(within ameter)mostof thetime (90%)is good.

Thisexperimentsuggeststhatqualitativeevaluationsof ap-
plications are robust to error cantolerateabstractmodelsof
underlyinglayers.We would like to furtherverify this claim
by repeatingthis experimentwith physicalrobots.

This result is not specificto robotics; we have observed
similar resultsin experimentsinvolving wired networks and
theSRM protocol[15]. SRM hasthesamepropertiesasour
robot-following algorithm: it usesrandomizedalgorithmsto
repair lost messages,and it can be evaluatedby counting
numbersof duplicaterepairmessages.We have found that
the numberof duplicaterepairsis similar bothwith detailed
hop-by-hopnetwork simulationsand with abstractsimula-
tionsthatsimulateonly end-to-enddelay[17].

5 VISUALIZATION OF WIRELESS
SIMULATIONS

Finally, we considerthe effect of detailsin visualization.
We have developednam asa generictool for visualizingthe
outputof network simulations[13]. We find visualizationa
very importanttool for protocoldebugging,but thereis need
to control theamountof detail presentedto theuser. In this
suggestionwe examinewayswe usevisualizationto control
details,andwaysthatvisualizationis helpful at selectingthe
right level of detail for wirelesssimulation.

Easy-to-usevisualizationaloneprovidesa hugesteppro-
viding a large amountof detailedinformation in a manage-
ablefashion.Visualrepresentationsof packetflow succinctly
capturehigh-level informationabouttraffic rates,congestion,
sourcesanddestinations,andinteractionsfor many nodesand
links. Determiningthesameinformationfrom textual packet
tracesfor a singlenodeor link is muchmoredifficult. Once
hot spotsor problemareasarevisually identified,tracescan
beexaminedto extractspecificinformation.We stronglyen-
couragesimulationauthorsto visualizetheir protocolsearly
in developmentto aiddebugging,andtheuseof agenerictool
likenamcanreducethis effort.

Recentwork in datadiffusionprovidesoneexampleof the
importanceof visualization[18]. Our earlyexperimentswith
datadiffusionemployedaveryhigh traffic load(a largefrac-
tion of network capacity).This resultedin MAC-layertime-
outsandanomalousbehavior completelyunrelatedto thepro-
tocol we were studyingsimply becausewe were out of an
acceptableoperatingregion. This statuswould have quickly
andeasilybeendeterminedfrom aprotocolvisualization,but
waslost in theaggregatestatisticsweconsidered.

Even with visualizations, the detail can becomeover-
whelming. We areexploring two waysto control this detail
in nam. First, we provide differentkindsof visualizationfor
differentkindsof wirelesscommunication.Second,weallow
theuserto controlthelevel of detailnampresents.

Namhastwo waysto visualizewirelesscommunications.
First, we canvisualizepacket flow asrectanglesthatarean-
imatedandmovedirectly from thesourceto destination(the
lines from node1 to nodes2 and3 in Figure8). This rep-
resentationhasevolved from nam’s use to visualizewired
point-to-pointnetworkswherepacketsflow onlinks. Thisap-
proachclearlyidentifiesthesenderandreceiverof thepacket,
thedirectionof packetflow, andthetimeof transmissionand
receipt. However, this visualizationdoesnot easilyadaptto
supportbroadcasttraffic. Representinga broadcastpacket as
multiple rectanglesvisually suggestsmultiple packets. This
approachalso doesnot easily show whenconcurrenttrans-
missionsfrom differentnodesinterferewith eachother.

An alternatevisualizationapproachis to show wireless
packetsasexpandingcircles(the circles in Figure8). This
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Figure8: Wirelessvisualizationin nam

clearly shows the packet sourceandinterferencewith other
packets,but it doesnot show destinations.If theringsdisap-
pearor fadewith distance,it alsoshowsnominalradiorange.
Currentlyweusebothapproachesin nam:unicastpacketsare
sentusingrectangles,while broadcastsaresentwith expand-
ing circles.

In addition to choosingbetweentwo visualizationmeth-
ods,weallow theuserto controlthelevel of detailpresented.
We are adding support for both transport-and MAC-level
tracecollection in ns. Transport-level tracesshow packets
traveling from sourcesto destinations;MAC-level tracesadd
MAC-layer retransmitsand losses. Usersof nam can also
selectandfilter dataat run-time,focusingon datafor a par-
ticular sender, receiver, flow, packet-type,or similar charac-
teristics.

6 RELATED WORK

The wired networking world hasdependedon yearsof ex-
perienceto guide detail in networking simulations. Ahn et
al. were the first to suggestexplicitly using abstractrepre-
sentationsof packet trains to speedsimulation[1]. Huang
et al. have examined the use of selective levels of detail
or abstractionin wired multicast simulations,and demon-
stratedthatabstractioncausesminimalchangesto SRMeval-
uations[17]. Our work differsfrom this work in focusingon
the relatively unexploredareaof fidelity of wirelesssimula-

tions.
The difficulty of radio propagationhas long forced the

wirelessnetworking communityto multiple levels of detail.
Recentlythecommunityhasfocusedon thequestionof vali-
dationand levels of detail in wirelesssimulationsat events
such as the DARPA/NIST Network Simulation Validation
Workshop[9, 16]. Although somestudieshave compared
wirelesssimulationswith real-world experiments(for exam-
ple, Johnson[20] for wirelessad hoc routing), thereis still
relatively little experiencein this area. Our work builds on
this prior work by examining five different casestudiesin
wirelessnetworking.

Of course,simulationvalidation has its roots in general
simulation and other domains. Somerecentwork in the
areaincludesdefenseapplications[22, 3]. Our work can
be thoughtof asapplyingthesetechniquesin the context of
wirelessnetworking. Our work is similar to Jakobi’s work
in roboticssimulations[19] in thatwe areexploring thesub-
stitution of randomizednoisefor systematicenvironmental
noise. Unlike his work we areinvestigatingthat hypothesis
for wirelessnetworking.

7 CONCLUSIONS

Choosingthe right level of detail for network simulationis
difficult. Sincethe networking communityhaslessexperi-
encein thewirelessdomainthanwith wirednetworks,choos-
ing abstractionsthereis evenmoredifficult.

Thereare risks both in simulatingwith too much detail
or too little. Too much detail results in slow simulations
and cumbersomesimulators. A very detailed simulation
may accuratelypredict today’s performance,but it may not
predict tomorrows protocol variationsor be easily adaptto
quickly explore alternatives. Simulationswhich lack neces-
sarydetailscanresultin misleadingor incorrectanswers.Re-
searchersmustchosetheirlevelof simulationdetailwith care.

We have offeredseveral casestudiesin wirelessnetwork
simulationto offer guidancefor whendetail is or is not re-
quired.Evenwhenexamplesarenotdirectlyapplicable,sim-
ilar validationapproachesmay be. We have alsosuggested
two approachesto copewith varying levelsof detail. When
error is not correlated,networking algorithmsthatarerobust
to a rangeof errorsareoftenstressedin similar waysby ran-
domerrorasby detailedmodels.Finally, visualizationtech-
niquescanhelp pinpoint incorrectdetailsandcontrol detail
overload.
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