
IP-Based IoT Device Detection
Hang Guo

USC/CS Dept and Information Sciences Institute

hangguo@isi.edu

John Heidemann

USC/CS Dept and Information Sciences Institute

johnh@isi.edu

ABSTRACT
Recent IoT-based DDoS attacks have exposed how vulnerable

the Internet can be to millions of insufficiently secured IoT

devices. To understand the risks of these attacks requires

learning about these IoT devices—where are they, how many

are there, how are they changing? In this paper, we propose

a new method to find IoT devices in Internet to begin to

assess this threat. Our approach requires observations of

flow-level network traffic and knowledge of servers run by

the manufacturers of the IoT devices. We have developed our

approach with 10 device models by 7 vendors and controlled

experiments. We apply our algorithm to observations from 6

days of Internet traffic at a college campus and partial traffic

from an IXP to detect IoT devices.

ACM Reference Format:
Hang Guo and John Heidemann. 2018. IP-Based IoT Device Detec-

tion. In IoT S&P’18: ACM SIGCOMM 2018 Workshop on IoT Security
and Privacy , August 20, 2018, Budapest, Hungary. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3229565.3229572

1 INTRODUCTION
Internet-of-Things (IoT) devices, such as Internet-connected

cameras, smart light-bulbs, and smart TVs, are surging in

both sales and installed base. Gartner forecasts the global IoT

installed bases will grow from 3.81 billion in 2014 to 20.41

billion in 2020 [3].

Despite rapid growth, there is an increasing concern about

the vulnerability of IoT devices and the security threats they

raise for the Internet ecosystem. A significant risk is that com-

promised IoT devices can be used to mount large-scale Dis-

tributed Denial-of-Service (DDoS) attacks. In 2016, a botnet

consisting of over 100k compromised IoT devices launched a

series DDoS attacks that set records in attack bitrates. These

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

IoT S&P’18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5905-4/18/08. . . $15.00

https://doi.org/10.1145/3229565.3229572

attacks included a 620 Gb/s attack against cybersecurity in-

vestigation site KrebsOnSecurity.com (2016-09-20) [5], an

estimated 1 Tb/s attack on French cloud-computing provider

OVH (2016-09-23) [9], and an estimated 1.2 Tb/s attack against

DNS provider Dyn (2016-10-21) [2]. Botnet sizes in these at-

tacks were estimated at 145k [9] or 100k [2], from the Mirai

botnet. Source code to the botnet was released [7], showing

it targeted IoT devices.

To understand these threats requires knowledge of loca-

tions, distribution, and growth of IoT devices. The primary

contribution of this paper is our new method to detect IoT

devices from observations of Internet traffic, combined with

knowledge of the servers run by IoTmanufacturers that these

devices contact (which we call device servers). Our method

detects both IoT devices with public IP as well as those be-

hind NAT while preserving IoT users’ privacy by extracting

minimal information (anonymized IPs) from IoT devices’

traffic. Our second contribution is to apply our method to

flow-level traffic from a college campus and partial traffic

from a IXP to detect real-world IoT devices (§3). We believe

our algorithm and results could help guide the development

of future improvements to IoT security.

2 METHODOLOGY
Our approach to detecting IoT devices follows the insight

that most IoT devices exchange traffic regularly with servers

run by their manufacturers. If we know these servers, we

can identify IoT devices by watching traffic for these packet

exchanges. Since servers are usually unique for each class

of IoT device, we can also identify the types of devices. We

acquire prior knowledge of device servers from devices we

or others own.

Our approach therefore depends on identifying servers to

look for (§2.1) and looking for these servers in traffic (§2.2).

We have considered other signals such as traffic timing or

rates, but we use traffic presence because it is robust when

NATs mix traffic from multiple devices.

2.1 Identifying Device Server Names
Our approach depends on knowing what servers devices talk

to. Our goal is to find domain names for all servers that IoT

devices regularly and uniquely talk to. However, we need to

remove server names that are shared across multiple types of

devices, since they would otherwise produce false detections

of IoT devices.

https://doi.org/10.1145/3229565.3229572
https://doi.org/10.1145/3229565.3229572
KrebsOnSecurity.com

IoT S&P’18, August 20, 2018, Budapest, Hungary Hang Guo and John Heidemann

Identify Server Candidate Names: We bootstrap our

list of candidate server names by purchasing samples of IoT

devices and recording who they talk to. We describe the list

of devices we purchased in §3.1, and provide the information

we learned as a public dataset [4].

For each IoT device we purchase, we boot it and record

the traffic it sends. We extract the domain name of server

candidates from type A DNS requests made by target IoT

devices in operation. We capture DNS queries at the ingress

side of recursive DNS resolver to mitigate effects of DNS

caching.

Filtering ServerCandidateNames:We exclude domain

names for two kinds of servers that cause potential false pos-

itives in detection. One is called third-party servers: servers
not run by the IoT manufacturer that are often shared across

many devices. The other is human-facing servers: servers
that also serve human.

Third-party servers usually offer public services like time

(NTP), DNS, news, music streaming and video streaming.

If we include them, they would cause many false positives

because they interact with many different clients.

We consider a server domain name S run by some third

party if for an IoT product P , neither P ’s manufacturer nor

the sub-brand P belongs to (if there is one) is a substring of

the S’s domain (regardless of case). We define domain of a

URL as the immediate left neighbor of the URL’s public suffix.

(We identify public suffix based on public suffix list from

Mozilla Foundation [8]). We use Python library tldextract

for domain extraction instead of reinventing the wheel [6].

Human-facing servers serve both human and device (note

that all server candidates serve device because they are DNS

queried by IoT devices in the first place). They may cause

mis-classifying a laptop or cellphone (operated by human)

as IoT devices.

We identify human-facing servers by if they respond to

web requests (HTTP or HTTPS access) with human-focused

content. This test is supported by the observation that re-

trieving HTML pages via HTTP or HTTPS is the most com-

mon method in which average users access web server; and

consuming web content is the most common purpose why

average users access web server.

We define respond as returning an HTML page with status

code 200. We define with human-focused content as the ex-
istence of any web content instead of place-holder content.

Typically place-holder content is quite short (for example,

http://appboot.netflix.com shows place holder “Netflix app-

boot” and is just 487 bytes), so we treat HTML text longer

than 630 bytes as human-focused content. We determined

this threshold empirically from HTTP and HTTPS content

at the 158 server domain names queried by our 10 devices

(Table 1); it is a conservative choice to reduce false positives.

We call the remaining server domain names device-facing
manufacturer server, or just device servers, because they are

run by IoT manufacturers and serve devices only. We use

device servers for detection.

Handling Shared Server Names: Some device server

names are shared among multiple IoT device types from the

same manufacturer and can cause ambiguity in detection.

If different device types share the exact set of device server

names, then we cannot distinguish them and we simply treat

them as the same device type.

If different device types share part of their device server

names, we can’t guarantee they are distinguishable. If we

treat them as separate types, we risk false positives and

confusing the two types. To avoid this problem when we

detect device types sharing common server names, we report

we detect at least one of these device types (a conservative

choice). (Potentially we could look for unique device servers

in each type; we do not currently do that.)

Tracking Server IPChanges:We search for device server

by IP addresses in traffic, but we discover device servers by

domain names in our test devices. We therefore need to track

DNS resolution for server name, and track when it changes

over time, and when it varies across networks. We assume

that server names are long-lived, but the IP addresses some-

times change, and sometimes depend on location. We track

changes of server name to IP mapping by resolving server

names to IP addresses every hour. In §3.3, we show that

nearly half of mappings are stable, but 58 of our 99 device-

server names (collected in §3.1) change IPs at least once in a

2-month period. We also find that 40 of our 99 device-server

names give different results based on location. In most cases

we therefore collect DNS data at roughly the same time and

from the same location as the trace.

2.2 Detecting IoT Devices with Device
Server IPs

Our method detects IoT devices by identifying packet ex-

changes between IoT devices and device servers. For each

specific type of device, we track a list of device server names

that device talks to. We then define a threshold number of

server names; we interpret the presence of traffic to that

number of server names in traffic from a given IP address as

indicating the presence of that IoT device.

Threshold Selection: Since some device servers may

serve both devices and individuals (due to we use neces-

sary condition to determine device server in §2.1 and risk

mis-classifying human-facing manufacturer server as device

server) and sometimes we might miss traffic to a server name

due to observation duration or lost captures, we set a thresh-

old of server names required to indicate the presence of each

IoT device type. This threshold is typically a majority, but not

http://appboot.netflix.com

IP-Based IoT Device Detection IoT S&P’18, August 20, 2018, Budapest, Hungary

all, of the server names we observe a representative device

talk to in the lab.

Most devices talk to a handful of device server names (up

to 20, from our laboratory measurements §3.1). For these de-

vices, we require seeing at least 2/3 device server names to be-

lieve an IoT device exists at a given source IP address. Thresh-

old 2/3 is chosen because for devices with 3 or more server

names, requiring seeing anythingmore than 2/3 server names

will be equivalent to requiring seeing all server names for

some devices. For example, requiring at least 4/5 server

names is equivalent to requiring all server names for de-

vices with 3 to 4 device server names. (We do not consider

devices with 1 to 2 device servers names here because for

these devices, any thresholds larger than 1/2 are effectively
requiring all server names.)

For devices that talk to many device server names (more

than 20), we lower our threshold to 1/2. Typically these are

very popular devices, and the manufacturer uses a large

pool of server names. (For example, our Amazon_FireTV, as

shown in Table 1, with 41 device server names.) Individual de-

vices will talk to multiple device server names, but typically

only a subset of the pool, at least over short observations.

3 RESULTS: IOT DEVICES IN THEWILD
To explore real-world distribution of IoT devices, we first

extract device server names from 26 devices by 15 vendors

(§3.1). We then apply detection to Internet flows at a college

campus (§3.2) and partial traffic from an IXP (§3.3). (We later

verify the accuracy of our approach in §4.)

3.1 Identifying Device Server Names
We use two sets of IoT devices in detection: 10 IoT devices we

own (Table 1) and 21 IoT devices from data provided by the

University of New SouthWales [13].We extract device server

names from both sets of devices with method described in

§2.1.

We show the count of server names we find from our

10 devices in Table 2. Of the 171 candidate server names

from our 10 devices, about half (56%, 96) are third-party

servers, providing time, news, or music streaming. As for

the 75 manufacturer servers, only a small portion (7%, 5) of

them are human-facing (like prime.amazon.com) while most

(93%, 70) of them are device-facing manufacturer servers

that will be used in detection. We also find two devices

(TPLink_SmartPlug and TPLink_LightBulb) sharing their

only server name (devs.tplinkcloud.com) and merge them to

one meta-device for detection.

We manually examine the 171 server candidate names and

confirm the classifications for most of them are correct (for

157 out of 171, ownership of server domain is verified by

whois or websites). We find ownership of 11 server candi-

date names can not be verified. We list these as third-party

servers and do not use them in detection. We find that 3

server candidate names (api.xbcs.net, heartbeat.lswf.net, and

nat.xbcs.net) falsely classified as third-party server. We con-

firm they are run by IoT manufacturer Belkin from query

result of “whois lswf.net” and a study from security com-

pany SCIP [10]. These three server names fail our test for

manufacturer server (§2.1) because their domains show no

information of manufacturer.

Similarly, we extracted 48 device server names from 18 of

21 IoT devices from University of New South Wales (using

device traces available on their website http://149.171.189.1/).

The remaining 3 of their IoT devices are not detectable with

our method because they only visit third-party servers and

human-facing manufacturer servers.

Combining our 10 IoT devices with the 18 detectable de-

vices from University of New South Wales gives us 26 IoT

devices (merging 2 duplicated devices: Amazon_Echo and

TPLink_SmartPlug); together they have 99 distinct device

server names.

3.2 IoT Devices in a College Campus
To test our detection method, we begin applying them to

network traffic from part of our university campus.

Input Traces: We use passive Internet measurements at

the University of Southern California (USC) guest WiFi from

2017-10-06 to 2017-10-11 (6 days). To protect user privacy,

packet payloads are not kept and IPs are anonymized by

scrambling the last byte of each IP address in a prefix preserv-

ing manner. Our study was reviewed by USC’s IRB and iden-

tified as non-human subject research (USC IRB IIR00002456,

2018-04-19).

Input Server IPs: We collect the IPv4 addresses for the

99 device server names serving our 26 IoT devices across the

same 6-day period, from a server at USC as described in §2.1.

Detection Results:We see a total of 35 triggered detec-

tions (suggesting at least 35 different devices) from 8 user IPs,

as shown in Table 3. Note that “Amazon_*” in Table 3 stands

for at least one of Amazon_FireTV and Amazon_Echo. Simi-

larly “Withings_*” stands for at least one of Withings_Scale

and Withings_SleepSensor (recall how we handle device

types sharing server names in §2.1).

Our first observation is IPs with IoT devices often have

several devices, suggesting the use of a network-address

translation (NAT) device that uses a single IP address from

USC’s WiFi.

We also find three IoT user IPs (IP A, B, and C) sharing

the exact set of IoT devices. A likely explanation is that

there is one user with a set of devices behind NAT that

is using a dynamically assigned IP address, and that this

prime.amazon.com
devs.tplinkcloud.com
api.xbcs.net
heartbeat.lswf.net
nat.xbcs.net
lswf.net

IoT S&P’18, August 20, 2018, Budapest, Hungary Hang Guo and John Heidemann

Manufacturer (Sub-brand) Full Name Product Type Alias
Amazon Amazon Bounty Dash Button Dash Button Amazon_DashButton

Amazon Amazon Echo Dot (2nd Generation) Smart Speaker Amazon_Echo

Amazon Amazon Fire TV Stick Smart TV Stick Amazon_FireTV

Amcrest Amcrest IP2M-841 IP Camera IP Camera Amcrest_IPCam

D-Link D-Link DCS-934L IP Camera IP Camera D-Link_IPCam

Foscam Foscam FI8910W IP Camera IP Camera Foscam_IPCam

Belkin (Wemo) Wemo Mini Smart Plug Smart Plug Belkin_SmartPlug

TP-Link TP-Link HS100 Smart Plug Smart Plug TPLink_SmartPlug

Philips (Hue) Philips Hue A19 Starter Kit Smart Light Bulb Philips_SmartLightBulb

TP-Link TP-Link LB110 Smart Light Bulb Smart Light Bulb TPLink_SmartLightBulb

Table 1: Vendors and Models of Our 10 IoT Devices

Sever Candidate 171 (100.00%)

3rd-Party Servers 96 (56%)

Manufacturer Servers 75 (44%) (100.00%)

Human-Facing Mfr Servers 5 (3%) (7%)
Device-Facing Mfr Servers 70 (41%) (93%)

Table 2: Manufacturer Servers Extraction Break-down
for Our 10 IoT Devices

address changes three times over our six day study. However

we cannot verify this hypothesis (by confirming that these

three IP addresses do not overlap in time) because we do not

have access to raw captured data and we explicitly do not

have access to DHCP to individual mappings to protect user

privacy.

These observations show our approach works at a real

campus. However, our measurements at USC represent only

a small fraction of campus network traffic—we see only guest

network WiFi, not wired networks and secure WiFi. These

results therefore represent a lower bound for actual IoT de-

ployment at USC campus.

3.3 IoT Devices at an IXP
We also apply detection to partial traffic from an IXP.

InputTraces:Weuse the FRGPContinuousFlowData dataset [14],

abbreviated here as FRGP, collected by Colorado State Uni-

versity (CSU) from 2015-05-10 to 2015-05-19 (10 days). This

dataset consists of anonymized Internet traffic flow records in

Argus format from the Front-Range Gigapop (www.frgp.net)

connecting customers of that regional network (including

18 universities and 14 large organizations in Colorado) with

two commercial ISPs: Century Link and Comcast. Data is

provided as Argus-format flow records, with anonymized IP

addresses.

Input Server IPs: Since we do not have IPs for our 99

device server names in 2015, we draw upon historic DNS
data from Farsight Security ([11]). We choose to use Farsight

DNS datasets collected from an extended two year period

(June 2014 to April 2016, centered by the 10-day interval of

FRGP data) to get more device server IPs.

Our server IP data is incomplete, with IPs for 51 of our

99 device server names (giving us at most 11 detectable IoT

device).We expect it to be incomplete both because Farsight’s

data collection is passive, so some server name resolutions

may simply not occur in their observations, and because

some of these IoT devices may not have been deployed at

this time.

We verify server IPs from 2-year Farsight DNS data are

likely applicable to the 10-day FRGP data by confirming

IPs for our 99 device servers are either stable over time or

rotating within stable pools. We collect server IP history for

our 99 device server names from 2017-10-20 to 2017-12-28

and confirm that none of them really changes IP in this 2-

months period: more than half of them (58 out of 99) rotate

IPs within a pool of IPs while the rest (41 out of 99) keep

using the same IP mappings. We use Farsight because it

collected at roughly the right time period for our network

data, and it is collected from many locations.

Detection Results:We see a total of 60 detections from

59 IoT User IPs. However only two types of IoT devices

are detected: Withings_SmartScale (58 detections) and PIX-

STAR_PhotoFrame (2 detections).

We believe we see so few detections in part due to an

incomplete list of server IPs: the DNS data only covers IPs

for 51 of our 99 device server names, and even for the 51

covered server names, the DNS data potentially miss server

IPs. We miss IPs because for device-server names that rotate

within a pool of IPs, passive DNS may miss some. Our IXP

also connects academic and government institutions, so it

may see fewer household-targeted IoT devices.

We confirm that incomplete server IPs contributes to under-

detection by inspecting IoT device candidates in this detec-

tion. A IoT device candidate is an IoT device that we think

might exist because we identify packet exchanges with at

least one of its device server names. As shown in Table 4,

for almost all (96%, 555) of the 575 IoT device candidates,

www.frgp.net

IP-Based IoT Device Detection IoT S&P’18, August 20, 2018, Budapest, Hungary

IP A & B & C IP D IP E IP F IP G & H

Belkin_SmartPlug Samsung_IPCam Samsung_IPCam HP_Printer Amazon_*

Samsung_IPCam HP_Printer HP_Printer Withings_Scale

HP_Printer LiFX_SmartLightBulb LiFX_SmartLightBulb Amazon_*

Netatmo_WeatherStation Amazon_* Amazon_*

LiFX_SmartLightBulb Withings_*

Amazon_*

Withings_*

Table 3: IoT Devices In USC Campus

IoT Device Candidates 575 (100%)

Candidates w 1 Identified Dev Sver 555 (96%) (100%)

Detected IoT Devices 60 (10%) (11%)

Candidates w 2 Identified Dev Svers 16 (3%)

Candidates w 3 Identified Dev Svers 4 (1%)

Table 4: Breakdown for FRGP Data Detection’s IoT De-
vice Candidates

we only identify one of their device server names (poten-

tially due to we only know part of 99 device servers’ IPs).

And the reason we can detect Withings_SmartScale and PIX-

STAR_PhotoFrame is these two devices have only one known

device server name and seeing that one device server name

is enough to trigger detection.

Redo Detection with More Server IPs: We show that

a more complete list of server IPs can reveal more types of

IoT devices by re-doing detection to the first half day’s FRGP

data (collected from 7am to 7pm on 2015-05-10) with IPv4

addresses we collect for our 99 device server names from

2017-10-12 to 2018-02-23 at USC (using the method from

§2.1.) We believe these server IPs, despite collecting 2 years

after FRGP data, are still applicable to some degree, knowing

IPs for our 99 device server names are very stable.

The detection results show more types of device

detected: besides Withings_SmartScale (7 detections)

and PIX-STAR_PhotoFrame (1 detection), we also find

Belkin_SmartPlug (2 detections), LiFX_LightBulb (1 detec-

tion) and TPLink_Smartplug (1 detection, which could be a

TPLink_LightBulb or a TPLink_IPCam because these three

devices share the same device server name and are not dis-

tinguishable for our method). (We also detect 1 Withings_

*, standing for at least one of Withings_Scale and With-

ings_SleepSensor.)

We conclude that with our IP-based detection method, it

is hard to detect IoT devices in the past because server IPs

change over time and commercial historical DNS dataset has

limited coverage.

4 VALIDATION
We validate the correctness and completeness of our IP-based

IoT detection by controlled experiments.We set up our exper-

iment by placing our 10 IoT devices (Table 1) and 15 non-IoT

devices on a wireless LAN behind a home router. We run

tcpdump at the wireless LAN interface to observe all traffic

from the LAN to the Internet.

We run our experiments for 5 days to simulate 3 possible

cases in real-world IoT measurement. On Day 1 to 2, we do

not interact with IoT devices at all. Therefore first 2 days’ data

simulates observations of unused devices and contains only

background traffic from the devices, not user-driven traffic.

On day 3 to 4, we trigger the device-specific functionality

of each of the 10 devices (viewing the camera, purchasing

items with Amazon Dash, etc.). Thus if we take the first 4

days’ data together it shows what we will see in an extended

observation where devices are used. On day 5, we reboot

each device, looking how a restart affects device traffic.

Our detection algorithm uses the same set of device server

names that we describe in §3.1. We collect IPv4 addresses for

these device server names (by issuing DNS queries every 10

minutes) during the same 5-day period at the same location

as our controlled experiments.

Detection During Inactive Days: We begin with detec-

tion using the first 2 days of data when the devices are in-

active. We detect more than half of the devices, 6 true pos-

itives out of 10 devices; we miss the remaining 4 devices:

Amazon_DashButton, Foscam_IPCam, Amcrest_IPCam, and

Amazon_Echo (4 false negative). We see no false positives.

(all 15 no-IoT devices has been detected as non-IoT.) This

result shows that short measurements will miss some inac-

tive devices, but that background traffic from even unused

devices is enough to detect more than half.

Detection to Data With Device Activity:We next con-

sider the first four days of data, including both inactive pe-

riods and active use of the devices, with results shown in

Table 5. When observations include device interactions, we

find all devices.

We also see one false positive: a laptop is falsely classified

as Foscam IP camera. We used the laptop to configure the

IoT S&P’18, August 20, 2018, Budapest, Hungary Hang Guo and John Heidemann

All Device Present 25 (100%)

Correctness 24 (96%) (100%)
True Positive 10 (40%) (41.67%)
True Negative 14 (56%) (58.33%)

Incorrectness 1 (4%) (100%)
False Positive 1 (4%) (100%)
False Negative 0 (0%) (0%)

Table 5: Detection Result to First 4 Day’s Data

device and change the device’s dynamic DNS setting. As

part of this configuration, the laptop appears to have contact

ddns.myfoscam.org, a device-facing server name. Since the

Foscam IP Camera has only one device server name, this

overlap is sufficient to detect the laptop as a camera. This

example shows that IoT devices that use only a few device

server names are liable to false positive.

Applying Detection to All Data:When we apply detec-

tion to the complete dataset, including inactivity, active use,

and reboots, we see the same results as without reboots. We

conclude that user device interactions is sufficient for IoT

detection; we do not need to ensure observations last long

enough to include reboots.

5 RELATEDWORK
Several prior groups considered detection of IoT devices.

Traffic analysis: IoTScanner detects LAN-side devices by
passive measurement within the LAN [12]. They intercept

wireless signals (WiFi, Bluetooth and Zigbee packets) and

identify IoT devices by packets’ MAC addresses. They depend

on MAC addresses to identify devices, so their work requires

LAN access and cannot generalize to detection from Internet-

wide traffic. In comparison, our method applies to whatever

parts of the Internet are visible in available network traffic,

and we are able to categorize devices based on what device

servers they visit.

Work from the University of New South Wales charac-

terize traffic of 21 IoT devices by traffic metadata, including

sleeping time, average packet size , and number of DNS re-

quests sent [13]. They provide a thorough characterization

of their 21 devices’ traffic and briefly discuss identifying

IoT devices by traffic metadata. Our work has some impor-

tant differences. We use a different detection signal: packet

exchanges with particular device servers, rather than their

types of metadata. Our method can detect IoT devices behind

NAT from aggregated traffic generated by all NATed devices,

enabling us to detect real-world IoT devices.

IPv4 scanners: Shodan is a search engine that provide

information (mainly service banners, the textual informa-

tion describing services on a device) on Internet-connected

devices (including IoT devices). Shodan actively crawls all

IPv4 addresses on a small set of ports to detect devices using

text (like “IP camera”) in service banners and other device-

specific information. As a result, Shodan covers a subset of

IoT devices that use public IP addresses (or use private IP

with port mapping to a public address) and have publicly

identifiable information.

Mirai is a malware that infect and take over IoT devices

for launching cyber attacks [1]. Mirai detects IoT devices

by port scanning IPv4 addresses with telnet (ports 23 and

2323), then breaks in using a list of 62 common IoT devices

credentials. As with Shodan, Mirai thus covers a subset of

IoT devices exposed on the public Internet.

Comparing to Shodan and Mira, our method covers IoT

devices using both public and private IP addresses, because

we use passive measurements to look for signals that work

even on traffic from devices behind NATs. Our detection

covers all IoT devices that exchanges packets with device

servers during operation.

We also preserve user privacy better as we expose no

information about individual IoT users (we only extract IPs

but IPs are anonymized). Shodan and Mirai, in comparison,

expose user IP and other information like user geolocation

or device credential.

6 FUTUREWORK
Although the IP-based IoT detection we describe here is

complete, it points to future work that might expand IoT

detection. Our current algorithm requires historical DNS

data to identify server IP addresses in archived traces. We

are working on a new detection method that directly work

with server’s DNS domain names, without converting them

to IP addresses. We are also looking at approaches to learn

new server names and IP addresses as part of the detection

process.

7 CONCLUSION
To understand the risks of insecure IoT devices requires

learning about the location, distribution, and growth of IoT

devices. To address this need, we developed an IP-based IoT

detection method, seeded with information of 10 IoT devices

from 7 vendors. We test our new approach with controlled

experiments, then we apply it to 6-days of Internet traffic

from a college campus, and also to 5 days of traffic from an

IXP.

Acknowledgments:We thank Arunan Sivanathan at University of New

South Wales for sharing their IoT device data with us [13]. We thank Paul

Vixie for providing historical DNS data from Farsight. This material is based

on research sponsored by Air Force Research Laboratory under agreements

FA8750-17-2-0096 and FA8750-17-2-0280, and by the Department of Home-

land Security (DHS) Science and Technology Directorate, Cyber Security

Division (DHS S&T/CSD) via contract number HHSP233201600010C. The

U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon.

ddns.myfoscam.org

IP-Based IoT Device Detection IoT S&P’18, August 20, 2018, Budapest, Hungary

REFERENCES
[1] Anna-Senpai. Mirai Malware Source Code. https://github.com/

jgamblin/Mirai-Source-Code.

[2] Dyn. Dyn analysis summary of Friday October 21 attack. http://dyn.

com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[3] Gartner. The Internet of Things units installed base from

2014 to 2020. https://www.statista.com/statistics/370350/

internet-of-things-installed-base-by-category/.

[4] Guo, H., and Heidemann, J. IoT traces from 10 device we purchased.

https://ant.isi.edu/datasets/iot/.

[5] Krebs, B. KrebsOnSecurity hit with record

DDoS. https://krebsonsecurity.com/2016/09/

krebsonsecurity-hit-with-record-ddos/.

[6] Kurkowski, J. Python domain extraction library tldextract. https:

//pypi.python.org/pypi/tldextract.

[7] Loshin, P. Details emerging on Dyn DNS DDoS attack, Mirai IoT

botnet. blog http://searchsecurity.techtarget.com/news/450401962/

Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet, Oct.

2016.

[8] Mozilla. Public suffix list from Mozilla foundation. https://www.

publicsuffix.org/.

[9] OVH. OVH news - the DDoS that didn’t break the

camel’s VAC. https://www.ovh.com/us/news/articles/a2367.

the-ddos-that-didnt-break-the-camels-vac.

[10] SCIP. Belkin Wemo switch communications analysis. https://www.

scip.ch/en/?labs.20160218.

[11] Security, F. Passive DNS historical Internet database: Farsight DNSDB.

https://www.farsightsecurity.com/solutions/dnsdb/.

[12] Siby, S., Maiti, R. R., and Tippenhauer, N. O. IoTscanner: Detecting

privacy threats in IoT neighborhoods. In Proceedings of the 3rd ACM
International Workshop on IoT Privacy, Trust, and Security (New York,

NY, USA, 2017), IoTPTS ’17, ACM, pp. 23–30.

[13] Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A.,

Wijenayake, C., Vishwanath, A., and Sivaraman, V. Characterizing

and classifying IoT traffic in smart cities and campuses. In Proceedings
of the IEEE Infocom Workshop on Smart Cities and Urban Computing
(May 2017), pp. 559–564.

[14] USC/LANDER. FRGP (www.frgp.net) Continuous Flow Dataset, traces

taken 2015-05-10 to 2015-05-19. provided by the USC/LANDER project

(http://www.isi.edu/ant/lander).

https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://ant.isi.edu/datasets/iot/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://pypi.python.org/pypi/tldextract
https://pypi.python.org/pypi/tldextract
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
https://www.publicsuffix.org/
https://www.publicsuffix.org/
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.scip.ch/en/?labs.20160218
https://www.scip.ch/en/?labs.20160218
https://www.farsightsecurity.com/solutions/dnsdb/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Identifying Device Server Names
	2.2 Detecting IoT Devices with Device Server IPs

	3 Results: IoT devices in the Wild
	3.1 Identifying Device Server Names
	3.2 IoT Devices in a College Campus
	3.3 IoT Devices at an IXP

	4 Validation
	5 Related Work
	6 Future Work
	7 Conclusion
	References

