Application-Level Differentiated Services for Web Servers

Lars Eggert and John Heidemann

USC Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6695 USA
larse@isi.edu, johnh@isi.edu

September 22, 1999

USC Technical Report 99-695
In World Wide Web Journagl/olume 3 (1999), Issue 2, pp. 133-142

* tem pair and with other traffic present at the time. Inside
Abstract :
the end systems, transactions compete for local

The current World-Wide Web service model treats allfesources while being processed. Servers implementing
requests equivalently, both while being processed byh€ Process-per-request (or thread-per-request) model
servers and while being transmitted over the network Will allocate one process (or thread) to an incoming
For some uses, such as web prefetching or multiple prifequest.

ority schemes, different levels of service are desirableThe current web service model treats all transactions
This paper presents three simple, server-side, applicagquivalently according to the Internet best-effort service
tion-level mechanisms (limiting process pool size, low-cjark 1988]. Neither the network nor the end systems
ering process priorities, limiting transmission rate) to typically prioritize traffic. However, there are cases
provide two different levels of web service (regular and\yhere having multiple levels of service would be desir-
low priority). We evaluated the performance of theseaple. Not all transactions are equally important to the
mechanisms under combinations of two foregroundcjients or to the server, and some applications need to
workloads (light and heavy) and two levels of availableeat them differently. One example is prefetching
network bandwidth (10Mb/s and 100Mb/s). Our 9Xperi'requests for web pages by proxies; such speculative
ments show that even with background traffic sufficien}equestS should receive lower priority than user-initi-
to saturate the network, foreground performance isated, non-speculative ones. Another simple example is a
reduced by at most 4-17%. Thus, our user-level mechayep sijte that wishes to offer better service to paying

even in the absence of operating system and networkection 2.

support.)))
Ongoing efforts attempt to provide multiple levels of

service, both in the server operating system (OS) and in
the network (see Section 6). Although promising in the

The World-Wide Web is a typical example of a cli- long run, replacing the OS of end systems or upgrading
ent/server system: in a weftansaction clients send all routers in the network is often impractical. Instead,

requestdo servers, servers process them and send corréve Will show that substantial benefit can be achieved
sponding responsesback to the clients. Concurrent With server-side, application-level-only mechanisms.

transactions with a server pompete for resources in théye have designed and implemented three simple server-
network and server and client end systems. In_S|de th%ide, application-level mechanisms that approximate a
network, messages contest for network bandwidth andgyice model with two levels of service, in which high-

with other messages flowing between the same end SY$riority responses preempt low-priority ones. The key

characteristic of such idebhckgroundesponses is that
* This research is supported by the Defense Advanced Research Projectghe”' presence In the SyStem never decreases the perfor-

Agency (DARPA) through FBI contract #J-FBI-95-185 entitled “Large Scale mance of concurrentoreground transactions. This is
Active Middleware”. The views and conclusions contained in this document

are those of the authors and should not be interpreted as necessarily represeﬁpprOXimated by SlOWing down the serving of back-

ing the official policies, either expressed or implied, of the Department of the ground responses to make more resource Capacity avail-
Army, DARPA, or the U.S. Government. The authors can be contacted at | h f |
4676 Admiralty Way, Marina del Rey, CA 90292-6695, or by electronic mail able to the average Oreground response. Our results

atlarse@isi.edu orjohnh@isi.edu . show that our most effective mechanism has an over-

1. Introduction

head on foreground performance of only 4-17%. This2.2. Content-derived priorities
indicates that it is possible to provide effective back-
ground data traffic service even without network-level
or operating-system-level support.

Having different levels of service may improve user-per-
ceived rendering time of web pages by sending HTML
responses at a higher priority than all others. The second

. . . example is a web server assigning different priorities to
2. Three cases for differentiated services responses based on the requested objects.

This section describes three cases where multiple levela typical web page consists of both HTML parts (one or
of service for web transactions are needed. The firstnore frames) and inline images. For each of those parts,
example is a web server offeringss-effortserving of one request will be issued by the client more or less con-
background requests. The second example is a weburrently. These requests may compete for resources
server that assigns different priorities to responses basefside the network [Balakrishnaat al. 1998] and at the
on the requested object. In the third example, responsend systems. If the transaction uses HTTP 1.0, the
priorities are assigned based on an external policy. responses will typically be sent as an ensemble of TCP
connections, which will compete for bandwidth along
2.1. Background requests and responses the path back to the client. If HTTP 1.1 is used, the

Background transactions are low-priority transactions SSPONSes will be sent over a single shared connection,

that are preemptable. The key characteristic of a bac but since responses cannot be interleaved, there will still
ground transaction is that its presence in the syste e competition for the order in which they will be sent.

never decreases the performance of concurrent fore—hus’ Image responses may interfere with HTML

ground transactions. This may be achieved by onl)/esponses. However, HTML responses are more impor-

transmitting or processing it if enough idle resourcetant to a browser, because they drive the rendering of the

capacities are available. If not, a background transactio?‘vr_]oIe page. T_he Server COUId. reflect this by giving pri-

may be indefinitely delayed or dropped. Thus, back-°"tY t0 delivering HTML over images.

ground transactions receiless-effortservice. In this example, the requested content controls the prior-
ity of a transaction. Even though transactions have dif-
ferent priorities, none are expendable; all of them must
be processed.

One application that would greatly benefit from the
availability of background transactions is anticipatory
caching (for example, [Touch 1998]). Currently, specu-
lative transactions and pushes can only be sent as reg
lar (foreground) traffic, and may thus interfere with non-
speculative traffic. Caches using speculative transactioni the previous case, transaction priorities were derived
(prefetching) and servers using speculative pushes nedbm the type of the requested object. Different levels of
to balance the amount of speculative traffic sent againstervice are also useful when priorities are assigned
possible future traffic reduction due to cache hits. Ifaccording to an external policy.

such transactions could be serviced in the backgroundC ider th le of b site offering inf i
interference with non-speculative traffic could be elimi- onsider the example of a web Site oftering Information

nated. This would lead to a better overall system perfor—bo'[h to paying subscribers and the public. Transactions

mance, as well as a simplified cache system, because tlkl)é{ payi_ng customers ShOUId be favored over thosg of
nonpaying ones by serving the former at a higher prior-

penalty of sending too much speculative traffic would be,) S o . ;

ity. Here, transaction priorities are assigned depending
greatly reduced. i

on the requester. A second example, where a different
One example of a cache using speculative pushes is thgolicy is enforced, is a web hosting service managing
LSAM Proxy Cache [Touch and Hughes 1998]. It usesmultiple sites on the same end system. Here, the hosting
background multicasts of related web pages, based ogervice might want to guarantee its clients’ sites receive
automatically-selected interest groups, to load caches ajutgoing bandwidth proportional to the amount of
natural network aggregation points. The proxy ismoney payed. Thus, transaction priorities would be
designed to reduce server and network load, andssigned based on the requested object.

increase client performance. Other applications thai h N ol | N | X
would benefit from the availability of background pro- n these two simple examples, external (management)

cessing include data-driven push [Touch 1995], Subpolicies control priori_ty assignments. Depending on the
scription push [Pointcast 1998], web prefetching [Pad-garure of dthe ;:ollcy, |tt_may or may not be acceptable to
manabhan and Mogul 1996] and TCP pacing elay or drop transactions.

[Visweswaraiah and Heidemann 1997; Padmanabhan

and Katz 1998].

%T& Policy-derived priorities

3. Finding the server bottleneck resource always served from the cache. Consequently, the disk
subsystem was mostly idle. Furthermore, all pages were
In the previous section, we have described several Cas@gatic, i.e. no additional server-side processing (CGI
in which different levels of service for web transactions s¢ripts, database queries, etc.) was done. Characterizing
are useful. The first step in designing an effective backgynamic web workloads is still an area of study. We

ground processingbackgrounding mechanism is to consider how this affects our conclusions in Section 5.3.
locate the bottleneck resource of the system. Control of

the bottleneck resource has primary influence on overaly 1 Results for 10Mb/s Ethernet

system behavior by granting or not granting the resource
to processes. For example, in a CPU-bound system, &he results for the 10Mb/s Ethernet case show that the

process that is not being granted the CPU cannot usg€rver was netyvork—bound during this gxperiment. In the
other resources; thus, CPU-scheduling controls systed¢ft graph of Figure 1, HTTP transaction throughput is

performance. In the same scenario, network schedulinglotted over the number of clients. Throughput quickly
would have little effect on performance. A successfulreached 7Mb/s and then settled around that number. A

backgrounding mechanism will control the schedulingSingle bulk TCP connection can achieve around 7.6Mb/s

decisions of the bottleneck resource to optimize perfor0ver the same link (measured witletperf [Netperf
mance. Project 1998]).

Any resource of a web server (CPU, physical memory,A” other monitored resources were mostly idle: The
disk, network) may become the bottleneck, depending€rver CPU utilization (right graph of Figure 1) was
on the kind of workload it is experiencing. We evaluated Never higher than 25%. Server memory was never fully
the bottleneck resource in two web serving scenarios: 4tilized; we observed no page faults during the experi-
web server connected to its clients by private, non-ment. The disk subsystem was also idle; there were no
switched 10Mb/s and 100Mb/s Ethernet links. We con-Physical (not served from the buffer cache) disk inputs.
ducted experiments to determine which server resourcehe disk output rate peaked at around 10 physical disk
became saturated first. The server was monitored unddy'ites per five minute test period, all of which were due
a growing request load generated by an increasing nunio logging. The local file system can sustain several
ber of clients, each of which made requests at a fixedhousand physical disk writes per second at less than
rate of (at most) ten requests per second. The aggrega?é% CPU utilization, so the measured rate is not signifi-
request load exceeded 1200 requests per second, whi€gNt:
was more than enough to fully load the server.

3.2. Results for 100Mb/s Ethernet
The server machine was a 300Mhz Pentium-II PC with
128MB of physical memory running FreeBSD 2.2.6. For 100Mb/s Ethernet, the server was CPU-bound. The
The kernel had been optimized for web serving [Apachg9ht graph of Figure 1 shows that the server CPU utili-
HTTP Server Project 1998a] by increasing the socketation rose rapidly to around 95%. Network throughput
listen queue to 256 connections and increasing thétagnated at around 30Mb/s, (left graph of Figure 1)
MAXUSERS kernel parameter to 256. We modified the Which is well below the 72.1Mb/s (measured wiitét-
Apache version 1.3 beta 1 web server [Apache HTTPPerf [Netperf Project 1998]) that a single bulk TCP
Server Project 1998b] to collect CPU, physical memory,connection can achieve over the same link. The server
page fault and physical disk 1/O statistics. The servetvas clearly not network-bound. We believe the rela-
load was generated by a version of Webstone-1.1 [Treniively low network throughput to be an artifact of the
and Sage 1995] that we modified to gather more exten¥Vebstone benchmark, which only supports HTTP 1.0
sive per-request statistics. Each point in the graph@”d will thus open a new TCP connection for each trans-
below is based on data gathered during a five minutéction, causing significant CPU overhead.

period in which several thousand requests were proas in the 10Mb/s case before, we did not observe any
cessed. No other jtrafflg was present during 'Fhe EXperipage faults or disk input operations. The measured phys-
ment. Network utilization could therefore simply be jca| disk output rate never exceeded 50 writes per five

measured by the amount of data transferred in a teshinute test run; as explained in Section 3.1, this rate is
period. not significant.

During both experiments, requests were made over the
standard Webstone file set, which is about 2MB in size
and is modeled after a small, static web server. The
entire file sets easily fit into the disk buffer cache of our
server. Thus, repeated requests for the same file were

1004

w
[4)]

= | — 10Mb/s Ethernet — 10Mb/s Ethernet .
S 304 ---- 100Mb/s Ethernet _.oaaioil iia-s 907 ... 100Mb/s Ethernet .--"")
= < 80
= 25 £ 70 !’
_g' e g L’ ’
S 20 g 991 K
5)’ = 504 !
|E 154) ’ O 40 /
v ’) ’
& 104 / o 304 /
/ U /

= ! 204 !
T sl i /——’—

0 20 40 60. 80 100 120 0 20 40 60. 80 100 120

Clients Clients

Figure 1. HTTP throughput and server CPU utilization over both 10Mb/s and 100Mb/s Ethernet.

4. Designing application-level background the OS before reaching the server; the server application
processing has two queues from which to accept foreground and

background requests.
As mentioned above, transactions compete for resource) : -
inside the network and at the end systems. Thus, ful ur first mechanism limits resource usage of back-
.. ground processes by limiting concurrency. This is

support for different levels of service for web transac-2 . .
tions would require both network and end system soft-aChleved by imposing an upper bound on the number of

ware (OS and applications) to be extended. These exterk 0CESSES in the background pool. If all background pro-

sions are still under development; and even when finc€sses are busy, additional incoming background trans-

ished, deployment will take time, because many routeré‘CtionS are delayed (in the OS) until a background pro-

in the network must be updated for the system to hCess becomes available. No such bound is enforced for

effective. In the meantime, application-level mecha-the foreground ppol, an(_j conseq.uently the average fore-
nisms promise most of the benefits of a OS/networ ground transactions will experience less delay than

solution with the additional advantage of being easy to ackg.round ones under an incregsing background load.
deploy. Only the application software of the serverThe size of the background pool is a parameter tunable

needs to be modified to offer different service levels. by the administrator of the web SEIver, based. on the
allowable overhead on foreground traffic. We picked a

We have designed and implemented three server-sidgalue of five background servers. Fewer background
application-level background processing mechanismservers would result in less background traffic, which
that approximate a service model with two classes: Regwould make it difficult to compare the overhead of the
ular foregroundtransactions, and preemptable, lower- backgrounding mechanisms. Using many more than five
priority backgroundransactions. We assume a processwould diminish the differences between foreground and
per-request model, with pools édreground processes background traffic classes.

and background processe¢Our results also apply to
thread-based servers, and our third and most effectiv
mechanism can be implemented in an event-drive
server.) All processes in one such class form fthre-

ghis first backgrounding mechanism could even be
mplemented without changing the server code, simply
y running two web servers configured with different

ground pooland background poobf server processes, pool sizes on the same machine. These servers would
respectively. Since we implemented server-side-onl)peed to serve the same documents, but accept connec-
mechanisms, requests are always being sent in the foré'—OnS on different ports.

ground; our mechanisms can only control processing@Our second backgrounding mechanism also limits the
and sending of the responses. The idea of backgrounsize of the background pool, but in addition also lowers
processing can also be applied to clients (see Sectiothe process priority of the background processes to the
5.3). minimum. For CPU-bound servers, this approach should

The key idea behind all our application-level back- produce better control than the first.

grounding mechanisms is to slow down the backgroundrhe two prior mechanisms directly reduce CPU usage
pool, thus making more resource capacity available tanly. Usage of network I/O and other resources is only
the average foreground process. Our three mechanisnisdirectly controlled. Our third mechanism limits the
differ in how they slow down background processing. aggregate network transmission rate of background pro-
We assume that the request stream is demultiplexed byesses by coordinating and scheduling their send opera-

tions. Background processes intentionally slow theircessing mechanisms, we attempt to reduce foreground
transmission, monitoring and explicitly pacing their performance degradation.
sending rate by pausing while sending. Multiple back-

ground processes collaborate to split the limit fairly. TheT0 quantify the effect of background traffic on fore-

rate limit is a parameter tunable by the administrator ofground load, we measured the response time and size of

the web server, based on the permissible overhead 0%ach transaction. Since different size replies have differ-

foreground traffic. We picked a rate limit of 1Mb/s. As gnt response times, we normahzg these times by d|v_|d-
. . . L ing them by the best observed time for the respective
with the first mechanism, a significantly lower value

would make comparisons of the backgrounding mecha—S'2e for each network configuration. Normalized times

: cec are thus dimensionless. The best possible normalized
nisms more difficult, and a much greater value would

diminish the differences between the two traffic classesr.e'Sponse time is 1 (all responses took the minimum
time). Because we aggregate traffic from a number of

Our third mechanism also limits the size of the back-clients, typical normalized times are 1-2 for light loads,
ground pool to five processes running at the lowest proor 3-5 for heavier loads where foreground traffic has
cess priority. Note that limiting the background pool in more self-interference.

this scenario is not necessary to enforce service dif'feren1-_0 characterize the variability in measured traffic. we
tiation; that is established through the send rate limit. Y '

Here, limiting the background pool will simply control report median and quartiles of normalized foreground

the send rate for each response: With only one backESPonse times for all transactions measured during a

ground process, background responses will be sent five minute test run (typically several thousand transac-
full rate limit (but only one at a time); with more than lons). As background load rises, we would expect the

: ; edian to rise and the quartiles to spread, indicating
one, multiple background responses will be sent, each a) L .
. L . .. ‘more interference and variability. The ideal background
a fraction of the rate limit. Lowering the process priority

. : 7 o rocessing mechanism will minimize these effects,
is also not strictly necessary, but since it is an extremel S

. . . I . resulting in a flat, low foreground performance curve
simple addition, we included it in the mechanism.

and a low interquartile gap.

One problem with the third approach is that even if the _. . :
. o Figures 2 and 3 summarize the results of our experi-
network is underutilized, the background processes can . L
T ments. To explore the design space, we varied:
never exceed the rate limit, because they have no means
of detecting idle network capacity. However, back-e Backgrounding Algorithm
ground transactions are not important by definition, so unmodified server (no distinction between request pri-
serving them at less-than-peak performance is appropri- orities), and each of our three background processing
ate. More elaborate rate-limiting algorithms (see Section mechanisms

7) may solve this limitation. « Network

None of our three background processing mechanisms 10Mb/s and 100Mb/s private, non-switched Ethernets
rely on OS-level or network-level support for QoS. with no other traffic present

However, if such support was available, they could all
be easily modified to take advantage of such mecha-
nisms.

Foreground Load
light load (causing 20% bottleneck resource utiliza-
tion) and heavy load (causing 80% utilization)

5. Background processing evaluation For 10Mb/s Ethernet, the bottleneck was the network,
and high foreground request loads were generated by 3

We implemented the three background processingaind 15 Webstone clients, respectively. For 100Mb/s

mechanisms described above in Apache version 1.3 be®@thernet and a CPU-bound system, we used 15 and 52

1 [Apache HTTP Server Project 1998b]. The server rarclients to generate the loads (numbers chosen according

on the same machine as during the bottleneck resourag Figure 1.)

experiments (see Section 3). Foreground and back-

ground transactions were generated by two synchro5.1. Results for 10Mb/s Ethernet

nized Webstone [Trent and Sage 1995] benchmark . . .

each with several clients. Foreground load was kept ats%:‘he f|rsfc two graphs show foreground response times in

fixed level during an experiment while increasing back-! e basic case with no backgroundlng being performed.

ground load over time. We expect that increasing theW'th_ one service class, medlr_:m performance grew up to

background load will reduce foreground performance in 0 times worse (from 1.05 without background load to

a basic system. By introducing specific background prc)_about 40) under light load (Figure 2: light/basic). Under

heavy load (Figure 2: heavy/basic), it grew about 15

Light Foreground Load (light) Heavy Foreground Load peavy

% 08)40_ —— Median . GE)4O_ —— Median /’

o = ---- Quartiles / = ----Quartiles -+

=2 35, ’ ~ 35, ’

£

0

%)

Q

&)

o

S

o

V)

m

o

b
20 30 40 0 10 20 30 40 50 60
Background Clients Background Clients

= . .

S o 240{ - Yot

S = R=

T 351 35

=

°

o

o

V]

m

°

0]

=

£

-
20 30 40 20 30 40
Background Clients Background Clients

_ . .

£ Beogm 240{ - Yot

= ---- Quarti = ----Quarti

oS 354 = 35

°

o

o

V)

m

2

I

S

%

3 ; : . : : :

| 20 30 .40 20 30 .40
Background Clients Background Clients

. .

o 240{ - Yot

= = ----Quart = ----Quart

S a5 F 35,

B 5 30+ 5 30+

o

o 251 ? 251

Q O]

g & 20 & 20,

3 R 151 L 154

2 © o

€ E 10+ £ o4

= 5 S | e

- = 59 z 5] ——

2 0.-"-?"-‘:-")-"I:u----)---‘lu----J---":----)---‘u----‘---"; 0 -------"I'------"I""""'I -------- Salalellelalelele Salnletnbebebelele)

DC:U 0 10 20 30 .40 50 60 0 10 20 30 .40 50 60
Background Clients Background Clients

Figure 2. Normalized median foreground response times (with first and third quartiles) for the baseline case and the
three different backgrounding mechanisms over 10Mb/s Ethernet; both under light and heavy foreground
load.

times worse (from 2.8 to 42). We also saw a substantiabasic case with increasing background load: For light
increase in response time variation, as illustrated by théoreground load (Figure 3: light/basic), it grew almost
wide inter-quartile gap. Under heavy foreground loadten times worse (from 1.3 with no background load to
there was substantial interference within the group ofabout 11.6) For heavy load (Figure 3: heavy/basic) it
foreground connections: With no background traffic grew from 2.8 to almost 16; over five times worse. Vari-
present, we observed a median response time that wasice in both cases was extremely high. Again, we see
two to three times slower than under light load. Fromsubstantial interference within the group of foreground
this, we conclude that background requests can substagennections alone; with no background load, median
tially reduce median performance in an unmodified sysperformance for heavy load is more than twice as bad
tem. than for light load. Comparing this case against the
10Mb/s case, note that the normalized response times
. : L here are about 50% smaller than before. This is because
grounding algorithm, where the server limited its back-. ;

)) : . in the network-bound 10Mb/s case, delays in response
ground pool size to five. For both light and heavy (Fig- ..)

time are mostly due to packet losses and the incurred

ure .2: light/ltdpool, heavy/itdpool) fqreground load, retransmission. In the 100Mb/s case there is plenty of
median performance only grew 5-6 times worse. The

simple idea of limiting the background pool resulted in aIdle hetwork capacity. Thus, delays in response time are

considerable improvement compared to the basic Casgmostly due to queueing inside the kernel.

However, median performance was degraded noticeablBy limiting the background pool, both median perfor-
and the variance in observed median performance wasance and its variance was improved under both sets of
substantial, although smaller than in the basic case. Thireground load. As for the 10Mb/s case, limiting the
simple mechanism keeps median performance under 1§ize of the background pool is an effective first step to
times normal for half of all requests. establish different levels of service. Under light fore-

Our second algorithm also lowers the process priority Oiground load (Figure 3: light/ltdpool) _medmn perfor-
mance only grows worse twofold, while under heavy

the b_ackground progess_es_to the minimum in addmo_n tcfoad (Figure 3: heavy/ltdpool) it only increases by 40%.
keeping the pool size limited to five servers. Med'anAgain this very simple mechanism can limit the

performance under light (Figure 2: light/loprio) load :
. . ._excesses of backgrounding.
was unchanged from the previous case, while median

performance under heavy load (Figure 2: heavy/loprio)Our second backgrounding mechanism also lowered the
was marginally better than during the previous experi-priority of the background processes. We had designed
ment (four times worse compared to five times before) this mechanism specifically for a CPU-bound system to
Performance variance was also virtually identical to theevaluate if process priorities would help in this scenario.
previous experiment. We have shown above that CPU i©ur results indicate that this is not the case. Both under
not the bottleneck for 10Mb/s Ethernet. Thus, even low-light and heavy (Figure 3: light/loprio, heavy/loprio)
priority processes received enough CPU time to generbackground loads, median performance is only margin-
ate a substantial amount of network traffic. Process prially better than in the previous case (Figure 3: light/Itd-
orities are therefore not an adequate mechanism tpool, heavy/ltdpool), where the background servers ran
establish different levels of service in this scenario. Thisat the same priority as the foreground ones. One possi-
result emphasizes the point that knowledge of the bottleble explanation for this lies in the nature of the 4.4BSD
neck resource is essential. CPU scheduler [McKusiclet al. 1996]. It lowers the
riority of processes that have accumulated more CPU

Next, we will look at the result from our first back-

The third backgrounding mechanism we evaluated wa Ime than others, and it raises the priority of process that
rate-limiting background sends. It performed best, with ' P yorp

. re blocked. These two features of the scheduler coun-

very low overhead and variance, under both foregroun(f1 : . S

N 1 . l . eract our intention to use priorities to further slow down
loads: With light load (Figure 2: light/ltdrate), median

. background processes.

performance grew by only 4% and variance was also
extremely low. Under heavy foreground load (Figure 2:Rate-limiting the background pool works best again in
heavy/ltdrate) median performance degraded by lesthis scenario. Under light foreground load (Figure 3:

than 18%. light/ltdrate), median performance only degrades by
about 6%, and the performance variance is extremely
5.2. Results for 100Mb/s Ethernet small. Under heavy foreground load (Figure 3:

i 0
We expected different results for 100Mb/s Ethernet,heavy”.tdrate)' median performance decr_eases by 11%,
which is a moderately better than the first two algo-

because of the different bottleneck resource. As before

performance (both median and variance) degraded in th%thms' but variance 1 significantly reduced, as shown
y the quartiles.

Light Foreground Load (light) Heavy Foreground Load peavy

o 1 -

G 08916 —-— Median / GEJJ'G —— Median

&S =144 ----Quartiles / £ 144 ----Quartiles

g 21 g1

@ & &

g 1 al

o O Q

o 4

n o °

o & I

© © 7

- : g

z 2 2
0 60 . 80 0 20 0 60 . 80 100 120
Background Clients Background Clients

= - -

8 08)16 -=— Median GEJJ'G -=— Median

% = 144 ---- Quatrtiles = 144 ----Quartiles

E $12 372 (EEPPCPLPTEER NGRS .

5 5 S ol %

o o104 3 10- , . .

a 3 4

o z 8 x 89/

Qg 3 6-

T N N

,.q_'z © © -/AW\'

£ E £ 4

= 8 O 2 e T e e

z z

0 60 . 80 0 20 0 60 . 80 100 120
Background Clients Background Clients

Q 08)16' —— Median 08916' —~— Median

5— = 144 ---- Quartiles = 144 ----Quartiles

— 3121 3 121

o 5 S| e s

DC.> %10- %10- ’/ """"""""""""""""""

O & 8 g 8/ o -

m o 36 /

2 5 8

Dé- g 2 A B R R R L L R LR R E Ty

3 0 60 . 80 0 20 0 60 . 80 100 120
Background Clients Background Clients

% 08)16' -=— Median 08916' -=— Median

S B 144 ---- Quatrtiles = 144 ----Quartiles

£ 3 121 3 121

@)

o %10- 8101

% & 8 ¢ s

= T 6l T g T e

o X N

=2 © 44 T 4

E g é ,——r———— "

B R TP L LRI LT NNOPPTT TIPS P R

& o0 : : : 0 : : :

o 0 20 0 60 . 80 100 120 0 20 0 60 . 80 100 120

o Background Clients Background Clients

Figure 3. Normalized median foreground response times (with first and third quartiles) for the baseline case and
three different backgrounding mechanisms over 100Mb/s Ethernet; both under light and heavy foreground
load.

5.3. Discussion of results Our experiments were conducted using a small, static
set of web pages. A server offering dynamic content will

In this section, we will summarize the experimental : o .
i . sually have higher local resource utilization (CPU, disk

results of our three background traffic mechanisms, an :)
and physical memory) due to the extra processing

then discuss how our mechanisms can be applied to sce- ; ;
. . involved with each request. Our experiments show that
narios where the server is not CPU- or network-bound

. ajﬁ)tplication-level backgrounding mechanisms are effec-
or to scenarios where request messages need to be selit .
. ive in the CPU-bound case. (As CPU requirements per
in the background.)) .
request increase, our second mechanism may provide
An important first result of our experiments is that sub- better service discrimination than the first.) For a disk-
stantial benefits can be provided with user-levelor memory-bound server, we believe our current mecha-
changes. Even the very simple approach of limiting thenisms would be effective, since slowing down the back-
background server pool works well in both scenarios:ground pool will result in fewer resource requests from
The median foreground response time is kept aroundhose processes, so a larger share of the critical resource
five and ten times the minimum for the 10Mb/s andis available to foreground processes. Knowledge of the
100Mb/s cases. A surprising outcome is that our secondystem bottleneck (see Section 3) would allow generali-
mechanism (lowering the process priority of the back-zation of our approaches to further address this situa-
ground pool) did not result in the expected improvementtion, such as rate-limiting the disk 1/0 of background
over the first one (just limiting the pool size) - especially processes.
in the CPU-bound case, where process priorities shoulev

be most useful. As cescribd sbove, the BSD CPL® (8% ITHES oUsehes o mpleTentng senverse
scheduler diminishes the difference between high-prior- 9 9 : ’ q g

ity and low-priority processes by rewarding /0. On are sent in the foreground. Since most requests are small

other systems, especially non-Unix systems, this may béMah 1997], requests \.N'” not typically lower perfc_)r-
mance. If backgrounding of request messages is of

different. However, since there are minor median perfor-_ . : .
rime concern, our mechanisms can also be applied on

mance improvements in some cases (and no penalties Re ¢l . . .
. ; - e client-side, to allow sending requests in the back-
the other ones), we consider lowering the priority of theground

background pool useful in addition to other measures.

Of the three simple backgrounding mechanisms we havg Related work

designed, limiting the network sending rate of back-

ground processes performs best. In all cases, medidaxtensions for differentiated services have been pro-
foreground performance decreased slowly (and only byposed at the application-, kernel- and network layer.

e.lbOUt 4'.17.%) as k_)ackgrounq load increased SUbStar}S\Imeida et al. [Almeidaet al. 1998] have designed sev-
tially. This is the primary requirement for a good back- eral application-level and kernel approaches to web

iroutrr]]dmg mechamsn’; (s]?e trt]e lbegt!nmng of Secué)nt 5)QoS. Their first application-level mechanism limits the
no | e:_ |r_rt1_pr0\$min ko ra Z' mi |Ing_ (CO!’“pt’;‘“i to server pool sizes allocated to requests of different
simply limiting the background pool size) is that rate classes. It is similar to out first mechanism (limiting the

limits offer a much finer granularity of control. Even a background pool) except that they demultiplex and
single Server process can put a considerable load on eue requests inside the application. The second mech-
_system, i pres:_anted with enough reql_Jests. Thus, a nism they have implemented is a kernel level-scheduler
Increase ofone in the background pool size can t_ranslatﬁ]at allows preemption of low-level requests and assigns
into a large change in bottleneck resource utilization du rocess priorities based on the request class, which is
to background requests. For our third mechanism to b%imilar to our lowered-priority approach. Whi,le they
effective, it is important to set the rate limit to a fraction confirm our result that simple application-level mecha-
of the available uplink bandwidth to the Internet. Even nisms (such as a limited pool of servers) are effective
then, background traffic may interfere with other traffic they claim that under heavy load, kernel-level preemp-,

after the first hop, if a b_ar_ld_/wdth bottlgneck exists fur- tion mechanisms are needed to improve performance.
ther up the path. To minimize these interferences, th%e examined application-level mechanisms in more
rate limit should be kept low both relative to the uplink depth, evaluating three different mechanisms. We dem-
bandwidth and in absolute terms. An additional miNor Jcirated that a carefully designed application-level

benefit of this mechanism is that it may generate Ies7‘11ethod will perform well even under heavy load. Thus
bursty background traffic by spreading out the transmis'additional kernel mechanisms may not be required. '
sion of the response message over an interval of time.

Several soft-realtime kernel extensions to give applica-

tions more control about scheduling and resource allo-

cation have been proposed. AQUA [Lakshmemhal. is important, but if the bottleneck is well understood
1998] is a kernel-level framework that allows cooperat-(such as at the server’s Internet connection) this tuning
ing multimedia applications to dynamically negotiate is straightforward.

their CPU and network I/O requirements with the ker-

nel. If a resource becomes congested, applications arg. Fyture work

notified by AQUA and may adapt to the new service

environment. This approach allows background pro-We have shown that rate-limiting background sends is
cesses to use allocated resources, addressing the fign effective server-side, application-level background-
problem we identify in Section 7. Unfortunately, it ing mechanism. The major problem of that approach is
requires kernel changes and does not address non-allthat the rate limit can never be exceeded; even if the net-
cated bottlenecks. OMEGA [Nahrstedt and Smith 1996]work could sustain the additional traffic without a
is an end-system kernel framework that supports softdecrease in foreground performance. If foreground load
realtime scheduling of CPU, memory and network could be quantified, this limitation could be overcome.
resource allocation to provide end-to-end QoS.We plan on experimenting with more elaborate back-
OMEGA is similar to AQUA, applications dynamically ground processing schemes to that purpose. One such
negotiate their resource requirements with a QoS brokescheme (requiring OS support) would be to have back-

. _ .ground processes send only if the foreground socket
Waldspurger and Weihl have successfully applied the"Etg)uffers are empty. Another mechanism might be to have

pr%p(\)/\r/thhr:ai-ggjrelgrgesso?rcgpScheguler;v [Vll/a}ltispfurgetrhe (foreground) server pool aggregate throughput sta-
and vvel ' .]. 0 LFU and nework INtertace i over time to estimate the available network band-
scheduling for a modified Linux kernel. Experiments width

show that they are successful in allocating different
shares of the managed resource to different application#t this time, our modified web server demultiplexes the
As with AQUA before, these schedulers can improverequest stream into service classes at the OS-level by
application-level backgrounding, but require kernelusing different sockets for background and foreground
changes. requests. We would like to investigate a server that
I . . demultiplexes its request stream at the application level.
Application-level mec_hamsr_ns_ cannot directly control This gives the server more control over how and when to
what happens to t_helr traffic inside the _network. Net_— process each request, but raises the issue of head-of-line
work-level mechanisms could be used to improve appll'blocking (background request at the head of the socket

catlinl—lev;al backg?roundmgl rEechetx)nlsms. ﬁt tthe nE’t'queue delays foreground requests queued behind it). To
work-level, Several proposals have been made 1o accony,arcome this problem, application-level queueing

modate different levels of service. One such proposal i -

to extend IP for integrated services [Wroclawski 1997].%8(ads to be implemented.

In this scheme, receivers initiate a resource reservatiomhis paper has concentrated on backgrounding of uni-
request to receive a guaranteed service commitmerttast traffic. However, multicast traffic may also benefit

with the Resource Reservation Protocol (RSVP) [Zhangrom the availability of background service. One exam-

et al. 1993]. A second proposal is to extend IP to sup-ple are multicast content-push applications such as
port differentiated services [Blaket al. 1998]. This video-conferencing: the audio channel could be trans-
approach allows high priority traffic to take precedencemitted in the foreground, since humans are more sensi-
over existing traffic on a per-packet basis. Complianttive to interruptions of the audio stream, while the video

routers will respect priorities in their queueing and for- channel could be transmitted in the background. We
warding decisions. have applied the idea of application-level background-

ing to multicast distribution in the LSAM system [Touch
Ultimately the network and end system OS are the beS:I;u?d Huguhtlas 199;3] foution | y [Tou

places to provide differentiated services. A router can

react to traffic requirements directly, and the end systenone limitation of the Webstone benchmark we used to

OS has better means of enforcing QoS than non-privigenerate the request load during our experiments is the
leged applications. Deployment of these mechanisms igability to generate a load that completely overloads the

difficult since many routers must support these protocolserver [Banga and Druschel 1997]. Future experiments
for the system to become effective. Our work suggestshould use a more realistic model to simulate client

that much of the benefits of background service is possibehavior.

ble through application-level mechanisms. For best

results, however, the administrator must tune the back-

ground transfer rate proportional to the bottleneck band-

width. If this bottleneck is not known, network support

10

8. Conclusion Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss
(1998), “An Architecture for Differentiated Services,” RFC 2475,

We have described several scenarios in which havindnternet Request For Comments.

Q|ﬁerent levels of service .fOI’ web requeStS. would resul'[Clark, D. (1988), “The Design Philosophy of the DARPA Internet Pro-
in a better overall service model. An ideal SYSt€M ;415 » Computer Communication Review Z8pp. 106-114.
requires extensions to most network routers and the end

system OS and applications. These extensions are undBetperf Project (1998).

development, but will take time to standardize andweb page http://www.netperf.org/

deploy.
ploy Lakshman, K., R. Yavatkar and R. Finkel (1998), “Integrated CPU and

Application-level mechanisms can achieve several ofietwork-/O QoS management in an endsyste@gmputer Commu-
the key benefits of a complete solution while beingMcations 214, pp. 325-333.
extremely easy to set up. Knowing the bOttlenec;kMah, B. (1997), “An Empirical Model of HTTP Network Traffic,” In

resource of the system is essential in designing an effe@roceedings of the IEEE INFOCOM ‘97EEE Computer Society
tive mechanism. A web server has been monitored irPress, Los Alamitos, CA, pp. 592-600.

two different experiments to detect its bottleneck
resource. Using that information, we have designed an
implemented three simple, server-side, application-leve
mechanisms to support different levels of service. These

mechanisms have been compared against the basic sysahrstedt, K. and J. Smith.(1996), “Design, Implementation and
tem in four different sets of experiments. Analyzing the Experiences with the OMEGA End-point ArchitecturtEEE Journal

results showed that while any of our mechanism per°" Selected Areas in Communicatiops. 1263-1279.

forms better than the ba.SIC Cas.e’ I|m|t|ng the_send rate 0fi'L’admanabhan, V. and J. Mogul (1996), “Using Predictive Prefetching
background responses is particularly effective in estabto improve World Wide Web LatencyACM Computer Communica-
lishing different levels of service: The performance tion Review 263, pp. 22-36

impact of this mechanism on foreground traffic was less d oh § (1998) A
; Padmanabhan, V. and R. Katz (1998), “TCP Fast Start: A Technique
than 4-17% in all cases. ’ '
for Speeding Up Web Transfers,” Rroceedings of the IEEE GLOBE-
COM Internet Mini-Conferencep. 41-46.

esign and Implementation of the 4.4BSD Operating Systeldi-

chusick, M., K. Bostic, M. Karels and J. Quarterman (1996he
on-Wesley, Reading, MA, pp. 92-97.

Acknowledgments
Pointcast, Inc. (1998), “How Pointcast Works.”

We would like to thank Joe Touch for his detailed dis- web page http://www.pointcast.com/products/pcn/hwork.html

cussions of background processing alternatives and for

. . . Touch, J. and A. Hughes (1998), “The LSAM Proxy Cache - a Multi-
his valuable comments on an earlier draft of this paperi:ast Distributed Virtual CacheComputer Networks and ISDN Sys-

Ted Faber, Steve Hotz and Joe Bannister have also prosms 3022-23, pp. 2245-2252.
vided helpful feedback for the paper.

Touch, J. (1998), “LowLat ‘Containment’ Issues,” In Preparation,

Technical Report, USC Information Sciences Institute.
References P

)) ~ Touch, J. (1995), “Defining ‘High Speed’ Protocols: Five Challenges
Almeida, J., M. Dabu, A. Manikutty and P. Cao (1998), “Providing g an Example That Survives the Challenge$ZEE Journal on

Differentiated Levels of Service in Web Content Hosting,Piroceed- Selected Areas in Communications 8,3pp. 828-835.
ings of the 1988 SIGMETRICS Workshop on Internet Server Perfor-
mance Madison, WI, USA, June 1998, pp. 91-102. Trent, G. and M. Sage (1995), “WebSTONE: The First Generation in

HTTP Server Benchmarking,” Technical Report, MTS, Silicon Graph-
Apache HTTP Server Project (1998), “Running a High-Performanceijcs, Inc., Mountain View, CA, now maintained by Mindcraft, Inc.
Web Server for BSD.” web page http://www.mindcraft.com/webstone/
web page http://www.apache.org/docs/misc/perf-bsd44.html

Visweswaraiah, V. and J. Heidemann (1997), “Improving Restart of
Apache HTTP Server Project (1998). Idle TCP Connections,” Technical Report 97-661, Computer Science
web page http://www.apache.org/ Department, University of Southern California, Los Angeles, CA.

Balakrishnan, H., V. Padmanabhan, S. Seshan, M. Stemm and R. Kagaldspurger, C. and W. Weihl (1994), “Lottery Scheduling: Flexible
(1998), “TCP Behavior of a Busy Internet Server: Analysis and proportional-Share Resource Management,”Pimceedings of the
Improvements,” InProceedings of the IEEE INFOCOM ‘98, pp. First USENIX Symposium on Operating System Design and Imple-
152-162. mentation (OSDI)USENIX Association, Berkeley, CA, pp. 1-11.

Banga, G. and P. Druschel (1997), “Measuring the Capacity of a Welyyaldspurger, C. and W. Weihl (1995), “Stride Scheduling: Determin-

Server,” InProceedings of the USENIX Symposium on Internet Tech4stic Proportional-Share Resource Management,” Technical Memoran-
nologies and SystemdSENIX Association, Berkeley, CA, pp. 61-71.

11

dum MIT/LCS/TM-528, MIT Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA.

Wroclawski, J. (1997), “The Use of RSVP with IETF Integrated Ser-
vices,” RFC 2210, Internet Request For Comments.

Zhang, L., S. Deering, D. Estrin, S. Shenker and D. Zappala (1993),

“RSVP: A New Resource ReSerVation ProtocdEEE Network 75,
pp. 8-18.

12

	Abstract
	1. Introduction
	2. Three cases for differentiated services
	2.1. Background requests and responses
	2.2. Content-derived priorities
	2.3. Policy-derived priorities

	3. Finding the server bottleneck resource
	3.1. Results for 10Mb/s Ethernet
	3.2. Results for 100Mb/s Ethernet

	4. Designing application-level background processing
	5. Background processing evaluation
	5.1. Results for 10Mb/s Ethernet
	5.2. Results for 100Mb/s Ethernet
	5.3. Discussion of results

	6. Related work
	7. Future work
	8. Conclusion
	Acknowledgments
	References

