
Preferential Treatment for Short Flows to Reduce Web Latency

Xuan Chen and John Heidemann ∗†

ISI-TR-2001-548
October 2001 (updated in July, 2002)

Abstract

In this paper, we propose SFD algorithm to reduce
the user-perceived web latency. This algorithm gives
short flows preferential treatment. We implement
SFD algorithm as a simple differentiated services pol-
icy and evaluate its performance in simulation. We
find that SFD algorithm reduces the transmission la-
tency of short flows and the response time to retrieve
representative web pages by about 30%. Using web
traces, we demonstrate that 99% web pages would be
transferred faster. SFD penalizes long flows, but the
penalty is well bounded. We further evaluate how
different schemes trade-off the performance between
short and long flows.

1 Introduction

The Internet has a mix of traffic of all types includ-
ing interactive traffic due to telnet and most web traf-
fic; bulk, non-interactive traffic such as e-mail, some
web traffic, and most file sharing traffic (FTP, Nap-
ster, etc.). The different needs of these traffic classes
have long been recognized (for example with IP type-
of-service bits [1, 2]), but recent approaches to traffic
classification such as Differentiated Service (DiffServ)
focus primarily on price- rather than application-
based levels of service [3, 4, 5]. Further, the expecta-
tions of end-users should also be considered [6]. For
example, end-users are likely to tolerate long delay
while downloading movies, but are easily to feel up-
set if waiting too long to see Yahoo’s web page.

A second observation about Internet traffic is that
most flows are short, but most bytes are in long flows.
Looking at web traffic, for example, recent measure-
ments [7] show that 85% of all response flows sent
from servers are less than 10K bytes, but they only
account for about 20% of the total bytes transferred;

∗Xuan Chen and John Heidemann are with University of
Southern California, Information Sciences Institute.

†This material is based upon work supported by DARPA
via the Space and Naval Warfare Systems Center San Diego
under Contract No. N66001-00-C-8066 (“SAMAN”), and by
the CONSER project supported by NSF.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

Li
nk

 u
til

iz
at

io
n

Simulation time (seconds)

Short flows

Long flows

Figure 1: “Network hole plugging”: burst short flows
leave holes for long flows.

the other 80% bytes are contributed by the longest
15% flows.
Finally, a common web design practice is to keep

commonly viewed pages short to improve page view
latencies for interactive browsing. This approach is
widely discussed in web design books and has been
shown to be consistent with heavy-tailed web file
sizes [8]. For web traffic sent over the HTTP/1.0
protocol [9] where a new TCP connection is opened
for every web object, this design approach suggests
a strong correlation between short flows and interac-
tive traffic (we discuss HTTP/1.1 [10] in Section 3.2
and 4.4.).
The implication of these three observations is that

most interactive web traffic is in short flows and
should be transferred faster. However, short flows
suffer substantial queuing delay and packet loss due
to bulk traffic in long flows. These observations
suggest that interactive web performance could be
improved by giving preferential treatment to short
flows. This idea of “network hole plugging” (depicted
in Figure 1) was first suggested by John Doyle of
Cal Tech—short flows should be able to quickly slip
through the network, while long flows should “fill in
the gaps” in short, bursty traffic.
Our paper proposes an algorithm to realize this

1

goal and evaluates its effects through simulation. We
use DiffServ to prioritize traffic, giving preference to
short, presumably interactive flows. We implement
the basic Short Flow Differentiating (SFD) algorithm
and its two variants, namely probabilistic and selec-
tive SFD algorithms, as a DiffServ policy in ns-2 sim-
ulator. We evaluate the performance of SFD algo-
rithm in simulations and find that SFD reduces the
response transmission latency of short flows by more
than 30%. This reduction increases as the network
load becomes heavier. Through estimation, we find
that SFD reduces 30% of the time to retrieve more
than 90% web pages. We also study the sensitivity
of our simulation results.

There are two risks to this proposal. First, these
improvements come at some penalty to long flows.
We examine the affected flow size and assess this cost.
We show that the penalty is bounded by SFD algo-
rithm.

Second, the developing understanding of Internet
stability is based on the importance of end-to-end
congestion control [11]. This argument is based on
the observation that the majority of Internet traf-
fic is in congestion-controlled long TCP flows. Non-
congestion controlled traffic and short TCP flows
(“mice”) are suspect because they are not TCP
friendly and, in the aggregate, may threaten Inter-
net stability. Although SFD favors short flows, its
policies are selected so as not to destroy the benefits
of end-to-end congestion control. We discuss these
trade-offs in Section 3.3.

2 Background and Related Work

In this section, we present some background on web
traffic measurement and modeling [7, 12, 13, 14, 15,
16]. We also describe some related work on the Diff-
Serv model and queuing management.

The NeTraMet Web Session Performance project
at Caida [12] examined the composition of web traffic
from network traces and found that about 75% of the
web traffic flows carry about or less than 1K bytes.
This result shows that the majority web traffic flows
are only consist of few TCP packets.

Crovella et. al. investigated the self-similarity in
web traffic [13] and discovered the size of web flows
has a heavy-tailed distribution. This property is re-
produced in a web workload generator SURGE [14]
which is used to validate the web traffic model in our
simulation [17].

The interaction between HTTP and TCP has also
been studied [18, 19, 20]. Balakrishnan et. al. inves-
tigated the TCP behavior of a very busy web server
(the web server for 1996 Atlantic Olympics) from

its trace file [20]. They explored the TCP behav-
ior of both single and parallel connection(s) in terms
of throughput and loss recovery and found that web
traffic consists of many short TCP connections from
a single host which show poor loss recovery perfor-
mance. They enhanced TCP’s loss recovery mecha-
nism for improvement. We have similar observations
in simulation and consider it as the main reason for
the slow web transactions: large latency even for a
small page. As opposite to modifying TCP imple-
mentation, we propose to apply SFD algorithm as a
DiffServ policy to reduce the transmission latency of
short flows.

The end-user perceived response time of web trans-
actions (or web latency, we use these two terms inter-
changeably in this paper) is determined by many fac-
tors, such as web server load, network condition, and
web page rendering time on browsers [15, 21]. In this
work, we mainly consider the circumstances where
the web latency is network limited [21]. We also no-
tice that a complementary work on web server [22]
applies the similar idea by implementing a shortest-
connection-first scheduling policy. Both work show
smaller response time for short web connections and
examine its cost: the unfairness or penalty suffered
by long flows. We implement this scheduling pol-
icy and the traditional first-come-first-serve policy
for web server and examine the combined effect of
server and network scheduling policies on the end-to-
end web latency.

The idea of SFD algorithm is quite similar to
the Shortest Remaining Processing Time(SRPT)
scheduling policy which minimizes the mean response
time. Recent study [23] further shows that the ”un-
fairness” of SRPT could be extremely small, espe-
cially when the processing time has a heavy-tailed
distribution. Knowing the size of documents hosted,
a web server can easily determine the processing time
of a web request and apply SRPT scheduling policy
to reduce the server’s response latency. The shortest-
connection-first scheduling policy (presented above)
is such an example. However, it is difficult to apply
SRPT to networks because routers do not know the
size of web object until the end of transmission. Our
SFD algorithm solves this problem with a heuristic
flow identification scheme as described in Section 3.2.

We implement SFD algorithms as a DiffServ pol-
icy. In DiffServ model (with assured service), given a
profile that the end users agree on, the routers on the
edge of networks (edge routers) keep flow states and
mark the packets from flows obeying the profile as IN
(in profile), otherwise as OUT (out of profile). The
routers inside the network (core routers) give packets
different dropping preference based on their marks

2

(or codepoints): the OUT packets are more likely
to be dropped than the IN packets when congestion
happens.

By designing SFD under the framework of Diff-
Serv, we eliminate the overhead for flow state keep-
ing on core routers. This makes SFD easier to be de-
ployed than packet scheduling mechanisms (fair queu-
ing [24], for example), which can also be used to pro-
tect delay sensitive traffic such as telnet and short
web flows.

Besides DiffServ, the Alternative Best-Effort Ser-
vice (ABE) [25] is proposed to accommodate dif-
ferent requirement of delay-sensitive (green) and
throughput-sensitive (blue) applications. Unlike
ABE that requires applications to mark their packets
as either green or blue and guarantees low latency for
green packets as the expense of possible higher drop
rate, SFD takes a different approach: routers clas-
sify traffic and protect short flows from packet loss
by giving them preferential treatment.

RED with preferential dropping (RED-PD) [26]
is an algorithm for routers to enforce fair share of
bandwidth for flows. It detects high bandwidth flows
and drops their packets preferentially. Although both
RED-PD and SFD use the scheme of packet prefer-
ential dropping, SFD has a different goal from RED-
PD: to improve web latency by protecting short flows
from packet drops and large queuing delay.

Guo and Matta conducted a very similar work [27]
simultaneously and independently. While showing
slightly less performance improvement for short flows,
they did not observe penalty to long flows, which we
believe is possible under certain traffic pattern and
network configurations. Besides, we evaluate SFD al-
gorithm by estimating the response time to retrieve
representative web pages and examine the combined
effect of different server and network scheduling poli-
cies on the end-to-end web latency. We also study the
performance of SFD algorithm in a broader range of
traffic load and assess the possible effect on network
congestion control.

3 the Interaction among Web Traffic

Flows

In this section, we investigate the interactions be-
tween short and long flows by examining their trans-
mission latency. The classification of short and long
flows is based on flow size which is defined as the
amount of data carried by a flow (1000 bytes, for ex-
ample): short flows are those with flow size less than
a certain threshold th and long flows otherwise. We
propose the SFD algorithm to treat short flows pref-
erentially.

Client Server

Time

response
packet 1

packet n

latency
transmission
response

request

Figure 2: Transmission latency.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14
M

ea
n

T
ra

ns
m

is
si

on
 L

at
en

cy
 (

se
co

nd
s)

Flow Size (KBytes)

NL

L2S

DT

Figure 3: Transmission Latency of Short Flows with Dif-
ferent Traffic Mix

We use response transmission latency to quantify
the network effect in web latency. As shown in Fig-
ure 2, the response transmission latency measures the
time interval starting when a server sending out the
first packet of a response and ending when the cor-
responding client receiving the last packet of the re-
sponse. We focus on the dynamics in response trans-
mission latency (or transmission latency, for short) in
this work.

3.1 Interaction of Short and Long Flows

To understand the interaction between short and
long flows, we describe two simulations below. The
detailed simulation methodology is described in Sec-
tion 4.1. In these simulations, we configure the
routers with droptail queues, which discard the in-
coming packets indistinguishably when the buffer is
full. We measure the transmission latency of short
flows under different scenarios and show the mean
transmission latency in Figure 3.

• Flows with different sizes (denoted as DT): This
is the baseline scenario where short flows com-

3

pete with long ones.

• No long flows (denoted as NL): We subtract long
flows from web traffic. The effect of long flows
is completely eliminated: the traffic load is re-
duced as well as the number of flows. The simu-
lation result shows that the transmission latency
of short flows is reduced by about or more than
50%, which is the lower bound of short flows’
performance.

• Chop long flow into multiple short ones (L2S):
We keep the traffic load (the total amount of
bytes transfered) unchanged, but intend to send
them by short flows: an original long flow is
chopped into several short ones (15K bytes or
less). The simulation result shows that short
flows still have about 30–50% smaller transmis-
sion latency compared to DT case.

These observations imply that the competition be-
tween short and long flows (for network resources,
such as buffer space) slows down short flows’ trans-
mission. We present two reasons below:

• Packet dropping : Most routers deploying drop-
tail queuing discipline discard packets indistin-
guishably under congestion. Because of the poor
loss recovery performance [20], even a few packet
drops can slow down short flows greatly. Fur-
ther more, the retransmission of these dropped
packets also consume network resources (for ex-
ample, bandwidth and buffer space) and make
things even worse.

• Queuing delay : Although routers can provide
adequate buffer space to avoid packet dropping,
short flows still suffer from the large queuing de-
lay because they may be blocked by long flows
which send tens of packets within one congestion
window. Our simulations with infinite buffer
space show that the transmission latency of short
flows may increase especially when a very large
web object (larger than 1M bytes, for example)
is transferred.

Because of these two reasons, a dominant percent-
age of web transactions are slowed down. Some study
at TCP level [20, 27] also show similar observations.
As a result, end users may experience a long waiting
time even when fetching a simple web page with short
text on it.
This leads to a natural question: can we give pref-

erential treatment to short flows to reduce their trans-
mission latency? We present such an algorithm be-
low.

3.2 Differentiating Short and Long
Flows

We propose a simple algorithm to differentiate
short and long flows, namely the short flow differ-
entiating (SFD) algorithm. We design this algorithm
under the framework of DiffServ model: edge routers
identify short and long flows and mark the packets in
short flows as IN and long flows as OUT; core routers
give higher priority to IN packets so that they are pro-
tected against packet drop and large queuing delay.

Unlike the simple definitions described in Sec-
tion 3.1, it is not easy for edge routers to determine
flow size due to the lack of application level informa-
tion and the dynamic contents hosted on web servers
(for example, using CGI scripts to generate informa-
tion for end-users).

Given the limited information carried by each
packet, we propose a heuristic flow identification
and packet marking scheme. Edge routers exam-
ine every packet header and record the amount of
bytes having been sent by each flow so far as a flow
state f.bytes sent. Edge routers identify a flow as
short and mark its packets as IN until its f.bytes sent
exceeds the flow identification threshold th.

In DiffServ model, only edge routers need to keep
flow states; but edge routers do not need to keep flow
state forever. We assume that edge routers time-
out flow state after a short period p during which
no traffic for that flow is observed. Not only does
this minimize router state, but it also allows to treat
long flows that are only intermittently used as sepa-
rate short flows. For example, HTTP/1.1 traffic mul-
tiplexes multiple interactive transactions over a sin-
gle TCP connection. With this timeout, portions of
a long HTTP/1.1 flow separated by end-user think
periods [7] would be treated as separate interactive
short flows. In our work we set p to 1 second.

SFD applies RED [28] queuing discipline to handle
IN and OUT packets. RED reduces the queue length
via early dropping: when the average queue length
exceeds a minimum threshold (min th), the arriving
packets are dropped with a probability roughly pro-
portional to that connection’s share of the bandwidth
through the router; this probability is bounded by
a maximum value (max p) until the average queue
length becomes greater than a maximum threshold
(max th) when all incoming packets are dropped.

The different treatment to IN and OUT packets
can be realized by either preferentially dropping OUT
packets or by a packet scheduling scheme (such as
Fair Queuing [24]) with higher priority to IN pack-
ets. We choose the first approach in SFD. Specifi-
cally, SFD uses two virtual RED queues [29] for IN

4

Outgoing
packets

5 4 3 2 1

packets
Incoming

5 4 3 2 1
5 2 1

 4 3

FIFO queue
IN

Identifier
OUT VQ−OUT

VQ−IN

(a) Virtual RED Queue (VQ) with Preferential Drop-
ping

4 3 5 2 1

OutgoingIN

OUT
Identifier

packets

5 4 3 2 1

5 2 1

4 3

packets
Incoming

PQ−OUT

PQ−IN

Scheduler
Priority

(b) Physical RED Queue (PQ) with Priority Scheduling

Figure 4: Two Approaches to Give Different Treatment
to IN and OUT Packets.

and OUT packets. Virtual queues assign different
traffic classes different RED parameters and preserve
packet order by actually putting incoming packets
into one single FIFO queue. Each virtual queue han-
dles the corresponding packets individually based on
its queue length and RED parameters. With stricter
parameters, OUT packets are dropped preferentially
when congestion happens. We also consider another
option of using two separate RED queues with a pri-
ority packet scheduler. This approach imposes strict
priority to IN and OUT packets and can not pre-
serve packet order, which may cause starvation to
long flows under certain circumstances such as ap-
plications intensively transmit data via short flows.
We compare the architecture of both approaches in
Figure 4.

3.3 Concerns with SFD

A major concern in the design of SFD is that it
does not destroy the benefits of end-to-end congestion
control [11]. There are two risks here: first, it could so
heavily favor short flows that long flows are starved;
and second, even if long flows are not starved, the
benefits of SFD could be so great that applications
could intentionally chose to use multiple short flows
instead of a single long flow.

To alleviate the first risk, we design two revised
versions of SFD algorithm to avoid over-penalizing
long flows The basic idea is to promote a fraction of
packets in long flows to IN status. These algorithms
are:

• Probabilistic SFD algorithm (denoted as P-
SFD): Edge routers promote OUT packets with
the probability as th / f.bytes sent, which de-
creases as more packets being sent.

• Selective SFD algorithm (denoted as S-SFD):
Edge routers selectively promote a fraction of
OUT packets, for example one of every K OUT
packets. This modification has a tunable param-
eter K and requires edge routers to maintain a
counter for each long flow.

Although both modifications “put” some OUT
packets into IN virtual queue, the packet order is still
preserved as we have discussed in Section 3.2, which
can’t be guaranteed by the packet scheduling scheme.
SFD further avoids starvation of long flows through

its choice of virtual RED queues. Although OUT
packets suffer stricter RED parameters than IN
(short-flow packets or promoted long-flow packets in
P-SFD or S-SFD), all packets are placed in a single
physical FIFO queue. Thus, once an OUT packet is
accepted it will be sent. It is true that since short
flows are given priority they will grow faster than
they would in an undifferentiated network. However,
the Internet community has previously granted some
benefits to short flows, for example, by increasing the
initial window size [30]. We suggest that SFD’s pol-
icy of favoring the first th bytes of each flow is only
a somewhat greater step toward favoring interactive
traffic.
It is also possible that SFD might cause applica-

tion writers to structure content or applications to
send data in small pieces. Content is already struc-
tured in small pieces to reduce download time, thus
some control over traffic is already outside the realm
of protocol design. Fortunately, although some appli-
cations (for example, games) use custom protocols to
get minimum latency, most major applications thus
far are well behaved to make equitable (non-greedy)
use of network resources. SFD should not change this
trend.

4 Algorithm Evaluation

We implement SFD algorithm in as a DiffServ pol-
icy in ns-2 [31] and evaluate its performance through
simulations (denoted as SFD). We configure the two
virtual RED queues under the guidance of a recent
study [32]. We show the different RED parameters
in Table 1.
We choose 15K byte as the flow identification

threshold in our simulations (th = 15K bytes), which
has been verified as a reasonable choice from simu-
lations (described in Section 4.3). With this thresh-

5

Virtual
RED Queues max th min th max p w q
IN 30 10 0.02 0.02
OUT 24 8 0.10 0.02

Table 1: Parameters for the Two Virtual RED Queues.

C1
C2

C3

C5

S1

S2

S3

S4

S5

R0 R1
10Mb 3Mb 10Mb

10ms 20ms 10ms

C4

 flow identification

Figure 5: Network Topology in Simulations.

old, 90% of the total traffic flows in our simulation
are short which only contribute about 25% of the to-
tal network load; most of the network load are from
long flows. This observation is consistent with the
heavy-tailed distribution of web object size1. Simi-
lar statistic results are also observed in two real net-
works traces: UCB96 collected by Univ. of Califor-
nia, Berkeley in 1996 from the UC Berkeley dial-in
IP modem bank [33] and BU98 collected by Boston
University in 1998 from a non-caching HTTP proxy
server [16]. Both traces recorded the size of web ob-
jects requested.

4.1 Methodology

Figure 5 shows the simulated network topology: 5
client hosts (C1–C5) and 5 web servers (S1–S5) are
connected to router R0 and R1 by 10 Mbps links with
10ms propagation delay; router R0 and R1 are con-
nected by a bottleneck link with 3Mbps bandwidth
and 20ms propagation delay. Routers R0 and R1
identify short and long flows. We relax this topol-
ogy in Section 4.6.
This topology can be viewed as a simplified version

of the interconnection between two ISPs correspond-
ing to R0 and R1, where one provides user access
(R0) and the other provides WWW services (R1).
With this specific topology requests (from clients to

1Given the same threshold, the traffic flows generated by
a web traffic model with log-normal distributed object size is
consist of 99% short flows.

servers) and responses (from servers to clients) are
separated in two directions. Requests (usually con-
tain one small packet, 48 bytes in our simulations)
are transmitted under very light traffic load and will
not increase the overall web latency.
In the web traffic model in ns-2 [17], clients initi-

ate a series of web sessions, each retrieving some web
pages from randomly chosen servers. A web page is
consist of several web objects, which should be mod-
eled by a heavy-tailed distribution [13] to produce
the self-similarity in web traffic. We model these
attributes with different probabilistic distributions
according to a latest study on web traffic measure-
ment [7] (as summarized in Table 2).
The network load can be adjusted by varying the

number of web sessions and the mean inter-arrival
time between sessions (i.e. load parameters). We
study three network load conditions in our simu-
lation: light load, medium load, and heavy load.
The corresponding load parameters, utilization and
packet loss rate on the bottleneck link are shown in
Table 3. Unless otherwise specified, we conduct simu-
lations under medium network load, which we believe
is of most interest.
We deploy SFD algorithm to all routers and com-

pare the simulation results with the DT scenario de-
scribed in Section 3.1. Since SFD algorithm uses vir-
tual RED queues, we also evaluate the effect of apply-
ing RED by simulation (denoted as RED). We deploy
RED queues to all routers and configure them with
the parameters for OUT packets to limit the number
of packets in the buffer. We expect smaller transmis-
sion latency for short flows because the queuing delay
is reduced and packets from short flows are unlikely
to be dropped because the relatively small amount of
bandwidth they consume.
We run the simulations for 12000 seconds and

record data after a warming up period of 2000 sec-
onds to avoid transient effects. We measure transmis-
sion latency for flows with different sizes. and present
its mean and standard deviation as a function of flow
size. For accuracy, we aggregate these results for very
long flows. We do not show the confidence interval
with data in the graphs because it is very small: 1–2%
compared to the data (with 95% confidence level).

4.2 Performance Improvement of Short
Flows

Figure 6(a) and 6(b) show that the mean and stan-
dard deviation of the transmission latency for short
flows under different scenarios (DT, RED, and SFD).
It is clear that SFD algorithm gives much better per-
formance. In Table 4, we quantify this improvement
as the reduction in transmission latency for short

6

Web Model Probabilistic
Elements Element Attributes Distributions Parameters
Web Session Number of Web Sessions Constant value: 1250

Time Interval between Sessions (seconds) Exponential mean: 15
Number of Web Pages per Session Exponential mean: 100

Web Page Time Interval between Pages (seconds) Exponential mean: 10
Number of Web Objects per Page Exponential mean: 3

Web Object Time Interval between Web Objects (seconds) Exponential mean: 0.01
Object Size (KBytes) Pareto II mean: 12, shape: 1.2

Table 2: The Attributes of Web Model and Corresponding Distributions.

Network Session Inter-session Link Loss
Load Number Time (seconds) Utilization Rate
light 1000 25 30% 0.1%
medium 1250 15 40% 1%
heavy 1400 9 70% 10%

Table 3: Different Network Load.

Reduction in Transmission Latency
Scenarios max min mean
Simple 42% 27% 32%
2-tier 26% 20% 23%

Table 4: SFD Reduces the Transmission Latency for
Short Flows under Different Scenarios(Compared with
DT, negative percentage means increase).

flows (Scenario: simple).

We observe that SFD algorithm reduces 32% of the
mean transmission latency for short flows in average.
SFD also shows much smaller variation in transmis-
sion latency, the standard deviation is only half of
that in DT case, which indicates that the transmis-
sion of short flows are more predictable with SFD.
Given the percentage of short flows, more than 90%
web flows show better performance.

Recalling our analysis in Section 3.1, it is interest-
ing to note that the transmission latency with SFD
is quite similar to that of L2S case. Given the lower
bound of transmission latency we could expect (as
shown in NL case), the SFD algorithm achieves pretty
good performance (as of 60% of the best case).

On the other hand, RED does not show better re-
sults than droptail queue. Similar result has also been
observed in a recent study [32], which shows that
RED does not outperform droptail queues for Web
traffic under most traffic load.

4.3 Impact on Long Flows

SFD algorithm reduces the transmission latency of
short flows at the cost of penalizing long flows. We
quantify this penalty and the affected flow size in this
section. We show that the penalty of long flows is
bounded by the design and implementation of SFD
algorithm. With the two virtual RED queues and the
corresponding RED parameters, long flows are given
the buffer space for about 15 packets which corre-
sponds to about 30% of the bottleneck link capacity.
Therefore, the transmission latency for long flows will
not be increased by more than 2 times.
In Figure 7, we show that the mean and standard

deviation of transmission latency for flows with size
up to 1M bytes. Figure 7(a) depicts that SFD also re-
duces the transmission latency of some long flows (up
to about 40K bytes). This result is not unexpected
because the first 15K bytes are always marked as IN
(as described in Section 3.2) and protected by SFD
upon congestion. Since the first a few packets in long
flows are as fragile to loss as short flow packets, SFD
actually protects these long flows, which is especially
important for those long flows up to about 30K bytes
because at least 50% of their packets are within this
range.
However, we do observe that very long flows suffer

from SFD algorithm (i.e. increased mean and stan-
dard deviation in transmission latency as shown in
Figure 7) as our expense to favor short flows, which
implies that the original algorithm is likely to over-
penalize these very long flows.
We design P-SFD and S-SFD algorithms (pre-

7

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

SFD

RED

DT

(a) Mean transmission latency

0

0.5

1

1.5

2

2.5

2 4 6 8 10 12 14

S
ta

nd
ar

d
D

ev
ia

tio
n

of

T
ra

ns
m

is
si

on
 L

at
en

cy
 (

se
co

nd
s)

Flow Size (KBytes)

SFD

RED

DT

(b) Standard deviation of transmission latency

Figure 6: the Transmission Latency of Short Flows under
Different Scenarios.

sented in Section 3.3) to be less severe to long flows.
We compare the performance of SFD, P-SFD, and
S-SFD (K=4) in Figure 8(a). Both P-SFD and S-
SFD algorithms can benefit more long flows; S-SFD
algorithm shows the improved performance for flows
up to about 300K bytes, corresponding to more than
98% of all web traffic flows. Compared to the basic
SFD algorithm, S-SFD algorithm reduces the trans-
mission latency for very long flows: the reduction is
about 90% for 1M byte flow.

Since S-SFD shows greater improvement and is eas-
ier to implement, we believe the S-SFD is a good
choice to be deployed in networks. In the remaining
part of this paper, we use S-SFD as the default SFD
algorithm.

We also study the performance of SFD with dif-

0.1

1

10

1 10 100 1000

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

DT
RED
SFD

(a) Mean transmission latency

0.1

1

10

1 10 100 1000

S
ta

nd
ar

d
D

ev
ia

tio
n

of

T
ra

ns
m

is
si

on
 L

at
en

cy
 (

se
co

nd
s)

Flow Size (KBytes)

DT
RED
SFD

(b) Standard deviation of transmission latency

Figure 7: Transmission Latency of Flows with Size up to
1M bytes under Different Scenarios (in log-log scale).

ferent flow identification thresholds. The simulation
results are shown in Figure 8(b). We do not observe
much difference in performance improvement with
threshold set to 25K bytes and 35K bytes, which sug-
gests that 15K bytes is a reasonable threshold with
the traffic pattern in our simulations. Ideally, the
threshold should be able to adapt to the traffic pat-
tern observed.

4.4 Overall Effects on End-user
Browsing

Although we have shown that SFD algorithm can
reduce the transmission latency for more than 98%
web objects (both from simulation and the estima-
tion based on real network traces UCB96 and BU98),
we can not conclude that the latency to retrieve web

8

0.1

1

10

1 10 100 1000

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

DT
SFD
P-SFD
S-SFD

(a) P-SFD and S-SFD algorithms

0.1

1

10

1 10 100 1000

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

DT
th=15KB
th=25KB
th=35KB

(b) S-SFD algorithm with different identification
thresholds

Figure 8: Transmission Latency with Different Algo-
rithm Configurations to Reduce the Penalty to Long
Flows (in log-log scale).

pages is also reduced because web pages may have
different combinations of objects. For example, SFD
is likely to penalize web pages with rich contents such
as movies. To evaluate the overall effect that the SFD
algorithm on end-user browsing, we need to quantify
the changes in web page retrieval latency. We show
some estimated results in this section.

Different implementations of browsers and web
servers restrict the number of web objects which can
be retrieved concurrently (i.e. the number of concur-
rent connections). We examine two extreme cases
below:

• Parallel retrieval : The number of allowed con-
current connections is infinite: all web objects

on the target page are transferred in parallel. In
this case, the web page retrieval latency is always
determined by the largest object embedded [34]
and can be simply estimated as its transmission
latency.

• Sequential retrieval : The number of allowed con-
current connection is 1: the web objects are
transferred sequentially (similar to HTTP/1.1
with persistent connection). In this case, the
web page retrieval latency can be estimated as
the sum of the transmission latency of all web
objects embedded.

We believe that these two case studies give us some
hints about what the real latency of web page re-
trieval is likely to be. Further more, they may also
show the bounds under certain circumstances.
We start with 5 representative types of web

pages [34] listed in Table 5. We estimate the esti-
mated page retrieval latency with S-SFD under both
parallel and sequential retrieval schemes and com-
pare the result with DT case. The absolute values
and improvement (in percentage) are summarized in
Table 6 (positive value means reduction in retrieval
latency). We find that SFD algorithm can reduce
the page retrieval latency for all these 5 types of web
pages: by 15% to 77% in parallel retrieval case and
by 31% to 43% in sequential retrieval case. We also
observe that the improvement is not significant if the
web page has a large object embedded (for example,
the Frames page contains a 83KB HTML part), be-
cause SFD increases the transmission latency for the
large object.
Since these 5 types of web page are not equally

likely to be retrieved in reality, we further estimate
the web page retrieval latency from the real trace
UCB96. We compute the page size (including all ob-
jects on the page) by grouping the requests with the
same source and destination pair together. A request
for a html or htm object is treated as the beginning
of a new web page.
We calculate the changes (in percentage) with

SFD algorithm under both parallel and sequential re-
trievals and plot the Cumulative Distribution Func-
tion (CDF) in Figure 9 (positive percentage means
reduction in latency). We find that by applying SFD
more than 90% web pages are transfered at least 30%
faster while only less than 1% web pages show worse
performance. Therefore, we conclude that the SFD
algorithm reduces web latency in general.
We also notice that with HTTP/1.1 browsers

and servers maintain persistent connections for re-
quest/response exchanges, which reduces the num-
ber of short flows since several web objects can be

9

Web Objects Number of Web
Page Types Web Objects Name Size (K Bytes) Objects Embedded
Text page large HTML part 29 1

medium images 7-13 3
Map page small HTML part 5 1

small images 1-3 3
large image 67 1

Graphics page medium HTML part 7 1
small images 1-3 9
medium images 9-12 4

Frames page small HTML parts 1-2 4
medium HTML part 7 1
large HTML part 83 1
small images 1-3 14
medium images 5-19 7

Java pages medium HTML part 8 1
small images 1-2 7
medium images 4-11 3
small Java parts 1-3 14
medium Java parts 4-18 11

Table 5: Five Representative Types of Web Pages.

Parallel Retrieval Sequential Retrieval
Page types DT S-SFD Improvement DT S-SFD Improvement
Text Page 1.27 0.78 39% 3.7 2.16 42%
Map Page 2.28 1.47 36% 4.1 2.52 39%
Graphics Page 0.83 0.47 77% 7.63 4.32 43%
Frames Page 2.21 1.87 15% 15.92 9.47 41%
Java Page 1.03 0.69 33% 20.88 14.43 31%

Table 6: Retrieval Latency (seconds) of Different Web Pages.

transferred by one connection. Recent measure-
ment [7] shows a notable percentage (40–50%) of
web objects are now transferred by persistent con-
nections; but pipelining of request/response has not
been supported by the popular browsers yet. So, with
HTTP/1.1, the web objects are transferred by one
long flow with short idle time intervals (1 second, for
example) in between. Since SFD resets flow states
after the same timeout interval (as discussed in Sec-
tion 3.2), the transfer of different objects within a
persistent connection will be treated as separate short
flows. Therefore, we believe that the SFD algorithms
should show similar improvement for HTTP/1.1 web
traffic, although future work is needed to verify this
claim.

4.5 Performance under Different
Network Loads

To examine the performance of SFD under other
network loads, we repeat the above simulations in
light and heavy network load scenarios, which are
described in Table 3.

We show the transmission latency of different flows
in both scenarios in Figure 10. We find that under
light network load, neither RED or SFD gives consid-
erable performance improvement; SFD performs very
similarly as RED except very long flows are penalized.
On the other hand, SFD shows dramatic performance
improvement under heavy load: short flows are trans-
mitted more than 10 times faster. Recall the compar-
ison under medium network load shown in Figure 7,
we claim that SFD achieves larger performance im-
provement as the network load increases. Intuitively,
this observation is consistent with the idea of “net-

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 -10 0 10 20 30 40 50 60

C
D

F

Improvement in Latency (in percentage)

Parallel
retrieval

Sequential
retrieval

Figure 9: CDF: Improvement of Web Page Retrieval La-
tency with S-SFD Algorithm.

work hole plugging”: at light load there is little traffic
so flow differentiation is irrelevant; but at heavy load
it is easier to find holes between short flows that long
flows can fill in.

4.6 Sensitivity in Simulation
Configurations

The above simulation results are from a very sim-
ple scenario: simple dumbbell topology with only web
traffic. To investigate the sensitivity of our previous
simulation, we relax the following aspects of the sim-
ulation scenario: network topology, various RTTs,
presence of non-web traffic, and the effect of web
server CPU model. While we can not claim to simu-
late “the Internet” [35], these results can help us to
better understand the dynamics of SFD algorithm.
Network topology: Choice of simulation topology

is difficult. Rather than select an arbitrary topol-
ogy from a real network, we focus on controlled stud-
ies of restricted topologies to understand specific net-
work effects (as has been previously observed by Feld-
mann et. al. [17]). A limitation of a dumbbell topol-
ogy is that there is no intermediate queuing in the
network. To relax this limitation, we repeat simula-
tions in a topology (shown in Figure 11) with two tiers
of clients being connected to router R2 with various
link bandwidth and propagation delay. Thus, the sec-
ond tier links could also become bottlenecks besides
the link between R0 and R1.
We show the transmission latency of short and long

flows for this configuration in Figure 12. Similar to
our previous results, SFD algorithm protects short
flows and penalizes long flows. As shown in Ta-
ble 4 (scenarios 2-tier), SFD reduces the transmis-
sion latency for short flows by 23%. We also ob-
serve that the transmission latency of very long flows
(1000KBytes) increases by about 20%. We therefore

0.1

1

10

1 10 100 1000

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

DT
RED
SFD

(a) Light Loaded Network

0.1

1

10

100

1000

1 10 100 1000

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

DT
RED
SFD

(b) Heavy Loaded Network

Figure 10: Mean Transmission Latency under Different
Network Load (in log-log scale).

conclude that the intermediate queuing does not sub-
stantially change the performance of SFD algorithm.

Various RTTs: For short flows with same flow
size, the performance improvement of SFD may vary
as flows have different RTTs. To investigate this
effect, we examine the traffic in above simulations
and group flows with same RTTs together. We com-
pute the performance improvement of SFD (com-
pared to DT) for each group. We find that the co-
efficient of correlation between RTTs and the corre-
sponding improvements is about 0.3, which suggests
that SFD performance improvements are weakly cor-
related with RTTs, with slightly more benefit for far
flows (with large RTTs) than for near flows.

We have shown that SFD improves the perfor-
mance for short flows. We also note that far flows

11

R2

C1

10Mb

10ms
C3

C5

C2

C4

....

....

....

....

....

3Mb

40ms

3Mb

40ms
R1

S1

S2

S3

S4

S5

R0
10ms

cc cs

10Mb

10ms
10Mb

10 or 500ms

delay: 10ms ~ 250ms
bandwidth: x bps

10Mb

FTP traffic

Figure 11: A Network with Two Tiers of Clients.

have worse performance than near ones. Therefore,
it is not surprising that short, far flows would have
a larger relative improvement than others, since they
are favored (short) and can be largely improved (far).

Presence of non-web traffic: To evaluate the per-
formance of the SFD algorithm with presence of non-
web traffic, we inject FTP traffic from node cs to
node cc (refer to Figure 11). The simulation results
confirm that SFD algorithm protects short web flows
effectively. It also penalizes FTP traffic similarly as
long web flows: reducing their goodput by about 40%.

In the above study, we note that long flows with low
rate (for example, long FTP flows with large RTTs)
have little effect on short flows’ transmission. How-
ever, SFD still penalizes these long flows because it
differentiates flows only by their sizes. A potential
variation could be to differentiate flows by their rates.

Server CPU delay: For all simulations above, we
emphasize network queuing effect on the transmission
latency of response flows. While network latency is
our major concern in this paper, CPU delay is also
important for busy web servers. We briefly investi-
gate this effect below.

We add a simple CPU model to web servers in our
simulation. We assume that the server CPU has in-
finite buffer size and constant processing rate that
does not change under different load. We implement
two simple scheduling policies: first-come, first-serve
(FCFS) and shortest task first (STF). For STF pol-
icy, we assume that the server always knows the size
of web object requested.

We simulate two scenarios: network-limited, where
the bottleneck is in the networks, and server-limited,
where servers process requests slowly. In each sce-
narios, we apply each of the four combinations of
server and network scheduling policies: DT+FCFS,
DT+STF, SFD+FCFS, and SFD+STF. We measure
the end-to-end web latency, that is, the time from
client sending out a request till it receiving the last
packet of corresponding response.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

SFD

DT

(a) SFD reduces transmission latency for short flows

0.1

1

10

1 10 100 1000

M
ea

n
T

ra
ns

m
is

si
on

 L
at

en
cy

 (
se

co
nd

s)

Flow Size (KBytes)

DT
SFD

(b) Impact on long flows

Figure 12: SFD Shows Similar Performance in a Two-
tiered Topology with Multiple bottleneck links.

We show the simulation results in Figure 13 and
summarize the improvement in Table 7. We find
that the combination of SFD and STF always gives
the best performance (lowest end-to-end web la-
tency for short flows) in both network-limited and
server-limited scenarios; while DT and FCFS always
shows the worst. Further, the improvement by server
scheduling policy is fairly small (less than 6%) in a
network-limited scenario (Figure 13(a)). Similarly,
the network scheduling policy has limited effect on
the end-to-end web latency if the scenario is server-
limited (Figure 13(b)).

5 Conclusion

In this paper, we investigate the interaction among
short and long web traffic flows and show how this

12

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14

M
ea

n
E

nd
-t

o-
en

d
W

eb
 L

at
en

cy
 (

se
co

nd
s)

Flow Size (KBytes)

FCFS+DT
STF+DT
FCFS+SFD
STF+SFD

(a) Network-limited Scenario

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14

M
ea

n
E

nd
-t

o-
en

d
W

eb
 L

at
en

cy
 (

se
co

nd
s)

Flow Size (KBytes)

FCFS+DT
FCFS+SFD
STF+DT
STF+SFD

(b) Server-limited Scenario

Figure 13: The End-to-end Latency of Short Web Flows
under Different Scenarios.

interaction affects the transmission latency of short
flows. We propose the SFD algorithm to give prefer-
ential treatment to short flows so that its transmis-
sion latency and the overall web latency are reduced.

We evaluate our algorithms in simulations. The
results are summarized below:

1. SFD algorithm reduces the transmission latency
for short flows by about 34% and shows much
smaller variance. Since about 90% of web traffic
flows have better performance, most web trans-
actions are accelerated. SFD algorithm also re-
duces the transmission latency for some flows
with medium size.

2. We further evaluate SFD algorithm by estimat-
ing the web page retrieval latency. The result

Scenarios DT+STF SFD+FCFS SFD+STF
Network-limited 6% 21% 23%
Server-limited 35% 16% 41%

Table 7: Reduction in End-to-end Web Latency under
different scenarios and scheduling policies.

shows that more than 90% of the web pages can
be transfered faster with SFD algorithm.

3. Although some long flows can also benefit from
SFD algorithm, the transmission latency of very
long flows is increased. However, this penalty is
well bounded by SFD.We further propose S-SFD
and P-SFD algorithms to reduce the penalty to
long flows. We prefer to use S-SFD algorithm
because of its better performance and simplicity.
We also study the effect of different identification
thresholds in SFD algorithm.

We note that the performance improvement
achieved by SFD is based on the assumption of the
burntness of traffic: there are “holes” between the
bursts of short flows where long flows can fill in.
However, traffic in the heavily loaded backbone links
shows Poisson arrivals [36]: there is no “hole” at all.
So, the SFD algorithm can not improve the perfor-
mance for backbone traffic.

Acknowledgments

We would like to acknowledge the Advanced IP Net-

works group in Nortel Networks for their contribution of

DiffServ model to ns-2 , and Dr. Mark Crovella for point-

ing us to their traces (BU98). We appreciate the fruit-

ful discussion with Deborah Estrin, Ted Faber, and Sally

Floyd. We are also graceful to anonymous reviewers who

have given us insightful comments on this work.

References

[1] J. B. Postel. Internet Protocol. RFC 791, Inter-
net Request For Comments, 1981.

[2] W. Prue and J. Postel. A queuing algorithm to
provide Type-of-Service for IP links. RFC 1046,
Internet Request For Comments, February 1988.

[3] K. Nichols, V. Jacobson, and L. Zhang. A two-
bit differentiated services architecture for the
Internet. draft-nichols-diff-svc-arch-00.txt, IN-
TERNET DRAFT, December, 1997.

[4] S. Blake, D. Black, M. Carlson, E. Davies, and
W. Weiss Z. Wang. An architecture for differen-

13

tiated service. RFC 2475, Internet Request For
Comments, December 1998.

[5] D. Clark and W. Fang. Explicit allocation of
best effort packet delivery service. ACM/IEEE
Transactions on Networking, 6(4):362–373, Au-
gust 1998.

[6] N. Bhatti, A. Bouch, and A. Kuchinsky. Inte-
grating user-perceived quality into web server
design. In Proceedings of the International
World Wide Web Conference, pages 1–16, Ams-
terdam, Holland, May 2000.

[7] F.D. Smith, F. Hernandez Campos, K. Jeffay,
and D. Ott. What TCP/IP protocol headers can
tell us about the web. In Proceedings of the ACM
SIGMETRICS, pages 245–256, Cambridge, MA,
June 2001.

[8] Xiaoyun Zhu, Jie Yu, and John Doyle. Heavy
tails, generalized coding, and optimal web lay-
out. In Proceedings of the IEEE Infocom, An-
chorage, Alaska, USA, April 2001. IEEE.

[9] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext transfer protocol—HTTP/1.0. RFC
1945, Internet Request For Comments, May
1996. ftp://ftp.isi.edu/in-notes/rfc1945.txt.

[10] J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext
transfer protocol—HTTP/1.1. RFC 2616,
Internet Request For Comments, June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[11] Sally Floyd and Kevin Fall. Promoting the use
of end-to-end congestion control in the Inter-
net. ACM/IEEE Transactions on Networking,
7(4):458–473, August 1999.

[12] Cooperative Association for Internet Data Anal-
ysis. Netramet web session performance project.
http://www.caida.org/analysis/workload/netramet/web/.

[13] Mark E. Crovella and Azer Bestavros. Self-
similarity in world wide web traffic: evidence and
possible causes. In Proceedings of the ACM SIG-
METRICS, pages 160–169, Philadelphia, Penn-
sylvania, May 1996. ACM.

[14] Paul Barford and Mark Crovella. Generating
representative web workloads for network and
server performance evaluation. In Proceedings of
the ACM SIGMETRICS, pages 151–160, Madi-
son, WI, USA, June 1998. ACM.

[15] P. Barford and M. E. Crovella. Measuring web
performance in the wide area. ACM Perfor-
mance Evaluation Review, 27(2):37–48, August
1999.

[16] P. Barford, A. Bestavros, A. Bradley, and M. E.
Crovella. Changes in web client access patterns:
Characteristics and caching implications.World-
Wide Web Journal, 2:15–28, 1999.

[17] Anja Feldmann, Anna C. Gilbert, Polly Huang,
and Walter Willinger. Dynamics of IP traffic: A
study of the role of variability and the impact of
control. In Proceedings of the ACM SIGCOMM,
pages 301–313, Cambridge, MA, USA, August
1999. ACM.

[18] V. N. Padmanabhan and J. Mogul. Improving
HTTP latency. In Proceedings of the Interna-
tional World Wide Web Conference, pages 995–
1005, Chicago, IL, USA, October 1994.

[19] H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. W. Lie, and C. Lil-
ley. Network performance effects of HTTP/1.1,
CSS1, and PNG. In Proceedings of the ACM
SIGCOMM, pages 155–166, Cannes, France,
September 1997. ACM.

[20] Hari Balakrishnan, Venkata Padmanabhan,
Srini Seshan, Mark Stemm, and Randy H. Katz.
TCP behavior of a busy Internet server: Anal-
ysis and improvements. In Proceedings of the
IEEE Infocom, pages 252–262, San Francisco,
CA, USA, March 1998. IEEE.

[21] Lars Eggert and John Heidemann. Application-
level differentiated services for web servers.
World-Wide Web Journal, 2(3):133–142, August
1999.

[22] M. E. Crovella, R. Frangioso, and M. Harchol-
Balter. Connection scheduling in web servers. In
Proceedings of the USENIX Symposium on In-
ternet Technologies and Systems, Boulder, CO,
USA, October 1999.

[23] N. Bansal and M. Harchol-Balter. Analysis of
SRPT scheduling: Investigating unfairness. In
Proceedings of the ACM SIGMETRICS, pages
279–290, Cambridge, MA, USA, June 2001.
ACM.

[24] A. Demers, S. Keshav, and S. Shenker. Analysis
and simulation of a fair-queueing algorithm. In
Proceedings of the ACM SIGCOMM, pages 1–12,
Austin, TX, USA, September 1989. ACM.

14

[25] P. Hurley, M. Kara, L. Boudec, and P. Thiran.
ABE: Providing a low-delay service within best-
effort. IEEE Network Magazine, 15(3):60–69,
May 2001.

[26] R. Mahajan and S. Floyd. Controlling high
bandwidth flows at the congested router. In
Proceedings of the IEEE International Confer-
ence on Network Protocols, pages 1–12, River-
side, CA, USA, November 2001. IEEE.

[27] Liang Guo and Ibrahim Matta. The war between
mice and elephants. In Proceedings of the IEEE
International Conference on Network Protocols,
Riverside, CA, USA, November 2001. IEEE.

[28] S. Floyd and V. Jacobson. Random early
detection gateways for congestion avoidance.
ACM/IEEE Transactions on Networking,
1(4):397–413, August 1993.

[29] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling high
bandwidth aggregates in the network. Techni-
cal report, ICSI, 2001.

[30] M. Allman, S. Floyd, and C. Partridge.
Increasing TCP’s initial window. RFC 2414, In-
ternet Request For Comments, September 1998.
http://www.w3.org/Protocols/rfc2414/rfc2414.txt.

[31] VINT group. UCB/LBNL/VINT
network simulator—ns (version 2).
http://www.isi.edu/nsnam/ns/.

[32] M. Christiansen, K. Jeffay, D. Ott, and F.D.
Smith. Tuning RED for web traffic. In Pro-
ceedings of the ACM SIGCOMM, pages 139–150,
Stockholm, Sweden, August 2000.

[33] Lawrence-Berkeley Labs. The Internet Traffic
Archive. http://ita.ee.lbl.gov/.

[34] Lars Eggert, John Heidemann, and Joe Touch.
Effects of ensemble-TCP. ACM Computer Com-
munication Review, 30(1):15–29, January 2000.

[35] Sally Floyd and Vern Paxson. Difficulties in sim-
ulating the Internet. ACM/IEEE Transactions
on Networking, 9(4):392–403, August 2001.

[36] Jin Cao, William S. Cleveland, Dong Lin, and
Don X. Sun. On the nonstationarity of Internet
traffic. In Proceedings of the ACM SIGMET-
RICS, pages 102–112, Cambridge, MA, June
2001.

15

