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ABSTRACT

An Internet hitlist is a set of addresses that cover and can
represent the the Internet as a whole. Hitlists have long been
used in studies of Internet topology, reachability, and perfor-
mance, serving as the destinations of traceroute or perfor-
mance probes. Most early topology studies used manually
generated lists of prominent addresses, but evolution and
growth of the Internet make human maintenance untenable.
Random selection scales to today’s address space, but most
random addresses fail to respond. In this paper we present
what we believe is the first automatic generation of hitlists
informed censuses of Internet addresses. We formalize the
desirable characteristics of a hitlist: reachability, each repre-
sentative responds to pings; completeness, they cover all the
allocated IPv4 address space; and stability, list evolution is
minimized when possible. We quantify the accuracy of our
automatic hitlists, showing that only one-third of the Inter-
net allows informed selection of representatives. Of informed
representatives, 50–60% are likely to respond three months
later, and we show that causes for non-responses are likely
due to dynamic addressing (so no stable representative ex-
ists) or firewalls. In spite of these limitations, we show that
the use of informed hitlists can add 1.7 million edge links
(a 5% growth) to traceroute-based Internet topology stud-
ies Our hitlists are available free-of-charge and are in use by
several other research projects.

1. INTRODUCTION
Smooth operation of the Internet is important to the global

economy, so it is essential that Internet users, providers, and
policy makers understand its performance and robustness.
Although on the surface, individuals care only about their
personal performance, a full diagnosis of “why is my web
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connection slow?” must consider not just the user’s “first
mile” connection, but dozens of servers that affect perfor-
mance [8]. Web content providers invest great effort in op-
timizing page load times to sub-second values [22] and in
building distributed content distribution networks that man-
age traffic (for example, [13]). Policy makers debate ques-
tions about universal access [32], a nation’s relative availabil-
ity for broadband access [23], and the robustness of what is
recognized as critical infrastructure.

To answer these questions, network researchers, opera-
tions, and industry have developed a number of tools to
map the Internet [16, 14, 25, 19, 21, 7], evaluate perfor-
mance [31, 19, 22], consider questions about routing and
reachability [30, 3], or the performance of replica placement
(examples include [31, 9]), and evaluate topology robust-
ness [1]. With the Internet’s lack of centralization and mul-
tiple overlapping global “backbones”, active probing plays
an essential role in this process, with traceroute and ping
and their variants providing the main source of router-level
reachability. While one may add AS-level views [4], the In-
ternet’s router-level topology is the focus of this paper. Dif-
ferent router-level studies either target specific networks [25]
or the whole Internet. Here we are most interested in observ-
ing the whole Internet—more than three billion allocated
IPv4 addresses.

Studies of the entire Internet typically employ a hitlist—a
list of IP address that can represent the billions of allo-
cated addresses. The defining characteristic of a a hitlist
is completeness, where a representative is chosen for every
autonomous system or, in our case, for every allocated block
of addresses defined by a /24 prefix, the smallest unit typi-
cally present in a default-free routing table. Representatives
provide a 256-fold (or more) reduction in scanning size, al-
lowing Internet-wide studies to take place in hours instead
of months.

Although completeness is necessary to study the whole In-
ternet, an ideally hitlist is also responsive and stable. A re-
sponsive representative replies to ICMP messages, allowing
traceroute to confirm a path to the edge of the network, and
ping to measure round-trip time to an edge host. To support
longitudinal studies, the hitlist should be stable, with repre-
sentative identities not changing frequently or arbitrarily.

Although hitlists are easy to define and have been used in
topology studies for many years (we review related work in
Section 2), they are surprisingly hard to create and main-
tain. Early hitlists were built manually from well known
sites [19], but the size of the Internet and rate of churn in
even well-known servers made manual maintenance unten-



able as it quickly became incomplete. More recent studies
have typically used randomly chosen representatives. While
randomness has some advantages (it can be statistically un-
biased), it sacrifices secondary goals of stability and respon-
siveness.

The contribution of this paper is to provide a new, au-
tomated method of hitlist generation that provides com-
plete coverage while maximizing stability and responsive-
ness.1 Our hitlists are constructed (Section 3) by mining
data from IP address censuses, complete, ping-based enu-
merations of the allocated IPv4 address space taken every
two to three months [17].

The second contribution of our work is to evaluate our
hitlists (Section 4). Our hitlists are 100% complete as of
when they are constructed, although when we have no his-
tory (in about two-thirds of the blocks) we select represen-
tatives at random. We define the accuracy of our hitlists
has how many representatives are responsive three months
after the hitlist is taken. We find that two-thirds of the al-
located address space never responds to ICMP probes and
so never has responsive representatives. Of the remaining,
responsive Internet, our hitlists select representatives that
are responsive about 55% of the time. To our knowledge we
are the first to study hitlist effectiveness and accuracy.

The final contribution of our work is what hitlists reveal
about that nature of the Internet itself. We were surprised
that, in spite of such complete input data, the responsive-
ness of our predicted representatives is not higher. We be-
lieve this upper bound on productiveness characterizes the
portion of the Internet that has an inherently high rate of
address churn. One corollary of this limit to representative
responsiveness is that no manual system could ever have
been successful due to natural turnover of addresses in parts
of the network. We also characterize the distribution of ad-
dresses in each block and show that it strongly reflects ad-
dress allocation patterns (Section 5).

We make our hitlists available free-of-charge, and they are
already being used by several research projects. In Section 6
we discuss the security and policy issues involved in sharing
this data.

2. RELATEDWORK
Hitlists are used in active probing for studies of topol-

ogy [16, 14, 18, 25, 29, 21, 24, 7], performance [31, 19,
22], and reachability [30, 4]. and for other purposes [31,
1, 9]. Each of these studies uses some hitlist (sometimes
called a seed or probe list) generated manually, randomly,
or automated from several sources. We review each hitlist
generation method next.

Early topology work used manually generated lists. Skit-
ter is a well-known measurement tool developed at CAIDA,
to study the router-level Internet topology [18]. It uses
traceroutes from multiple locations to a hitlist of destina-
tions. Their target address list was manually built from
many sources, including tcpdump from the UCSD–CERF
link, hostnames from search engines, and intermediate ad-
dresses seen from their own traces records. In 2000 their
hitlist included about 313,000 destinations, and by 2004 it
had grown to 971,080. While their hitlist was of high qual-

1We would like to thank Randy Bush for suggesting the
idea that our address censuses data could support hitlist
generation.

ity, they found it very labor-intensive to maintain, and re-
sponsiveness degraded over time as destinations changed.
(They report a 2–3% loss for their initial web-server based
list [18].) The cost of manual list maintenance prompted
them to change to random probing with Archipelago. More
recently, Maennel has maintained a manual list, derived
from the Skitter list, but augmented with guided scanning
to cover each AS and provide 306,708 representatives. They
require reachable addresses study routing reachability [4].
We used a version of their list to seed our initial stable list,
but our techniques provide much greater coverage at lower
cost. Unlike all of these manual hitlists, our goal is to fully
automate hitlist generation to allowing more complete and
timely coverage.

Random representative selection allows low-cost genera-
tion of hitlists to much larger numbers of networks. Mer-
cator developed informed random probing to adaptively ad-
just its probe list based on prior results [16]. By adap-
tively growing the hitlist, Mercator strives to quickly and
efficiently discover a topology while minimizing hitlist size.
Archipelago (Ark) is a measurement platform designed to
support traceroute and other measurements [7], effectively
a next-generation Skitter. Ark’s hitlist covers all routed
/24 blocks, choosing a random last-octet within each /24
block, The random hitlists in Mercator and Ark are essen-
tial to cover the millions of /24 networks in today’s Internet,
but Mercator’s adaptive algorithm means completeness is
uncertain (although efficiency, not completeness, was their
goal), and random probing in both Mercator and Ark sac-
rifice responsiveness of the destination address. Our hitlist
also provides complete coverage, but it also maximized re-
sponsiveness. In Section 4.4 we evaluate the degree to which
informed hitlist generation may improve topology discovery.

Rather than a random destination, DisCarte’s hitlist se-
lects the .1 address in each /24 block of the routed address
space. DisCarte [24] adds record route information to tracer-
oute probing to obtain more accurate and complete network
topologies. They require a responsive destination, and find
376,408 responsive representatives in the .1 address of each
routed /24. Our work confirms that the .1 address is re-
sponsive twice as often as the median address (Section 5),
but we suggest that census-informed representative selection
can get much better responsiveness.

Finally, there has been some work in IPv6 topology dis-
covery. The Atlas system uses a manually generated list
built from 6bone destinations [29], then expanded based on
discoveries. Our approaches use a full address-space census
that applies only to the IPv4 address space, so combinations
of active and passive methods as proposed in Atlas are es-
sential for IPv6. As future work, comparison of our active of
in IPv4 against a passive hitlist provide a basis for inferring
coverage in IPv6.

3. METHODOLOGY
We next describe the requirements of an IP hitlist (Sec-

tion 3.1), and how we transform census data (reviewed in
Section 3.2) using several possible prediction methods (Sec-
tion 3.3) to get a good quality hitlist. We also provide some
details on how our implementation copes with Internet-sized
datasets.

3.1 Hitlist Requirements
Our goal is to provide representatives that are responsive,



complete and stable.
By responsive, we mean each representative is likely to

respond to an echo request with an echo reply instead of an
ICMP error code. As we describe below, select representa-
tives that have responded frequently in the past. We do not
guarantee that that address responded in the most recent
census, but we bias our selection to favor recent results. We
consider several prediction functions below in Section 3.3.

By complete, we mean we report one representative ad-
dress for every allocated /24 block. Some groups have used
other definitions of completeness, such as one representative
per AS, or per routed BGP block. AS- or BGP-complete
hitlists will be both sparser and smaller than /24-complete
maps, since ASes typically include routes for many pre-
fixes, and routed prefixes often cover blocks larger than /24s.
However, we select /24 blocks so that the hitlist is decou-
pled from the routing system, since routes differ depending
on when and where they are taken.

By stable, we mean and that representatives do not change
arbitrarily. We change representatives when a new represen-
tative would significantly improve the score for that block,
typically because a representative has ceased to be reach-
able. Inertia provides a bias to avoid changing represen-
tatives. Currently switch addresses when they improve the
score significantly (inertia is 0.34); in Section 4.3 we examine
the inertia threshold is set and how it affects accuracy.

These goals can be in conflict. For example, complete-
ness requires that we select representatives that may be
non-responsive. To guarantee representatives for all allo-
cated addresses, we select representatives even for blocks
that have no recent responses. We also select representa-
tive for blocks that have never responded. In both cases, we
annotate these representatives with distinguished scores.

3.2 Background: Internet censuses
Our main goal with a hitlist is to predict the future: a

representative should be responsive in the future. Our tool
to make this prediction is data from past responses. Hitlists
selection leverages Internet censuses that have been taken
regularly since 2003 [17].

Each Internet census is the results of a ping (an ICMP
ECHO REQUEST message) sent to every allocated IPv4 ad-
dress. Censuses are far from perfect: a census must be taken
carefully to avoid ICMP rate limiting or transient router er-
rors, and firewalls reduce ping response rates by around 40%.
Hitlist, however, prefer hosts that are ICMP responsive,
since traceroute consists of iterated, TTL-limited ICMP mes-
sages. Firewall-limited censuses are therefore ideal for hitlist
generation.

It takes 2–3 months to carry out a full census (the IPv4
space has more than 3 billion allocated unicast addresses).
For this paper we consider censuses starting in Mar 2006
as shown in Table 1, since censuses before this date used a
slightly different collection methodology. The results of this
paper use all 22 censuses taken over the four years preceding
analysis, but we expect to update our results as new censuses
become available.

A census elicits a number of responses, including ECHO
REPLY messages as well as a variety of errors. Each cen-
sus is quite large, and more than 3 billion records per cen-
sus, 22 censuses is over 260GB of raw data. We therefore
pre-process all censuses into a history map convenient for
analysis. A history map consists of a bitstring for each IP

Censuses Date Duration(days)

it11w 2006-03-07 23
it12w 2006-04-13 24
it13w 2006-06-16 31
it14w 2006-09-14 31
it15w 2006-11-08 61
it16w 2007-02-14 50
it17w 2007-05-29 52
it18w 2007-09-14 47
it19w 2007-12-18 48
it20w 2008-02-29 86
it21w 2008-06-17 49
it22w 2008-09-11 35
it23w 2008-11-25 29
it24w 2009-02-03 29
it25w 2009-03-19 29
it26w 2009-05-27 31
it27w 2009-07-27 25
it28w 2009-09-14 30
it29w 2009-11-02 30
it30w 2009-12-23 29
it31w 2010-02-08 30
it32w 2010-03-29 29

Table 1: IPv4 censuses [28] used in this paper.

address where each 1 indicates a positive response, and a
0 indicates either a non-response or negative response. In
paper, we only consider echo replies (“positive” responses)
as indicating a responsive address. We next show how this
history map can predict future response rates.

3.3 Prediction Method
Of our hitlist goals of responsiveness, completeness, and

stability, completeness and stability are under our control,
but responsiveness requires predicting the future. Our guid-
ance in this task is the prior history of each address. We
next review several prediction functions that strive to se-
lect the best representative for each /24 block, where best
is most likely to respond in the future.

Prediction functions take the prior history of address a as
input and weights that history in different ways. History for
a is identified as hi(a), numbered from 0 (oldest) to Nh − 1,
the most recent observation. We consider several different
weights w(i) to get the scores s(a) in the form:

s(a) =

Nh−1
X

i=0

ri(a)w(i)

ri(a) is the response of address a to the ith probe. For
each block of addresses, the address with the highest s(a)
is selected as the best representative. We may bias this by
prior representatives to promote stability. In the case of ties
and no prior representative we select any top scoring address
in the block at random.

We considered several possible weights w(i). The simplest
is w(i) = 1, so all responses are averaged. To give more re-
cent observations greater influence we consider two biased
weights. With linear weighting, w(i) = (i + 1) ∗ 1/Nh, and
for a power function, w(i) = 1

Nh−i
. Weighting of each ob-

servation for an 8-observation history is shown in Figure 1.
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Figure 1: bits weight for different function

In addition, we can normalize scores by to the maximum
possible score (the minimum in all cases is zero), allowing
all to fall in the range 0 to 1.

As an example of the different functions, Figure 2 shows
scores for three different weights and different history lengths.
For simplicity, we assume Nh = 8, shorter than we use in
practice (in Section 4.1.2 we vary history duration). We
consider three cases, all with 4 of 8 responding, but either
responding most recently (Figure 2a), in the middle past
(Figure 2b), or alternating response and non-response (Fig-
ure 2c). To a first approximation, all three weights are about
the same, particularly with intermittent responsiveness in
Figure 2c. The differences in decay rates are more obvious
when responsiveness is consistent for blocks of time, with
power and linear decay faster than average in Figures 2a
and 2b. Finally, difference in history duration make a large
difference when a block is non-responsive, comparing the left
and right parts of Figures 2a and 2b, and these effects are
even greater when comparing across weights (for example,
compare history durations 1–4 of Figures 2a and 2b).

This framework provides flexibility, but requires setting
several parameters. We later evaluate which weighting is
best (Section 4.1.1), how much history is beneficial (Sec-
tion 4.1.2), and the underlying reasons addresses are difficult
to predict (Section 4.1.3).

3.4 Gone­Dark Blocks
Firewalls are probably the greatest impediment to active

problem, since a conservative firewall can suddenly stop traf-
fic an entire block. We will see in Section 4.1.3 that gone
dark blocks are one cause of poor representative responsive-
ness. A gone-dark blocks is one that contained responsive
addresses for some period of time, but then becomes un-
responsive and stays that way, due to firewall or possibly
renumbering. While we must select a representative for each
allocated block, even if populated only by non-responsive ad-
dresses, we would like to indicate our low expectations for
gone-dark blocks.

We define a block as gone dark within history Nd if, for
the most recent Nd observations, no address in the block re-
sponded, even though we had some positive response before
Nd observations.

We add gone-dark analysis to our hitlist generation by

overriding the representative’s score with a designated “gone-
dark” value to indicate our skepticism that it will reply.
We explored different values of Nd and ultimately select
Nd = Nh = 16, identifying only those addresses whose
responses have aged-out of our history as gone-dark. We
use this large value of Nd because this value maximizes the
absolute number of responsive representatives, while only
decreasing the percentage of responsive, predicted represen-
tatives a small amount.

For gone-dark blocks, we still select the representative as
the address with the best score. For allocated but never-
responsive blocks, we select the .1 address as the repre-
sentative because that is most likely to be first used (Sec-
tion 5). In Section 4.1.3 we show the contribution of gone-
dark blocks to responsiveness.

3.5 Hitlist Description
To summarize, our hitlist contain three kind of represen-

tatives for all allocated /24 blocks: informed and predicted
representatives, where we select the best responder; gone-
dark representatives, where some address once responded
but has not recently; and allocated but never-responsive
blocks, where we pick .1 as the representative.

Table 6 lists the hitlists we have publicly released to-date.
We identify hitlists by the name of the last census used in
their creation, and include the number of censuses in the
history. Thus HL28/16 uses 16 hitlists through it28w. When
necessary, we add the gone-dark window, so HL28/16-3 uses
a window of 3. If no gone-dark window is specified, we
disable gone-dark processing.

In addition to these public hitlists, Tables 2 and 3 show
unreleased hitlists used to evaluate our methods.

3.6 Implementation
Analysis of a four-year history of the entire IPv4 address

space is quite data intensive. We next briefly describe our
analytic approach to assist others considering similar eval-
uation. The main challenge is dataset size. The full size of
a raw census is about 12GB, so an 22-census history is over
260GB of data. Even when reduced to a simple responsive
bitmap, a single census is 232 bits (16MB) in size, with the
full history about 32GB.

Fortunately, our analysis parallelizes easily—all analysis is
done on history for /24 blocks, and there are no inter-block
dependencies. We employ the Hadoop implementation [10]
of map/reduce [11] to parallelize computation over a cluster
of about 40 computers with about 120 CPU cores. With this
parallelism, join in a new census into an existing history
takes about half an hour, and evaluation of a new hitlist
takes about another half hour. (our code is written in Perl
and not optimized for speed). Our map function groups
results by block, while the reducer carries out the join or
evaluation.

4. EVALUATION
We next evaluate the success of our hitlist: how accurate

are its predictions and how complete and stable is it? We
first consider how responsiveness is affected by choices in our
prediction mechanism. In Section 4.1.3 then look at causes
of prediction failure. Finally, we consider completeness and
stability.

4.1 Responsiveness
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Figure 2: Comparison of three history functions for selected addresses.

Our primary goal with prediction is responsiveness: how
accuracy is our prediction that the representatives in a hitlist
will respond in the future? We can define based on the
number responding in the future, Nr, from the number of
predicted representatives (including representatives of gone-
dark and informed predicted blocks) Np as:

α =
Nr

Np

Responsiveness accuracy is affected by our choice of his-
tory weighting and length. We consider these next, and then
consider structural reasons perfect accuracy is impossible to
achieve.

Our general approach to test responsiveness is to gener-
ate a hitlist, then evaluate it against ICMP probes in the
next census. For example, the first line of Table 2 evalu-
ates HL19/8, generated from the eight censuses from it12w
through it19w, tested against it20w. This approach has
the advantage of supporting retroactive evaluation of hitlist
quality under different, controlled conditions. However, it
also means each representative is only given one opportu-
nity to be available. For this reason we report exact counts
of results, without error estimates such as standard devia-
tion. We evaluate repeatability of our results by considering
multiple hitlists at different times.

4.1.1 Comparing History Weights

We first consider how our weighting of prior history af-
fects accuracy. Here we assume a history duration of 8
prior censuses (a reasonable choice as evaluated next in Sec-
tion 4.1.2), and from that history we predict the results of
the next census for the three weights we defined in Sec-
tion 3.3. Since the network is dynamic, our expectation is
that biased weightings will perform best since they favor
recent information over older information.

To answer this question, Table 2 compares our three weight-
ings for several predictions. Each line evaluates a different
hitlist as generated with three different weights, and eval-
uated for all predicted representatives (Np). The most im-
portant observation is that all weights provide quite simi-
lar performance—the worst case responsiveness is only 5%
worse than the best. Linear and power functions provide
marginally better responsiveness. The examples of the weights
in Figure 2 suggests on reason the difference is so small. For
many histories, all three weights produce roughly the same
relative scores.

weighting function
hitlist average linear power

HL19/8 0.50 0.51 0.51
HL21/8 0.53 0.54 0.55
HL23/8 0.53 0.54 0.54
HL25/8 0.53 0.54 0.54
HL27/8 0.54 0.55 0.55

Table 2: Fraction of responsive representatives across 5 dif-
ferent hitlists for three different history weights.

4.1.2 Effects of History Duration

A second factor that can affect responsiveness is the dura-
tion of history considered in a prediction. Does more history
provide more information, or does very old information be-
come irrelevant or even misleading?

To study this question, we considered all history available
to us at time of analysis—then we had 18 Internet censuses
covering 3.5 years. We consider only the power weighting of
history, and look at the responsiveness of our predictions.

Table 3 shows responsiveness of our predictions as a func-
tion of history length, for five predictions. We see that very
short histories are insufficient: prediction rates are a 1–2%
lower when fewer than 8 (about 1.5 years) observations are
considered. On the other hand, we see no difference in pre-
diction accuracy for histories from 8 to 16 censuses. (We
also looked at history duration with the average function,
and found there that long histories became slightly less ac-
curate, although only by 1–2%. This observation argues in
favor of a weighting that decays by history, like power.)

Finally, while longer histories may not improve the frac-
tion that respond, it does provide information that allows
more representatives to be selected. Table 3 shows the abso-
lute number of responders as a function of history duration.
Longer history allows 20k more responders with length 16
than with length 8. More history always increases the num-
ber responding, although with diminishing returns past a 12
censuses or so.

In practice, the incremental cost of longer history lengths
is not large. So we use a history length of 16 censuses in our
production lists.

Although 8 censuses provides slightly betters results, the
faction responding, only 55%, seems lower than we might ex-



Responsive representatives and fraction
hitlist predicted representatives (Np) 4 8 12 16

HL19/- 3,091,646 (100%) 1,558,620 (50%) 1,586,303 (51%) — —
HL21/- 3,386,540 (100%) 1,813,276 (54%) 1,846,019 (55%) — —
HL23/- 3,613,523 (100%) 1,925,322 (53%) 1,948,634 (54%) 1,950,960 (54%) —
HL25/- 3,794,973 (100%) 2,007,138 (53%) 2,049,607 (54%) 2,059,019 (54%) —
HL27/- 3,971,208 (100%) 2,135,337 (54%) 2,179,777 (55%) 2,193,062 (55%) 2,200,674 (55%)

Table 3: Responsive representatives with power weighting across 5 different hitlists for different history length.

pect. We therefore next consider causes of non-responsiveness.

4.1.3 Causes of Failed Responses

We found the observation that our best methods get only
55% responsiveness seems somewhat surprising. Surely such
a large amount of history (over three years of full censuses)
can be explored somehow to select representatives with greater
accuracy. To answer that question, we next explore the
causes of why representatives fail to respond. Our conclu-
sion is that it is unlikely that any prediction can do better
than about 70% because of the use of dynamic address as-
signment and firewalls.

To support this claim, Table 4 counts prediction failures
for HL28/16, tested against it29w (We found roughly similar
results in examination of HL31/16 evaluated against it32w.)
We see that 44% of representatives are non-responsive (1.8M
of the 4M blocks). Two explanations account for the ma-
jority of our misses: blocks that use only dynamic address
assignment, and “gone-dark” blocks. We consider each of
these below.

While dynamic addressing and firewalls are target-specific
causes of representative non-responsiveness, measurement
error is a possible source of uncertainty. We believe that
Internet census-taking methodology reduces these sources of
error to random noise for reasons described in prior work [17].
To summarize briefly: we monitor the network hosting the
probes for local routing outages. Probes are in pseudoran-
dom order, so routing outages in the middle or near the des-
tination result in lower responsiveness in proportion to out-
age rates, but randomly distributed. Pseudorandom prob-
ing is spread over two months, so the probe rate to any
individual /24 is well below typical ICMP rate limits. We
considered packet loss and routing outages in the middle or
of the network or near probe sources are potential sources
of error. For more complete discussion of sources of error
in Internet census-taking, and validation studies, we refer to
prior work [17].

Defining stable blocks: Blocks that lack stable ad-
dresses makes representative selection inherently difficult.
In a block with a stable representative, it will likely remain
responsive, but if all addresses in the block are unstable
then the probability a representative will respond is equal
to the occupancy of that block and independent of prior his-
tory. Addresses can lack stability either because the hosts
using the addresses are only on intermittently, or because
addresses in the block are allocated dynamically to a chang-
ing population of computers. Multiple groups have used dif-
ferent techniques to identify dynamically assigned addresses
in the Internet [26, 33, 5]. A recent study estimates that
about 40% of responsive Internet blocks are dynamic based
on Internet address surveys using ICMP probes taken ev-

ery 11 minutes for two weeks [5]. (We assume here that
non-stable blocks are primarily due to dynamic addressing.)

To evaluate the prevalence of stable and non-stable blocks,
we would like to identify them from the history that we col-
lect. Prior analysis of surveys used address availability and
volatility to identify dynamic addressing. Availability is the
fraction of times the address responds in all probes, while
volatility is the fraction of times the address changes be-
tween responsive and non-responsive [5]. While appropriate
for survey data with 11-minute probes, volatility makes less
sense when probes are months apart.

To identify stable blocks with infrequent probes, define a
new metric, truncated availability, the fraction of time an
address responds from its first positive response. More for-
mally, if ri(a) is the response of address a to the ith probe,
the raw and scaled availability, A∗(a) and A(a) (from [5])
and truncated availability, At(a) are:

A∗(a) =

Nh
X

1

ri

A(a) = A∗(a)/Nh

At(a) = A∗(a)/L∗(a)

where L∗(a) is the length of a history, in observations, from
the first positive response to the present.

While both volatility and truncated availability are corre-
lated, we found that low volatility and high truncated avail-
ability are both good predictors a stable block. Low At val-
ues are a good predictor of intermittently used addresses.
Continuing the examples in Figure 2, 00001111 has At = 1,
while 01010101 has At = 0.57.

While At is good at differentiating between these solid
(00001111) and intermittent (01010101) addresses, it inter-
acts with gone-dark addresses, which will have a string of
trailing 0s. We therefore consider At only in concert with
A∗, the absolute number of positive responses. Small A∗

values (say, less than 5) indicate addresses that were only
briefly responsive or are quite new.

From these, we define a stable representative as At ≥ 0.9,
however we look carefully at representatives where A∗ < 5.
We find that 51% of all representatives are not stable by
At ≥ 0.9, some higher than other independent observations
40% [5], and of 34–61% [33] (these values are for a ran-
dom sample of DNS and for Hotmail users, respectively).
However, more than half of these were only observed briefly
(A∗ < 5). We do not claim strong validation of this exact
percentage because each work is a percentage of a different
populations, and different definitions of what is dynamic or
not stable. We claim only that our metric is in the right or-



HL28/16 HL31/16

predicted representatives (Np) 4,055,193 100% 4,307,644 100%

not stable 2,183,353 53% 2,276,207 52%
gone dark 703,987 17% 772,014 18%

responsive (Nr) 2,250,091 56% 2,560,420 59%
non-responsive (Nn) 1,805,102 44% [100%] 1,747,224 41% [100%]

non-responsive and not stable (only) 805,136 20% [45%] 786,881 18% [45%]
non-responsive and gone dark only 0 0% [0%] 0 0% [0%]
non-responsive, not stable and gone-dark 693,832 17% [38%] 766,338 18% [44%]
non-responsive, just unlucky 306,134 7% [17%] 194,005 5% [11%]

Table 4: Causes of unsuccessful representatives predicted from HL28/16 and HL31/16, evaluated against responses in it29w
and it32w. We don’t apply gone-dark window on prediction here, gone-dark blocks are detected separately with gone-dark
window size of 3.

A∗ < 5 A∗ ≥ 5 sum of At

At < 0.9 700,328 (39%) 583,976 (32%) 1284304 (71%)
At ≥ 0.9 214,664 (12%) 306,134 (17%) 520798 (29%)

sum of A∗ 914,992 (51%) 890,110 (49%) 1,805,102 (100%)

Table 5: Fraction of representatives that are non-responsive,
based on combinations of At and A∗ (HL28/16 tested
against it29w).

der of magnitude and so provides some insight into sources
of non-responsive representatives.

Re-evaluating causes of non-responsive represen-
tatives: With these definitions, we return to Table 4. We
see that both gone-dark and not-stable blocks contribute
three-quarters of our misses. Almost two-thirds are in not-
stable blocks, with almost 40% gone-dark, and 27% of those
overlapping as both gone-dark and not stable. We therefore
claim that three-quarters of our non-responses are due either
to new firewalls or selection of representatives in not-stable
blocks, neither of which can ever have always responsive
representatives.

To support the claim that lower At values correlate with
poorer response, Table 5 breaks out the 1.8M non-responsive
representatives by all combinations of At and A∗. We see
that only 17% of non-responses come from stable blocks
(At > 0.9 ∧ A∗ ≥ 5). Representatives with poor truncated
availability (At < 0.9) account for more than two-thirds of
non-responses, although many lower At values are limited
by short histories (A∗ < 5). We conclude there are many
unstable blocks, such blocks simply cannot be expected to
support stable representatives.

To show our choice of threshold for At does not alter our
conclusion, Figure 3 shows the cumulative distribution of At

for both non-responsive and responsive representatives. It
shows a large difference in responsiveness for any value of
At.

4.2 Completeness
To evaluate completeness, Figure 4 shows the absolute

number of representatives for using 16-deep histories through
five different censuses, and Table 6 shows the raw data. We
consistently see that about one-third of blocks have some
history data allowing an informed selection of representa-
tives (the white region of the graphs, with around 4.2M
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Figure 4: Relative size of hitlist components.

blocks). By contrast, about two-thirds of blocks have never
responded (the top grey regions)

In addition, this data shows gone-dark selection from Sec-
tion 3.4. We identify about 0.3–1.5% of allocated blocks as
formerly responsive (the black region in the middle of Fig-



class HL28/16 HL29/16 HL30/16 HL31/16 HL32/16

allocated /24 blocks 12,774,056 12,774,056 12,905,128 13,036,541 13,167,613
never responding blocks 8,802,845 8,631,417 86,797,99 8,728,897 8,775,398
predicted blocks 3,971,211 4,142,639 4,225,329 4,307,644 4,392,215

gone-dark blocks 35,623 75,714 109,099 154180 195,216
informed prediction blocks 3,935,588 4,066,925 4,116,230 4,153,464 4,196,999

changed representatives — 218,419 341,765 292,079 306,588
new representatives — 171,428 82,690 82,315 84,571

responsiveness 2,200,993 2,344,539 2,411,662 2,451,351

Table 6: Released hitlists to-date, by last census used in prediction (top). The top group of rows show hitlist composition,
including churn (changed) and new representatives relative to the prior hitlist. The bottom line, responsiveness, evaluates
the hitlist against the census.

ure 4).
To guarantee completeness, we select random represen-

tatives for never-responsive blocks. However, we can see
that we can provide informed choices for only a third of
blocks. Finally, we note that IANA only releases new allo-
cation maps quarterly, and routing studies suggest this space
becomes routable gradually [3], so we expect our hitlist to
be useful for at least three months, about the frequency we
update them.

4.3 Stability and Inertia
We next consider two aspects of hitlist stability: how

much churn is there in the hitlist, with and without a rep-
resentative inertia, and how much does inertia reduce pre-
diction accuracy.

Recall that inertia is the amount I by which prediction
score must improve to change representatives. An inertia
I = 0 means we always pick the highest rank address in
a block as the representative, independent of the represen-
tative in a hitlist based on a prior censuses. As inertia ap-
proaches 1, we will never switch representatives once chosen.
For our production hitlists, we use I = 0.34.

Inertia on churn: We first consider how much inertia
affects churn. Churn is that rate at which we switch repre-
sentatives for established blocks. Table 6 shows the amount
of churn for four hitlists when using our standard inertia
I = 0.34. We see that the rate of churn is relatively con-
stant with 5–7% of all informed predictions changing each
census.

While Table 6 shows churn over time for a fixed inertia,
in Figure 5 we vary inertia to observe its effect on churn. To
estimate the relationship shown in this figure, we generate
HL28/16, then modify it three times with censuses it29w,
it30w, and it31w, with different levels of inertia. (Here we
suspend gone-dark processing to focus only on inertia.) We
then evaluate the hitlist against observations from census
it32w. We evaluate inertia over several steps for two rea-
sons. First, hitlist staleness is partially a function of time.
Second, large values of inertia suppress changes in single or
a few censuses.

As expected, Figure 5 shows that higher inertia suppresses
churn, because it takes several new negative responses for a
representative’s score to change. In fact, weight selection
means score can change only by 0.3 from one new census,
and decrease to 0.5 from two new censuses since the weight
decrease in our pow weighting, so with three new observa-
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Figure 5: Effects of different inertia on representative churn
(HL28/16; modified by it29w, it30w, and it31w; then tested
against it32w).

tions here, an inertia of 0.2 has one observations that might
cause change, while I = 0.4 has two; I = 0.6, three; and
I = 0.8 requires more than eight observations to change.

Inertia on responsiveness: Inertia is selected to keep
hitlists stable, reducing the amount of arbitrary represen-
tative turnover in long-running experiments. Such turnover
can be eliminated by simply never changing representatives
(setting I = 1), but prior experience shows that the respon-
siveness of a static hitlist will degrade over time as servers
move, losing as much as 2–3% per month for the early Skitter
web-server-based list [18]. We would therefore like to know
the trade-off between inertia and representative responsive-
ness.

Figure 6 shows hitlist responsiveness for different values of
inertia after this process. (This analysis was generated with
the same multi-step process as Figure 5 described above.)
We see that responsiveness degrades slightly for high inertia
values, from 59% responsiveness with no inertia, to a low of
53% responsiveness when I = 0.8, when there are effectively
no changes. We conclude that a moderate inertia has little
effect on responsiveness costing at most 6% responsiveness,
even over eight months.

4.4 Effects on Other Research
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The above sections evaluate hitlists based on our goals:
responsiveness, completeness, and stability. But hitlists are
a tool to enable other research, so their ultimate benefits
come by how they improve the quality of other network per-
formance and topology studies.

One group of network performance studies require reach-
ability in their destinations. These studies include those
that evaluate performance [31, 19, 22], consider questions
about routing and reachability [30, 3], or the performance of
replica placement (examples include [31, 9]). Because these
studies require end-to-end latency measurements, our repre-
sentative selection methods optimize reachability within the
constraints of sparse measurement. Our work also suggests
directions for potential improvements: more frequent mea-
surement could potentially better track reachable addresses
in dynamically assigned blocks. In addition, our approach to
stability assists evaluation of long-term performance trends.

Reachability is helpful but not essential for many topol-
ogy studies (such as [16, 14, 25, 19, 21, 7]). Most topology
studies employ traceroutes to study paths across the Inter-
net. A traceroute attempts to discover all routers on the
path towards a destination, but the presence or absence of
the destination itself affects only the last hop. Difficulty
in maintaining a hitlist, and the recognition that respon-
sive targets are not essential prompted CAIDA to shift from
a manually maintained hitlist [19] to random edge direc-
tions [7].

Although reachability is not essential for topology stud-
ies that focus on the core of the Internet, it is important for
studies that wish to explore the edge of the network. We can
get a rough estimate on the number of edge links that are
missed by randomly selected representatives: about 4–7%
of the Internet responds to ICMP probes [17], so we expect
that 93% of random representatives do not respond. If 55%
of our hitlists respond, that will improve edge detection for
48% of blocks. With 1.3 million allocated /24 blocks (as
of it29), responsive hitlists will detect about 630,000 addi-
tional links more than a random hitlist. By comparison, the
core represents 33M links, so this increases the size of the
discovered Internet topology by 2%. This simple analysis
ignores correlation in the data, so it is only approximate.
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To confirm this simple analysis, Table 7 directly compares
the ITDK-2010-01 dataset [6] (from data taken Dec. 2009)
with our HL29/16 (using censuses from 2007 through Dec.
2009). For ITDK, we consider a representative responsive if
the traceroute reaches its destination. For our hitlist, we test
against census it30w (finished in Jan. 2010). We then com-
pare, for the /24 blocks in both ITDK and the predicted por-
tion of our hitlist (Np), the responsiveness of either method
in each block. This comparison shows that informed repre-
sentatives are 3.4× more responsive, and that a traceroute
study that uses our hitlists would find about 1.7 million
additional edge links, a 5% additional coverage.

5. OTHER OBSERVATIONS
Given no knowledge about a /24 block, which address

is most likely to be responsive?2 This question has some
bearing on which representative we should select for gone-
dark blocks, or for newly-allocated blocks with no census
data yet.

Discussions with network operators suggest some network
practices are common. Often addresses are allocated sequen-
tially from the start of an block, and network managers often
use the first or last address in a block for the routers. Since
address blocks are allocated on powers-of-two according to
CIDR [15], we expect to see uneven use of the address space.
Recent work has confirmed visibility of allocation blocks in
census data [5], but not last-octet usage.

To evaluate this question, Figure 7 shows the distribution
of responsiveness for the last octet for all in it29w. (We
got similar results on it28w and it30w censuses.) Consistent
with expectation, the most responsive octet is .1, responding
0.86% of the time, more than twice as often as the median
responsiveness (0.38%), and 1.5× more frequent than .129
(0.55%), the next most responsive last octet.

Figure 7 shows a pattern in responsiveness, with responses
being most frequent at addresses that are one greater than
a power of two. The top ten are ranked .1, .129, .65, .33,
.2, .254, .17, .193, .97, .9, and of these only 2 and 254 do
not follow this pattern. To show this trend more clearly,

2We thank Kim Claffy for suggesting the question of last
octet distribution for study.



Datasets /24 blocks responsive in ITDK responsive in Np

ITDK-2010 8,248,027 730,496 2,454,500
informed predictions through HL29/16 (Np) 4,142,639 725,930 2,463,824
subnet-level intersection of both 4,008,861 725,930 2,454,500

Table 7: statistics on CAIDA and our hitlist
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Figure 8: Rank (shown by circle area) of responsiveness by
last octet, in a 16 × 16 grid by address (from it29w).

Figure 8 shows the rank of each last octet as the area of a
circle, with the octets arranged in a sequential grid (so the x
axis lists octets sequentially in groups of 16, while each step
up the y axis is 16 more than the previous). The vertical
lines correspond to more frequent responses, with x = 1
showing strong response from .1, .129, .65, etc., and x = 9
for .9, etc. The other prominent features are .254 and across
y = 0 (.1, .2, .3, etc.). While showing ranks exaggerate what
can be small absolute differences, these strong patterns show
power-of-two allocations affect responsiveness.

6. SHARING HITLISTS
Our goal in generating hitlists is to share them with other

research groups carrying out topology studies. We offer
them free-of-charge to all, and to date we have provided
them to four other projects. Although hitlists are not hu-
man subjects, networks are operated by and involve humans.
Hitlist use by multiple prompts us to consider their distribu-
tion in the context of the Belmont protocols [27], weighing
the benefits and potential costs of sharing and designing
policies accordingly.

The benefits of sharing hitlists are similar to sharing of
other research results. Shared data is a boon to researchers.
A common data source can lower the barrier to entry for
future research, and it also makes it easier for researchers
to compare their results. (For example, the TREC bench-
marks are seen as essential to rapid advances in the field of
Information Retrieval [12], although our efforts are far more
modest.) As importantly, we expect that the scrutiny of
multiple researchers on a common dataset can often iden-

tify data or methodological errors that might be otherwise
unnoticed. (In Internet topology, the problem of alias res-
olution is one that is still being refined [2, 20], nearly ten
years after the first techniques [16].) For the hitlist creator,
a shared result amortizes the operational costs of collection
and processing of the input data (Internet censuses) needed
to create hitlists. Finally, for the hitlist subjects, network
operators in the Internet, a common source allows us to
centralize “do-not-probe” blacklists and reduces raw data
collection.

Shared hitlists have some costs, however. Most serious is
that a hitlist can focus the probing of several researchers on
a specific representative address in a network, while indepen-
dently derived hitlists are more likely to distribute probing
load. Second, eventually hitlists will be acquired by ma-
licious users on the Internet. Potential harms are hiding
malicious traffic mixed with research traffic, and the slight
risk that any list of known active IP addresses may be at risk
of additional malicious traffic such as worms or cracking at-
tempts. While a risk, the effort to generate a hitlist is within
the reach of a motivated individual, so strong restrictions on
hitlists seem unwarranted.

Our current hitlist distribution policies are designed to
balance risks with benefits. Although we share hitlists free-
of-charge, we provide them subject to a usage agreement.
Hitlist users may not redistribute hitlists so we can estab-
lish this agreement directly with all users. Tracking hitlist
users allows us to estimate load on representatives. We also
seed the hitlist with representatives that we monitor to track
load. We also hope controlled hitlist distribution delays
their acquisition by malicious parties. We expect to review
these policies as we gain more experience.

7. CONCLUSIONS
We have defined the properties that are important to

hitlists: representatives that are responsive, stable, and pro-
vide complete coverage for the Internet. We have developed
a fully automated algorithm that mines data from Internet
censuses to select informed representatives for the visible In-
ternet. We employ information that is available for about
one-third of the Internet, and when an informed represen-
tative is available we see it is 50–60% likely to respond 2–
3 months later. We showed that the primary reasons for
prediction failure are blocks with dynamic addressing and
gone-dark blocks that are probable firewalls.

Our hitlists are available free-of-charge and have already
been distributed to four different research groups. Although
we do not have external evaluation of how their use changes
those studies, our evaluation of one prior study suggests the
potential to discover 1.7 million additional edge links.
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