Appeared in the Proceedi ngs of the
Second | EEE Wor kshop on Experi nment al
Huntsville, AL, Cctober

Di stributed Systens,
1990, pages 20-25

Name Transparency in Very Large Scale
Distributed File Systems”

Richard G. Guy Thomas W. Page, Jr.

Gerald J. Popek!

John S. Heidemann

Department of Computer Science
Uniwversity of California Los Angeles

Abstract

Previous distributed file systems have relied on ei-
ther convention or obtaining dynamic global agree-
ment to provide network transparent file naming.
This paper argues that neither approach can suc-
ceed as systems scale to the kind of size that is
anticipated in the current decade. We propose in-
stead a novel name mapping scheme which relies on
a fragmented, selectively replicated name transla-
tion database. Updates to the naming database are
coordinated by an optimistic concurrency control
strategy with automatic propagation and reconcil-
iation. A prototype of the name mapping mech-
anism has been implemented and is in use in the
Ficus replicated file system.

1 Introduction

During this decade, very large scale wide area
distributed computing environments (DCEs) will
emerge. We believe that the principle of network
transparency will be even more important to large
scale DCEs than i1t has been in current small scale
DCEs. A key challenge of providing network trans-
parency 1s found in file systems, which must provide
location transparent and name transparent naming

*This work was sponsored by DARPA under contract
number F29601-87-C-0072.

tThis author is also affiliated with Locus Computing
Corporation.

services.

This paper argues that name transparency is es-
sential to the success of a very large scale wide area
distributed computing environment. It describes
the difficulties of scaling current small scale name
transparency techniques, and proposes a new mech-
anism suitable for use in a very large scale DCE.

Section 2 describes salient characteristics of a
large scale DCE. File system aspects of network
transparency are outlined in Section 3, followed
by a discussion of name transparency in Section4.
The naming mechanisms of several distributed file
systems are studied in Section 5. Section 6 then
presents a new mechanism which relies on opti-
mistic replication to support name transparency.
We present our conclusions in Section 7.

2 Large scale

Our model of large scale distributed systems is
based on our perspective of the directions we expect
computer networking to take in the next decade.
We anticipate wide area internetworks of a mil-
lion or more hosts, much larger than the current
DARPA Internet. Large scale systems will display
great diversity of host and communications capabil-
ity and availability. Hosts will range from pocket
computers to supercomputers; mobile computers
will often have unreliable communications links,
while other hosts will be highly redundantly con-



Appeared in the Proceedi ngs of the
Second | EEE Wor kshop on Experinmenta
Huntsville, AL, Cctober

nected. Many communications links will routinely
be periodically unavailable, in response to varying
tariffs, security concerns, scheduled maintenance,
and so on. The potential for unintentional service
denial will result not only from broken hardware
and software, but also from overburdened gateways
and limited bandwidth channels. Some components
will be permanently taken out of service, with no
intended replacement.

The resulting critical characteristic of a very
large system is continuous partial operation: the
entire system will never be completely operational
simultaneously. Some portions of the system may
seldom be able to communicate directly with each
other.

A wide area, large scale distributed system of this
magnitude will inevitably span many administra-
tive and organizational boundaries. These bodies
will have overlapping, but often conflicting inter-
ests; they will be mutually suspicious of each other.

The foundation for large scale distributed com-
puting environments has been laid by networks
such as the DARPA Internet and Bitnet. Corpo-
rate environments already provide partially trans-
parent solutions. Digital’s DECNET, for example,
provides remote file access to tens of thousands of
users. Further impetus will come from the pro-
posed National Research Network[4], intended to
provide high bandwidth communications between
thousands of universities, colleges, and research
laboratories.

3 Network transparency

The goal of network transparency is to enable
clients to work effectively without knowledge of
myriad system configuration details, especially host
boundaries and network characteristics. Net-
work transparency has become widely accepted in
medium scale local area network distributed file
systems; we argue that it is even more critical in
very large scale environments. In the file system
arena, we wish to discuss three aspects of network
transparency: location transparency, name trans-

Di stributed Systens,
1990, pages 20-25

parency, and replica transparency.

A location transparent name contains no infor-
mation about the named object’s physical location.
Location transparent naming is critical for flexibil-
ity in managing storage resources; it is essential to
enable movement of resources from one site to an-
other, and to support such high availability services
as multisite replication.

A naming system 1s described as name transpar-
ent when the result of mapping a name to an object
is independent of the host from which the name 1s
uttered. This property is essential for very large
scale distributed computing environments: clients
cannot be expected to learn the naming peculiari-
ties of each host they use; often, they may not even
be aware from which host a name is uttered or that
multiple hosts may be involved.

A file system that supports file replication 1s
replica transparent when a client is normally un-
aware that more than a single copy of a file exists;
replica management is largely automatic.

4 Name transparency

Complete name transparency implies that all com-
ponents of a distributed system support a common
global name space, and no other name space. In
practice, complete name transparency is too lim-
iting: for example, system configuration files of-
ten contain host-specific contents, and the result of
name mapping should be determined by the context
(i.e., the host) in which a name is uttered. The LO-
CUS [6] file system and the cellular Andrew File
System [9] contain mechanisms which specifically
address this exception to complete name trans-
parency.

We believe that complete name transparency
(with the exception noted above) and the im-
plied single, common global name is feasible for
a very large scale DCE. The LOCUS file system
has demonstrated the feasibility of transparency for
small scale systems; Sun Microsystems’ Network
File System (NFS) [7] has demonstrated trans-



Appeared in the Proceedi ngs of the
Second | EEE Wor kshop on Experinmenta
Huntsville, AL, Cctober

parency for small and medium scale systems, yet
NFS also reveals the problems of supporting name
transparency without also providing a single, com-
mon global name space.

The feasibility of a large scale common global
name space assumes that solutions to serious tech-
nical and administrative issues can be found. In
the remainder of this section we consider admin-
istrative difficulties; the following sections address
technical concerns.

The foremost administrative problem 1s obtain-
ing agreement upon the structure and manage-
ment of the global name space. Several large com-
munities have demonstrated that such agreement
is possible: the host naming conventions adopted
by the DARPA Internet community is a good
example[3, 8].

The Internet host name space is a hierarchy.
The uppermost level contains relatively few entries;
substantial agreement within the community is re-
quired to add entries at this level, and modification
or deletion of entries is extremely rare (due to the
enormous impact of a name change). The result is
that this level is an essentially static portion of the
name space.

The second level of the Internet host name space
consists of organization names. Each organization
has limited freedom to choose its own name: any
name may be proposed, but the community sharing
the specific portion of the name space may exercise
veto power over the choice if it seems misleading.
The third (and any number of subsequent) levels
of naming are completely under the control of each
organization.

A wuseful balance is found in the Internet name
space between organizational autonomy in select-
ing names and community interest in limiting the
ability of individuals to change the upper levels of
the name space. The relatively static nature of that
portion of the name space which is most critical in
ensuring name transparency enables consistent, yet
efficient mechanisms to support a large scale, name
transparent name space.

Di stributed Systens,
1990, pages 20-25

5 Global name space mainte-
nance

In this discussion of name space support, terminol-
ogy from UNIX will be used. However, the reader
should be easily able to translate into his own con-
text. For example, the problems addressed here
occur in a similar form in the X.500 approach, and
appear amenable to similar solutions.

Hierarchical name spaces, such as those used by
file systems, are commonly composed of disjoint
sub-hierarchies of names. We will call these sub-
hierarchies volumes. Volumes are typically “glued”
together by associating the root node of one volume
with a leaf node in another volume. One volume is
usually designated as the root volume of the name
space.

In the UNIX world, the activity of “gluing” name
hierarchies together is commonly known as mount-
ing a hierarchy. The definitions of the associations
are stored in a mount table. In a single host system,
only one mount table exists, but in a distributed file
system the equivalent of the mount table must be
a distributed data structure.

Providing a name transparent, distributed global
name space requires a mechanism to ensure coher-
ence of the distributed name translation database
containing the mount information. This can be
achieved either through convention (as in NFS), or

automatically (as in LOCUS).

In NFS, each host independently maintains its
own mount table. A mount table must contain a
definition for each volume (local or remote) which
is nameable from the host. Thus, each host in a dis-
tributed system maintains a number of redundant
mount table entries to support name transparency.
No explicit mechanism exists to coordinate changes
to the mount tables.

LOCUS incorporates a replicated mount table:
each host works closely within a set of communicat-
ing hosts to maintain agreement among the mount
table replicas. Each mount table replica lists all
extant mount definitions.



Appeared in the Proceedi ngs of the
Second | EEE Wor kshop on Experi nment al
Huntsville, AL, Cctober

Neither of these two approaches to maintaining
a common view of the name space is amenable to
scaling up to large numbers of hosts. Convention
and manual agreement (as in NFS) is unworkable in
such alarge scale. The tightly coupled global agree-
ment mechanism in LOCUS does not scale well ei-
ther, as it relies upon a common network partition-
wide view of partition membership. Reaching con-
sensus 1s fairly expensive, and so partition stability
1s important.

In a very large DCE, partition status will be con-
tinually changing, as opposed to occasional change
in a small scale system.

Both approaches also suffer from monolithic
mount tables. Small scale DCEs seldom have more
than hundreds of mount table entries, but large
scale systems can be expected to contain large num-
bers of volumes. The burden of supporting frequent
changes! to a large, globally replicated table is es-
pecially undesirable when only a tiny (although un-
predictable) fraction of the volumes will ever be ex-
amined by clients from any given host.

6 Fragmented, selectively
replicated mount tables

The key to realizing name transparency in a very
large scale environment is to recognize that mono-
lithic, globally replicated mount tables are not nec-
essary for providing a transparent name space.
Rather, mount table information should be frag-
mented and selectively replicated, and an opti-
mistic approach to name translation and automatic
database consistency employed.

6.1 Mount table fragments

The mount table is a partial mapping between
nodes in one volume and root nodes of another.
The semantics of the mapping are that when a

1While change to any single table item is infrequent, the
aggregate update rate to the table as a whole would be much

higher.

Di stributed Systens,
1990, pages 20-25

node marked as a mount point is encountered dur-
ing name translation (path name expansion), the
mount table is consulted and the corresponding
root node is substituted for the mount point. A
specific mount table entry is then required only
when the corresponding mount point is encoun-
tered. The mount table information can therefore
be fragmented and placed exactly (and only) at
mount points, where it 1s always available precisely
when it is needed.

In standard UNIX, each mount point contains the
name of the storage device which houses the volume
to be mounted. In a distributed file system such as
Ficus[1] or NFS, the network location of the volume
to be mounted is also required.?

Any given host will only ever access a tiny per-
centage of the millions of volumes on the network.
A lazy evaluation mount approach allows only those
volumes in use to consume local resources. When
a mount point is traversed a volume is automati-
cally mounted, transparently to the user; volumes
which remain unused for a set period of time are
automatically unmounted.

6.2 Fragment replication

A replicated volume can contain mount points,
which are replicated just as is any other volume ob-
ject. Each volume replica that contains a name for
a mount point also contains a complete mount point
replica, so the resulting availability of the mounted
volume is equivalent to that achieved by a globally
replicated monolithic mount table.

As with any replicated object, mount point up-
date consistency and availability are primary con-
Mount point updates occur when volume
replicas listed in the mount point are deleted,
moved to another host, or new volume replicas cre-
ated and must be listed.

cerns.

2The storage device name is replaced by a “device loca-
tion transparent” identifier for the volume: NF'S uses a host
context dependent name; Ficus uses a separate “volume”
identifier.



Appeared in the Proceedi ngs of the
Second | EEE Wor kshop on Experi nment al
Huntsville, AL, Cctober

6.3 Update consistency

Mount point updates are rare, but typically occur
during periods of network instability and unrelia-
bility. For example, one of the greatest motivations
to add more volume replicas is a situation in which
very few, (perhaps only one) volume replica is ac-
cessible. Standard serializable techniques (primary
copy, quorum consensus, majority voting and its
variants) are not appropriate for this case. Instead,
we propose the use of optimistic consistency meth-
ods.

In [5, 2], we argue that optimistic approaches
to replicated file management are essential in very
large scale distributed filing environments. The op-
timistic philosophy provides equivalent read and
update availability by allowing either activity so
long as at least one replica is available. The actual
occurrence of conflicting, unsynchronized updates
is rare, favoring the a posteriori detection and re-
pair of inconsistencies over the more restrictive lim-
itations of pessimistic serializable algorithms.

Interestingly, the very same algorithms utilized in
[2] for detecting and automatically reconciling di-
rectory updates are directly applicable to the frag-
mented, replicated mount table structure. The
technique is robust with respect to delayed update
propagation: data is self-validating when used, in
a manner analogous to lazy evaluation.

A prototype of several key aspects of the solution
has been built (see [1]) and will serve as a basis for
further evaluation of the impact of large scale in
practice.

7 Conclusion

This paper has outlined an example of the crucial
role an optimistic philosophy plays in the design of
a very large scale distributed system. The dynamic
mount mechanism described above has been suc-
cessfully implemented in the Ficus replicated file
system, though it has yet to be tested in a large
scale environment.

Di stributed Systens,
1990, pages 20-25

Acknowledgements

The authors wish to acknowledge the contributions
of Dieter Rothmeier and Wai Mak to the imple-
mentation of the Ficus replicated file system.

References

[1] Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald J. Popek, and
Dieter Rothmeier. Implementation of the Ficus
replicated file system. In USENIX Conference
Proceedings, pages 63-71. USENIX, June 1990.

[2] Richard G. Guy and Gerald J. Popek. Reconcil-
ing partially replicated name spaces. Technical
Report CSD-900010, University of California,
Los Angeles, April 1990.

[3] P. Mockapetris. Domain names: Concepts and
facilities. Network Working Group Request for
Comments: 1034, November 1987.

[4] National Research Council National Research
Network Review Committee. Toward a national
research network. National Academy Press,

1988.

[6] Thomas W. Page, Jr., Gerald J. Popek,
Richard G. Guy, and John S. Heidemann. The
Ficus distributed file system: Replication via
stackable layers. Technical Report CSD-900009,
University of California, Los Angeles, April
1990.

[6] Gerald J. Popek and Bruce J. Walker. The LO-
CUS Distributed System Architecture. The MIT
Press, 1985.

[7] Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design
and implementation of the Sun Network File
System. In USENIX Conference Proceedings,
pages 119-130. USENIX, June 1985.

[8] M. Stahl. Domain administrators guide. Net-
work Working Group Request for Comments:
1032, November 1987.



Appeared in the Proceedi ngs of the
Second | EEE Wor kshop on Experinmental Distributed Systens,
Huntsville, AL, October 1990, pages 20-25

[9] Edward R. Zayas and Craig F. Everhart. De-
sign and specification of the cellular Andrew
environment. Technical Report CMU-ITC-070,
Carnegie-Mellon University, August 1988.



