
Detecting IoT Devices in the Internet (Extended)
USC/ISI Technical Report ISI-TR-726B

Released July 2018; Updated March 20191

Hang Guo
USC/Computer Science Dept. and

Information Sciences Institute
hangguo@isi.edu

John Heidemann
USC/Computer Science Dept. and

Information Sciences Institute
johnh@isi.edu

Abstract—Distributed Denial-of-Service (DDoS) attacks
launched from compromised Internet-of-Things (IoT) de-
vices have shown how vulnerable the Internet is to large-
scale DDoS attacks. To understand the risks of these
attacks requires learning about these IoT devices: where
are they? how many are there? how are they changing?
This paper describes three new methods to find IoT devices
on the Internet: server IP addresses in traffic, server names
in DNS queries, and manufacturer information in TLS
certificates. Our primary methods (IP addresses and DNS
names) use knowledge of servers run by the manufacturers
of these devices. We have developed these approaches
with 10 device models from 7 vendors. Our third method
uses TLS certificates obtained by active scanning. We
have applied our algorithms to a number of observations.
With our IP-based algorithm, we report detections from a
university campus over 4 months and from traffic transiting
an IXP over 10 days. We apply our DNS-based algorithm
to traffic from 8 root DNS servers from 2013 to 2018
to study AS-level IoT deployment. We find substantial
growth (about 3.5×) in AS penetration for 23 types of IoT
devices and modest increase in device type density for ASes
detected with these device types (at most 2 device types in
80% of these ASes in 2018). DNS also shows substantial
growth in IoT deployment in residential households from
2013 to 2017. Our certificate-based algorithm finds 254k IP
cameras and network video recorders from 199 countries
around the world.

I. INTRODUCTION

There is huge growth in sales and the installed base of
Internet-of-Things (IoT) devices like Internet-connected
cameras, light-bulbs, TVs. Gartner forecasts the global
IoT installed base will grow from 3.81 billion in 2014
to 20.41 billion in 2020 [10].

This large and growing number of devices, coupled
with multiple security vulnerabilities, brings an increasing
concern about the security threats they raise for the
Internet ecosystem. A significant risk is that compromised
IoT devices can be used to mount large-scale Distributed
Denial-of-Service (DDoS) attacks. In 2016, the Mirai bot-
net, with over 100k compromised IoT devices launched

1with major updates to section §III-A2 and §III-B1.

a series DDoS attacks that set records in attack bit-
rates. Estimated attack sizes include a 620 Gb/s attack
against cybersecurity blog KrebsOnSecurity.com (2016-
09-20) [16], 1 Tb/s attack against French cloud provider
OVH (2016-09-23) [25] and DNS provider Dyn (2016-
10-21) [9], and a 1.7 Tb/s attack in 2018 [20]. The size of
the Mirai botnet used in these attacks has been estimated
at 145k [25] and 100k [9]. Source code to the botnet
was released [18], showing it targeted IoT devices with
multiple vulnerabilities.

If we are to defend against IoT security threats, we
must understand how many and what kinds of IoT devices
are deployed. Our paper proposes three algorithms to
discover the location, distribution and growth of IoT
devices. We believe these knowledge could help guide
the development of future IoT security solutions.

Our first contribution is to propose three IoT detection
methods. Our two main methods detect IoT devices from
observations of network traffic: IPs in Internet flows
§II-A2 and stub-to-recursive DNS queries §II-A3. They
both use knowledge of servers run by manufacturers of
these devices (called device servers). Our third method
detects IoT devices supporting HTTPS remote access
(called HTTPS-Accessible IoT devices) from the TLS cer-
tificates they use, with some public product information
from target devices like manufacturer names (§II-B).

Our second contribution is to apply our three detection
methods to multiple real-world network measurements.
We apply our IP-based method to flow-level traffic from
a college campus over 4 months (§III-A2) and a regional
IXP over 10 days (§III-A3). We apply our DNS-based
method to DNS traffic at 8 root name servers from 2013
to 2018 (§III-B1) to study AS-level IoT deployment. We
find about 3.5× growth in AS penetration for 23 types of
IoT devices and modest increase in device type density
for ASes detected with these device types (we find at most
2 known device types in 80% of these ASes in 2018). We
confirm substantial deployment growth at household-level
by applying DNS-based method to DNS traffic from a

KrebsOnSecurity.com

residential neighborhood from 2013 to 2017 (§III-B2).
We apply our certificate-based method to a public TLS
certificate dataset (§III-C) and find 254K IP cameras and
network video recorders (NVR) from 199 countries.

This paper builds on prior work in the area. We draw on
data from University of New South Wales(UNSW) [30].
Others are currently studying the privacy and vulnerabil-
ities of individual devices (for example [1]); we focus
on detection. Prior work has studied detection [29], [30],
[28], [8], [3], [6], [19], but we use different detection
signals to observe devices behind NATs as well as those
on public IP addresses (detailed comparisons in §V).
We published an early version of IP-based detection in
a workshop [14]. This paper adds two new detection
methods: DNS-based detection (§II-A3) and certificate-
based detection (§II-B) and adds a new 4-month study
of IoT devices on college campus for IP-based detection
(§III-A2).

Our algorithms and results can guide the design and
deployment of future IoT security solutions by revealing
the scale of IoT security problem (how wide-spread are
certain IoT devices in the whole or a specific part of
Internet?), the problem’s growth (how fast did certain IoT
devices penetrate across the Internet? how large could
IoT further grow?) and the distribution of the problem
(which countries or ISPs have certain IoT devices?).

Our studies of IP-based and DNS-based detections are
approved by USC IRB as non-human subject research
(IRB IIR00002433 on 2018-03-27 and IRB IIR00002456
on 2018-04-19). We make data captured from our 10 IoT
devices (Table I) public at [13].

II. METHODOLOGY

We next describe our three methods to find IoT devices:
two using traffic (§II-A), and the third, TLS certificates
(§II-B).

A. IP and DNS-Based Detection Methods

Our two main methods detect general IoT devices both
with public IPs and behind NAT.

Our methods follow the insight that most IoT devices
exchange traffic regularly with device-specific servers.
If we know these servers, we can identify IoT devices
by watching traffic for these packet exchanges. Since
servers are usually unique for each class of IoT device,
we can also identify the types of devices. For IoT devices
behind NAT, our methods only identify the existence of
each type of IoT devices but can not know the exact
number of devices for each type because we cannot
count NATted devices outside the NAT. (Prior works that
explore counting NATted devices [4], [33] depend on
specific implementation of TCP/IP stack and do not scale
to general IoT devices.) Our approaches only consider
whom IoT devices talk with but not the patterns of their

Manufacturer Model Alias
Amazon Dash Button Amazon Button
Amazon Echo Dot Amazon Echo
Amazon Fire TV Stick Amazon FireTV
Amcrest IP2M-841 IP Cam Amcrest IPCam
D-Link DCS-934L IP Cam D-Link IPCam
Foscam FI8910W IP Cam Foscam IPCam
Belkin (Wemo) Mini Smart Plug Belkin SmartPlug
TP-Link HS100 Smart Plug TPLink SmartPlug
Philips (Hue) A19 Starter Kit Philips LightBulb
TP-Link LB110 Light Bulb TPLink LightBulb

TABLE I: The 10 IoT Devices that We Purchased

talking like timing and rates because patterns are often
obscured when NATs mix traffic from multiple devices.

Our two methods therefore depend on identifying
servers to look for (§II-A1) and looking for these servers
by IP address (§II-A2) and DNS name (§II-A3).

1) Identifying Device Server Names: Our approach
depends on knowing what servers devices talk to. Our
goal is to find domain names for all servers that IoT
devices regularly and uniquely talk to. However, we need
to remove server names that are shared across multiple
types of devices, since they would otherwise produce
false detections.

Identify Candidate Server Names: We bootstrap our
list of candidate server names by purchasing samples of
IoT devices and recording who they talk to. We describe
the list of devices we purchased in Table I and provide
the information we learned as a public dataset [13].

For each IoT device we purchase, we boot it and record
the traffic it sends. We extract the domain name of server
candidates from type A DNS requests made by target
IoT device in operation. We capture DNS queries at the
ingress side of recursive DNS resolver to mitigate effects
of DNS caching.

Filtering Candidate Server Names: We exclude
domain names for two kinds of servers that would
otherwise cause false positives in detection. One is third-
party servers: servers not run by IoT manufacturers that
are often shared across many devices. The other is human-
facing servers: servers that also serve human.

Third-party servers usually offer public services like
time, news and music streaming and video streaming.
If we include them, they would cause false positives
because they interact many different clients.

We consider server name S as a third-party server
for some IoT product P if neither P ’s manufacturer nor
the sub-brand P belongs to (if any) is a substring of
S’s domain (regardless of case). We define domain of a
URL as the immediate left neighbor of the URL’s public
suffix. (We identify public suffix based on public suffix
list from Mozilla Foundation [22]). We use Python library
tldextract to identify TLD suffixes [17].

Human-facing servers serve both human and device
(note that all server candidates serve device because they
are DNS queried by IoT devices in the first place). They
may cause mis-classifying a laptop or cellphone (operated
by human) as IoT devices.

We identify human-facing servers by if they respond
to web requests (HTTP or HTTPS GET) with human-
focused content. This test is supported by the observation
that retrieving HTML pages via HTTP or HTTPS is the
most common method in which average users access web
servers; and consuming web content is the most common
purpose why average users access web servers.

We define respond as returning an HTML page with
status code 200. We define human-focused content as
the existence of any web content instead of place-holder
content. Typically place-holder content is quite short. (For
example, http://appboot.netflix.com shows place holder
“Netflix appboot” and is just 487 bytes.) So we treat
HTML text longer than 630 bytes as human-focused
content. We determined this threshold empirically from
HTTP and HTTPS content at 158 server domain names
queried by our 10 devices (Table I).

We call the remaining server domain names device-
facing manufacturer server, or just device servers, be-
cause they are run by IoT manufacturers and serve devices
only. We use device servers for detection.

We propose a technique to automatically discover new
device server names during detection in our DNS-based
method §II-A3.

Handling Shared Server Names: Some device server
names are shared among multiple types of IoT devices
from the same manufacturer and can cause ambiguity in
detection.

If different device types share the exact set of server
names, then we cannot distinguish them and simply treat
them as the same type—a device merge.

If different device types have partially overlapping
sets of device server names, we can not guarantee they
are distinguishable. If we treat them as separate types,
we risk false positives and confusing the two types.
We avoid this problem with detection merge: when we
detect device types sharing common server names, we
conservatively report we detect at least one of these
device types. (Potentially we could look for unique device
servers in each type; we do not currently do that.)

2) IP-Based IoT Detection Method: Our first method
detects IoT devices by identifying packet exchanges
between IoT devices and device servers. For each device
type, we track device-type-to-server-name mapping: a
list of device server names that type of devices talks to.
We then define a threshold number of server names; we
interpret the presence of traffic to that number of server
names (identified by server IP) from a given IP address
as indicating the presence of that type of IoT device.

Tracking Server IP Changes: We search for device
servers by IP addresses in traffic, but we discover device
servers by domain names in sample devices. We therefore
need to track when DNS resolution for server name
changes.

We assume server names are long-lived, but the IP
addresses they use sometimes change. (In §III-A3, we
show 58 of our 99 device server names change IP at
least once in a 2-month period.) We also assume server-
name-to-IP mappings could be location-dependent. (We
show simultaneous DNS resolutions for 40 of our 99
device server names from §III-A1 give different results
in different geo-locations).

We track changes of server-name-to-IP mapping by
resolving server names to IP addresses every hour
(frequent enough to detect possible DNS-based load
balancing). To make sure IPs for detection are correct,
we track server IPs across the same time period and at
roughly the same geo-location as the measurement of
network traffic under detection.

Completeness Threshold Selection: Since some de-
vice servers may serve both devices and individuals (due
to we use necessary condition to determine device-facing
server in §II-A1 and risk mis-classifying human-facing
manufacturer server as device server) and sometimes we
might miss traffic to a server name due to observation
duration or lost captures, we set a threshold of server
names required to indicate the presence of each IoT
device type. This threshold is typically a majority, but
not all, of the server names we observe a representative
device talk to in the lab.

Most devices talk to a handful of device server names
(up to 20, from our laboratory measurements §III-A1).
For these types of devices, we require seeing at least
2/3 device server names to believe a type of IoT device
exists at a given source IP address. Threshold 2/3 is
chosen because for devices with 3 or more server names,
requiring seeing anything more than 2/3 server names
will be equivalent to requiring seeing all server names
for some devices. For example, requiring at least 4/5
server names is equivalent to requiring all server names
for devices with 3 to 4 device server names. (We do not
consider devices with 1 to 2 device servers names here
because for these devices, any thresholds larger than 1/2
are effectively requiring all server names.)

For devices that talk to many device server names
(more than 20), we lower our threshold to 1/2. Typically
these are devices with many functions and the manufac-
turer uses a large pool of server names. (For example,
our Amazon FireTV, as in Table I, has 41 device server
names.) Individual devices will most likely talk to only
a subset of the pool, at least over short observations.

3) DNS-Based IoT Detection Method: Our second
method detects IoT devices by identifying the DNS

http://appboot.netflix.com

queries prior to actual packet exchanges between IoT
devices and device servers.

Strengths: this method addresses two limitations in IP-
based detection. First, while server DNS names are stable,
server IP can change. Consequently, we can directly
apply DNS-based detection to old network measurements,
while we could not apply IP-based detection since old
IP addresses for device servers are potentially unknown.
Second, with DNS queries, we can discover new device
server names by examining unknown server names
queried by detected IoT devices and learning those look
like device servers (using rules in §II-A1). Server learning
addresses the problem that our prior knowledge of device
servers are potentially incomplete. (We cannot replicate
this process in IP-based detection because we find it hard
to judge if an unknown IP is device server, even with
help of reverse DNS and TLS Certificate from that IP.)

Limitations: This method requires observation of DNS
queries between end-user machines and recursive DNS
servers, limiting its use to locations that can see “under”
recursive DNS revolvers. This method also works with
recursive-to-authority DNS queries (see §III-B) when
observations last longer than DNS caching, since then
we see users-driven queries for server names even above
the recursive. Detection with recursive-to-authority DNS
queries reveals presence of IoT devices at AS level (since
recursives are usually run by ISPs for their users).

Method Description: Our DNS-based method has
three components: detection, server learning and device
splitting. Figure 1 illustrates this method’s overall work-
flow: it repeatedly conducts detections with the latest
knowledge of IoT device server names, learns new device
server names after each detection, and terminates when
no new server names could be learned. This method also
revises newly learned server names by device splitting if it
suspects they are false knowledge (signaled by decreased
detections after learning new server names).

Detection: Similar to §II-A2, for each type of IoT
devices, we track a list of device server names that type
of device talks to. We interpret presence of DNS queries
for above a threshold (same as §II-A2) amount of device
server names from a give IP address as presence of that
IoT device type. (We call this IP IoT user IP.)

To cover possible variants of known device servers, in
detection, we treat digits in server name’s sub-domain
as matching any digit. We define sub-domain of a URL
as everything on the left of the URL’s domain (URL’s
domain as defined in §II-A1). For example,“command-2”
is the sub-domain of command-2.amcrestcloud.com and
in detection, we consider command-2.amcrestcloud.com
and command-9.amcrestcloud.com the same.

Server Learning: We learn new device server names
from detected IoT devices and use them in subsequent de-
tections. After each detection, we examined all unknown

server names DNS queried by detected IoT user IPs. If
a unknown server name S queried by an IoT user IP I
looks like a device server (judged by rules in §II-A1) for
IoT device type P detected at I , we add S to the list of
device server names we track for P .

Device Splitting: We may falsely merge two types of
devices that talk to different set of servers if we only
know their shared server names prior detection.

Incorrect device merges can reduce detection rates.
When we falsely merge different device types P1 and
P2 as P , we risk learning server names for the merged
type P (from detected P1 or P2 devices) that only apply
for P1 or P2 devices and causing reduced detections of
P in subsequent iterations (because the updated list of
server names mapped to P may no longer apply for both
P1 and P2 devices).

Device splitting addresses this problem by reverting
false merge. If we detect less device type P at certain
IP after learning new device server names, we know P
is in fact an aggregation of two different type of devices:
one talk to server names mapped to P before last server
learning; the other talk to the latest server names mapped
to P . We split P into two following this new knowledge.
(We show an example of device splitting reverting false
device merge in §IV-B.)

B. Certificate-Based IoT Detection Method

Our third method detects IoT devices directly con-
nected to the public internet using HTTPS by identifying
their TLS Certificates. There are other works that map
TLS certificate to IoT devices either by matching texts
(like “IP camera”) with certificates [28] or by using com-
munity maintained annotation logic to do this certificate
matching [8]. In comparison, our method not only uses
multiple techniques to improve the accuracy of certificate
matching, but also confirms that matched certificates
come from HTTPS servers running in IoT devices.

We use existing public crawls of the IPv4 TLS
certificates. We first identify candidate certificates: the
TLS certificates that contain manufacturer names and
(optionally) product information. Candidate certificates
most likely come from HTTPS servers related to target
devices such as HTTPS servers ran by their manufacturers
and HTTPS servers ran directly in them. We then identify
IoT certificates: the candidate certificates that come from
HTTPS servers running directly in IoT devices. Each IoT
certificate represents a HTTPS-Accessible IoT device.

1) Identify Candidate Certificates: We identify candi-
date certificates for a HTTPS-Accessible IoT device by
testing each TLS certificate against a set of text strings
we associate with this device (called matching keys).

Matching Keys: We build a set of matching keys for
each target device with the goal to suppress false positives
in finding candidate certificates. If a target device’s

command-2.amcrestcloud.com
command-2.amcrestcloud.com
command-9.amcrestcloud.com

Detection First Iteration? Leant Servers?

Device Splitting

Detect Less Than
 Last Iteration?

Server Learning

Redo Detection

Start End
No

No

No
Yes

Yes

Yes

Fig. 1: Workflow for DNS-Based IoT Detection with Server Learning

manufacturer does not produce any other type of Internet-
enabled products, its matching key is simply the name of
its manufacturer (called manufacturer key). Otherwise, its
matching keys will be manufacturer key plus its product
type (like “IP Camera”). We also include IoT-specific
sub-brands. For example, “American Dynamics” is the
sub-brand associated the IP cameras manufactured by
Tyco International.

We do two kinds of matching between a matching key
K and a field S in TLS Certificate: Match means K is
a substring of S (ignore case); Good-Match means K is
a Match of S and the character(s) adjacent to K’s match
in S are neither alphabetical nor numbers. For example,
“GE” is a Match but not a Good-Match of “Privilege”
because the adjacent characters of “GE” in “Privilege” is
“e” (an alphabet).

Requiring a Good-Match for the manufacturer
key reduces false positives from IoT manufac-
turer names that are substrings of other compa-
nies. For example, name of IP camera manufacturer
“Axis Communications” is a substring of third party
organization “Maxis Communications Berhad”.

We require Match for all other keys (product types and
sub-brand) to be flexible and reduce false negatives. For
example, non-manufacturer key “NVR” can be matched
to text string like ”myNVR”.

Key Matching Algorithm: We examine each input
TLS certificate (more specifically, their organization CO

, organization units COU , common name CCN and op-
tional SubjectAltNames CDN fields) with matching keys
from each target HTTPS-Accessible IoT device. If for a
certificate C and a target device P , P ’s manufacturer key
Km is a Good-Match of CO and P ’s non-manufacturer
keys Kn are Match of any of CO, COU ,CCN or CDN ,
we consider C a candidate certificate for P .

We handle two special cases in matching Km with
CO. If CO is empty or an apparent place holder like
“SomeOrganization” and “company”, we instead test if
Km is a Good-Match any of COU , CCN or CDN . If
any of these four fields is URL, we only match Km

against the URL’s domain part (URL’s domain as defined
in §II-A1) because domain shows ownership of a server
name. (For example, Accedo Broadband instead of Sharp
owns *.sharp.accedo.tv’’.)

2) Identify IoT Certificate: Because IoT devices are
often self-generated, they are often not signed by Certifi-
cate Authorities (CAs). We use this information to detect
them, requiring IoT certificates to be self-signed and not
have a validate domain name.

Self Signing: We believe HTTPS servers running in
IoT devices should rarely use CA-signed certificates
because it is unlikely for average IoT users to acquire
TLS certificates from CA for their IoT devices. We
consider a certificate self signed if the certificate’s issuer
organization CiO either equals to of any of CO, COU

and CCN or contains Km.
No Valid Domain Names: Often IoT users lack

dedicated DNS domain names for their home network.
The only exception we found is some devices use
“www.”+manufacter+“.com” as a place holder for CCN .
(For example, www.amcrest.com for Amcrest IP Camera.)

We consider a certificate to lack a valid domain name
if none of the values in CCN is a valid domain name. We
do not count DDNS domain names (based on published
DDNS domains from no-IP.com [24]) and apparent place
holder as valid domain name.

C. Detection Methods Comparison

By using different types of network measurements (IPs
in Internet flows, stub-to-recursive DNS queries and TLS
certificates), our three detection methods achieve different
coverage of IoT devices. Combining our three methods
reveals a more complete picture of IoT deployment in the
Internet. (However, even with all three methods, we do
not claim complete coverage of global IoT deployment.)

Our IP-based method relies on IP addresses in Internet
flows collected from passive measurements from any
vantage point in the Internet. This method identifies
known types of IoT devices (both in public Internet
and behind NAT) visible from the passive measurement.
However this method does not cover device types whose
device servers we do not know. It also cannot detect
IoT devices in pre-existing measurements, because server
IPs can change over time and coverage of commercial
historical DNS datasets can be limited ([14]).

Our DNS-based method uses DNS queries passively
measured between stub and recursive DNS servers.
(Detection with DNS queries between recursive and
authoritative or root servers reveals AS-level instead of
household-level IoT deployment, as shown in §III-B1.)

*.sharp.accedo.tv''
www.amcrest.com

This method’s coverage is similar to that of IP-based
method except it supports detecting IoT devices from
previously collected network measurement because server
names in DNS queries are stable over time.

Our certificate-based method uses TLS certificates that
can be obtained by active scanning from any host in
the Internet. This method identifies HTTPS-Accessible
IoT devices with public IPs (and those behind NATs
forwarded to a public port). However, we expect that it
misses most devices behind NAT since it detects only
devices that respond on public-facing IP addresses. It
also misses devices that do not use TLS.

D. Adversarial Prevention of Detection

Although our methods generally work well in IoT
detection, they are not designed to prevent an adversary
from hiding IoT devices. For example, use of a VPN
between the IoT and its servers would evade IP-based
detection. IoT devices that access device servers with
hard-coded IP addresses rather than DNS names will
avoid our DNS-based detection. Although an adversary
can hide IoT devices, since they are designed for
consumer use and to minimize costs, we do not anticipate
widespread intentional concealment of IoT devices.

III. RESULTS: IOT DEVICES IN THE WILD

We next apply our detection methods to observations of
real-world network traffic to learn about the distribution
and growth of IoT devices in the wild. (We later verify
the accuracy of our approaches in §IV.)

A. IP-Based IoT Detection Results

To apply our IP-based detection, we first extract device
server names from 26 devices by 15 vendors (§III-A1).
We then apply detection to Internet flows at a college
campus from a 4-month period (§III-A2) and partial traffic
from an IXP (§III-A3).

1) Identifying Device Server Names: We use device
servers from two sets of IoT devices in detection: 10
IoT devices we purchased (Table I) and 21 IoT devices
from data provided by the UNSW (Table II, derived from
Figure.1b of [30]) . (Our 10 devices were all chosen due to
their popularity on Amazon in the U.S.) We extract device
server names from both sets of devices with method
described in §II-A1.

We break-down server names we found in Table III.
Of the 171 candidate server names from our 10 devices,
about half (56%, 96) are third-party servers, providing
time, news or music streaming, while the other half (44%,
75) are manufacturer servers. Of these manufacturer
servers, only a small portion (7%, 5) are human-facing
(like prime.amazon.com). The majority of manufacturer
servers (93%, 70) are device-facing and will be used in
detection.

Manufacturer Model Alias
Amazon Echo Amazon Echo
Belkin (Wemo) Switch Belkin Switch
Belkin (Wemo) Motion Sensor Belkin MotionSensor
Blipcare Blood Pressure Meter Blipcare BPMeter
HP Wireless Printer HP Printer
iHome Smart Plug iHome SmartPlug
Insteon IP Camera Insteon IPCam
Invoxia (Triby) Smart Speaker Invoxia SmartSpeaker
LiFX Smart Light Bulb Lifx LightBulb
Nest Dropcam IP Camera Nest IPCam
Nest Protect Smoke Alarm Nest SmokeAlarm
Netatmo Weather Station Netatmo WeatherStation
Netatmo Welcome IP Camera Netatmo IPCam
PIX-STAR Wifi Photo Frame PIX-STAR PhotoFrame
Samsung SmartCam HD Pro Samsung IPCam
Samsung SmartThing Hub Samsung Hub
TPLink Day Night Cloud Cam TPLink IPCam
TPLink Smart Plug TPLink SmartPlug
Withings Aura Sleep Sensor Withings SleepSensor
Withings Smart Baby Monitor Withings BabyMoniter
Withings Smart Scale Withings SmartScale

TABLE II: The 21 IoT devices from UNSW

Candidate Server Names 171 (100%)
3rd-Party Servers 96 (56%)
Manufacturer Servers 75 (44%) (100%)

Human-Facing Mfr Servers 5 (3%) (7%)
Device-Facing Mfr Servers 70 (41%) (93%)

TABLE III: Servers Extracted from Our 10 Devices

We manually examine the 171 candidate server names
and confirm the classifications for most of them are
correct (for 157 out of 171, ownership of server domain
is verified by whois or websites).

We cannot verify ownership of 11 candidate server
names. Luckily, our method lists them as third-party
servers and they will not be used in detection. We find 3
server candidate names (api.xbcs.net, heartbeat.lswf.net,
and nat.xbcs.net) falsely classified as third-party server.
We confirm they are run by IoT manufacturer Belkin from
query result of “whois lswf.net” and a security study [26]
and add them back to our list. These three server names
fail our test for manufacturer server (§II-A1) because
their domains show no information of manufacturer.

Similarly, we extracted 48 device servers from 18 of
21 IoT devices from UNSW (using datasets available
on their website https://iotanalytics.unsw.edu.au). The
remaining 3 of their devices are not detectable with our
method because they only visit third-party and human-
facing servers.

Combining server names measured from our 10 devices
and the 18 detectable devices from UNSW (merging 2 du-
plicated devices: Amazon Echo and TPLink SmartPlug)
gives us 26 detectable IoT devices; Among these
26 detectable IoT devices, we merge TPLink IPCam,

prime.amazon.com
api.xbcs.net
heartbeat.lswf.net
nat.xbcs.net
lswf.net
https://iotanalytics.unsw.edu.au

IoT IoT Est IoT Users Est IoT
Month Detection User IP (Res : Non-Res) Devices

Aug 13 6 2 (2 : 0) 5 to 7
Sep 23 6 5 (2 : 3) 21 to 28
Oct 19 6 4 (3 : 1) 11 to 15
Nov 10 3 2 (2 : 0) 8 to 12

TABLE IV: 4-Month IoT Detection Results on USC
Campus and Our Estimations of IoT Users and Devices

TPLink SmartPlug and TPLink Lightbulb as a meta-
device because they talk to the same set of of device
servers (a device merge, recall in §II-A1). Similarly, we
merge Belkin Switch and Belkin MotionSensor. After
device merge, we are left with 23 merged devices talking
to 23 distinct sets of device server names. (Together they
have 99 distinct device server names.)

By detecting with these server names, we are essen-
tially looking for 23 types of IoT devices that talk to
these 23 set of server names, including but not limited
to the 26 IoT devices owned by us and UNSW.

2) IoT Deployment in a College Campus: We apply
our IP-based detection method to partial network traffic
from our university campus for a 4-month period in 2018.

Input Datasets: We use passive Internet measurements
at the University of Southern California (USC) guest
WiFi for 4 different 4-day-long periods from August to
November in 2018. Our measurements cover a small
fraction of campus network traffic because we cannot
see traffic from wired networks and secure WiFi. To
protect user privacy, packet payloads are not kept and
IPs are anonymized by scrambling the last byte of each
IP address in a prefix preserving manner.

Input Server IPs: Since server-name-to-IP bindings
could vary over time and physical locations (as discussed
in §II-A2), we collect latest IPv4 addresses for our
99 device server name daily at USC, as described in
§II-A1. Ideally we would always use the latest server
IPs in detection. However due to outages in our capture
infrastructure, we only manage to ensure the server IPs
we use in detections are no more than one-month old.

IoT Detection Results: As shown in Table IV, IoT
detections increase on campus from August to September
(from 13 to 23), but decrease in October and November
(to 19 and then 10). In comparison, IoT user IPs on
campus remain the same from August to October (6) and
drop in November (3). (We discuss reasons behind these
variations in campus IoT deployment later.)

We show our August detection results in Table V.
(detections in other months are similar.) Note that
“Amazon *” in Table V stands for at least one of
Amazon FireTV and Amazon Echo. Similarly “With-
ings *” stands for at least one of Withings Scale and
Withings SleepSensor (recall detection merge in §II-A1).

IP-A & IP-H IP-B IP-C & IP-F IP-D
LiFX LightBulb Withings * HP Printer LiFX LightBulb

Amazon * Withings * Withings *
Amazon * Amazon *

TABLE V: August IoT Detection Results on USC
Campus (Merging IPs with Identical Detections)

We find that IoT user IPs are often detected with multiple
device types, suggesting the use of network-address
translation (NAT) devices. We also find two sets of IoT
user IPs (A and H; C and F) sharing the exact set of IoT
device types. A likely explanation is these two sets of
IPs belong to two IoT users using dynamically assigned
IP addresses, and these addresses change one time during
our 4-day observation. (We give more discussions of IoT
users on campus later.)

Since USC guest WiFi dynamically assigns IPs, our
counts of IoT detections and IoT user IPs risk over-
estimating actual IoT deployments on campus. When
one user gets multiple IPs, our IoT user IP count over-
estimates IoT user count. When one user’s devices show
up in multiple IPs, our IoT detection count gets inflated.

Estimating Numbers of IoT Users and Devices: To
get a better knowledge of actual IoT deployments on
campus, we estimate the number of IoT users on campus
based on the insight that although one user could get
assigned different IPs, he may still be identified by the
combination of IoT device types he owns. We then infer
the number of IoT devices we see on campus given this
many users.

We infer the existence of IoT users by clustering
IoT user IPs from the same month or adjacent months
that have similar detections. We consider detections
at two IPs (represented by two sets of detected IoT
device types d1 and d2, without detection merge)
to be similar if they satisfy the following heuristic:
size(intersect(d1, d2))/size(union(d1, d2)) ≥ 0.8.

While our technique risks under-estimating the number
of IoT users by combining different users who happen to
own same set of device types into one user, we argue this
error is unlikely because most IP addresses that have IoT
devices (16 out of 21, 76%) show multiple device types
(at least 4, without detection merge), and the chance that
two different users have identical sets of device types
seems low.

We find three clusters of IPs: with one each spanning
4, 3 and 2 months. These three clusters of IPs likely
belong to three campus residents who could install their
IoT devices relatively permanently on campus, such as
students living on campus and faculty (or staff) who have
office on campus.

We find four IPs that do not belong to any clusters.
These four IPs likely belong to four campus non-residents

who only brought their devices to campus briefly, such
as students living off-campus and other campus visitors.

We then estimate number of IoT devices on campus
in each month by adding up devices owned by estimated
IoT users in each month. We estimate devices owned
by a given IoT user in a given month by unioning
device types detected from this user’s IPs in this month
and assuming this user owns exactly one device from
each detected device type. (Recall from §II-A that for
NATted IoT devices, our method only identifies the
existence of device types but cannot know the device
count for each type.) While our assumption (users own
one device from each detected device types) may make
sense for device types of which a user is unlikely to own
multiple devices such as HP Printer, Amazon Echo and
Withings Scale, it risk under-estimating devices from
types like LiFX LightBulb.

We summarize our estimated numbers of IoT users
and devices in Table IV. (Our estimated IoT device
counts are ranges of numbers because we do not always
know the exact number of detected device types due
to detection merge). Our first observations is campus
residents are mostly stable except an existing resident
disappear in November (likely due to he stops using his
only detected device type: LiFX LightBulb) and a new
resident show up in October (potentially due to a faculty
or staff installing a new set of IoT devices in his office
in the middle of the semester).

Our second observation is number of campus non-
residents differs a lot by month. While we find 3 non-
residents in September and 1 non-resident in October, we
find none in August and November. One explanation for
this trend is there are more campus events in the middle
of the semester (September and October) which attracts
more campus visitors (potentially bringing IoT devices).

3) IoT Devices at an IXP: We also apply IP-based
detection to partial traffic from an IXP.

Input Datasets: We use the FRGPContinuousFlow-
Data dataset [32], abbreviated as FRGP, collected by Col-
orado State University (CSU) from 2015-05-10 to 2015-
05-19 (10 days). This dataset consists of anonymized
Internet traffic flows in Argus format from the Front-
Range Gigapop (www.frgp.net) connecting customers of
that regional network (including 18 universities and 14
large organizations in Colorado) with two commercial
ISPs: Century Link and Comcast. Data is provided
as Argus-format flow records, with anonymized IP
addresses.

Input Server IPs: We do not know IPs for our device
servers in 2015. So we draw upon IPv4 addresses we
collect for our 99 device server names from 2017-10-12
to 2018-2-23 near USC (with method in §II-A1) and
show IPs for our 99 device server names are either stable
over time or from stable pools.

We have considered the commercial historical DNS
dataset from Farsight Security [27] but we find this dataset
has very limited coverage: Farsight data collected from an
extended two-year period only covers IPs for 51 of our 99
device server names, giving us at most 11 detectable IoT
device types. We show detection results (60 detections of
only 2 type of devices) with 2-year Farsight DNS data
in our workshop paper [14].

We verify our server IPs collected 2 years after FRGP
data are still applicable by confirming IPs for our 99
device servers are either stable over time or rotating
within stable pools. We collect server IP history for our
99 device server names from 2017-10-20 to 2017-12-28
and confirm that none of them really changes IP in this
2-month period: more than half of them (58 out of 99)
rotate IPs within pools of IPs while the rest (41) keep
using the same IP mappings.

Since our collection of server IPs (at USC) does not
co-locate with collection of FRGP data (at CSU), any
location-dependent IPs we collect will not be applicable
to FRGP data.

Detection Results: Our detection results show 122
triggered detections of 9 to 10 device types (we do not
know exact number of types due to detection merge
§II-A1) from 111 IPs. (Similar to §III-A2, since clients of
FRGPs may use dynamically assigned IPs, our detection
counts and IoT user IP counts risk being inflated.) (We
expect low deployments of our 23 IoT device types at
FRGP because FRGP’s customers are mainly universities
and large organizations while our 23 IoT device types
are mainly for household usages.)

We conclude that with our IP-based detection method,
it is hard to detect IoT devices in the past because
server IPs change over time (and potentially across geo-
location) and commercial historical DNS dataset has
limited coverage.

B. DNS-Based IoT Detection Results

We next apply our DNS-based detections to two real-
world DNS datasets.

1) Global AS-Level IoT Deployments: We apply de-
tection to Day-in-the-Life of the Internet (DITL) datasets
from 2013 to 2018 to explore growth of AS-level
deployments for our 23 device types.

Input Datasets: our detection uses DITL datasets
from 8 out of 13 root DNS servers (each a root letter)
between 2013 and 2018 (excluding G, D, E and L roots
for not participating in all these DITL data and I root for
using anonymized IPs) to show growth in AS-level IoT
deployment in this period. Each DITL dataset contains
DNS queries received by a root letter in a 2-day window.

Since root DNS servers see requests from recursive
DNS resolvers (usually run by ISPs for their users), these
results detect devices at the AS-level, not for households.

www.frgp.net

To find out the ASes where detected devices come from,
we map recursive DNS resolvers’ IPs to AS numbers
(ASN) with CAIDA’s Prefix to AS mappings dataset [5].

Since the data represents ASes and instead of house-
holds, we do detection only (§II-A3) and omit the server-
learning portion of our algorithm. With many households
mixed together, AS-size aggregation risk learning wrong
servers. To count per-device-type detections, we do not
use detection merge (§II-A1).

With more than half of all 13 root letters (62%, 8 out
of 13), we expect to observe queries from the majority
of recursives in the Internet because prior work has
showed that under 2-day observation, most (at least 80%)
recursives query multiple root letters (with 60% recursives
query at least 6 root letters) [23]. However, even with
visibility to the majority of recursives, our detection still
risks under-estimating AS-level IoT deployment because
the 2-day DITL measurement is too short to observe
DNS queries from all known IoT device types behind
these visible recursives. (Under short observation, IoT
DNS queries could be hidden from root letters by both
DNS caching and non-IoT overshadowing: if a non-IoT
device queries a TLD before an IoT device behind the
same recursive does, the IoT DNS query, instead of
being sent to a root letter, will be answered by the DNS
caches created or renewed by the non-IoT DNS query.)
Consequently, we mainly focus on the trend shown in our
detection results instead of the exact number of detections.

Growth in AS Penetrations: We first study the
“breadth” of AS-level IoT deployment by examining
the number of ASes that our 23 IoT device types have
penetrated into.

We show overall AS penetration for our 23 IoT device
types (number of ASes where we find at least of one of
our 23 IoT device types) in Figure 2 as the blue crosses.
We find the overall AS penetration for our device types
increases significantly from 2013 to 2017 (from 244 to
846 ASes, about 3.5 times) but plateau from 2017 to
2018 (from 846 to 856 ASes).

We believe the reason that overall AS penetration for
our 23 IoT device types plateau between 2017 and 2018
is the sales and deployment decline as these models
replaced by newer releases. To support this hypothesis, we
estimate release dates for our device types and compare
these estimated release dates with per-device-type AS
penetration (number of ASes where each of our 23 device
types is found) from 2013 to 2018 (Figure 5).

We estimate release dates for 22 of our 23 device types
based on estimated release dates for our 26 detectable
IoT devices (recall §II-A1). (We exclude device type
HP Printer here because there are many HP wireless
printers released from a wide range of years and it would
be inaccurate to estimate release date of this whole device
type based on any HP Printer devices.) If a device type

includes more than one of our 26 detectable IoT devices
(due to device merge), we estimate release dates for all
these devices and use the earliest date for this device
type. We estimate release date for a given IoT device
from one of three sources (ordered by priority high to
low): release date found online, device’s first appearance
date on US Amazon and device’s first customer comment
date on US Amazon. We confirm all the 22 device types
are released at least two years before 2017 (2 in 2011, 7
in 2012, 3 in 2013, 5 in 2014 and 5 in 2015), consistent
with our claim that their sales are declining in 2017.

We compare estimated release dates with per-device-
type AS penetration results (Figure 5) and find that
detections of device types tend to plateau after release,
consistent with product cycles and a decrease in sales and
use of these devices. For example, Withings SmartScale
and Netatmo WeatherStation, which are released in 2012,
stop growing roughly after 2016-10-04 and 2017-04-
11, suggesting a product cycle of about 4 and 5 years.
In comparison, TPLink-IPCam/Plug/LightBulb is the
only device type released around 2016 (TPLink IPCam
on 2015-12-15, TPLink SmartPlug on 2016-01-01 and
TPLink Lightbulb on 2016-08-09) and their AS pene-
tration continue to rise even on 2018-04-10, despite AS
penetration of other device types (released between 2011
and 2015) roughly stop increasing by 2017.

Note the fact that the AS penetrations of our 23 device
types plateau does not contradict with the constant growth
of overall IoT deployment because new IoT devices are
constantly appearing.

Growth in Device Type Density: Having showed that
our 23 IoT device types penetrate into about 3.5 times
more ASes from 2013 to 2018, we next study how many
IoT device types are found in these ASes—their device
type density. We use device type density to show the
“depth” of AS-Level IoT Deployment.

For every AS detected with at least one of our 23 IoT
device types (referred to as IoT-AS for simplicity) from
2013 to 2018, we compute its device type density. We
present the empirical cumulative distribution (ECDF) for
device type densities of IoT-ASes from 2013 to 2018 in
Figure 3.

Our first observation from Figure 3 is from 2013 to
2018, not only are there 3.5 times more IoT-ASes (as
shown by AS penetration), the device type density in
these IoT-ASes are also constantly growing.

Our second observation is despite the constant growth,
device type density in IoT-ASes are still very low as of
2018. In 2018, most (79%) of the IoT-ASes have at most
2 of our 23 device types, which is a modest increase
comparing to 2013 where the similar percentage (80%)
of IoT-ASes have at most 1 of our 23 device types.

Our results suggest that for IoT devices, besides
potential to further grow in AS penetration (which would

 200
 400
 600
 800

 1000

2013-05-28

2014-04-15

2015-04-13

2016-04-05

2017-04-11

2018-04-10

N
u
m

 o
f

A
S
e
s

DITL Date

Fig. 2: Overall AS Penetration for Our
23 Device Types from 2013 to 2018

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E
C

D
F

Device Type Density in IoT-ASes

2018-04-10
2015-04-13
2013-05-28

Fig. 3: ECDF for Device Type Den-
sity in IoT-ASes from 2013 to 2018

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100 120

N
u
m

 o
f

Io
T-

A
S

Observation Duration (Days)

Fig. 4: Detected IoT-ASes under Ex-
tended Observation at B Root

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Amazon-Echo

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Amazon-FireTV

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Belkin-SmartPlug

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

D-Link-IPCam

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Foscam-IPCam

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

HP-Printer

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

LiFX-LightBulb

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

NEST-SmokeAlarm

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Nest-IPCam

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Netatmo-WeatherStation

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

PIX-STAR-PhotoFrame

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Philips-LightBulb

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Samsung-IPCam

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

TPLink-IPCam/Plug/LightBulb

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Withings-SleepSensor

 0
 50

 100
 150
 200
 250
 300
 350
 400

2013 2014 2015 2016 2017 2018

Withings-SmartScale

Fig. 5: Per-Device Type AS Penetrations (Omitting 7 Device Types Appearing in Less Than 10 ASes)

lead to growth in household penetration), there exists
even larger potential to grow in device type density
(which would lead to growth in device density). This
unique potential of two-dimensional growth (penetration
and density) sets IoT devices apart from other fast-
growing electronic products in recent history such as
cell-phone and personal computer (PC) which mostly
grow in penetration (considering that while a person may
only own 1 to 2 cell-phones and PCs, he could own many
more IoT devices).

We rule out the possibility that the increasing AS
penetration and device type density we observe is an
artifact of device servers we used in detection (measured
around 2017) do not apply to IoT devices in the past by
showing IoT device-type-to-server-name mappings are
stable over time in §IV-B.

ASes with Highest Device Type Density in 2018:
We examined the top 10 ASes with highest device
type density in 2018 (detected with 8 to 14 of our
23 device types). Our first observation is that they are
pre-dominantly from the U.S (4 ASes) and Europe (3
ASes). There are also 2 ASes from Eastern Asia (Korea
and China) and 1 from Haiti. This distribution also
consistently show up in top 20 ASes with 10 ASes from
the U.S. and 5 ASes from Europe. Our second observation
is that these top 10 ASes are mostly major consumer
ISPs in their operating regions such as Comcast, Charter,
AT&T and Verizon from the U.S, Korea Telecom from
South Korea and Deutsche Telekom for Germany.

Estimating Actual Overall AS Penetration in 2018:

Recall that the overall AS penetrations for our 23 device
types reported in Figure 2 are under-estimations of the
ground truth, both because our DITL data is not complete
(8 of 13 root letters provide visibility to most but not
all global recursives), and because two days of data will
miss many queries due to DNS caching and non-IoT
overshadowing.

We estimate actual overall AS penetration in 2018 by
applying detection to extended measurement at B root.
With this extended measurement, we expect to observe
queries from most global recursives at B root because
most global recursives rotate among root letters (at least
80% [23]). We also hope to observe IoT DNS queries that
would otherwise get hidden by DNS caching and non-
IoT overshadowing in short observation. (Ideally, when
adding more observations leads to no new detections, we
know we have detected all IoT-ASes that could be visible
to B root.)

To evaluate how many IoT-ASes we could see, we
extend 2-day 2018 DITL observation at B root to 112
days. As shown in Figure 4, we see a constant increase
in detection of IoT-ASes over longer observation. With
112-day observation, we detect 3106 IoT-ASes, 8× more
than what we see in 2 days of B root only (388 IoT
ASes), and 3.6× more than 2 days with 8 roots (856
IoT ASes, as in Figure 2). In 112 days, we see about
5% of all unique ASes in the routing system in early
2018 (about 60,000, reported by CIDR-report.org [34])
However, we do not see the detection curve in Figure 4

CIDR-report.org

flattening even after 112 days.
We model IoT query rates from an IoT-AS as seen by

a single root letter. Simple models (a root letter receives
1/13th of the traffic) show a curve flattening after at
least 300 days, consistent with what we see in Figure 4.
However, a detailed model requires understanding the IoT
query rates and the aggregate (IoT and non-IoT) query
rates, more information than we have. We conclude that
the real numbers of IoT-ASes are much higher than our
detections with DITL in Figure 2.

2) IoT Deployments in a Residential Neighborhood:
We next explore deployments of our 23 device types in
a residential neighborhood from 2013 to 2017.

Input Datasets: We use DNS datasets from Case
Connection Zone (CCZ) to study a residential neigh-
borhood [2]. This dataset records DNS lookups made
by around 100 residential houses in Cleveland, OH
that connected to CCZ Fiber-To-The-Home experimental
network and covers a random 7-day internal in each
month between 2011 and 2017. Specifically, we apply
DNS-based detection (both with and without server
learning) to the January captures of 2013 to 2017 CCZ
DNS data.

Results without Server Learning: As shown in
Figure 6, from 2013 to 2017, we see roughly more
detections and more types of device detected each year
from this neighborhood. (Similar to §III-B1, to count per-
device-type detection, we do not use detection merge.)

We believe our detection counts in Figure 6 lower-
bound the actual IoT device counts in this neighborhood
for two reasons: first, unlike our study on USC campus
where dynamically assigned IPs inflate IoT detection
counts (§III-A2), IPs in CCZ data are static to each house
and do not cause such inflation; second, recalling that for
NATted devices, our method only detects the existence
of device types but cannot know the device counts for
each type (§II-A), our detection counts in Figure 6
under-estimate IoT device counts if any household owns
multiple devices of same types. We conclude that the
lower bound of IoT device count in this neighborhood
increases about 4 times from 2013 (at least 3 devices) to
2017 (at least 13 devices), consistent with our observation
of increasing AS-level IoT deployment in this period.

We want to track IoT deployment by house but we can
do that for only about half the houses because (according
to author of this dataset) although IPs are almost static to
each house, about half of the houses are rentals and see
natural year-to-year variation from student tenants. Our
detection results are consistent with this variation: most
IPs with IoT detections at one year cannot be re-detected
with the same set of device types in the following years.

We show the increasing IoT deployment can also be
observed from a single house by tracking one house
whose tenant looks very stable (since it is detected

 0

 2

 4

 6

 8

 10

 12

 14

2013-01 2014-01 2015-01 2016-01 2017-01

N
u
m

b
e
r

o
f

D
e
te

ct
io

n
s

Date

Amazon-Echo
Amazon-FireTV

HP-Printer
NEST-SmokeAlarm

Nest-IPCam
Philips-LightBulb

Withings-SmartScale

Fig. 6: IoT Deployments for All Houses in CCZ Data

2014-01 2015-01 2016-01 2017-01
HP Printer HP Printer HP Printer HP Printer

Nest IPCam Nest IPCam Nest IPCam
Nest SmokeAlarm Nest SmokeAlarm Nest SmokeAlarm

Philips LightBulb Philips LightBulb
Withings Scale

TABLE VI: IoT Deployment for One House in CCZ Data

with consistent set of IoT device types over the 5
years). As shown in Table VI, this household owns
none of our known device types in 2013 (omitted in the
table) and acquire HP Printer in 2014, Nest IPCam and
Nest SmokeAlarm in 2015, as well as Philips LightBulb
and Withings SmartScale in 2016. Withings SmartScale
is missed in 2017 detection potentially due to this type
of device generates no background traffic and it is not
used during the 7-day measurement of 201701 CCZ data.

Results with Server Learning: With server learning,
we see no additional detections. We do observe that
during our detection to 5 years’ CCZ DNS data, 951
distinct server names are learned and 3 known IoT device
types are split. By analyzing these new server names, we
conclude that server learning could discover new sub-
types of known IoT device type but risk learning wrong
servers from NATted traffic.

We first show server learning could learn new device
server names and even new sub-type for known IoT
device types. HP Printer is originally mapped to 3 server
names (per prior knowledge obtained in §III-A1). In
the 2015-01 detection (others are similar), we learn 9
new server names for it in first iteration. But with these
updated 12 server names, we find 2 less HP Printer in
subsequent detection, suggesting HP Printer is in fact
an aggregation of two sub-types (just like we merge
Belkin Switch and Belkin MotionSensor as one type in
§II-A1): one sub-type talk to the original 3 server names
while the other talk to the updated 12 server names. We
split HP Printer into two and re-discover the two missed
HP Printer in subsequent detection.

We show our method risks learning wrong servers for

a given IoT device type P behind NAT if there are non-
IoT devices behind the same NAT visiting servers run
by P ’s manufacturer. This is caused by two limitations
in our method design: first, our method tries learning all
unknown server names queried by IoT user IP (§II-A3)
because we cannot distinguish between DNS queries
from detected IoT devices and DNS queries from other
non-IoT devices behind the same NAT; second, we risk
mis-classifying human-facing manufacturer server (that
also serve non-IoT devices) as device server because we
use necessary condition to determine device-facing server
in §II-A1. In the 2015-01 detection (others are similar),
we learn suspiciously high 176 device servers for Ama-
zon Echo and 277 device servers for Amazon FireTV
in first iteration, suggesting many of these new servers
are learned from non-IoT devices (like laptops using
Amazon services) behind the same NAT as the detected
Amazon devices (because IoT devices usually only talk
to at most 10 servers per day, as shown by [30]). This
false learning poisons our knowledge of device servers
and causes us to detect two less Amazon FireTV and
one less Amazon Echo in second iteration. Luckily, our
method splits Amazon Echo and Amazon FireTV into
two sub-types where one sub-type still mapped to the
original, un-poisoned, set of device servers, allowing us to
re-discover these missing Amazon devices in subsequent
detections.

(We observe good performance in validation §IV-B
where we apply server learning inside the NAT.)

C. Certificate-Based IoT Detection Results

Certificate-based IoT detection only applies to devices
that directly provide public web pages. IP cameras and
Network Video Recorders (NVR) both often export their
content, so we search for these. We find distinguishing
between them is hard because IP camera manufacturer
often also produce NVR and to distinguish them requires
finding non-manufacturer keys “IP Camera” and “NVR”
in TLS certificates according to rules in §II-B1. (We
also find TLS certificates rarely contains these two text
strings.) Therefore we do not try to distinguish them and
report them together as “IPCam”.

Input Datasets: We apply detection to ZMap’s 443-
https-ssl 3-full ipv4 TLS certificate dataset captured on
2017-07-26 [35]. This dataset consists of certificates
found by ZMap TCP SYN scans on port 443 in the
public IPv4 address space.

We target IPCam devices from 31 manufacturers
(obtained from market reports [11], [12] and top Amazon
sellers). We build matching keys for these IPCams based
on rules in §II-B1.

Initial Detection Results: Table VII shows the
244,058 IPCam devices we find (represented by IoT cer-
tificates, 0.46% of all 52,968,272 input TLS certificates)

Fig. 7: Dahua IPCam found at 14.164.XX.XX

from 9 manufacturers (29% of 31 input manufacturers, we
do not see any detection from other 22 manufacturers).
Among the detected devices, most (228,045, 93.43%)
come from the top manufacturer Dahua (who are believed
to be responsible for most compromised IP cameras in
DDoS attack against KrebsOnSecurity.com [21]). Almost
all (243,916, 99.94%) detected devices come from the
top 5 manufacturers.

Partial Validation: Due to lack of groundtruth, it
is not possible to directly validate our results. We
indirectly validate our results by accessing (via browser)
IPs of 50 random candidate certificates from each IPCam
manufacturers where we found at least one candidate
certificate. If browser accessing shows a login screen with
the correct manufacturer name on it, we consider it valid.
(Figure 7 shows an example of a login screen we found
with logo and name of IPCam manufacturer Dahua.) This
validation is limited since even a true positive may not
pass it due to the device may be off-line or not show the
manufacturer when we try it.

Our validation tests were only 3 days after TLS
certificate collection, to minimize IP address changes.
prevent possible network change.

Table VIII shows our results, with 66% of detections
correct. For the 106 false positives, in 40 cases the IP
address did not respond and in 53 cases, we get login
screen showing no manufacturer information. All 33 false
negatives are due to Foscam IPCam fail our two rules to
find IoT certificates in §II-B2: they are signed by a CA
called “WoSign” and have uncommon CCN place holder
*.myfoscam.org.

By adding a special rule for Foscam devices (candidate
certificates of Foscam that are signed by WoSign and
have *.myfoscam.org as CCN are IoT certificates), our
detection correctness percentage increases to 70% (283
out of 404, with 15 true negatives becoming false
positives due to we cannot confirm groundtruth for
15 newly detected Foscam IPCam) and false negative
percentage drops to 0%.

Revised Detection Results: Last row of §II-B shows

KrebsOnSecurity.com
*.myfoscam.org
*.myfoscam.org

Tyco Axis Arecont
Manufacturer Dahua Hikvision Amcrest Mobotix Foscam Vivotek Intl Schneider NetGear Comm Exacq Vision Apexis
Candidate Certificates 228,080 9,243 5,458 956 10,833 95 60 4 1 31 12 5 1
IoT Certificates 228,045 9,169 5,458 954 290 77 60 4 1 0 0 0 0
Adding Foscam Rule 228,045 9,169 5,458 954 10,814 77 60 4 1 0 0 0 0

TABLE VII: IPCam Detection Break-Down

Devices studied 404 (100%)
Correctness 265 (66%)
Incorrectness 139 (34%) (100%)

False Positives 106 (26%) (76%) (100%)
IP Non-Responsive 40 (10%) (29%) (38%)
Login w/o Mfr Info 53 (13%) (38%) (50%)

False Negatives 33 (8%) (24%)

TABLE VIII: Partial Validation of Certificate-Based
Detection Results

Country Total Dahua Foscam Hikvision Amcrest Mobotix
USA 47,690 38,139 3,666 655 5,038 143

S.Korea 22,821 22,520 84 212 4 0
India 19,244 19,029 23 186 6 0

China 17,575 15,539 288 1,748 0 0
Vietnam 14,092 13,794 113 176 9 0

France 8,006 7,059 506 372 1 62
Mexico 7,868 7,593 71 158 34 11
Poland 7,252 6,870 171 200 1 9

Argentina 6,384 6,141 154 75 13 0
Romania 5,646 5,272 139 207 2 23

TABLE IX: Detected IP cameras and NVRs by Countries

our revised detection results with the special rule for
Foscam: with 10,524 more detected Foscam devices, we
have a total of 254,582 IPCam detections.

Geo-location Analysis: We geo-locate our revised
detection result with Maxmind data published on 2017-
07-18 (8 days before collection of the TLS certificate
data we use) and find our detected IPCams come from
199 countries.

We examine what devices are in each country to gain
confidence in what we detect. Table IX shows the top ten
countries by number of detected devices, and breaks down
how many devices are found in country by manufacturer.
(We show show only manufacturer with at least 1000
global detections in Table VII.)

We find manufacturers prefer different operating re-
gions. We believe these preferences are related to their
business strategies. While Dahua, Foscam and Hikvi-
sion are global,the latter two show substantially more
deployment in the U.S. and China, respectively. Amcrest
(formerly Foscam U.S. [7]) is almost exclusive to the
American market. The German company Mobotix, while
is present in Europe and America, seems completely
absent from Asian markets.

This alignment of detection of deployments with
company’s locality is one use of our detection method.

IV. VALIDATION

We validate the accuracy of our two main methods by
controlled experiments.

A. Accuracy of IP-Based IoT Detection

We validate the correctness and completeness of our
IP-based method by controlled experiments. We set up
our experiment by placing our 10 IoT devices (Table I)
and 15 non-IoT devices in a wireless LAN behind a
home router. We run tcpdump inside the wireless LAN
to observe all traffic from the LAN to the Internet.

We run our experiments for 5 days to simulate 3
possible cases in real-world IoT measurements. On Day 1
to 2 (inactive days), we do not interact with IoT devices at
all. So first 2 days’ data simulates observations of unused
devices and contains only background traffic from the
devices, not user-driven traffic. On day 3 to 4 (active
days), we trigger the device-specific functionality of each
of the 10 devices like viewing the camera and purchasing
items with Amazon Dash. The first 4 days’ data shows
extended device use. On day 5, we reboot each device,
looking how a restart affects device traffic.

Our detection algorithm uses the same set of device
server names that we describe in §III-A1. We collect IPv4
addresses for these device server names (by issuing DNS
queries every 10 minutes) during the same 5-day period
at the same location as our controlled experiments.

Detection During Inactive Days: We begin with de-
tection using the first 2 days of data when the devices are
inactive. We detect more than half of the devices (6 true
positives out of 10 devices); we miss the remaining 4 de-
vices: Amazon Button, Foscam IPCam, Amcrest IPCam,
and Amazon Echo (4 false negative). We see no false
positives. (All 15 no-IoT devices are detected as non-
IoT.) This result shows that short measurements will miss
some inactive devices, but background traffic from even
unused devices is enough to detect more than half.

Detection During Inactive and Active Days: We next
consider the first four days of data, including both inactive
periods and active use of the devices. When observations
include device interactions, we find all devices.

We also see one false positive: a laptop is falsely
classified as Foscam IPCam. We used the laptop to
configure the device and change the device’s dynamic
DNS setting. As part of this configuration, the laptop
contacts ddns.myfoscam.org, a device-facing server name.
Since the Foscam IPCam has only one device server

ddns.myfoscam.org

name, this overlap is sufficient to detect the laptop as a
camera. This example shows that IoT devices that use
only a few device server names are liable to false positive.

Applying Detection to All Data: When we apply
detection to the complete dataset, including inactivity,
active use, and reboots, we see the same results as without
reboots. We conclude that user device interactions is
sufficient for IoT detection; we do not need to ensure
observations last long enough to include reboots.

B. Accuracy of DNS-Based IoT Detections

We validate correctness and completeness of our DNS-
based detection method by controlled experiments. We
use the same set up, devices and device server names
as in §IV-A. We also validate our claim that DNS-based
detection can be applied to old network measurements by
showing IoT device-type-to-server-name mappings are
stable over time.

We run our experiments for 7 days and trigger device-
specific functionality of each of the 10 devices every day
to mitigate the effect of DNS caching.

We first apply detections with the complete set of
device server names to evaluate the detection correctness
and server learning performance of our DNS-based
method. We then detect with incomplete set of device
server names to test the resilience of detection and server
learning to incomplete prior knowledge of device servers.

Detection with Complete Server Names: Results
show 100% correctness (10 true positives and 15 true
negatives), with 13 new device server names learned and
1 known device type splitted.

By analyzing the detection log, we show server learning
and device splitting can correct false device merge.
Recall in §III-A1, we merge TPLink SmartPlug and
TPLink LightBulb as one type (TPLink Plug/Bulb) per
our prior knowledge, they talk to the same server name
devs.tplinkcloud.com. After first iteration of detection,
we learn a new server deventry.tplinkcloud.com for
TPLink Plug/Bulb (from a detected TPLink LightBulb,
as shown by groundtruth). However with now 2 server
names mapped to TPLink Plug/Bulb, we see one
less detection of it in second iteration (groundtruth
shows a TPLink SmartPlug becomes un-detected). This
reduced detection suggests TPLink LightBulb and
TPLink SmartPlug are in fact different device types:
the former talks to the updated set of servers (devs.
tplinkcloud.com and deventry.tplinkcloud.com) while the
latter talk to the original set of servers (devs.tplinkcloud.
com). We split TPLink Plug/Bulb back into two to
fix this false device merge and re-discover the missed
TPLink SmartPlug in subsequent detections.

Detection with Incomplete Set of Server Names: We
detect with incomplete set of device server names to test

Mapping Detection Learn-Back Ratio
Used Correctness (Learned/Dropped)
100% 100% –
90% 100% 63% (5/8)
80% 96% 40% (6/15)
70% 96% 46% (10/22)
60% 92% 38% (11/29)
50% 96% 58% (21/36)

TABLE X: Resilience of Detection and Server Learning

resilience of detection and server learning to incomplete
prior knowledge.

We randomly drop 10%, 20% to 50% known device-
type-to-server-name mappings while ensuring each device
type is still mapped to at least one server. We then
compare the detection correctness and the learn-back
ratio (how many dropped mappings are learned back
after detections) of each experiment.

Results (Table X) show our detection accuracy are
fairly stable: with 50 % servers dropped we still have
96% accuracy. We believe two reasons cause this high
accuracy: our detection method suppress false positive
(by ensuring device servers are not likely to serve human
and IoT devices from other manufacturers) and the way
we drop servers (ensuring each device mapped to at least
one server name) guarantee low false negatives.

We also find the learn-back ratio is relatively stable,
fluctuating around 50%. To explore how false detection
happen and why about half dropped mappings cannot
be learned back, we closely examine the detection and
server learning with 20% (15) mappings dropped (others
are similar). This experiment has only one false detection:
Belkin SmartPlug is not detected due to 2 of its 3 server
names are dropped while the remaining 1 server name
is not queried in validation data. This experiment fail to
learn back 9 of 15 dropped mappings: 4 due to server
names not seen in validation data, 2 due to non-detection
of Belkin SmartPlug (recall we only try to learn server
from detected devices) and the rest 3 due to server names
are not considered unknown (recall we only try to learn
unknown servers) because they are originally mapped to
both Amazon FireTV and Amazon Echo and we only
dropped them from server list of Amazon Echo.

Stability of Device Server Names: We support our
claim that DNS-based detection can be applied to old
network measurements by verifying IoT device-type-to-
server-name mappings are stable over time. We show 8
of our 10 IoT devices (Table I) and a newly purchased
Samsung IPCam talk to almost identical set of device
server names across 1 to 1.5 years. We exclude Ama-
zon Echo and Amazon FireTV from this experiment
because they talk to large number of device servers
(previously measured 15 and 45) and it is hard to track
all of them over time. We update these 9 devices to

devs.tplinkcloud.com
deventry.tplinkcloud.com
devs.tplinkcloud.com
devs.tplinkcloud.com
deventry.tplinkcloud.com
devs.tplinkcloud.com
devs.tplinkcloud.com

latest firmwares on May, 2018, measure latest servers
name they talk to and compare these servers name with
those we used in detection (measured on Oct 2016 for
1 device, on Dec, 2016 for 6 devices and on June 2017
for 2 devices). We found these 9 devices still talk to
17 of the 18 device server names we measured from
them 1 to 1.5 years ago. The only difference is D-
Link IPCam who changes 1 of its 3 device server name
from signal.mydlink.com to signal.auto.mydlink.com.
A close inspection shows signal.auto.mydlink.com is
CNAME of signal.mydlink.com, suggesting although D-
Link IPCam change the server names it queries (making
it less detectable for our DNS-based method) , it still talk
to the same set of actual servers (meaning our IP-based
method is un-affected).

V. RELATED WORK

Prior groups considered detection of IoT devices:
Traffic analysis: IoTScanner detects LAN-side devices

by passive measurement within the LAN [29]. They
intercept wireless signals (WiFi, Bluetooth and Zigbee
packets) and identify IoT devices by packets’ MAC
addresses. They depend on MAC addresses to identify
devices, so their work requires LAN access and cannot
generalize to Internet-wide detection. In comparison, our
three methods apply to whatever parts of the Internet that
are visible in available network measurements, and are
able to categorize devices based on what device servers
they visit or TLS certificate they use.

Work from the University of New South Wales char-
acterizes traffic of 21 IoT devices using traffic metadata,
including sleeping time, average packet size, and number
of DNS requests sent [30]. They briefly discuss identify-
ing LAN-side IoT devices from LAN-side measurement
using traffic metadata. Our work uses different detection
signals: packet exchanges with particular device servers
and TLS certificate for IoT remote access rather than their
types of metadata. Our IP-based and DNS-based methods
cover IoT devices both with public IP and behind NAT
from observation of network traffic. Our certificate-based
method covers HTTPS-Accessible IoT devices on public
Internet by crawling TLS certificates in IPv4 space.

Work from Georgia Institute of Technology detects
existence of Mirai-infected IoT devices by watching
for hosts doing Mirai-style scanning (probes with TCP
sequence numbers equal to destination IP addresses) [3].
Their detection reveals existence of Mirai-specific IoT
devices, but does not further characterize device types.
In comparison, our three detection methods reveal both
existence and type of IoT devices. Our IP and DNS-
based method cover general IoT devices talking to device
servers rather than just Mirai-infected devices.

Work from University of Maryland detects Hajime
infected IoT devices by measuring the public distributed

hash table (DHT) that Hajime use for C&C communica-
tion [15]. They characterize device types with Censys [8],
but types for most of their devices remain unknown. In
comparison, our three detection methods detect existence
of known devices and always characterize their device
types. Our IP and DNS-based methods cover general IoT
devices talking to device servers rather than just those
infected by Hajime.

IPv4 scanners: Shodan is a search engine that provides
information (mainly service banners, the textual informa-
tion describing services on a device, like certificates from
HTTPS TLS Service) about Internet-connected devices
on public IP (including IoT devices) [28]. Shodan actively
crawls all IPv4 addresses on a small set of ports to detect
devices by matching texts (like “IP camera”) with service
banners and other device-specific information.

Censys is similar to Shodan but they also support
community maintained annotation logic that annotate
manufacturer and model of Internet-connected devices
by matching texts with banner information [8].

Compared to Shodan and Censys, our IP-based and
DNS-based methods cover IoT devices using both public
and private IP addresses, because we use passive measure-
ments to look for signals that work with devices behind
NATs. These two methods thus cover all IoT devices that
exchanges packets with device servers during operation.
Our certificate-based method, while also relying on TLS
certificates crawled from IPv4 space, provides a better
algorithm to match TLS certificates with IoT related text
strings (with multiple techniques to improve matching
accuracy) and ensures matched certificates come from
HTTPS servers running in IoT devices.

Work from Concordia University infers compromised
IoT devices by identifying the fraction of IoT devices
detected by Shodan that send packets to allocated but
un-used IPs monitored by CAIDA [31]. Their focus on
compromised IoT devices is different from our focus on
general IoT devices. Due to their reliance on Shodan data,
they cover devices with public IP while our IP-based and
DNS-based method cover devices on both public and
private IP. We also report IoT deployment growth over a
much longer period (6 years) than they do (6 days).

Northeastern University infers devices hosting invalid
certificates (including IoT devices) by manually looking
up model numbers in certificates and inspecting web
pages hosted on certificates’ IP addresses [6]. In compari-
son, our certificate-based method introduces an algorithm
to map certificates to IoT devices and does not fully rely
on manual inspection.

Work from University of Michigan detects industrial
control systems (ICS) by scanning the IPv4 space
with ICS-specific protocols and watching for positive
responses [19]. Unlike from their focus on ICS-protocol-
compliant devices and protocols, our approaches consid-

signal.mydlink.com
signal.auto.mydlink.com
signal.auto.mydlink.com
signal.mydlink.com

ers general IoT devices. Our approach also uses different
measurements and signals for detection.

VI. CONCLUSION

To understand the security threats of IoT devices
requires knowledge of their location, distribution and
growth. To help provide these knowledge, we propose
two methods that detect general IoT devices from passive
network measurements (IPs in network flows and stub-
to-recursive DNS queries) with the knowledge of their
device servers. We also propose a third method to detect
HTTP-Accessible IoT devices from their TLS Certificates.
We apply our methods to multiple real-world network
measurements. Our IP-based algorithm reports detections
from a university campus over 4 months and from traffic
transiting an IXP over 10 days. Our DNS-based algorithm
finds about 3.5× growth in AS penetration for 23 device
types from 2013 to 2018 and modest increase in device
type density in ASes detected with these device types.
Our DNS-based method also confirms substantial growth
in IoT deployments at household-level in a residential
neighborhood. Our certificate-based algorithm find 254K
IP camera and NVR from 199 countries around the world.

ACKNOWLEDGMENTS

We thank Arunan Sivanathan at University of New
South Wales for sharing their IoT device data with us [30].
We thank Paul Vixie for providing historical DNS data
from Farsight [27]. We especially thank Mark Allman
for sharing his CCZ DNS Transactions datasets [2] and
help run our code on partially un-encrypted version of
this dataset.

This material is based on research sponsored by Air
Force Research Laboratory under agreement number
FA8750-17-2-0280. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

REFERENCES

[1] Günes Acar, Noah Apthorpe, Nick Feamster, Danny Y. Huang,
Frank, and Arvind Narayanan. IoT Inspector Project from
Princeton University. https://iot-inspector.princeton.edu/.

[2] Mark Allman. Case Connection Zone DNS Transactions, January
2018 (latest release). http://www.icir.org/mallman/data.html.

[3] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halder-
man, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz
Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman,
Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the
mirai botnet. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1093–1110, Vancouver, BC, 2017. USENIX
Association.

[4] Steven M. Bellovin. A technique for counting natted hosts. In
Proceedings of the 2Nd ACM SIGCOMM Workshop on Internet
Measurment, IMW ’02, pages 267–272, New York, NY, USA,
2002. ACM.

[5] CAIDA. Routeviews prefix to as mappings dataset (pfx2as) for
ipv4 and ipv6. https://www.caida.org/data/routing/routeviews-
prefix2as.xml.

[6] Taejoong Chung, Yabing Liu, David Choffnes, Dave Levin,
Bruce MacDowell Maggs, Alan Mislove, and Christo Wilson.
Measuring and applying invalid SSL certificates: The silent
majority. In Proceedings of the 2016 Internet Measurement
Conference, IMC ’16, pages 527–541, New York, NY, USA,
2016. ACM.

[7] DAHUA. Important Message from Foscam Digital Technologies
Regarding US Sales and Service. http://foscam.us/products.html/.

[8] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey,
and J. Alex Halderman. A search engine backed by Internet-wide
scanning. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 542–553, Denver, CO, USA,
October 2015. ACM.

[9] Dyn. Dyn analysis summary of Friday October 21
attack. http://dyn.com/blog/dyn-analysis-summary-of-friday-
october-21-attack/.

[10] Gartner. The Internet of Things units installed base from 2014
to 2020. https://www.statista.com/statistics/370350/internet-of-
things-installed-base-by-category/.

[11] GlobalInfoResearch. Global IP camera market by
manufacturers, countries, type and application, forecast to
2022. https://www.wiseguyreports.com/reports/1273832-
global-ip-camera-market-by-manufacturers-countries-type-and-
application-forecast.

[12] GlobalInfoResearch. Network video recorder NVR industry to
2022 market, capacity, generation, investment, trends, regulations
and opportunities. http://www.kusi.com/story/35329831/network-
video-recorder-nvr-industry-to-2022-market-capacity-
generation-investment-trends-regulations-and-opportunities.

[13] Hang Guo and John Heidemann. IoT traces from 10 device we
purchased. https://ant.isi.edu/datasets/iot/.

[14] Hang Guo and John Heidemann. IP-based IoT device detection.
In Proceedings of the 2nd Workshop on IoT Security and Privacy,
aug 2018.

[15] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts,
and Dave Levin. Measurement and analysis of Hajime, a peer-
to-peer iot botnet. In Network and Distributed System Security
Symposium (NDSS), Feb 2019.

[16] Brian Krebs. KrebsOnSecurity hit with record DDoS.
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-
record-ddos/.

[17] John Kurkowski. Python domain extraction library tldextract.
https://pypi.python.org/pypi/tldextract.

[18] Peter Loshin. Details emerging on Dyn DNS DDoS attack,
Mirai IoT botnet. blog http://searchsecurity.techtarget.com/news/
450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-
IoT-botnet, October 2016.

[19] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit,
T. Yardley, R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman,
and M. Bailey. An Internet-wide view of ICS devices. In Annual
Conference on Privacy, Security and Trust (PST), Dec 2016.

[20] Carlos Morales. NETSCOUT Arbor confirms 1.7 Tbps
DDoS attack; the terabit attack era is upon us. Arbor
blog https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-
tbps-ddos-attack-terabit-attack-era-upon-us/, March 2018.

[21] Motherboard. How 1.5 million connected cameras
were hijacked to make an unprecedented botnet.
https://motherboard.vice.com/en us/article/8q8dab/15-million-
connected-cameras-ddos-botnet-brian-krebs.

[22] Mozilla. Public suffix list from Mozilla foundation. https://www.
publicsuffix.org/.

[23] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and
John Heidemann. Recursives in the wild: Engineering authoritative
DNS servers. In Proceedings of the ACM Internet Measurement
Conference, 2017.

[24] No-IP. Domain names provided by No-IP. http://www.noip.com/
support/faq/free-dynamic-dns-domains/.

[25] OVH. OVH news - the DDoS that didn’t break the camel’s
VAC. https://www.ovh.com/us/news/articles/a2367.the-ddos-that-
didnt-break-the-camels-vac.

https://iot-inspector.princeton.edu/
http://www.icir.org/mallman/data.html
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.caida.org/data/routing/routeviews-prefix2as.xml
http://foscam.us/products.html/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://www.wiseguyreports.com/reports/1273832-global-ip-camera-market-by-manufacturers-countries-type-and-application-forecast
https://www.wiseguyreports.com/reports/1273832-global-ip-camera-market-by-manufacturers-countries-type-and-application-forecast
https://www.wiseguyreports.com/reports/1273832-global-ip-camera-market-by-manufacturers-countries-type-and-application-forecast
http://www.kusi.com/story/35329831/network-video-recorder-nvr-industry-to-2022-market-capacity-generation-investment-trends-regulations-and-opportunities
http://www.kusi.com/story/35329831/network-video-recorder-nvr-industry-to-2022-market-capacity-generation-investment-trends-regulations-and-opportunities
http://www.kusi.com/story/35329831/network-video-recorder-nvr-industry-to-2022-market-capacity-generation-investment-trends-regulations-and-opportunities
https://ant.isi.edu/datasets/iot/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://pypi.python.org/pypi/tldextract
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
https://www.publicsuffix.org/
https://www.publicsuffix.org/
http://www.noip.com/support/faq/free-dynamic-dns-domains/
http://www.noip.com/support/faq/free-dynamic-dns-domains/
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac

[26] SCIP. Belkin Wemo switch communications analysis. https:
//www.scip.ch/en/?labs.20160218.

[27] Farsight Security. Passive DNS historical Internet database: Far-
sight DNSDB. https://www.farsightsecurity.com/solutions/dnsdb/.

[28] Shodan. Shodan search engine front page. https://www.shodan.io/.
[29] Sandra Siby, Rajib Ranjan Maiti, and Nils Ole Tippenhauer.

IoTscanner: Detecting privacy threats in IoT neighborhoods. In
Proceedings of the 3rd ACM International Workshop on IoT
Privacy, Trust, and Security, IoTPTS ’17, pages 23–30, New
York, NY, USA, 2017. ACM.

[30] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi Gharakheili,
Adam Radford, Chamith Wijenayake, Arun Vishwanath, and
Vijay Sivaraman. Characterizing and classifying IoT traffic in
smart cities and campuses. In Proceedings of the IEEE Infocom
Workshop on Smart Cities and Urban Computing, pages 559–564,
May 2017.

[31] S. Torabi, E. Bou-Harb, C. Assi, M. Galluscio, A. Boukhtouta,
and M. Debbabi. Inferring, characterizing, and investigating
Internet-scale malicious IoT device activities: A network telescope
perspective. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages
562–573, June 2018.

[32] USC/LANDER. FRGP (www.frgp.net) Continuous Flow Dataset,
traces taken 2015-05-10 to 2015-05-19. provided by the
USC/LANDER project (http://www.isi.edu/ant/lander).

[33] G. Wicherski, F. Weingarten, and U. Meyer. IP agnostic real-
time traffic filtering and host identification using TCP timestamps.
In 38th Annual IEEE Conference on Local Computer Networks,
pages 647–654, Oct 2013.

[34] Wikipedia. Autonomous system (internet). https://en.wikipedia.
org/wiki/Autonomous system (Internet).

[35] ZMap. ZMap 443 HTTPS SSL full IPv4 datasets. https://censys.
io/data/443-https-ssl 3-full ipv4.

https://www.scip.ch/en/?labs.20160218
https://www.scip.ch/en/?labs.20160218
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.shodan.io/
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://censys.io/data/443-https-ssl_3-full_ipv4
https://censys.io/data/443-https-ssl_3-full_ipv4

	Introduction
	Methodology
	IP and DNS-Based Detection Methods
	Identifying Device Server Names
	IP-Based IoT Detection Method
	DNS-Based IoT Detection Method

	Certificate-Based IoT Detection Method
	Identify Candidate Certificates
	Identify IoT Certificate

	Detection Methods Comparison
	Adversarial Prevention of Detection

	Results: IoT devices in the Wild
	IP-Based IoT Detection Results
	Identifying Device Server Names
	IoT Deployment in a College Campus
	IoT Devices at an IXP

	DNS-Based IoT Detection Results
	Global AS-Level IoT Deployments
	IoT Deployments in a Residential Neighborhood

	Certificate-Based IoT Detection Results

	Validation
	Accuracy of IP-Based IoT Detection
	Accuracy of DNS-Based IoT Detections

	Related Work
	Conclusion
	References

