
Detecting ICMP Rate Limiting in the Internet
(Extended)

USC/ISI Technical Report ISI-TR-717 April 2017

Hang Guo (hangguo@isi.edu) John Heidemann (johnh@isi.edu)

Abstract—Active probing with ICMP is the center of
many network measurements, with tools like ping, tracer-
oute, and their derivatives used to map topologies and as
a precursor for security scanning. However, rate limiting
of ICMP traffic has long been a concern, since undetected
rate limiting to ICMP could distort measurements, silently
creating false conclusions. To settle this concern, we look
systematically for ICMP rate limiting in the Internet. We
develop a model for how rate limiting affects probing,
validate it through controlled testbed experiments, and
create FADER, a new algorithm that can identify rate
limiting from user-side traces with minimal requirements
for new measurement traffic. We validate the accuracy
of FADER with many different network configurations in
testbed experiments and show that it almost always de-
tects rate limiting. Accuracy is perfect when measurement
probing ranges from 0 to 60× the rate limit, and almost
perfect (95%) with up to 20% packet loss. The worst
case for detection is when probing is very fast and blocks
are very sparse, but even there accuracy remains good
(measurements 60× the rate limit of a 10% responsive
block is correct 65% of the time). With this confidence,
we apply our algorithm to a random sample of whole
Internet, showing that rate limiting exists but that for slow
probing rates, rate-limiting is very, very rare. For our random
sample of 40,493 /24 blocks (about 2% of the responsive
space), we confirm 6 blocks (0.02%!) see rate limiting at
0.39 packets/s per block. We look at higher rates in public
datasets and suggest that fall-off in responses as rates
approach 1 packet/s per /24 block (14M packets/s from
the prober to the whole Internet), is consistent with rate
limiting. We also show that even very slow probing (0.0001
packet/s) can encounter rate limiting of NACKs that are
concentrated at a single router near the prober.

I. INTRODUCTION

Active probing with pings and traceroutes (ICMP
echo requests) are often the first tool network operators
turn to to assess problems, and widely used tools in
network research [11], [12], [17], [19], [21]. Studies of
Internet address usage [11], [7], [29], [20], [13], path
performance [17], outages [21], [25], Carrier-Grade NAT
deployment [24] DHCP churn [19] and topology [12],
[26], [6], [16], [18] all depend on ICMP.

An ongoing concern about active probing is that
network administrators rate limit ICMP. If widespread,
rate limiting could easily distort measurements, possibly
silently corrupting results. Researchers try to avoid rate

limiting by intentionally probing slowly and selecting
targets in a pseudo-random order [11], [14], but re-
cent work has emphasized probing as quickly as pos-
sible [8]. For IPv4 scanning, the Internet Census (2008)
sends 1.5k probe/s [11], IRLscanner (2010) sends 22.1k
probe/s [15], ZMap (2013) sends 1.44M probes/s [8],
or 14M probes/s in their latest revision [5], and Yarrp
(2016) sends 100k probes/s or more [6]. Assuming about
3 billion target addresses and pseudorandom probing,
these rates imply a probe arrives at a router handling a
given /16 every 0.003 to 30 seconds. Interest in faster
probing makes rate limit detection a necessary part of
measurement, since undetected rate limiting can silently
distort results.

Although rate limiting is a concern to active probing
and has been studied briefly in some papers that consider
active probing [26], [11], [10], [6], [13], we know only
two prior study explicitly looking for rate limiting in
the general Internet [23], [9]. The work from Universite
Nice Sophia Antipolis detect and characterize rate limit
to ICMP Time exceeded replies in response to expired
ICMP echo requests. [23]. However their detection is
expensive, requiring hundreds of vantage points and 17
probing rates to cover 850 routers in the Internet. More
importantly, they never look at rate limiting to ICMP
echo requests on forward path. Google studied traffic
policing of TCP protocol from server side traces [9],
Their detection depended on server-side traffic analysis
of billions of packets in Google’s CDN. Like those
prior works, we want to study rate limiting of ICMP
in global scale, but our goal is to do so in a lightweight
manner that does not require intensive traffic probing or
extensive sever-side data. Lightweight methods to detect
rate limiting will help researchers by preventing their
results from being distorted silently, while not adding
too much extra complexity and cost to their research.

Our first contribution is to provide a new lightweight
algorithm to detect ICMP rate-limiting and estimate rate
limit across the Internet. Our approach is based on two
insights about how rate-limiting affects traffic: first, a
rate-limiting will cause probe loss that is visible when
we compare slower scans with faster scans, and second,

this probe loss is randomized. As a result, we can analyze
two ICMP scans taken at different rates to identify rate
limiting at any rate less than the faster scan.

Our second contribution is to re-examine existing
public data for signs of ICMP rate limiting in the whole
Internet. We examine two different groups of data. First,
we use random samples of about 40k /24 blocks to
show that ICMP Rate limiting is very rare in the general
Internet for rates up to 0.39 packets/s per /24: only about
1 in 10,000 /24 blocks are actually rate limited. Thus it
is almost always safe to probe in this range. Second,
we look at higher rate scans (up to 0.97 packets/s) and
show the fall-off of responses in higher probing rates
is consistent with rate limits at rates from 0.28 to 0.97
packets/s per /24 in parts of the Internet.

Finally, although low-rate scans do not usually trigger
rate limiting, we show that rate limiting explains results
for error replies when Internet censuses cover non-routed
address space.

II. PROBLEM STATEMENT

Rate limiting is a facility provided in all routers to
allow network administrators to control access to their
networks. In most routers, rate limiting can be configured
in several ways. Administrators may do traffic policing,
limiting inbound ICMP (or TCP or UDP) to prevent
Denial-of-Service (DoS) attacks against internal net-
works. Routers also often rate-limit generation of ICMP
error messages (ICMP types 3 and 11, called here ICMP
NACKs) to prevent use of the router to attack others
(an attacker generate a stream ICMP NACK-generating
traffic, spoofing a victim’s address to amplify the attack’s
effects). ICMP rate limiting in either direction matters to
researchers. Limits on the forward path affect address
usage and outage studies [11], [23], while limits on
the reverse path affect studies that use traceroute-like
mechanisms [12], [26].

When a rate limit is reached, the router can simply
drop packets over the limit, or it can generate an error
reply (ICMP type 3). Most routers simply drop traffic
over the rate limit, but Linux IP tables can also generate
NACKs [4]. Dropping traffic over the rate limit matches
the typical goal of protecting the network from excessive
traffic, since generating NACKs adds more traffic to the
network.

Our paper develops FADER (Frequent Alternation
Availability Difference ratE limit detector), an algorithm
that can detect and estimate rate limits in the forward
path. Our method estimates the effective rate limit at
each target /24 block, or the aggregate rate limit of
intermediate routers across their covered space.

Our goal is to estimate rate limits while minimizing
network traffic on infrastructure: our approach works
from a single vantage point, and requires two scans

at different rates, detecting rate limits that take any
value between those rates. This goal is challenging for
two reasons: First, the amount of information conveyed
through two-rate probing from single vantage point is
very limited. Second, active probing data can be distorted
by potential events at target IP blocks like DHCP [19],
diurnal variation [22], and outages [21].

III. MODELING RATE LIMITED BLOCKS

Our detection algorithm is based on models of rate
limiting in commercial routers.

A. Rate Limit Implementations in Commercial Routers

We examined router manuals and two different router
implementations; most routers, including those from
Cisco [1] and Juniper [2], implement ICMP rate limiting
with some variation on a token bucket.

With a token bucket, tokens accumulate in a “bucket”
of size B tokens at a rate of L tokens/s. When the bucket
size is exceeded, extra tokens are discarded. When a
packet arrives, it consumes one token and is forwarded,
or the packet is discarded if the token bucket is empty
(we assume 1 token per packet, although one can use
tokens per bytes). Ideally (assuming smooth traffic), for
incoming traffic at rate P packets/s, if P < L, the traffic
is below rate limit and will be passed by token bucket
without loss. When P > L, initially all packets will
be passed as the bucket drains, then packet loss and
transmission will alternate as packets and tokens arrive
and are consumed. In the long run, when P > L, egress
traffic exits at rate L packets/s.

We only model steady-state behavior of the token
bucket because our active probing (section V) lasts long
enough (2 weeks, 1800 iterations) to avoid disturbance
from transient conditions.

B. Modeling Availability

We assume a block of addresses is behind a rate-
limited router, with all sharing a common IPv4 prefix of
some length. When not otherwise specified, we assume
blocks have /24 prefixes and use nB to represent number
of IP in a /24 block: 256. We first model the availability
of that block—the fraction of IPs in target block that
respond positively to our probing. We consider both the
true availability (A), ignoring rate limiting, and also the
observed availability (Â) as affected by rate limiting.

Two observations help model availability. From sub-
section III-A, recall that L packet/s pass (the rate limit),
when P packet/s are presented to the token bucket.
Therefore L/P is the proportion of probes that are
passed. Second, if N IPs in target block are responsive,
a non-rate-limited ping hits a responsive IP that replies
with probability N/nB . Putting above two observations

together gives us the model of rate limited block’s
availability:

A =
N

nB
and Â =

{
A(L/P), if P > L

A, otherwise
(1)

C. Modeling Response Rate

Response rate is the positive responses we receive
from target block per second. In our model Equation 2,
we consider both the true value (R) ignoring rate limit
and the observed value (R̂) affected by rate limit.

R =
N

nB
P and R̂ =

{
R(L/P), if P > L

R, otherwise
(2)

D. Modeling Alternation Count

Response Alternation is defined as the transition of
an address from responsive to non-responsive or the
other way around. For instance, if a target IP responds
positively twice in a row, then omits a response, then re-
sponds again, it alternates responses twice (from respon-
sive to non-responsive and back). Response alternation
is important to distinguish between rate limits and other
sources of packet loss—rate limits cause frequent alter-
nation between periods of packet response and drops as
the token bucket fills. Frequent alternation helps distin-
guish rate limiting from networks outages, since outages
are long-lived while rate-limits show as intermittent
failures. Frequent alternation is, however, less effective
in distinguishing rate limiting from transient network
congestion because congestion losses are randomized
(mostly due to our probes are randomized) and create
frequent alternation. An extra re-probing could ensure
the detection result are robust against potential false
positives caused by transient network congestion.

We model the count of observed response alternations,
Ĉ, both accurately and approximately. The accurate
model fits measured values very precisely over all values
of P/L, but requires enumerating the probabilities and
response alternation counts for all 2r possible cases for
r rounds of observation (where pn and cn in the model
are the probability and response alternation count of the
nth case). Since r is quite large for full datasets we
study in section V (our data has r = 1800 iterations),
this enumeration is not computable. The accurate model
is:

Ĉ =

{
N

∑2r

n=1 pncn, if P > L

0, otherwise
(3)

for a rate limit L, probing rate P and N ideal
responsive IPs.

The approximate model, on the other hand, provides
single expression covering all r but fits only when
P � L (so that consecutive packets from same sender
are never passed by token bucket). We use it in our
evaluation since it is computable when r = 1800. It
is:

Ĉ = 2(L/P)Nr, when P � L (4)

IV. DETECTING RATE LIMITED BLOCKS

The models (section III) assist our detection algorithm.

A. Input for Detection

Our detection algorithm requires low- and high-rate
measurements as input.

Low-rate measurements must be slower than any rate
limit that are detected. They therefore capture the true
availability (A) of target blocks. While they require that
we guess the range of possible rate limits, we observe
that most routers have a minimum value for rate limits
(for example, 640 kb/s for Cisco ME3600-A [1]), and
we can easily be well under this limit. An example of
a suitable low-rate scan is the ISI Internet censuses at
0.0001 pings/s per /24 block [11].

High-rate measurements must exceed the target rate
limit. It is more difficult to guarantee we exceed rate
limits because we do not want measurements to harm
target blocks with too much traffic. However, selecting
some high rate allows us to detect or rule out rate
limiting up to that rate; the high-rate sets the upper bound
for FADER’s detection range.

In addition, high-rate measurements must be repeated
to use the alternation detection portion of our algorithm
Algorithm 1. Validation shows that 6 repetitions is suffi-
cient for alternation detection (subsection VI-A), but our
existing datasets include as many as 1800 repetitions,
and our algorithms can detect rate-limiting candidates
without alternation count, although with a high false-
positive rate. An example high-rate measurement is the
ISI Internet surveys that repeatedly scan many blocks
about 1800 times at 0.39 pings/s per /24 block.

Both low- and high-rate measurements need to last
a multiple of 24 hours to account for regular diurnal
variations in address usage [22].

B. Four Phases of ICMP Rate Limiting

The models from section III allow us to classify
the effects of ICMP rate limiting on block availability
into four phases (Figure 1). Defined by the relationship
between probing rate P and rate limit L, these phases
guide our detection algorithm:

1) Non-RL (Non-Rate-Limited): when P < L, before
rate limiting has any effect,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

O
b
se

rv
e
d
 A

va
la

b
ili

ty

Probing Rate/Rate Limit

Non-RL
(P<L)

RL-Tran
(L<P<1.1L)

RL-Sat
(1.1L<P<100L)

RL-Rej
(100L<P)

Figure 1: Four phases of ICMP rate limiting, with Â as
a function of P/L.

2) RL-Tran (Rate Limit Transition): when L < P <
1.1L, rate limiting begins to reduce the response
rate with alternating responses. Â starts to fall but
is not distinguishing enough for detecting.

3) RL-Sat (Rate Limit Saturation): when 1.1L < P <
100L, rate limiting and frequent alternation are
common, and Â falls significantly.

4) RL-Rej (Rate Limit Rejection): when P > 100L
occurring at threshold Trej = P/L = 100. Here
Â < 0.01N/nB , most packets are dropped and
response alternations become rare.

These phases also help identify regions where no al-
gorithm can work: rate limits right at the probing rate, or
far above it. We use empirical thresholds 1.1L and 100L
to define these two cases. For rate limits that happen
to lie in the RL-Tran Phase (L < P < 1.1L)—here
there is not enough change in response for us to identify
rate limiting over normal packet loss. Fortunately, this
region is narrow. In addition, no algorithm can detect
rate limits in RL-Rej phase because such rate limited
block will look dark (Â < 0.01N/nB) and give too little
information (at most one response for every one hundred
probes sent) for anyone to know if it is a heavily rate
limited block or a non-rate-limited gone-dark block.

In subsection VI-B we show that our algorithm is
correct in the remaining large regions (Non-RL and RL-
Sat), provided P < 60L.

C. Detecting Rate Limited Blocks

FADER is inspired by observations that the RL-tran
phase is narrow, but we can easily tell the difference
between the non-RL and RL-Sat phases. Instead of trying
to probe at many rates, we probe at a slow and fast rate,
with the hope that the slow probes land in the non-RL
phase and with the goal of bracketing the RL-Tran phase.
If the target block shows much higher availability in slow
probing, we consider the block a rate limit candidate
and examine if its traffic pattern look like rate limiting:
consistent and randomized packet dropping and passing.

Algorithm 1 Frequent Alternation Test
Input:

Ĉ: observed response alternation count in high-rate mea-
surement
r: number of probing rounds in high-rate measurement
N̂L: number of responsive IPs observed in low-rate mea-
surement
N̂H : number of responsive IPs observed in each round of
high-rate measurement (where responsive IPs observed at
ith round is N̂Hi)

Output:
Ofat: results of frequent alternation test

1: if Ĉ > (2N̂Lr)/Trej and NOTDIRTMPDN(N̂H , N̂L, r)
then

2: Ofat ← Passed /∗ has frequent alternations ∗/
3: else
4: Ofat ← Failed /∗ no frequent alternations ∗/
5: end if

6: function NOTDIRTMPDN(N̂H , N̂L, r)
7: for i = 1 to r do
8: if N̂Hi ≥ N̂L then
9: return false

10: end if
11: end for
12: return true
13: end function

We first introduce Frequent Alternation Test Algo-
rithm 1 to distinguish rate limiting from other types of
packet loss.

This subroutine identifies the consistent and random-
ized packet dropping caused by rate limiting (by looking
for large number of responses alternations). Threshold
(2N̂Lr)/Trej is derived from our approximate alterna-
tion count model Equation 4. As low-rate measurement
is assumed non-rate-limited, we have N̂L (number of
responsive IPs observed in low-rate measurement) = N
(the number of responsive IP when non-rate-limited).
Recall that we do not try to detect rate limits in RL-
Rej phase (subsection IV-B), we have P < TrejL.
Substituting both into alternation count model, for a
rate limited block, there must be at least (2N̂Lr)/Trej

response alternations.
Function NotDirTmpDn filters out diurnal and tem-

porarily down blocks, which otherwise may be misinter-
preted (false positives) because their addresses also alter-
nate between responsive and non-responsive. NotDirTm-
pDn checks if any round of the high-rate measurement
looks like the daytime (active period) of diurnal block
or the up-time of temporarily down blocks, satisfying
N̂Hi

= N̂L or even N̂Hi
> N̂L

Next, we describe our detection algorithm FADER
(Algorithm 2).

FADER first detects if target block is rate-limited (line
1-19), producing “cannot tell” for blocks that are non-

Algorithm 2 FADER
Input:

ÂL: measured block availability in low-rate measurement
ÂH : measured block availability in high-rate measurement
N̂L: number of responsive IPs in low-rate measurement
Trej : lower bound of RL-Rej phase
Ofat: result of frequent alternation test

Output:
Ofader: detection result of FADER
L̂: estimated rate limit (if detect rate limit)

1: if ÂL = 0 or ÂH = 0 then /∗ target block down ∗/
2: Ofader ← Can-Not-Tell
3: else if N̂L < 10 then /∗ block barely responsive ∗/
4: Ofader ← Can-Not-Tell

/∗ if significant lower availability in faster probing ∗/
5: else if (ÂL − ÂH)/ÂL > 0.1 then
6: if ÂH/ÂL < 1/Trej then /∗ RL-Rej phase ∗/
7: Ofader ← Can-Not-Tell
8: else
9: if Ofat = Passed then

10: Ofader ← Rate-Limited
11: else /∗ no frequent alternations (most
∗/

12: /∗ likely target block temp down)
∗/

13: Ofader ← Can-Not-Tell
14: end if
15: end if

/∗ if no significant availability drop in faster probing ∗/
16: else if 0.1 > (ÂL − ÂH)/ÂL > −0.1 then
17: Ofader ← Not-Rate-Limited
18: else /∗ −0.1 > (ÂL − ÂH)/ÂL ∗/
19: Ofader ← Not-Rate-Limited
20: end if

/∗ estimate rate limit if detected ∗/
21: if Ofader = Rate-Limited then

22: L̂← nBÂHPH

N̂L
23: end if

responsive when probed or respond too little to judge.
No active measurement system can judge the status of
non-responsive blocks; mark such block as cannot-tell
rather than misclassifying them as rate limited or not.
In our experiments we see cannot-tell rates of 65%
when probing rate is 100 times faster than rate limit and
in average only 2.56 IPs respond in each target block
Figure 11a; these rates reflect the fundamental limit of
any active probing algorithm in an Internet with firewalls,
rather than a limit specific to our algorithm.

Once target block is detected as rate limited, FADER
estimates its rate limit (line 20-22). Note that threshold
N̂L < 10 used in line 3 is empirical, but chosen because
very sparse blocks provide too little information to reach
definite conclusions. Test (ÂL−ÂH)/ÂL > 0.1 in line 5
is derived by substituting P > 1.1L ,the lower bound of

RL-Sat phase (recall that we intentionally give up detect-
ing rate limits in RL-Tran Phase L < P < 1.1L), into
availability model Equation 1. Test ÂH/ÂL < 1/Trej

(line 6) is derived by substituting P > TrejL (the
threshold that we give up detection), into availability
model Equation 1. Estimating the rate limit (line 21)
inverts our availability model (Equation 1).

V. RESULTS: RATE LIMITING IN THE WILD

We next apply FADER to existing public Internet scan
datasets to learn about ICMP rate limiting in the Internet.
(We validate the algorithm later in section VI.)

A. How Many Blocks are Rate Limited in the Internet?
We first apply FADER to find rate limited blocks in

the Internet, confirming what we find with additional
probing.

Input data: Rather than do new probing, we use
existing Internet censuses and surveys as test data [11].
Reusing existing data places less stress on other networks
and it allows us to confirm our results at different
times subsection V-B. Table I lists the datasets we use in
result section and they are available publicly [27], [28].

Censuses and surveys define the low- and high-rates
that bound rate limits detected by our algorithm. A cen-
sus scans at at 0.0001 pings/s per block, while surveys
send 0.39 pings/s per block. These two rates provide the
low- and high-rates to test our algorithm. We could re-
run FADER with higher rates to test other upper bounds;
we report on existing higher rate scans in subsection V-C.

Both censuses and surveys are intentionally slow and
randomized, to spread out load on the Internet and
avoid abuse complaints. Surveys cover about 40k blocks
(30k of which are randomly selected and 10k randomly
selected drawn from specific levels of responsiveness),
and they probe those blocks about 1800 times over two
weeks, supporting Frequent Alternation detection. With
a 2% of the responsive IPv4 address space, randomly
chosen, our data provides a representative of the Internet.
Censuses cover almost the entire unicast IPv4 Internet,
but we use only the part that overlaps the survey.

Initial Results: Here we apply FADER to it71w, the
latest census and survey datasets, in Table II. We find
that most blocks are not rate limited (60%), while a good
number (39%) are cannot tell, usually because they are
barely responsive and so provide little information for
detection. However, our algorithm classifies a few blocks
(111 blocks, 0.27%) as apparently rate limited.

Validation with additional probing: To confirm our
results, we next re-examine these likely rate-limited
blocks, We re-probe each block, varying probing rates
from 0.01 to 20 ping/s per block to confirm the actual
rate limiting. Our additional probing is relatively soon
(one month) after our overall scan; it is unlikely that
many network blocks changed use in that short time.

Start Date (Duration) Size (/24 blocks) Alias Full Name
2016-08-03 (32 days) 14,460,160 it71w census internet_address_census_it71w-20160803
2016-08-03 (14 days) 40,493 it71w survey internet_address_survey_reprobing_it71w-20160803
2016-06-02 (32 days) 14,476,544 it70w census internet_address_census_it70w-20160602
2016-06-02 (14 days) 40,493 it70w survey internet_address_survey_reprobing_it70w-20160602
2013-09-17 (32 days) 14,477,824 it56j census internet_address_census_it56j-20130917
2013-11-27 (33 days) 14,476,544 it57j census internet_address_census_it57j-20131127
2014-01-22 (29 days) 14,472,192 it58j census internet_address_census_it58j-20140122

Table I: Datasets used in this paper

blocks studied 40,493 (100%)
not-rate limited 24,414 (60%)
cannot tell 15,941 (39%)
rate limited 111 (0.27%) (100%)

false positives 105 (0.25%) (95%)
true positives 6 (0.015%) (5%)

Table II: Application of FADER to it71w census and
survey.

Figure 2 shows this confirmation process for one
example block. Others are similar. In these graphs,
red squares show modeled availability and response rate,
assuming the block is rate limited (given the rate limit
estimation from our algorithm in Table III). Green line
with diamonds show the availability and response rate
if the block is not rate limited. For a rate limited block,
its measured availability and response rate would match
the modeled values with rate limiting. As Figure 2
shows, this block’s measured availability (blue dots)
and response rate (cyan asterisks) tightly matches the
modeled value with rate limiting (red squares) while
diverging from theoretical values without rate limiting
(green diamonds). This data shows that this block,
182.237.200.0/24, is rate limited.

Although this example shows a positive confirmation,
we find that most of the 111 blocks are false positives
(their availabilities and response rates in re-probing do
not match rate limit models). Only the 6 blocks listed in
Table III are indeed rate limited. Two reasons contribute
to this high false-positive rate. First, we design to favor
false positives to avoid missing rate-limited blocks (false
negatives). (by using necessary conditions: significant
lower availability in faster scan and frequent response
alternations in fast scan, to detect rate limitings). Sec-
ond, this trade-off (favoring false positives over false
negatives) is required to confirm the a near-absence of
rate limiting we observe. We rule out the possibility that
these false positives are caused by concurrent high-rate
ICMP activities at our target blocks by observing over
long durations and at different times (subsection V-B.

We use additional verification to confirm true posi-
tives. Among the 6 rate limited blocks, five belong to

Response Rate Availability Rate Limit (ping/s per blk)
/24 Block (measured, pkts/s) (ÂL, %) (measured) (estimated)
124.46.219.0 0.009 9.77 0.09 0.09
124.46.239.0 0.08 53.13 0.15 0.12
182.237.200.0 0.06 58.98 0.10 0.12
182.237.212.0 0.04 27.34 0.15 0.10
182.237.217.0 0.06 49.61 0.12 0.13
202.120.61.0 0.35 17.58 1.99 0.32

Table III: True rate limited blocks in the it71w Census
and Survey.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 20 0.1 1 10

A
v
a
la

b
ili

ty

Probing Rate (ping/s per/24)

Experimental Avalability
Modeled Avalability w/o Rate Limit
Modeled Avalability w/ Rate Limit

(a) Availability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 20 0.1 1 10

R
e
sp

o
n
se

 R
a
te

 (
E
ch

o
 R

e
p
ly

/s
)

Probing Rate (ping/s per /24)

Experimental Response Rate
Modeled Response Rate WO Rate Limit

Modeled Response Rate w Rate Limit

(b) Response Rate

Figure 2: Confirming block 182.237.200/24 is rate lim-
ited with additional probing.

the same ISP: Keumgang Cable Network in South Korea,
while the last block is from Shanghai Jiaotong University
in China. We have contacted both ISPs to confirm our
findings, but they did not reply.

Our first conclusion from this result is there are ICMP
rate-limited blocks, but they are very rare. We find only

0.02

0.04

0.07

 0

 0.1

08/03/16
08/05/16

08/07/16
08/09/16

08/11/16
08/13/16

08/15/16
08/17/16

08/19/16

R
e
sp

o
n
se

 R
a
te

Time (MM/DD/YY)

Experimental Value
Modeled Un-Rate-Limited

(a) It71w Survey

0.02

0.04

0.07

 0

 0.1

06/02/16
06/04/16

06/06/16
06/08/16

06/10/16
06/12/16

06/14/16
06/16/16

06/18/16

R
e
sp

o
n
se

 R
a
te

Time (MM/DD/YY)

Experimental Value
Modeled Un-Rate-Limited

(b) It70w Survey

Figure 3: Response rate (reply/s) of 202.120.61/24:
measured every 1000 s (cyan asterisks), compared to
expected when not rate-limited (green diamonds)

6 blocks in 40k, less than 0.02%.
Second, we see that each of FADER’s steps rule

out about 95% of all the blocks entering that rule.
As in Table IV, 2,088 out of 40,403 (5.2%) passed
phase 1 (Availability Difference Test) and 111 out of
2,088 (5.3%) passed phase 2 (Frequent Alternation Test).
However, even after two phases of filtering, there is still
a fairly high false positive rate in the remaining blocks,
since only 6 of 111 (5.4%) are finally confirmed as rate
limited.

Finally, we show that when we detect rate limiting, our
estimate of the rate limit are correct in general. Table III
shows this accuracy: five out of six rate limits observed
in re-probing closely match FADER’s estimates.

However our rate limit estimation (0.32 ping/s per
block) for block 202.120.61/24 is 5 times smaller than
the rate limit (1.99 pings/s) that we observe when we
re-probe. (We compute the rate limit when re-probing
by measuring R̂ (the response rate), ÂL and inverting
our response-rate model Equation 2.) When we review
the raw data, we believe that the rate limit for this block
changed between our measurements.

B. Verifying Results Hold Over Time

To verify our approach works on other datasets, we
also apply FADER to it70w census and survey data.

Number of Blocks (Ratio)
Test Name Input Passed Filtered
Availability Difference 40,403 2,088 (5.2%) 38,315 (94.8%)
Frequent Alternation 2,088 111 (5.3%) 1,977 (94.7%)
Re-probing Validation 111 5 (4.5%) 106 (95.5%)

Table IV: Results of rate-limit detection on it71w.

This data is taken two months before it71w and sharing
76% of the same target blocks. Detection results of
it70w data agrees with our previous conclusion, resulting
in about the same number of blocks identified as rate
limited (0.3%, 138 of 40,493) , and the same fraction as
actually limited (0.012%, 5). Of blocks that we confirm
as rate limited after re-probing, four also are detected
and confirmed in it71w. The fifth, 213.103.246/24, is
from ISP Swipnet of Republic of Lithuania and is not
probed in it71w.

We observe inconsistencies between it70w and it71w
for two blocks, 124.46.219/24 and 202.120.61/24. These
blocks are detected as rate limited blocks in it71w,
but are classified as Can-Not-Tell and Not-Rate-Limited
respectively in it70w. We believe one block is hard
to measure, and the other actually changed its use
between the measurements. Block 124.46.219/24 is only
sparsely responsive, with only 25 addresses responding
(9.8%). Most of our probes to this block go to non-
responding addresses are dropped, making it difficult
to detect rate limiting (as shown in subsection VI-D).
For the 202.120.61/24 block, we believe it is not rate
limited in it70w even though it is in it71w. Figure 3b
shows its response in the it70w survey; this measured
response-rate closely matches what we expect without
rate limiting. In comparison, measured response rate
in it71w is strictly below expected value without rate
limiting as shown in Figure 3a, matching our expectation
of reduced response rate under rate limiting.

C. Is Faster Probing Rate Limited?

Having shown that rate-limited blocks are very rare,
at least when considering rates up to 0.39 packets/s,
we next evaluate if faster probing shows signs of rate
limiting. We study ZMap TCP-SYN probing datasets
from 0.1M to 14M packet/s [5] (0.007 to 0.97 packets/s
per /24 block as estimated in subsubsection V-C2) and
show rate limiting could explain the drop-off in response
they see at higher rates. Although both our models and
FADER were originally designed for ICMP rate limiting,
they also detect TCP-SYN rate limiting because they
detect the actions of the underlying token bucket.

ZMap achieves a probing rate of 14.23M packets/s
allowing a full scan of IPv4 in about 4 minutes [5]. To
evaluate these very fast rates, they perform a series of 50-
second experiments from 0.1M to 14M packets/ [1], [2].
Each experiment targets a different random sample of
an IP pool of about 3.7 billion addresses. Their probing

Scan Rate Hit Rate Duration

1.44 Mpps (≈1 GigE) 1.00 42:08
3.00 Mpps 0.99 20:47
4.00 Mpps 0.97 15:38
14.23 Mpps (≈10 GigE) 0.63 4:29

Table 1: Performance of Internet-wide Scans — We show the
scan rate, the normalized hit rate, and the scan duration (m:s) for
complete Internet-wide scans performed with optimized ZMap.

IP address using the address constraint tree, and creates
an addressed packet in the PF_RING ZC driver’s mem-
ory. The packet is added to a per-thread single-producer,
single-consumer packet queue. The send thread reads
from each packet queue as packets come available, and
sends them over the wire using PF_RING.

To determine the optimal number of packet creation
threads, we performed a series of tests, scanning for 50
seconds using 1–6 packet creation threads, and measured
the send rate. We find the optimal number of threads
corresponds with assigning one per physical core.

4 Evaluation

We performed a series of experiments to characterize the
behavior of scanning at speeds greater than 1 Gbps. In
our test setup, we completed a full scan of the public IPv4
address space in 4m29s on a server with a 10 GigE uplink.
However, at full speed the number of scan results (the hit
rate) decreased by 37% compared to a scan at 1 Gbps,
due to random packet drop. We find that we can scan at
speeds of up to 2.7 Gbps before seeing a substantial drop
in hit rate.

We performed the following measurements on a Dell
PowerEdge R720 with two Intel Xeon E5-2690 2.9 GHz
processors (8 physical cores each plus hyper-threading)
and 128 GB of memory running Ubuntu 12.04.4 LTS and
the 3.2.0-59-generic Linux kernel. We use a single port
on a Intel X540-AT2 (rev 01) 10 GigE controller as our
scan interface, using the PF_RING-aware ixgbe driver
bundled with PF_RING 6.0.1. We configured ZMap to
use one send thread, one receive thread, one monitor
thread, and five packet creation threads.

We used a 10 GigE network connection at the Uni-
versity of Michigan Computer Science and Engineering
division connected directly to the building uplink, an
aggregated 2× 10 GigE channel. Beyond the 10 GigE
connection, the only special network configuration ar-
ranged was static IP addresses. We note that ZMap’s
performance may be different on other networks depend-
ing on local congestion and upstream network condi-
tions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

H
it

R
at

e
(N

or
m

al
iz

ed
)

Speed (pps)

ZMap
Masscan

Figure 2: Hit-rate vs. Scan-rate — ZMap’s hit rate is roughly
stable up to a scan rate of 4 Mpps, then declines linearly. This
drop off may be due to upstream network congestion. Even
using PF_RING, Masscan is unable to achieve scan rates above
6.4 Mpps on the same hardware and has a much lower hit rate.

We performed all of our experiments using our lo-
cal blacklist file. Our blacklist, which eliminates non-
routable address space and networks that have requested
exclusion from scanning [6], consists of over 1,000 entries
of various-sized network blocks. It results in 3.7 billion
allowed addresses—with almost all the excluded space
consisting of IANA reserved allocations.

4.1 Hit-rate vs. Scan-rate

In our original ZMap study, we experimented with var-
ious scanning speeds up to gigabit Ethernet line speed
(1.44 Mpps) and found no significant effect on the num-
ber of results ZMap found [7]. In other words, from our
network, ZMap did not appear to miss any results when it
ran faster up to gigabit speed.

In order to determine whether hit-rate decreases with
speeds higher than 1 Gigabit, we performed 50 second
scans at speeds ranging from 0.1–14 Mpps. We performed
3 trials at each scan rate. As can be seen in Figure 2, hit-
rate begins to drop linearly after 4 Mpps. At 14 Mpps
(close to 10 GigE linespeed), the hit rate is 68% of the
hit rate for a 1 GigE scan. However, it is not immediately
clear why this packet drop is occurring at these higher
speeds—are probe packets dropped by the network, re-
sponses dropped by the network, or packets dropped on
the scan host due to ZMap?

We first investigate whether response packets are being
dropped by ZMap or the network. In the original ZMap
work, we found that 99% of hosts respond within 1 sec-
ond [7]. As such, we would expect that after 1 second,
there would be negligible responses. However, as can be
seen in Figure 3, there is an unexpected spike in response
packets after sending completes at 50 seconds for scans at
10 and 14 Mpps. This spike likely indicates that response

4

Figure 4: The Original ZMap 50-Second Experiment
Availability (Hit-Rate) Chart from Figure 2 in ZMap
paper [5]

results show overall availability (the fraction of positive
responses of all hosts that are probed) is roughly stable
for probing rates up to 4M packets/s. However, when
probing rates exceed 4M packets/s, the availability starts
to decline linearly as the probing increases. At 14M
packets/s they see availability that is only 67% of the
availability of measurements at 4M packet/s. They state
that they do not know the exact reason for this decline.
Figure 4, which is a copy of Figure 2 in ZMap paper [5],
visualize this linear availability drop from 4M to 14M
packets/s.

We believe the cause of this drop is rate limiting—
once rate limits are exceeded, as the packet rate in-
creases, availability drops. We also believe that there
are roughly the same amount of rate limiting at each
packet rate between 4M and 14M packets/s (0.28 to 0.97
packets/s per /24 as estimated in subsubsection V-C2) in
the Internet, causing the overall availability drop to be
linear.

We would like to apply FADER to ZMap probing
results. Unfortunately we cannot because there is no
way to recover the exact IPs that are probed in each
experiment, so we cannot compare observed availability
against actual (they probe in a pseudorandom sequence,
but do not preserve the seed of this sequence). In
addition, each of their experiments is a one-time run,
so we can not look for response alternation.

However we still manage to reveal signs of rate
limiting in ZMap probing result with existing ZMap data.
(We chose not to collect new, high-rate ZMap data to
avoid stressing target networks.) we create a model of
their measurement process and show rate limiting can
cause the same drop in availability as the probe rate
increases subsubsection V-C1. We also show availability
of many ZMap target blocks match our expectation

of availability of rate limited blocks by statistically
estimating the number of IPs probed in each block and
the block availability subsubsection V-C2.

1) Rate Limiting Can Explain ZMap Probing Drop-
Off: To support our hypothesis that rate limiting is the
cause of the linear drop in availability in ZMap probing
results, we create a model of their measurement process
and show rate limiting can cause the same probing
results.

Our model, shown in Figure 5, simulates the whole
measurement process of ZMap 50-second experiments.
More specifically, we model a simplified network topol-
ogy that just captures rate limiting and the traffic gener-
ated by ZMap 50-second experiments.

In our modeled network topology, there is one prober
and 100 rate-limiting routers whose rate limits are 40k
(4M/100) packets/s, 41k (4.1M/100) packets/s, all the
way up to 139k (13.9M/100) packets/s. We use 100
routers, each with a rate limit 1k packets/s faster than the
one before, to match our assumption that there are same
amount of rate limiting at every probing rate from 4M to
14M packets/s. Each router covers roughly 1/100th of the
3.7 billion IP addresses 1.08% of which are responsive
to TCP-SYN probing. (1.08% is the availability before
linear drop in ZMap data) In each experiment, prober
probes a random sample of this 3.7 billion IP pool with
P packets/s for 50 seconds. As a consequence, there are
roughly (50/100)P target IPs behind each router in each
experiment.

It is reasonable to assume at least one probe is
sent to each target /24 block because the set of ZMap
experiments we care about (from 4M to 14M packets/s)
send in average 14 to 48 probes to each target /24 block
as the probes are uniform random.

Availability (Figure 6a) and response rate (Figure 6b)
produced by this model (red square in the charts)
matches those in ZMap probing results (blue rounds
in the charts) closely. The similarity of the results of
our model to their experimental results suggests that
our simple model can provide a plausible explanation
for the packet loss observed at their fast probing. We
know that our model is limited—the Internet is not 100
routers each handling 1/100th of ZMap traffic. However,
it shows that it is possible to explain the fall-off in ZMap
response with rate limiting. The precision of our model
isn’t very surprising because we set up this model to
simulate ZMap data. If we could determine the exact IPs
that are probed and carry out multiple passes, we could
apply the complete FADER and draw a clear picture of
rate limitings in fast probing.

2) Availability of ZMap Target Blocks Shows Signs of
Rate Limiting: Observing that rate limits are consistent
with the drops in response of ZMap at high speeds, we
next apply FADER to ZMap data to look for specific

Figure 5: Rate limiting model for ZMap data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 6 8 10 12 14 0

A
v
a
la

b
ili

ty
(%

)

Probing Rate (*106 packet/s)

Modeled Avalability with Rate Limit
Zmap Experimental Avalability

(a) Availability Comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 4 6 8 10 12 14 0R
e
sp

o
n
se

 R
a
te

 (
*1

0
5
 p

a
ck

e
ts

/s
)

Probing Rate (*106 packets/s)

Modeled Response Rate with Rate Limit
Zmap Experimental Response Rate

(b) Response Rate comparison

Figure 6: Our modeled availability and response rate
(Red) closely matches the experimental values in ZMap
probing results (Blue, 3 trials at each probing rate)

blocks that appear to be rate limited. (We cannot apply
Frequent Alternation Test with single-round ZMap data
so we omit this test.)

Input data: A challenge in using ZMap data is there
is no easy way to recover what specific addresses are
probed in an incomplete run—we know the order is
pseudo-random, but they do not provide the seed.

We address this gap by statistically estimating the
number of IPs probed in each block, assuming pseu-
dorandom probes into the same 3.7 billion IPv4 pool.
Assuming uniform sampling, about same number of IP
will be sampled from each /16 block in the pool. (Here

we look at /16 blocks instead of /24 blocks because
larger blocks decrease the statistical variance.) As a
consequence, for a 50-second ZMap scan of P packets/s,
approximately 50P/(3.7× 109)× 216 IPs are probed in
each /16 block, given 50P/(3.7×109) as the fraction of
addresses probed in 50s, against a target 216 addresses
in size. We then estimate availability of each /16 block
as the fraction of target IPs that respond positively to
probes. We estimate probe rates by substituting 28 for
216, finding that ZMap probing rates are 0.007 to 0.97
packets/s per /24 block.

Initial Results: We next apply FADER to detect rate
limiting (assuming all blocks pass Frequent Alternation
Tests). For each ZMap target block, we use slowest 50 s
scan (0.1M packets/s) as the low-rate measurement and
test each of the other 15 faster ZMap scans as high-rate
measurement. This gives us 15 test results (each at a
different high rate), for each target block. We consider a
block as potentially rate limited if it is detected as rate
limited in at least one test. We do not consider the other
blocks (cannot tell or not-rate limited) further.

Table V shows detection results. Most ZMap target
blocks (53,149 blocks, 93.99%) are cannot tell in all
15 FADER tests (43,067 of them due to target block
went completely dark during low-rate measurement and
provide no information for detection). A good number
of them (3,090 blocks, 5.46%) are classified as rate-
limited in at least one FADER test and are thus con-
sidered potentially rate-limited. It’s worth noting that
most (69.68%) of those potentially rate-limited blocks
are consistently classified as rate-limited in most FADER
tests (at least 13 out of 16 tests), supporting our claim
that those blocks are potentially rate-limited.

Confirmation with Additional Examinations: Our
algorithm is optimized to avoid false negatives, so we
know many of these potential rate limited blocks are
false positives. Since we cannot do Frequent Alternation
Tests, to further filter out false positive and false negative
in detection results, we manually check a 565 (1%)
random sample of 56,500 ZMap target blocks. Of these
sample blocks, 31 are detected as rate-limited in at least
one FADER test and are considered potentially rate-

blocks studied 56,550 (100%)
0 rate limited 53,460 (94.54%) (100%)

15 cannot tell 53,149 (93.99%) (99.42%)
15 not-rate limited 311 (0.55%) (0.58%)
others 0 (0%) (0%)

at least 1 rate limited 3,090 (5.46%) (100%)
at least 13 rate limited 2,153 (3.81%) (69.68%)
less than 13 rate limited 937 (1.66%) (30.32%)

Table V: Applying 15 FADER Tests to Each of ZMap
Target /16 Blocks

 0

 0.1

 0.2

0.1M 1M 4M 14M

A
v
a
la

b
ili

ty

Probing Rate (packets/s)

ZMap Avalability

(a) 125.182/16 in Log Scale

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2M 4M 6M 8M 10M 12M 14M

A
v
a
la

b
ili

ty

Probing Rate (packets/s)

ZMap Avalability

(b) 50.62/16 in Linear Scale

Figure 7: Two ZMap Target Blocks Showing Multiple
Rate Limits

limited. Among the other 534 blocks (that are detected
as rate limited in zero test and are considered cannot
tell or not-rate limited), 532 are classified as cannot tell
in all 15 FADER tests while 2 are classified as not-rate
limited in all 15 tests.

We find the 534 cannot tell or not-rate limited blocks
to be true negative. They either have almost 0 ÂL or
ÂH (providing no information for detection) or become
more available at higher probing rate (opposing our
expectation of reduced availability at faster scan)

All 31 potential rate-limited blocks show reduced
availability at higher probing rates (regardless of jitter
caused by probing noise and distortion introduced by our
statistical estimation), matching our expectation of rate
limited blocks. We also find 7 of them appear to have
more than one rate limits. For example, block 125.182/16
in Figure 7a looks like a superposition of Â curves of
two rate limits: one at 0.5M packets/s, the other at 4M
packets/s (recall the ideal Â curve a of rate limited block
in Figure 1). Block 50.62/16 in Figure 7b, on the other
hand, show nearly linear drops in availability as probing
rates get higher, suggesting it consists of multiple rate
limits (reasons are similar as in subsubsection V-C1).
We manually check each /24 blocks in those two /16
blocks, and it appears that those /24 blocks indeed have
multiple rate limits. This observation supports our claim
that different parts of the /16 have different rate limits.

D. Rate Limiting of Response Errors at Nearby Routers

Although we have shown that probing rates up to 0.39
pings/s trigger rate limits on almost no target blocks, we
next show that even slow probing can trigger rate limits

when traffic to many targets is aggregated at a nearby
router.

In the it57j census we see this kind of reverse-path
aggregation because a router near our prober generates
ICMP error messages for packets sent to unrouted IPv4
address space. We examine millions of NACK replies in
this census and see they are all generated by the same
router. We confirm this router is near our prober with
traceroute and based on the hostname.

This router sees about 500 ping/s, about one-third of
census traffic. The router was configured to generate
ICMP error message (NACKs), but it had NACK rate
limiting of about 80 NACK/s.

To better understand this procedure, we visualize re-
sponses from one of the target block in it57j census. Fig-
ure 8 shows block 103.163.18/24, one of the unreachable
blocks behind this router. It56j census Figure 8a shows
the whole block is non-responsive and so is the first half
of It57j census. Figure 8b However in the middle of it57j
census (16/12/2013 GMT), this router began to generate
NACK feedback for probes targeting unreachable IPs.
Rather than each probe drawing a NACK, we instead
see a roughly constant rate of 1.64 NACK/day. Similar
NACK traffic is also seen in the it59j Census Figure 8c.
This response is consistent with a rate limited return
path.

VI. VALIDATION

We validate our model against real-world routers and
our testbed, and our algorithm with testbed experiments.

A. Does the Model Match Real-World Implementations?
We next validate our models for availability, response

alternation, and response rate of rate-limited blocks. We
show they match the ICMP rate limiting implementations
in two carrier-grade, commercial routers and our testbed.

Our experiments use two commercial routers (Cisco
ME3600-A and Cisco 7204VXR) and one Linux box
loaded with Linux filter iptables as rate limiters. Our
measurement target is a fully responsive /16 block,
simulated by one Linux box loaded with our customized
Linux kernel [3]. In each experiment, we run a 6-round
active ICMP probe, with the rate changing from below
the limit to at most 7500× the rate limit (while fixing
rate limit), pushing our model to extremes.

We begin with validating our availability model from
Equation 1. Figure 9 shows model predicted availability
(the red line with squares) closely matches router exper-
iments (blue line with dots on the left graph) and testbed
experiments (blue line with dots on the right graph) from
below to above the rate limit.

We validate our response rate model from Equation 2.
We omit this data due to space limitations, but our
response rate model is accurate from a response rate of
0.01 to 90× the rate limit.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

09/12/13

09/19/13

09/26/13

10/03/13

10/10/13

10/17/13

10/24/13

Pe
rc

e
n

ta
g

e

Time (MM/DD/YY)

Other Reply
No Response

NACK
Echo Reply

(a) It56j Census

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

11/21/13

11/28/13

12/05/13

12/12/13

12/19/13

12/26/13

01/02/14

Pe
rc

e
n

ta
g

e

Time (MM/DD/YYY

Other Reply
No Response

NACK
Echo Reply

(b) It57j Census

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

01/16/14

01/23/14

01/30/14

02/06/14

02/13/14

02/20/14

02/27/14

Pe
rc

e
n

ta
g

e

Time (MM/DD/YY)

Other Reply
No Response

NACK
Echo Reply

(c) It58j Census

Figure 8: Responses from 103.163.18/24 over time (every 1.85 day)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 1 4 8 0.1

A
va

la
b
ili

ty

Probing Rate/Rate Limit

Experimental Avalability
Modeled Avalability

(a) Router Experiment: Up To 8 Times Rate Limit

 0

 0.2

 0.4

 0.6

 0.8

 1

7500 0.01 0.1 1 10 100 1000

A
va

la
b
ili

ty

Probing Rate/Rate Limit

Experimental Avalability
Modeled Avalability

(b) Testbed Experiment: Up To 7500 Times Rate Limit

Figure 9: Validating the availability model.

We next validate our models of alternation counts
(Equation 3 and Equation 4). Figure 10a shows precise
model fits perfectly from below the rate limit up to
7500× the rate limit Figure 10b shows the abstract model
(defined in Equation 4) fits when P � L. In our case,
with 6 rounds of active probing, the approximate model
fits when P > 10L.

We are unable to validate alternation count model with
commercial routers; the routers are only available for a
limited time. But we believe testbed validations shows
the correctness of our alternation counts models since
we have already shown rate limiting in testbed matches
that of two commercial routers.

 0

 200

 400

 600

 800

 1000

0.1 7500 1 10 100 1000

A
lt

e
rn

a
ti

o
n

 C
o
u

n
t

Probing Rate/Rate Limit

Experimental Value
Modeled Value

(a) Precise Model

 0

 500

 1000

 1500

 2000

 2500

 3000

0.1 7500 1 10 100 1000

A
lt

e
rn

a
ti

o
n

 C
o
u

n
t

Probing Rate/Rate Limit

Experimental Value
Modeled Value

(b) Approximate Model

Figure 10: Validation of the Alternation Count Model,
up to 7500× rate limit.

B. Correctness in Noise-Free Testbed

We next test the correctness of FADER in a testbed
without noise. For our noise-free experiment, we run our
high-rate measurement probing from 1.6L all the way
to 240L stressing FADER beyond its designed detecting
range P < 60L.

Figure 11a shows that FADER detection is perfect
for P < 60L. However, as we exceed FADER’s design
limit (60L), it starts marking blocks as can-not-tell. The
fraction of can-not-tell rises as P grows from 60L to
144L. Fortunately, without packet loss, even when the
design limit is exceeded, FADER is never incorrect (it
never gives a false positive or false negative), it just
refuses to answer (returning can-not-tell).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 60 100 144 240

Pe
rc

e
n
ta

g
e
 o

f
R

e
p
ly

Probing Rate/Rate Limit

Detections
Correctness Can-Not-Tell

(a) Detection Correctness

 0

 0.5

 1

 1.5

 2

 2.5

0 60 100 144

R
a
te

 L
im

it
 E

st
/R

a
te

 L
im

it

Probing Rate/Rate Limit

Experimental Rate Limit Est
Rate Limit Groundtruth

(b) Rate Limit Estimation

Figure 11: FADER detection in a noise-free environment.

In addition to detecting rate limiting, FADER gives an
estimate of what that rate limit is. Figure 11b shows the
precision of its estimation, varying P from L to 144L,
The rate limit estimate is within 7% (from −4.2% to
+6.9%) when P < 60L, and it drops gradually as the
design limit is exceed.

C. Correctness in the Face of Packet Loss

We next consider FADER with packet loss, one form
of noise. Packet loss could be confused with loss due to
rate limiting, so we next we vary the amount of random
packet loss from 0 to 60%.

Figure 12a shows FADER detection as packet loss
increases. There is almost no misdetection until probe
rates become very high. At the design limit of P = 60L,
we see only about 4% of trials are reported as cannot
tell.

While ability to detect is insensitive to noise, our esti-
mate of the rate limit is somewhat less robust. Figure 12b
shows that packet loss affects our estimate of the value of
the rate limit (here we fix P = 26L, but we see similar
results for other probe rates). Error in our rate limit is
about equal to the dropping rate (at 20% loss rates, the
median estimate of rate limit is 20.72% high).

D. Correctness with Partially Responsive Blocks

We next consider what happens when blocks are
only partially responsive. Partially responsive blocks are

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60A
b

ili
ty

 t
o
 D

e
te

ct
 (

Pe
rc

e
n

t)

Probing Rate/Rate Limit

No Noise
2% Noise

4% Noise
6% Noise

8% Noise
10% Noise
15% Noise
20% Noise

(a) Detection Correctness

 0

 0.5

 1

 1.5

 2

0 2 4 6 8 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
te

 L
im

it
 E

st
/R

a
te

 L
im

it

R
a
te

 L
im

it
 E

st

Noise Level (Percent)

Rate Limit Estimation
True Rate Limit Value

(b) Rate Limit Estimation When P = 26L

Figure 12: FADER detection with packet loss.

more difficult for FADER because probes sent to non-
responsive addresses are dropped, reducing the signal
induced by rate limiting. Here we vary probe rate for
different density blocks. (We hold other parameters fixed
and so do not add packet loss.)

In Figure 13a we vary the relative probing rate and
plot separate lines for each level of block responsiveness.
In general, the number of can-not-tell responses increase
as block responsiveness falls, but only when the probe
rate is also much greater than the rate limit. In the
worst case, with only 10% of IPs responding at a probe
rate 60× the rate limit 35% of tries report can-not-tell.
Fortunately, even in these worst cases, the algorithm
reports that it cannot tell rather than silently giving a
wrong answer.

Figure 13b shows the rate limit output by FADER
as the block density changes. We show median and
quartiles with box plots, and minimum and maximum
with whiskers. The median stays at the true value, but the
variance increases, as shown by generally wider boxes
and whiskers. Here P = 26L; we see similar results at
other probing rates.

E. Correctness in Other Network Conditions

FADER is designed for the general Internet, but we
consider how blocks that use DHCP or for mobile
networks might affect its accuracy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60A
b

ili
ty

 t
o
 D

e
te

ct
 (

Pe
rc

e
n

t)

Probing Rate/Rate Limit

100% Responsive
90% Responsive
80% Responsive
70% Responsive
60% Responsive

50% Responsive
40% Responsive
30% Responsive
20% Responsive
10% Responsive

(a) Detection Correctness

 0

 0.5

 1

 1.5

 2

90 80 70 60 50 40 30 20 10
 0

 0.2

 0.4

 0.6

 0.8

 1

R
a
te

 L
im

it
 E

st
/R

a
te

 L
im

it

R
a
te

 L
im

it
 E

st

Responsive Addresses (Percent)

Rate Limit Estimation
True Rate Limit Value

(b) Rate Limit Estimation When P = 26L

Figure 13: FADER detection with partially responsive
target blocks.

DHCP: Addresses turnover in a DHCP block might
affect FADER: long-term changes may affect it’s com-
parison of availability (line 5, 16 and 18 in Algorithm 2),
and short-timescale turnover might appear to be frequent
alternation (Algorithm 1). When a DHCP allocates ad-
dresses sequentially from large block (multiple /24s),
some of its /24 components may switch from busy to
completely unutilized. When empty, FADER’s availabil-
ity comparison will trigger, but not frequent alternation.

FADER’s frequent alternation test will be fooled by
short-term changes in DHCP address use (around min-
utes). However, DHCP studies suggest that typical churn
occurs on timeframes of 5 to 61 hours [19], so DHCP
churn will not usually effect FADER.

Mobile Networks: Mobile networks (telephones) may
have higher packet loss than typical due to wireless
fading. However as validation subsection VI-C shows,
random loss does not affect FADER’s detection preci-
sion, although it does gradually decrease precision of
rate limit estimation as loss increases.

VII. RELATED WORK

Two other groups have studied the problem of detect-
ing rate limits in the Internet.

Work from Universite Nice Sophia Antipolis studies
router rate-limiting for traceroutes [23]. Specifically, they

study ICMP, Type 11, Time exceeded replies on reverse
paths.

They detect rate limit by launching TTL-limited ICMP
echo requests from 180 vantage points, varying the
probing rate from 1 to 4000 ping/s. Their algorithm looks
for constant response rates as a sign of rate limits. They
studied 850 routers and found 60% to do rate limiting.
Our work has several important differences. The overall
result is quite different: they find 60% of reverse paths
are rate limited in their 850 routers, measured up to 4000
ping/s, while we find only 0.02% of forward paths in 40k
/24 blocks are rate limited, with measurements up to 0.39
pings/s.

We believe that both their results and ours are correct.
Many routers have reverse-path rate limiting on by de-
fault, consistent with their results. Our approach provides
much broader coverage and generates less additional
traffic since we reuse existing data at a lower rate.
Our work uses a different signal (availability difference
between fast and slow probing), and we add detection
of frequent alternation to filter known false positives.
Finally, we concentrate on the forward path, so our
results apply to address allocation information, while
they focus on reverse path, with results that apply to
fast traceroutes.

Google recently examined traffic policing, particularly
in video traffic [9]. Their analysis uses sampled mea-
surement from hundreds of Google CDNs to millions
of users of YouTube. They provide a thorough analysis
on the prevalence of policing and the interaction between
policing and TCP. They also provide suggestions to both
ISP and content providers on how to mitigate negative
effect of traffic policing on user quality of experience.
Their focus on TCP differs from ours on ICMP rate-
limiting. Their coverage is far greater than ours, although
that coverage is only possibly because Google is a
major content provider. They find fairly widespread rate
limiting of TCP traffic, but their subject (TCP video) is
much faster than ours (ICMP) that such differences in
results are not surprising.

VIII. CONCLUSION

Undetected rate limiting can silently distort network
measurement and bias research results. We have de-
veloped FADER, a new, light-weight method to detect
ICMP rate limiting. We validated FADER against com-
mercial routers and through sensitivity experiments in
a testbed, showing it is very accurate at detecting rate
limits when probe traffic is between 1 and 60× the rate
limit.

We applied FADER to a large sample of the Internet
(40k blocks) on two separate dates. We find that a only
a tiny fraction (0.02%) of Internet blocks are ICMP
rate limited up to 0.39 pings/s per /24 block. We also

examined public high-rate datasets (up to about 1 ping/s
per /24 block) and showed their probing results are
consistent with rate limitings. We only see significant
rate limiting on the reverse path when routers near
the prober see a large amount of traffic. We conclude
that low-rate ICMP measurement (up to 0.39 ping/s
per block) are unlikely to be distorted while high-rate
measurement (up to 1 ping/s per block) risks being rate
limited.

ACKNOWLEDGMENTS

Hang Guo and John Heidemann’s work is partially
sponsored by the Department of Homeland Security
(DHS) Science and Technology Directorate, HSARPA,
Cyber Security Division, BAA 11-01-RIKA and Air
Force Research Laboratory, Information Directorate un-
der agreement number FA8750-12-2-0344 and via con-
tract number HHSP233201600010C. The U.S. Govern-
ment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copy-
right notation thereon. The views contained herein are
those of the authors and do not necessarily represent
those of DHS or the U.S. Government.

REFERENCES

[1] Cisco Manual For Configuring Traffic Policing.
http://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x
3800x/software/release/15-3 2 S/configuration/guide/
3800x3600xscg/swqos.html#wp999715.

[2] Juniper Manual For Configuring Traffic Policing.
http://www.juniper.net/techpubs/en US/junos14.2/topics/
concept/policer-types.html.

[3] rejwreply: a linux kernel patch that adds echo-reply to feed-
back type of iptable REJECT rule. https://ant.isi.edu/software/
rejwreply/index.html.

[4] Ubuntu User Manual for IPtables. http://manpages.ubuntu.com/
manpages/natty/man8/iptables.8.html.

[5] David Adrian, Zakir Durumeric, Gulshan Singh, and J. Alex
Halderman. Zippier ZMap: Internet-wide scanning at 10 Gbps. In
Proceedings of the USENIX Workshop on Offensive Technologies,
San Diego, CA, USA, August 2014. USENIX.

[6] Robert Beverly. Yarrp’ing the internet: Randomized high-speed
active topology discovery. In Proceedings of the ACM Internet
Measurement Conference, Santa Monica, CA, USA, November
2016. ACM.

[7] Alberto Dainotti, Karyn Benson, Alistair King, kc claffy, Michael
Kallitsis, Eduard Glatz, and Xenofontas Dimitropoulos. Estimat-
ing Internet address space usage through passive measurements.
ACM Computer Communication Review, 44(1):42–49, January
2014.

[8] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Zmap:
Fast internet-wide scanning and its security applications. In Pro-
ceedings of the 22Nd USENIX Conference on Security, SEC’13,
pages 605–620, Berkeley, CA, USA, 2013. USENIX Association.

[9] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa,
Yuchung Cheng, Tayeb Karim, Ethan Katz-Bassett, and Ramesh
Govindan. An Internet-wide analysis of traffic policing. In
Proceedings of the ACM SIGCOMM Conference, pages 468–482,
Floranopolis, Brazil, 2016. ACM.

[10] Mehmet H. Gunes and Kamil Sarac. Analyzing router respon-
siveness to active measurement probes. In Proceedings of the
10th International Conference on Passive and Active Network
Measurement, PAM ’09, pages 23–32, Berlin, Heidelberg, 2009.
Springer-Verlag.

[11] John Heidemann, Yuri Pradkin, Ramesh Govindan, Christos
Papadopoulos, Genevieve Bartlett, and Joseph Bannister. Census
and survey of the visible internet. In Proceedings of the 8th
ACM SIGCOMM Conference on Internet Measurement, IMC ’08,
pages 169–182, New York, NY, USA, 2008. ACM.

[12] Bradley Huffaker, Daniel Plummer, David Moore, and k claffy.
Topology discovery by active probing. In Proceedings of the
IEEE Symposium on Applications and the Internet, pages 90–96.
IEEE, January 2002.

[13] Youndo Lee and Neil Spring. Identifying and aggregating
homogeneous IPv4 /24 blocks with hobbit. In Proceedings of
the ACM Internet Measurement Conference, Santa Monica, CA,
USA, November 2016. ACM.

[14] Derek Leonard and Dmitri Loguinov. Demystifying service dis-
covery: Implementing an internet-wide scanner. In Proceedings
of the ACM Internet Measurement Conference, pages 109–123,
Melbourne, Victoria, Australia, November 2010. ACM.

[15] Derek Leonard and Dmitri Loguinov. Demystifying service dis-
covery: Implementing an internet-wide scanner. In Proceedings
of the ACM Internet Measurement Conference, pages 109–123,
Melbourne, Victoria, Australia, November 2010. ACM.

[16] Matthew Luckie, Amogh Dhamdhere, Bradley Huffaker,
David Cla rk, and kc claffy. bdrmap: Inference of borders
between IP networks. In Proceedings of the ACM Internet
Measurement Conference, Santa Monica, CA, USA, November
2016. ACM.

[17] Harsha V. Madhyastha, Tomas Isdal, Michael Piat ek,
Colin Dixon, Thomas Anderson, Arvind Krishnamurthy, and
Arun Venka taramani. iPlane: An information plane for dis-
tributed services. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, pages 367–
380, Seattle, WA, USA, November 2006. USENIX.

[18] Alexander Marder and Jonathan M. Smith. MAP-IT: Multipass
accurate passive inferences from traceroute. In Proceedings of
the ACM Internet Measurement Conference, Santa Monica, CA,
USA, November 2016. ACM.

[19] G. C. M. Moura, C. Gañán, Q. Lone, P. Poursaied, H. Asghari,
and M. van Eeten. How dynamic is the isps address space?
towards internet-wide dhcp churn estimation. In 2015 IFIP
Networking Conference (IFIP Networking), pages 1–9, May
2015.

[20] Ramakrishna Padmanabhan, Amogh Dhamdhere, Emile Aben,
kc cla ffy, and Neil Spring. Reasons dynamic addresses change.
In Proceedings of the ACM Internet Measurement Conference,
Santa Monica, CA, USA, November 2016. ACM.

[21] Lin Quan, John Heidemann, and Yuri Pradkin. Trinocular:
Understanding Internet reliability through adaptive probing. In
Proceedings of the ACM SIGCOMM Conference, pages 255–266,
Hong Kong, China, August 2013. ACM.

[22] Lin Quan, John Heidemann, and Yuri Pradkin. When the Internet
sleeps: Correlating diurnal networks with external factors. In
Proceedings of the ACM Internet Measurement Conference, pages
87–100, Vancouver, BC, Canada, November 2014. ACM.

[23] R. Ravaioli, G. Urvoy-Keller, and C. Barakat. Characterizing
icmp rate limitation on routers. In 2015 IEEE International
Conference on Communications (ICC), pages 6043–6049, June
2015.

[24] Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez,
Mark Allman, Randy Bush, Anja Feldmann, Christian Kreibich,
Nicholas Weaver, and Vern Paxson. A multi-perspective analysis
of carrier-grade NAT deployment. In Proceedings of the ACM
Internet Measurement Conference, Santa Monica, CA, USA,
November 2016. ACM.

[25] Aaron Schulman and Neil Spring. Pingin’ in the rain. In
Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’11, pages 19–28, New York, NY,
USA, 2011. ACM.

[26] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring
ISP topologies with Rocketfuel. In Proceedings of the ACM
SIGCOMM Conference, pages 133–145, Pittsburgh, Pennsylva-
nia, USA, August 2002. ACM.

http://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x_3800x/software/release/15-3_2_S/configuration/guide/3800x3600xscg/swqos.html#wp999715
http://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x_3800x/software/release/15-3_2_S/configuration/guide/3800x3600xscg/swqos.html#wp999715
http://www.cisco.com/c/en/us/td/docs/switches/metro/me3600x_3800x/software/release/15-3_2_S/configuration/guide/3800x3600xscg/swqos.html#wp999715
http://www.juniper.net/techpubs/en_US/junos14.2/topics/concept/policer-types.html
http://www.juniper.net/techpubs/en_US/junos14.2/topics/concept/policer-types.html
https://ant.isi.edu/software/rejwreply/index.html
https://ant.isi.edu/software/rejwreply/index.html
http://manpages.ubuntu.com/manpages/natty/man8/iptables.8.html
http://manpages.ubuntu.com/manpages/natty/man8/iptables.8.html

[27] USC/LANDER project. Internet address census
dataset, predict id usc-lander/internet address
census it71w-20160803/rev5468 and usc-lander/
internet address census it70w-20160602/rev5404 and
usc-lander/internet address census it56j-20130917/rev3704 and
usc-lander/internet address census it57j-20131127/rev3745 and
usc-lander/internet address census it58j-20140122/rev3912.
web page http://www.isi.edu/ant/lander.

[28] USC/LANDER project. Internet address survey dataset,
predict id USC-LANDER//internet address survey reprobing
it70w-20160602/rev5417 and usc-lander/internet address
survey reprobing it71w-20160803/rev5462. web page
http://www.isi.edu/ant/lander.

[29] Sebastian Zander, Lachlan L. H. Andrew, and Grenville Ar-
mitage. Capturing ghosts: Predicting the used IPv4 space by
inferring unobserved addresses. In Proceedings of the ACM
Internet Measurement Conference, pages 319–332, Vancouver,
BC, Canada, November 2014. ACM.

usc-lander/internet_address_census_it71w-20160803/rev5468
usc-lander/internet_address_census_it71w-20160803/rev5468
usc-lander/internet_address_census_it70w-20160602/rev5404
usc-lander/internet_address_census_it70w-20160602/rev5404
usc-lander/internet_address_census_it56j-20130917/rev3704
usc-lander/internet_address_census_it57j-20131127/rev3745
usc-lander/internet_address_census_it58j-20140122/rev3912
http://www.isi.edu/ant/lander
USC-LANDER//internet_address_survey_reprobing_it70w-20160602/rev5417
USC-LANDER//internet_address_survey_reprobing_it70w-20160602/rev5417
usc-lander/internet_address_survey_reprobing_it71w-20160803/rev5462
usc-lander/internet_address_survey_reprobing_it71w-20160803/rev5462
http://www.isi.edu/ant/lander

	Introduction
	Problem Statement
	Modeling Rate Limited Blocks
	Rate Limit Implementations in Commercial Routers
	Modeling Availability
	Modeling Response Rate
	Modeling Alternation Count

	Detecting Rate Limited Blocks
	Input for Detection
	Four Phases of ICMP Rate Limiting
	Detecting Rate Limited Blocks

	Results: Rate Limiting in the Wild
	How Many Blocks are Rate Limited in the Internet?
	Verifying Results Hold Over Time
	Is Faster Probing Rate Limited?
	Rate Limiting Can Explain ZMap Probing Drop-Off
	Availability of ZMap Target Blocks Shows Signs of Rate Limiting

	Rate Limiting of Response Errors at Nearby Routers

	Validation
	Does the Model Match Real-World Implementations?
	Correctness in Noise-Free Testbed
	Correctness in the Face of Packet Loss
	Correctness with Partially Responsive Blocks
	Correctness in Other Network Conditions

	Related Work
	Conclusion
	References

