Appeared in the Proceedi ngs of the Sumrer
Anahei m CA, June 1990, pages 63-71

USENI X Conf er ence,

Implementation of the

Ficus Replicated File System*

Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page Jr., Gerald J. Popek! and Dieter Rothmeier
{guy,johnh,waimak,page,popek,dieter } Qcs.ucla.edu

Department of Computer Science
University of California Los Angeles

Abstract

As we approach nation-wide integration of com-
puter systems, it is clear that file replication will
play a key role, both to improve data availabil-
ity in the face of failures, and to improve perfor-
mance by locating data near where it will be used.
We expect that future file systems will have an
extensible, modular structure in which features
such as replication can be “slipped in” as a trans-
parent layer in a stackable layered architecture.
We introduce the Ficus replicated file system for
NFS and show how it is layered on top of existing
file systems.

The Ficus file system differs from previous file
replication services in that it permits update dur-
ing network partition if any copy of a file is ac-
cessible. File and directory updates are automat-
ically propagated to accessible replicas. Conflict-
ing updates to directories are detected and au-
tomatically repaired; conflicting updates to ordi-
nary files are detected and reported to the owner.
The frequency of communications outages ren-
dering inaccessible some replicas in a large scale
network and the relative rarity of conflicting up-
dates make this optimistic scheme attractive.

Stackable layers facilitate the addition of new
features to an existing file system without reim-
plementing existing functions. This 1s done in
a manner analogous to object-oriented program-
ming with inheritance. By structuring the file

*This work was sponsored by DARPA under contract
number F29601-87-C-0072.

1 This author is also associated with Locus Computing
Corporation.

system as a stack of modules, each with the same
interface, modules which augment existing ser-
vices can be added transparently. This paper de-
scribes the implementation of the Ficus file sys-
tem using the layered architecture.

1 Introduction

The Ficus project at UCLA is investigating very
large scale distributed file systems. We envision
a transparent, reliable, distributed file system en-
compassing a million hosts geographically dis-
persed across the continent, perhaps around the
globe. Any host should be able to access any file
in the distributed system with the ease that local
files are accessed.

A large scale distributed system displays sev-
eral critical characteristics: 1t is subject to con-
tinual partial operation, global state information
is difficult to maintain, and heterogeneity exists
at several levels. A successful large scale dis-
tributed file system must minimize the difficulties
that these characteristics imply.

The scale of such a distributed system implies
that the system will never be fully operational at
any given time. For a variety of technical, eco-
nomic, and administrative reasons various sys-
tem components such as hosts, network links, and
gateways will at times be unusable. Partial op-
eration is the normal, not exceptional, status of
this environment; new approaches are needed to
provide highly available services to such a sys-
tem’s clients.

Large scale also prevents most nodes from

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

attempting to maintain information about the
global state of the system. (Imagine a filesys-
tem table with millions of entries.) Even hosts
with sufficient storage resources can not effec-
tively track all the changes that occur across the
distributed system, either because the changes
are too rapid or communication is unreliable be-
tween the source of the change and the monitor.

Very large scale also implies that a high de-
gree of hardware, software, and administrative
heterogeneity exists. Software that can provide
the desired availability must be easily utilized by
a wide variety of existing host environments; it
must also be tunable to meet both technical and
administrative concerns. New tools must be suf-
ficiently modular to allow easy attachment to ex-
isting services, and yet still provide acceptable
performance.

These 1ssues led us to explore the application
and integration of several concepts to large scale
file systems: stackable layers; file usage local-
ity, data replication, non-serializable consistency,
and dynamic volume locating and grafting.

Stackable layers: The stackable layers para-
digm is used by Ritchie [16] as a model for im-
plementing the stream I/O service in System V
UNIX.! A stackable layer is a module with sym-
metric interfaces: the syntactic interface used to
export services provided by a particular module
is the same interface used by that module to ac-
cess services provided by other modules in the
stack. A stack of modules with the same inter-
face can be constructed dynamically according to
the particular set of services desired for a specific
calling sequence.

We have found this model to be useful in de-
signing and constructing file systems, as it allows
easy insertion of additional layers providing new
services. We have used it to provide file distri-
bution and replication; we expect to use it for
performance monitoring, user authentication and
encryption.

File usage locality: The importance of mod-
ularity and portability implied that our replica-
tion service build on top of the existing UNIX file
system interface. At least one previous attempt
to adopt this philosophy abandoned it in the face
of poor performance [19]. More recent studies of
general purpose (university) UNIX file usage [6, 5]

1UNIX is a trademark of AT&T.

USENI X Conf er ence,

indicate a strong degree of file reference locality,
and that appropriate caching methodologies can
exploit this behavior to reduce file access over-
head. The Ficus file system design takes advan-
tage of these locality observations to avoid much
of the overhead previously encountered in build-
ing on top of an existing UNIX file system imple-
mentation.

Replication: Data replication is used to com-
bat the partial operation behavior that tends to
degrade availability in large scale file systems.
Each host may store one or more physical repli-
cas of a logical file; clients are generally unaware
which replica services a file request. The repli-
cation techniques used in Ficus are intellectual
descendants of those used in the Locus [15] dis-

tributed operating system.

Non-serializable consistency: Most data
replication management policies proposed in the
literature adopt some form of serializability as
the definition of correctness. The requisite mu-
tual exclusion techniques to enforce serializabil-
ity typically display an inverse relationship be-
tween update availability and read availability:
ensuring high read availability forces a low up-
date availability.

Ficus incorporates a mnovel, non-serializable
correctness policy, one-copy availability, which
allows update of any copy of the data, without
requiring a particular copy or a minimum number
of copies to be accessible. One-copy availability is
used 1n conjunction with automatic update prop-
agation and directory reconciliation mechanisms.

One-copy availability provides strictly greater
availability than primary copy [2], voting [21],
weighted voting [7], and quorum consensus [10].
Our directory reconciliation mechanism toler-
ates a larger class of concurrent non-serializable
updates than the replicated “dictionaries” of
[4, 1, 22]. The replicated directory techniques
in [3, 18] are based on quorum consensus, and
thus also have lower availability. The Deceit file
system [20] allows partitioned update without a
quorum, but has no mechanism for reconciling
concurrent updates to replicas of a single direc-
tory.

Volume locating and grafting: Locating
a particular file in a very large scale distributed
system requires a robust, distributed mechanism.
Dynamic movement of files must be supported

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

without requiring any sort of advance global
agreement. Ficus incorporates a volume auto-
graft mechanism along with a segmented, dis-
tributed, replicated graft table.

The remainder of this paper describes key ar-
chitectural details of the Ficus file system as
of April, 1990. Further discussion of the ideas
touched on above can be found in [13, 9, 8].

2 Ficus layered design

The Ficus layered file system model comprises
two separate layers constructed using the vnode
interface. NFS is employed as a transport mecha-
nism between remotely located Ficus layers, and
can also be used as a means for non-Ficus hosts to
access Ficus file systems. Figure 1 shows the gen-
eral organization of Ficus layers; the NFS layer
is omitted when both layers are co-resident.

System Cal | s

Fi cus
Physi cal

—

Figure 1: Ficus Stack of Layers

USENI X Conf er ence,

2.1 Vnode interface

The single most important design decision to be
made when using the stackable layers paradigm
is the definition of the interface between layers.
Ideally, the interface will be general enough to
allow for later extensibility in unplanned direc-
tions. The streams interface [16], for example, is
remarkably simple and general: messages may be
placed on an input queue for processing by the
layer. Each layer dequeues and processes mes-
sages of types it recognizes; unrecognized mes-
sage types are passed on to the next layer in the
sequence.

Interface definitions can also be more closely
tailored to the particular application area, as is
the case with the vnode [12] interface used in
SunOS for file system management. The vn-
ode interface is defined by a set of about two
dozen services, together with their calling syntax
and parameters. In SunOS, the vnode interface
is used to hide details of particular file system
implementations, including the location (local or
remote) of the actual file storage.

We adopted the vnode interface for stackable
layers in Ficus, with some misgivings. Leverag-
ing an existing interface for file system modules
is clearly beneficial when getting started. The
vnode interface is also in widespread use, so per-
suading others to add Ficus modules to existing
implementations is much easier than introducing
an entirely new interface. On the other hand, the
vnode interface 1s quite rigid: adding services de-
sired by new layers encountered a variety of dif-
ficulties, of which several are mentioned below.

Using the vnode interface also allows Ficus to
utilize existing UFS (UNIX File System) and NFS
(Network File System) [17] services in SunOS in
critical ways. For example, Ficus can use the
UFS as its underlying nonvolatile storage service,
which means Ficus is not burdened with the de-
tails of how best to physically organize disk stor-
age. Ficus is also able to use NFS as its remote
access and transport mechanism, again relieving
Ficus of substantial work.

While the Ficus layers are conceptually orga-
nized as in Figure 1, each is implemented as a
new virtual file system type, as indicated in Fig-
ure 2.

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

l

USENI X Conf er ence,

System Cal | s
i vnode
' | ! |
NFS Fi Fi
UFS client Lobfggl PhJ;?§ZI
o
NFS
Server
17
vnhode

—

Figure 2: Layered Architecture Using Vnodes

2.2 NFS as a transport layer

NFS is essentially a host-to-host transport ser-
vice with a vnode interface. Generally speaking,
then, any layer that uses a vnode interface can be
unaware whether the immediately adjacent func-
tional layers are local, or perhaps remote and ac-
cessed via an intervening NFS layer. The Ficus
replication service layers are able to use NFS for
transparent access to remote layers, without hav-
ing to build a transport service.

Unfortunately, the NFS implementation in
SunOS does not fully preserve vnode semantics.
The stateless philosophy of NFS clashes occa-
sionally with vnode semantics, and the result-
ing NFS implementation is not simply a “host-
to-host transport service with a vnode interface”.
For example, the vnode services OPEN and CLOSE
are not supported by the NFS definition, and so
are ignored: a layer intending to receive an OPEN
will never get it if NFS is in between.

NFS also incorporates optimizations intended
to reduce communications and improve perfor-
The file block caching and directory
name lookup caching are not fully controllable
(e.g., there is no user-level way to disable all
caching), which results in unexpected behavior
for layers which are not able to adopt the as-
sumptions inherent in the NFS cache manage-

mance.

ment policies.

2.3 Adding new vnode services

The Ficus replication service employs functional-
ity not anticipated (understandably) by the vn-
ode interface design. Rather than add several
new services outside the vnode framework (as in
Deceit [20]) we chose to overload existing vnode
services. This maximizes portability, at a slight
expense of interpreting an overloaded service and
perhaps limiting its use in some way.

For example, Ficus is able to use effectively
the open/close information that NFS intercepts
and ignores, so a new service is required. We
overloaded the LOOKUP service by encoding an
open/close request as a null-terminated ASCII
string of sufficient length to be passed on by NFS
without interpretation or interference.?

2.4 Cooperating layers

Layers can be added to a stackable design singly
or in groups. Layers inserted as a group may be
stacked together or separated by other, existing

2The reduction in the maximum length of a file name
component from 255 to about 200 does not seem to be
a significant loss: we’'ve never seen a component of even
length 40.

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

layers. For example, the Ficus replication service
is composed of two layers, a logical file layer and a
physical replica layer. These layers are separated
by an NFS layer when the logical and physical
layers are on different hosts.

2.5 Ficus Logical layer

The Ficus logical layer presents its clients (nor-
mally the UNIX system call family) with the ab-
straction that each file has only a single copy, al-
though it may actually have many physical repli-
cas. The logical layer performs concurrency con-
trol on logical files, and implements a replica se-
lection algorithm in accordance with the consis-
tency policy in effect. The default policy of one-
copy availability is to select the most recent copy
available.

The logical layer also oversees update propaga-
tion notification and automatic reconciliation of
directory replicas. When a logical layer requests
a physical layer to update a file or directory, an
asynchronous multicast datagram is sent to all
available replicas informing them that a new ver-
sion of a file may be obtained from the replica
receiving the update. Each physical layer reacts
to the update notification as it sees fit: it may
propagate the new version immediately, or wait
for some later, more convenient time.

Periodically, a logical layer invokes a file and
directory reconciliation mechanism to compare
file replica subtrees. The details of the recon-
ciliation algorithms are beyond the scope of this
paper; see [9, 8] for further information.

Ficus files are organized in a general DAG of
directories; unlike UNIX, Ficus directories may
have more than one name.® The logical layer
maps a client-supplied name into a Ficus file han-
dle, which contains a set of fields that uniquely
identify the file across all Ficus systems. The Fi-
cus file handle is used to communicate file iden-
tity between the logical and physical layers.

3This characteristic is a consequence of the ability to
change the name of a directory while some copies are un-
available. When non-communicating directory replicas
are concurrently given new names, it is often later nec-
essary to retain multiple names.

USENI X Conf er ence,

2.6 Ficus Physical layer

The Ficus physical layer implements the concept
of a file replica. Each Ficus file replica is stored
as a UFS file, with additional replication-related
attributes stored in an auxiliary file. (These at-
tributes would be placed in the inode if we were
to modify the UFS.) Ficus uses the version vector
technique of [14] to detect concurrent unsynchro-
nized updates to files.

Ficus directories are stored as UFS files, not
UFS directories. A Ficus directory entry maps
a client-specified name into a Ficus file handle,
which then must be mapped into an inode by
the UFS. This second mappingis implemented by
encoding the Ficus file handle into a hexadecimal
string used by the UFS as a pathname.

The dual-mapping nature of the current Fi-
cus implementation is difficult to implement effi-
ciently [19], but is not inherently expensive. The
on-disk file organization closely parallels the log-
ical Ficus name space topology, which allows the
existing UFS caching mechanisms to continue to
exploit the strong directory and file reference lo-
cality observed in [6, 5]. We believe the unaccept-
able performance observed by [19] in a similar
dual-mapping scheme used in a prototype of the
Andrew File System occurred because the lower
level name mapping was incompatible with the
locality displayed at higher levels.

3 Replication

Ficus incorporates data replication as a primary
technique for achieving a high degree of availabil-
ity in an environment characterized by communi-
cations interruptions. Each file and directory in
a Ficus file system may be replicated, with the
replicas placed at any set of Ficus hosts.

3.1 Basics

A logical file is represented by a set of physical
replicas. Each replica bears a file identifier that
globally uniquely identifies the logical file, and
a replica identifier that uniquely identifies that
particular replica. The logical layer uses a file
handle composed (in part) of file identifier and
replica identifier to communicate with physical
layers about a file.

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

The number and placement of file replicas is
effectively unbounded.* A client may change the
location and quantity of file replicas whenever a
file replica is available.

Associated with each file replica is a wversion
vector[14] which encodes the update history of
the replica. Version vectors are used to support
concurrent, unsynchronized updates to file repli-
cas managed by noncommunicating physical lay-
ers.

3.2 Update
notification /propagation

Updates are initially applied to a single physical
replica. The invoking logical layer notifies other
physical layers managing replicas of the updated
file that a newer version exists in the updated
replica. A physical layer that receives an update
notification makes an entry for the file in a new
verston cache. An update propagation daemon
consults this cache to see what new replica ver-
sions should be propagated in, and performs the
propagation when it deems it appropriate to ex-
pend the effort. Rapid propagation enhances the
availability of the new version of the file; delayed
propagation may reduce the overall propagation
cost when updates are bursty.

For regular files, update propagation is simply
a matter of atomically replacing the contents of
the local replica with those of a newer version re-
mote replica. Ficus contains a single-file atomic
commit service to support file update propaga-
tion. A shadow file replica is used to hold the
new version until it is completely propagated,
and then the shadow atomically replaces the orig-
inal by changing a low-level directory reference.
If a crash occurs before the shadow substitution,
the original replica is retained during recovery
and the shadow discarded.?

Update propagation for directories is more dif-
ficult because of the side effects of directory up-

4There is a current limit of 232 replicas of a given file,
and 232 logical layers.

5Note that this commit service is not necessary for
the correct operation of the general Ficus functionality.
While its performance impact is usually small, it can have
a significant effect if the client is updating a few points
in a large file. To avoid alteration of the UFS, rewriting
the entire file is necessary. That cost could, of course,
be avoided by putting a commit function into the storage
layer.

USENI X Conf er ence,

date: files may be allocated, reference counts ad-
justed, and so on. Simply copying directory con-
tents is incorrect; in a sense, a directory oper-
ation needs to be “replayed” at each replica. In
Ficus, a directory reconciliation algorithm is used
for this purpose.

3.3 Reconciliation

A reconciliation algorithm examines the state of
two replicas, determines which operations have
been performed on each, selects a set of opera-
tions to perform on the local replica which reflect
previously unseen activity at the remote replica,
and then applies those operations to the local
replica.

The Ficus directory reconciliation algorithm
[9] determines which entries have been added to
or deleted from the remote replica, and applies
appropriate entry insertion or deletion operations
to the local replica. The standard set of UNIX di-
rectory operations is supported.

The directory reconciliation algorithm used for
update propagation and the basic file update
propagation service are both incorporated into
the general Ficus file system reconciliation pro-
tocol. This protocol is executed periodically to
traverse an entire subgraph (not just a single
node), and reconcile the local replica against a
remote replica. The execution proceeds concur-
rently with respect to normal file activity, so that
client service 1s not blocked or impeded.

4 Volumes

Ficus uses volumes®

as a basic structuring tool
for managing disjoint portions of the file system.
Ficus volume replicas are dynamically located
and grafted (mounted) as needed, without global
searching or broadcasting. The tables used for
locating volume replicas are replicated objects
similar to directories, and are managed by the
same reconciliation algorithms used for directory

replicas.

8Ficus volumes are similar to Andrew [11] volumes;
both decouple the logical concept of subtree from the
physical storage details in order to support flexible volume
“replica” placement. Ficus does not require a replicated
volume location database.

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

4.1 Basics

The Ficus file system” is organized as a directed
acyclic graph of volumes. A volume is a logical
collection of files that are managed collectively.
Files within a volume typically share replication
characteristics such as replica location and the
number of replicas.

A volume is represented by a set of wvolume
replicas which function as “containers” in which
file replicas may be placed. The set of volume
replicas forms a maximal, but extensible, col-
lection of containers for file replicas. A volume
replica may contain at most one replica of a file,
but need not store a replica of any particular file.

A volume replica is stored entirely within a
Unix disk partition. The mapping between vol-
ume replicas and disk partitions is determined
by the host providing the storage. Many volume
replicas may be stored in a single partition; no
relationship between volume replicas is implied
by placement in disk partitions.

A volume is a self-contained® rooted directed
acyclic graph of files and directories. A volume’s
boundaries are the root node at the top, and vol-
ume graft points at the bottom. The volume root
is normally a directory; a graft point is a special
kind of directory, as explained below. Each vol-
ume replica must store a replica of the root node;
storage of all other file and directory replicas is
optional.

4.2 Identifiers

A volume is uniquely named internally by a pair
of identifiers: an allocator-id, and a volume-id
issued by the allocator. Prior to system instal-
lation, each Ficus host is issued a unique value
as 1ts allocator-id; for example, an Internet host
address would suffice. Individual volume replicas
are further i1dentified by their replica-id, so a vol-
ume replica is globally uniquely identified by the
triple {(allocator-id, volume-id, replica-id).
Within the context of a particular volume, a
logical file is uniquely identified by a file-id. A

"We use file system (two words) to refer to a particular
type of file service, e.g., UNIX file system or VMS file sys-
tem. A filesystem (one word) is a self-contained portion
of a UNIX file system normally one-to-one mapped into a
single disk partition.

8 Directory references do not cross volume boundaries.

USENI X Conf er ence,

particular file replica 1s then identified by ap-
pending the replica-id of the containing volume
replica to the file-id, as in (file-id, replica-id).
A fully specified identifier for a file replica is
(allocator-id, volume-id, file-id, replica-id); this
identifier is unique across all Ficus hosts in exis-
tence.

Each volume replica assigns file identifiers to
new files independently. To ensure that file-ids
are uniquely issued, a file-id is prefixed with the
issuing volume replica’s replica-id. A file-id is ac-
tually, therefore, a tuple (replica-id, unique-id}).

4.3 Graft points

A graft point is a special file type used to indicate
that a (specific) volume is to be transparently
grafted at this point in the name space. Grafting
is similar to UNIX filesystem mounting, but with
a number of important differences. The partic-
ular volume to be grafted onto a graft point is
fixed when the graft point is created, although
the number and placement of volume replicas
may be dynamically changed.

A graft point i1s very similar to a regular di-
rectory. It can be renamed or given multiple
names. A graft point is itself replicated; a graft
point replica is contained in a particular volume
replica.

Many graft points for a particular volume may
exist, even within a single volume. The resulting
organization of volumes would then be a directed
acyclic graph and not simply a tree.

A graft point contains a unique volume identi-
fier and a list of volume replica and storage site
address pairs. Therefore, a one-to-many map-
ping exists between a graft point replica and the
volume replicas which can be grafted on it. Each
graft point replica may have many volume repli-
cas grafted at a time.

The list of volume replicas and the (Internet)
addresses of the managing Ficus physical layers
are conveniently maintained as directory entries.
Overloading the directory concept in this way al-
lows implicit use of the Ficus directory reconcilia-
tion mechanism to manage a replicated object (a
graft point) with similar semantics and syntactic
details.

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

4.4 Autografting

When the Ficus logical layer encounters a graft
point while translating a pathname, a check is
made to see if an appropriate volume replica is
already grafted. If not, the information in the
graft point is used to locate and graft the volume
replica of interest.

A Ficus graft is very dynamic: a graft is implic-
itly maintained as long as a file within the grafted
volume replica is being used. A graft that is no
longer needed is quietly pruned at a later time.

5 Development
methodology

The stackable layers paradigm extends to our
development methodology. The vnode interface
normally accessible only inside the kernel has
been “exposed” to the application level through
a set of vnode system calls, so that a functional
layer can execute at the application level. The
standard NFS server already provides a channel
for a kernel layer to utilize a vnode layer in an-
other address space; we customized a copy of the
NFS server daemon code to run outside of the
kernel as the interface to the Ficus layers.

This approach allows us to use application level
software engineering tools to develop and test
outside of the kernel what will ultimately be ker-
nel level service layers. The performance penalty
for crossing address space boundaries compli-
cates performance measurements and analysis,
but otherwise the methodology has proven sound.

The goal has been to provide a programming
environment at the application level that is the
same as a kernel-based module would experience.
Today, Ficus layers may be compiled for applica-
tion level or kernel resident execution merely by
setting a switch.

Our hope had been that once application level
debugging was complete, correct kernel-based ex-
ecution would be automatic. That has not been
achieved, in part because of the single threaded
application environment we set up, and because
of other minor differences. Nevertheless, the abil-
ity to operate outside the kernel that was made so
easy by the stackable architecture and exposure
of vnode services, markedly shortened develop-
ment and testing time.

USENI X Conf er ence,

6 Performance notes

Ficus is in use at UCLA for normal operation.
Its perceived performance is good, but an ex-
tensive evaluation is still under way. The major
potential performance costs that are observed re-
sult from two considerations: execution overhead
from crossing multiple formal layer boundaries
that might not be present in a more monolithic
structure, and additional I/Os from maintenance
of needed attribute information. The actual cost
of crossing a layer boundary is low — one addi-
tional procedure call, one pointer indirection, and
storage for another vnode block. In the current
implementation, the increased 1/O cost can be
noticeable, however.

The Ficus physical layer design and imple-
mentation accrues additional /O overhead when
opening a file in a non-recently accessed direc-
tory. Four I/Os beyond the normal UNIX over-
head occur: an inode and data page for the un-
derlying UNIX directory and an auxiliary replica-
tion data file must be loaded from disk, as well
as the Ficus directory inode and data page. (The
last two correspond to normal UNIX overhead.)
Opening a recently accessed file or directory in-
volves no overhead not already incurred by the
normal UNIX file system.

7 Conclusions

Our experience with the approach described in
this paper has been quite positive. The mod-
ularity provided by stackable layers, as well as
the simplicity in design and implementation af-
forded by the optimistic reconciliation approach
has been especially significant.

The stackable architecture appears to work
quite well: layers can indeed be transparently in-
serted between other layers, and even surround
other layers. A replication service can be added
to a stack of “vnode” layers without modifying
existing layers, and yet perform well.

The vnode interface is not 1deal; a more exten-
sible interface 1s desired. An inode level interface
to files and extensible directory entries would al-
low us to avoid implementing Ficus directories
on top of the UNIX directory service; extensible
inodes would allow us to dispense with auxiliary
files to store replication data. With these changes

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

virtually all additional I/O overhead over stan-
dard UNIX and NFS would be eliminated.

The availability of a general reconciliation ser-
vice was also very useful. Usually, one must
deal with the many boundary and error condi-
tions that occur in a distributed program with a
considerable variety of cleanup and management
code throughout the system software. Instead, in
Ficus failures may occur more freely without as
much special handling to ensure the integrity and
consistency of the data structures environment.
Reconciliation service cleans up later. For exam-
ple, volume grafting was made considerably eas-
ier by the (easy) transformation of its necessar-
ily replicated data structures into Ficus directory
entries. No special code was needed to maintain
their consistency.

In sum, we are optimistic that services such
as those provided by Ficus will be of substantial
utility generally, and easy to include as a third-
party contribution to a user’s system.

References

[1] James E. Allchin. A suite of robust algo-
rithms for maintaining replicated data using
weak consistency conditions. In Proceedings
of the Third IEEE Symposium on Reliability
. Distributed Software and Database Sys-
tems, October 1983.

[2] P. A. Alsberg and J. D. Day. A principle
for resilient sharing of distributed resources.
In Proceedings of the Second International
Conference on Software Engineering, pages

562-570, October 1976.

[3] Joshua J. Bloch, Dean Daniels, and Al-
fred Z. Spector. Weighted voting for directo-
ries: A comprehensive study. Technical Re-
port CMU-CS-84-114, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1984.

[4] Michael J. Fischer and Alan Michael. Sacri-
ficing serializability to attain high availabil-
ity of data in an unreliable network. In Pro-
ceedings of the ACM Symposium on Princi-
ples of Database Systems, March 1982.

[5] Rick Floyd. Directory reference patterns in
a UNIX environment. Technical Report TR-
179, University of Rochester, August 1986.

USENI X Conf er ence,

[6] Rick Floyd. Short-term file reference pat-
terns in a UNIX environment. Technical
Report TR-177, University of Rochester,
March 1986.

[7] D. K. Gifford. Weighted voting for repli-
cated data. In Proceedings of the Seventh
Symposium on Operating Systems Princi-

ples. ACM, December 1979.

[8] Richard G. Guy. Ficus: A Very Large Scale
Reliable Distributed File System. Ph.D. dis-
sertation, University of California, Los An-
geles; 1990. In preparation.

[9] Richard G. Guy and Gerald J. Popek. Rec-
onciling partially replicated name spaces.
Technical Report CSD-900010, University of
California, Los Angeles, April 1990. Submit-
ted concurrently for publication.

Maurice Herlihy. A quorum-consensus rep-
lication method for abstract data types.
ACM Transactions on Computer Systems,
4(1):32-53, February 1986.

John Howard, Michael Kazar, Sherri Me-
nees, David Nichols, M. Satyanarayanan,
Robert Sidebotham, and Michael West.
Scale and performance in a distributed file
system. ACM Transactions on Computer

Systems, 6(1):561-81, February 1988.

S. R. Kleiman. Vnodes:
ture for multiple file system types in Sun
UNIX. In USENIX Conference Proceedings,
pages 238-247, Atlanta, GA, Summer 1986.
USENIX.

An architec-

[13] Thomas W. Page, Jr., Gerald J. Popek,
Richard G. Guy, and John S. Heidemann.
The Ficus distributed file system: Repli-
cation via stackable layers. Technical Re-
port CSD-900009, University of California,
Los Angeles; April 1990. Submitted concur-

rently for publication.

[14] D. Stott Parker, Jr., Gerald Popek, Gerard
Rudisin, Allen Stoughton, Bruce J. Walker,
Evelyn Walton, Johanna M. Chow, David
Edwards, Stephen Kiser, and Charles Kline.
Detection of mutual inconsistency in dis-

tributed systems. [IEEE Transactions on

Appeared in the Proceedi ngs of the Sumrer

Anahei m CA, June 1990, pages 63-71

[15]

[16]

[17]

[18]

[20]

Software Engineering, 9(3):240-247, May
1983.

Gerald J. Popek and Bruce J. Walker.
The LOCUS Dustributed System Architec-
ture. Computer Science Series, The MIT
Press, 1985.

D. M. Ritchie. A stream input-output sys-
tem. ATET Bell Laboratories Technical
Journal, 63(8):1897-1910, October 1984.

Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design
and implementation of the Sun Network File
System. In USENIX Conference Proceed-
wngs, pages 119-130. USENIX, June 1985.

Sunil Sarin, Richard Floyd, and Nilkanth
Phadnis. A flexible algorithm for replicated
directory management. In Proceedings of
the Ninth International Conference on Dis-
tributed Computing Systems, pages 456-464.
TEEE, June 1989.

M. Satyanarayanan et al. The ITC dis-
tributed file system: Principles and design.
Operating System Review, 19(5):35-50, 1
December 1985.

Alex Siegel, Kenneth Birman, and Keith
Marzullo. Deceit: A flexible distributed file
system. Technical Report TR, 89-1042, Cor-
nell University, November 1989.

R. H. Thomas. A solution to the con-
currency control problem for multiple copy
databases. In Proceedings of the 16th IEEE
Computer Society International Conference.

IEEE, Spring 1978.

Gene T. J. Wuu and Arthur J. Bernstein.
Efficient solutions to the replicated log and
dictionary problems. In ACM Symposium
on Principles of Distributed Computing, Au-
gust 1984.

10

USENI X Conf er ence,

