
Mapping the Expansion of Google’s Serving Infrastructure∗

Technical Report 13-935, University of Southern California, Department of Computer Science

Matt Calder1, Xun Fan2, Zi Hu2, Ethan Katz-Bassett1, John Heidemann2, and Ramesh Govindan1

1University of Southern California — 2USC/ISI

ABSTRACT
Modern content-distribution networks both provide bulk con-
tent and act as “serving infrastructure” for web services in
order to reduce user-perceived latency. These serving in-
frastructures (such as Google’s) are now critical to the on-
line economy, making it imperative to understand their size,
geographic distribution, and growth strategies. To this end,
we develop techniques that enumerate servers in these in-
frastructures, find their geographic location, and identify the
association between clients and servers. While general tech-
niques for server enumeration and geolocation can exhibit
large error, our techniques exploit the design and mecha-
nisms of serving infrastructure to improve accuracy. We
use the EDNS-client-subnet extension to DNS to measure
which clients a service maps to which of its servers. We de-
vise a novel technique that uses this mapping to geolocate
servers by combining noisy information about client loca-
tions with speed-of-light constraints. We demonstrate that
this technique substantially improves geolocation accurate
relative to existing approaches. We also cluster servers into
physical sites by measuring RTTs and adapting the cluster
thresholds dynamically. Google’s serving infrastructure has
grown dramatically in the last six months, and we use our
methods to chart its growth and understand its content serv-
ing strategy. We find that Google has almost doubled in size,
and that most of the growth has occurred by placing servers
in large and small ISPs across the world, not by expanding
on Google’s backbone.

1. INTRODUCTION

∗Xun Fan, Zi Hu, and John Heidemann are partially sup-
ported by the U.S. Department of Homeland Security Sci-
ence and Technology Directorate, Cyber Security Division,
via SPAWAR Systems Center Pacific under Contract No.
N66001-13-C-3001. John Heidemann is also partially sup-
ported by DHS BAA 11-01-RIKA and Air Force Research
Laboratory, Information Directorate under agreement num-
ber FA8750-12-2-0344. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of SSC-Pacific.

Internet traffic has changed considerably in recent
years, as access to content is increasingly governed by
web serving infrastructures. These consist of decentral-
ized serving sites that contain one or more frontend
servers. Clients of these infrastructures are directed to
nearby frontends, which either directly serve content
(e.g., as in a content distribution network like Akamai),
or use split TCP connections to relay web acccess re-
quests to back-end data centers (e.g., as in Google’s
serving infrastructure).

Serving infrastructures are motivated by the desire
to optimize user-perceived latency [28]. Web service
providers invest heavily in building out these infras-
tructures and they also develop sophisticated mapping
algorithms to direct clients to nearby servers. In re-
cent months, as we discuss later, Google’s serving in-
frastructure has nearly doubled in size. Given the in-
creasing economic importance of these serving infras-
tructures, we believe it is imperative to understand the
content serving strategies adopted by large web service
providers, especially Google. Specifically, we are inter-
ested in the geographic and topological scope of serving
infrastructures, their expansion, and how client popu-
lations impact build-out of the serving infrastructure.

Several prior studies have explored static snapshots
of content-distribution networks [12, 2, 23], often focus-
ing on bulk content delivery infrastructures [12], new
mapping methodology [2], or new DNS selection meth-
ods [23]. In contrast, our work focuses on the broader
class of web serving infrastructures, develops more ac-
curate methods to enumerate and locate frontends and
serving sites, and explores how one infrastructure, Google’s,
grows over six months of active buildout.

The first contribution of this paper is a suite of meth-
ods to enumerate frontends, geolocate them, and cluster
them into serving sites. Our methods exploit mecha-
nisms used by serving infrastructures to optimize client-
perceived latency. To enumerate servers, we use the
EDNS-client-subnet prefix extension [8] that some serv-
ing infrastructures, including Google, use to more ac-
curately direct clients to nearby servers. Our novel ge-
olocation technique, which we show to be substantially

1

more accurate than previously proposed approaches, ex-
ploits the fact that serving infrastructures employ so-
phisticated mapping strategies that determine the fron-
tend or serving site nearest to clients. Our technique,
called client-centric geolocation (CCG), geolocates a server
by taking the geographic mean of the (possibly noisy)
locations for clients associated with that server, while
filtering out clients with bad location information using
speed-of-light constraints. We also cluster servers into
serving sites, adding dynamic thresholding and RTT-
based fingerprinting to current methods. These changes
provide enough resolution to distinguish different sites
in the same city. These sites represent unique network
locations, a view that IP addresses, prefixes, or ASes
can obscure.

Our second major contribution is a detailed study of
Google’s web serving infrastructure, and its recent ex-
pansion over the last six months. To our knowledge,
we are the first to observe rapid growth of the serv-
ing infrastructure of a major content provider. We find
that Google’s serving infrastructure has almost doubled
in the number of frontend IP addresses, has grown out
to 62 countries, with serving sites deployed in 87 new
ASes. Its recent growth strategy has been to move away
from serving clients off its own backbone and towards
serving from lower tiers in the AS hierarchy; the num-
ber of /24 prefixes served off Google’s network nearly
doubled during the expansion. Furthermore, these new
serving sites, predictably, have narrow customer cones,
serving only the customers of the AS the site is deployed
in. Finally, we find that the expansion has noticeably
shifted the distribution of geographic distances from the
client to its nearest front-end server, and that this shift
can also reduce the error in geolocating frontends using
client locations alone, but not enough to obviate the
need for CCG’s filtering techniques.

2. BACKGROUND

CDNs and Serving Intrastructures. Adding even
a few hundreds of milliseconds to a webpage load time
can cost service providers users and business [30, 17], so
providers seek to optimize their web serving infrastruc-
ture to deliver content quickly to clients. Whereas once
a website might have been served from a single location
to clients around the world, today’s major services rely
on much more complicated and distributed infrastruc-
ture. Providers replicate their services at serving sites
around the world and try to serve a client from the clos-
est one [15]. Content delivery networks (CDNs) initially
sped delivery by caching static content and some forms
of dynamic content within or near client networks.

Today, providers use this type of distributed infras-
tructure to speed the delivery of dynamic personalized
content and responses to queries. To do so, providers
direct clients to serving sites in or near the clients’ net-

works. A client’s TCP connection terminates at a fron-
tend server in the serving site, but the frontend proxies
the request back to one of the provider’s large data-
centers [25]. This arrangement has a number of po-
tential advantages versus directing the client directly
to the datacenter. For example, the client’s latency
to the frontend is less than the client’s latency to the
data center, allowing TCP to recover faster after loss,
the primary cause of suboptimal performance. More-
over, the frontend can multiplex many clients into a
high throughput connection to the datacenter.

In these types of serving infrastructures, different classes
of serving sites may serve different clients. First, of
course, the provider may still serve clients near a data-
center directly from that datacenter. Second, if a client
network hosts a serving site, it will generally only allow
its clients (or the clients of one of its customer net-
works) to use frontend servers in its site, not clients of
its providers or peers.

DNS-based Redirection. Serving infrastructures
use the Domain Name System (DNS) to direct clients
to appropriate serving sites and frontend servers. When
a client queries DNS to resolve a name associated with a
service, the service returns an IP address for a frontend
it believes is near the client. Traditionally, at resolution
time, however, the service only knows the IP address of
the client’s resolver and not of the client itself, leading
to two main complications. The resolver may be far
from the clients it serves, and so the server closest to
the resolver may not be a good choice for the client.
Existing techniques can allow many services to discover
which clients use a particular resolver [20], enabling ser-
vices to direct a resolver based on the clients that use
it. However, these techniques are of little benefit if the
same resolver serves clients that are far from each other–
there is no server that the service can return that will
be a good choice for all clients who may have issued the
request through the resolver.

To overcome this hurdle and provide quality DNS
redirections for clients, a number of Internet providers
and CDNs proposed EDNS-client-subnet [8]. EDNS is
an IETF specification designed to overcome parameter
size restrictions in standard DNS. EDNS-client-subnet
is an experimental extension to EDNS that allows a
client to embed a portion of its IP address in the request
which will travel to an authoritative name server. By
including the client IP prefix in the request, the exten-
sion allows a service to direct the client to the optimal
server directly, without having to infer which client is
behind a request from a recursive resolver.

3. GOAL AND APPROACH
Our goal is to understand content serving strategies

for large IPv4-based serving infrastructures, especially
that of Google. Serving strategies are defined by how

2

many serving sites and frontend servers a serving in-
frastructure has, where the serving sites are located ge-
ographically and topologically (i.e., within which ISP),
and which clients access which serving sites. Further-
more, services continuously evolve serving strategies, so
we are also interested in measuring the evolution of serv-
ing infrastructures. Of these, Google’s serving infras-
tructure is arguably one of the most important, so we
devote significant attention to this infrastructure.

To this end, we develop novel measurement methods
to enumerate frontend servers, geolocate serving sites,
and cluster frontend servers into serving sites. The chal-
lenge in devising these measurement methods is that
serving infrastructures are large, distributed entities,
with thousands of frontend servers at hundreds of serv-
ing sites spread across dozens of countries. A brute
force approach to enumerating serving sites would re-
quire perspectives from a very large number of topo-
logical locations in the Internet, much larger than the
geographic distribution provided by research measure-
ment infrastructures like PlanetLab. Moreover, exist-
ing geolocation methods that rely on DNS naming or
geolocation databases do not work well on these serv-
ing infrastructures where location-based DNS naming
conventions are not consistently employed.

While our measurement methods use these research
infrastructures for some of their steps, the key insight
in the design of the methods is to leverage mechanisms
used by serving infrastructures to serve content. Be-
cause we design them for serving infrastructures, these
mechanisms can enumerate and geolocate serving sites
more accurately than existing approaches, as we discuss
below.

Our method to enumerate all frontend server IP ad-
dresses within the serving infrastructure uses the EDNS-
client-subnet extension. As discussed in Section 2, Google
(and some other serving infrastructures) use this ex-
tension to address the problem of geographically dis-
tributed clients using a resolver that prevents the serv-
ing infrastructure from optimally directing clients to
frontends. We use this extension to enumerate frontend
IP addresses of a serving infrastructure from a single lo-
cation: this extension can emulate DNS requests com-
ing from every active prefix in the IP address space,
effectively providing a very large set of vantage points
for enumerating frontend IP addresses.

To geolocate frontend servers and serving centers,
we leverage another mechanism that serving infrastruc-
tures have long deployed. They have developed sophis-
ticated mapping algorithms that maintain performance
maps to clients with the goal of directing clients to
the nearest available server. These algorithms have the
property that clients that are directed to the server are
likely to be topologically, and probably geographically,
close to the server. We exploit this property to geolo-

cate frontend servers: essentially, we approximate the
location of a server by the geographical mean of client
locations, a technique we call client-centric geolocation
or CCG. We base our technique on this intuition, but
we compensate for incorrect client locations and varying
density of server deployments.

Finally, we leverage existing measurement infrastruc-
ture (PlanetLab) to cluster frontends into serving sites.
We model the relative location of a frontend server as
a vector of round-trip-times to many vantage points in
the measurement infrastructure, then employ standard
clustering algorithms in this high-dimensional space.

Using these measurement methods over a six month
period, we are able to study Google’s serving infrastruc-
ture and its evolution. Coincidentally, Google’s deploy-
ments have doubled over this period, and we explore
salient properties of this expansion: where (geographi-
cally or topologically) most of the expansion has taken
place, and how it has impacted clients.

There are interesting aspects of Google’s deployment
that we currently lack means to measure. In particu-
lar, we do not know the query volume from different
clients, and we do not know the latency from clients to
servers (which may or may not correlate closely with
the geographic distance that we measure). We have left
exploration of these to future work. We do possess in-
formation about client affinity to frontend servers, and
how this affinity evolves over time (this evolution is a
function of improvements in mapping algorithms as well
as infrastructure rollout): we have left a study of this
to future work.

4. METHODOLOGY
In this section, we discuss the details of our measure-

ment methods for enumerating frontends, geolocating
them, and clustering them into serving sites.

4.1 Enumerating Frontends
Our first goal is to enumerate the IP addresses of all

frontends within a serving infrastructure. We do not
attempt to identify when multiple IP addresses belong
to one computer, or when one address fronts for mul-
tiple physical computers. An IP addresses can front
hardware from a small satellite proxy to a huge data-
center, so careful accounting of public IP addresses is
not particularly meaningful.

Since most serving infrastructures use mapping al-
gorithms and DNS redirection, one way to enumerate
frontends is to issue DNS requests from multiple van-
tage points. Each request returns a frontend near the
querying vantage point. The completeness of this ap-
proach is a function of the number of vantage points.

We emulate access to vantage points around the world
using the proposed client-subnet DNS extension using
the EDNS extension mechansim (we call this approach

3

EDNS-client-subnet). As of May 2013, EDNS-client-
subnet is supported by Google, CacheFly, EdgeCast,
ChinaCache and CDN 77. We use a patch to dig1

that adds support for EDNS-client-subnet, allowing the
query to specify the client prefix. In our measurements
of Google, we issue the queries through Google Public
DNS’s public recursive nameservers, which passes them
on to the service we are mapping. The serving infras-
tructure then return a set of frontends it believes are
best suited for clients within the client prefix.

EDNS-client-subnet allows our our single measure-
ment site to solicit the recommended serving infras-
tructure for all the Internet—we effectively get vantage
points that are everywhere. We query using client pre-
fixes drawn from 10 million routable /24 prefixes ob-
tained RouteViews BGP. Queries against Google us-
ing this approach take about a day to enumerate.

4.2 Client-centric Geolocation
Current geolocation approaches are designed for gen-

erality, making few or no assumptions about the target.
Unfortunately, this generality results in poor perfor-
mance when geolocating serving infrastructure. For ex-
ample, MaxMind’s free database [21] places all Google
frontends in Mountain View, the company’s headquar-
ters. General approaches such as CBG [10] work best
when vantage points are near the target [14], but fron-
tends in serving infrastructures are sometimes in remote
locations, far from public geolocation vantage points.
Techniques that use location hints in DNS names of
frontends or routers near frontends can be incomplete [12].

Our approach combines elements of prior work, adding
the observation that today’s serving infrastructures use
privileged data and advanced measurement techniques
to try to direct clients to nearby frontends [31]. While
we borrow many previously proposed techniques, our
approach is unique and yields better results.

We base our geolocation technique on two main as-
sumptions. First, a serving infrastructure tries to direct
clients to a nearby frontend, although some clients may
be directed to distant frontends, either through errors
or a lack of deployment density. Second, geolocation
databases have accurate locations for many clients, at
least at country or city granularity, but also have poor
granularity or erroneous locations for some clients.

Combining these two assumptions, our basic approach
to geolocation, called client-centric geolocation (CCG),
is to (1) enumerate the set of clients directed to a serv-
ing site, (2) query a geolocation database for the loca-
tions of those clients, and (3) assume the frontends are
located geographically close to most of the clients.

To be accurate, CCG must overcome challenges in-
herent in each of these three steps of our basic approach:

1. We do not know how many requests different prefixes
1http://wilmer.gaa.st/edns-client-subnet/

send to a serving infrastructure. If a particular pre-
fix does not generate much traffic, the serving infras-
tructure may not have the measurements necessary
to direct it to a nearby frontend, and so may direct
it to a distant frontend.

2. Geolocation databases are known to have problems
including erroneous locations for some clients and
poor location granularity for other clients.

3. Some clients are not near the frontend that serve
them, for a variety of reasons. For example, some
frontends may serve only clients within certain net-
works, and some clients may have lower latency paths
to frontends other than the nearest ones. In other
cases, a serving infrastructure may direct clients to
a distant frontend to balance load or may mistak-
enly believe that the frontend is near the client. Or,
a serving infrastructure may not have any frontends
near a particular client.
We now describe how CCG addresses these challenges.

Selecting client prefixes to geolocate a frontend.
To enumerate frontends, CCG queries EDNS using all
routable /24 prefixes. However, this approach may not
be accurate for geolocating frontends, for the following
reason. Although we do not know the details of how a
serving infrastructure chooses which frontend to send a
client to, we assume that it attempts to send a client to
a nearby frontend and that the approach is more likely
to be accurate for prefixes hosting clients who query
the service a lot than for prefixes that do not query the
service, such as IP addresses used for routers.

To identify which client prefixes can provide more
accurate geolocation, CCG uses traceroutes and logs
of users of a popular BitTorrent extension [7]. Ono
issues traceroutes between connected pairs of users that
provided an additional 102,064 prefixes with unlikely
serving infrastructure mappings. From the user logs
we obtain a list of 2 million client prefixes observed
to participate in BitTorrent swarms with users. We
assume that a serving infrastructure is likely to also
observe requests from these prefixes.

Overcoming problems with geolocation databases.
CCG uses two main approaches to overcome errors and
limitations of geolocation databases. First, we exclude
locations that are clearly wrong. Second, we combine
a large set of client locations to locate each frontend
and assume that the majority of clients have correct lo-
cations that will dominate the minority of clients with
incorrect locations. To generate an initial set of client
locations to use, CCG uses a BGP table snapshot from
RouteViews [22] to find the set of prefixes currently an-
nounced, and breaks these routable prefixes up into 10
million /24 prefixes.2 It then queries MaxMind’s Geo-
LiteCity database to find locations for each /24 prefix.
2In Section 5.1, we verify that /24 is often the correct prefix
length to use.

4

CCG prunes three types of prefix geolocations as un-
trustworthy. First, it excludes prefixes for which Max-
Mind indicates it has less than city-level accuracy. This
heuristic excludes 1,966,081 of the 10 million prefixes
(216,430 of the 2 million BitTorrent client prefixes).
Second, it uses a dataset that provides coarse-grained
measurement-based geolocations for every IP address
to exclude prefixes that include addresses in multiple
locations [11]. Third, it issues ping measurements from
all PlanetLab locations to five responsive addresses per
prefix, and excludes any prefixes for which the Max-
Mind location would force one of these ping measure-
ments to violate the speed of light. Combined, these
exclude 8,396 of the 10 million prefixes (2,336 of the 2
million BitTorrent client prefixes).

With these problematic locations removed, and with
sets of prefixes likely to include clients, CCG assumes
that both MaxMind and the serving infrastructure we
are mapping likely have good geolocations for most of
the remaining prefixes, and that the large number of
accurate client geolocations should overwhelm any re-
maining incorrect locations.

Dealing with clients directed to distant frontends.
Even after filtering bad geolocations, a client may be
geographically distant from the frontend it is mapped
to, for two reasons: the serving infrastructure may di-
rect clients to distant frontends for load-balancing, and
in some geographical regions, the serving infrastructure
deployment may be sparse so that the frontend nearest
to a client may still be geographically distant.

To prune these clients, CCG first uses speed-of-light
constraints, as follows. It issues pings to the frontend
from all PlanetLab nodes and use the speed of light to
establish loose constraints on where the frontend could
possibly be [10]. When geolocating the frontend, CCG
excludes any clients outside of this region. This ex-
cludes 4 million out of 10 million prefixes (1.1 million
out of 2 million BitTorrent client prefixes). It then es-
timates the preliminary location for the frontend as the
weighted average of the locations of the remaining client
prefixes, then refines this estimate by calculating the
mean distance from the frontend to the remaining pre-
fixes, and finds the standard deviation from the mean
of the client-to-frontend distances. Our final filter ex-
cludes clients that are more than a standard deviation
beyond the mean distance to the frontend, excluding
392,668 out of 10 million prefixes (214,097 out of 2 mil-
lion BitTorrent client prefixes).

Putting it all together. In summary, CCG works
as follows. It first lists the set of prefixes directed to a
frontend, then filters out all prefixes except those ob-
served to host BitTorrent clients. Then, it uses Max-
Mind to geolocate those remaining client prefixes, but
excludes: prefixes without city-level MaxMind granu-
larity; prefixes that include addresses in multiple loca-

tions; prefixes for which the MaxMind location is not
in the feasible actual location based on speed-of-light
measurements from PlanetLab and M-Lab; and prefixes
outside the feasible location for the frontend. Its pre-
liminary estimate for the frontend location is the ge-
ographic mean of the remaining clients that it serves.
Calculating the distances from remaining clients to this
preliminary location, CCG further exclude any clients
more than a standard deviation beyond the mean dis-
tance in order to refine our location estimate. Finally,
it locates the frontend as being at the geographic mean
of the remaining clients that it serves.

4.3 Clustering frontends
As we discuss later, CCG is accurate to within 10s

of kilometers. In large metro areas, some serving in-
frastructures may have multiple serving sites, so we de-
velop a methodology to determine physically distinct
serving sites. We cluster by embedding each frontend
in a higher dimensional metric space, then clustering
the frontend in that metric space. Such an approach
has been proposed elsewhere [19, 34, 24] and our ap-
proach differs from prior work in using better clustering
techniques and more carefully filtering outliers.

In our technique, we map each frontend to a point
in high dimensional space, where the coordinates are
RTTs from landmarks (in our case, 250 PlanetLab nodes
at different geographical sites). The intuition under-
lying our approach is that two frontends at the same
physical location should have a small distance in the
high-dimensional space.

Each coordinate is the smallest but one RTT of 8
consecutive pings, and we use the Manhattan distance
between two points for clustering. In computing this
Manhattan distance, we (a) omit coordinates for which
we received fewer than 6 responses to pings and (b) omit
the highest 20% of coordinate distances to account for
outliers caused by routing failures, or by RTT measure-
ments inflated by congestion. Finally, we normalize this
Manhattan distance.

The final step is to cluster frontends by their pairwise
normalized Manhattan distance. We use the OPTICS
algorithm [3] for this. OPTICS is designed for spa-
tial data, and, instead of explicitly clustering points,
it outputs an ordering of the points that captures the
density of points in the dataset. As such, OPTICS is
appropriate for spatial data where there may be no a
priori information about either the number of clusters
or their size, as is the case for our setting. In the out-
put ordering, each point is annotated with a reachabil-
ity distance: when successive points have significantly
different reachability distances, that is usually an indi-
cation of a cluster boundary. As we show in Section 5
this technique, which dynamically determines cluster
boundaries, is essential to achieving good accuracy.

5

IPs /24s ASes Countries
Open resolver 5182 275 131 59
EDNS-client-subnet 7040 365 169 60
Benefit +36% +33% +29% +2%

Table 1: Comparison of Google frontends found by
EDNS and open resolver.

5. VALIDATION
In this section, we validate frontend enumeration, ge-

olocation, and clustering.

5.1 Coverage of Frontend Enumeration
Using EDNS-client-subnet can improve coverage over

previous methods that have relied on using fewer van-
tage points. We first quantify the coverage benefits of
EDNS-client-subnet. We then explore the sensitivity
of our results to the choice of prefix length for EDNS-
client-subnet, since this choice can also affect front-end
enumeration.

Open Resolver vs EDNS-client-subnet Coverage.
An existing technique to enumerate frontends for a serv-
ing infrastructure is to issue DNS queries to the infras-
tructure from a range of vantage points. Following pre-
vious work [12], we do so using open recursive DNS
(rDNS) resolvers. We use a list of about 200,000 open
resolvers3; each resolver is effectively a distinct van-
tage point. These resolvers are in 217 counties, 14,538
ASes, and 118,527 unique /24 prefixes. Enumeration of
Google via rDNS takes about 40 minutes. This dataset
forms our comparison point to evaluate the coverage of
the EDNS-client-subnet approach we take in this paper.

Table 1 shows the added benefit over rDNS of enu-
merating Google frontends using EDNS-client-subnet.
Our approach uncovers at least 29% more Google fron-
tend IP addresses, prefixes, and ASes than were visible
using previous approaches. By allowing us to query
Google on behalf of every client prefix, we obtain a
view from locations that lack open recursive resolvers.
In Section 6.1, we demonstrate the benefit over time
as Google evolves, and in Section 8 we describe how we
might be able to use our Google results to calibrate how
much we would miss using rDNS to enumerate a (possi-
bly much larger or smaller than Google) serving infras-
tructure that does not support EDNS-client-subnet.

EDNS-client-subnet Prefix Length. The choice
of prefix length for EDNS-client-subnet can affect enu-
meration completeness. Prefix lengths smaller than /24
in BGP announcements are too coarse for enumera-
tion. We find cases of neighboring /24s within shorter
BGP announcement prefixes that are directed to differ-
ent serving infrastructure. For instance we observed an
3Used with permission from Duane Wessels, Packet Pushers
Inc.

ISP announcing a /18 with one of its /24 prefix get-
ting directed to Singapore while its neighboring prefix
is directed to Hong Kong.

Our evaluations query using one IP address in each
/24 block. If serving infrastructures are doing redirec-
tions at finer granularity, we might not observe some
frontend IP addresses or serving sites. The reply to
the EDNS-client-subnet query returns the prefix length
covering the response. Thus, if a query for an IP ad-
dress in a /24 block returns a prefix length of, say /26,
it means that the corresponding redirection holds for
all IP addresses in the /26 covering the query address,
not the /24. For almost 75% of our /24 queries, the
other responses were for a /24 subnet, likely because it
is the longest globally routable prefix. For most of the
rest, we saw a /32 prefix length in the response, indicat-
ing that Google’s serving infrastructure might be doing
very fine-grained redirection. For each such /24 subnet
(about 1/2 million subnets), we queried a 6-8 other IP
addresses within that prefix, and we discovered only 3
additional IP addresses. Thus, we believe our choice
of /24 minimally affects completeness, but we plan to
understand the reasons for these fine-grain redirections
in future work.

5.2 Accuracy of Client-Centric Geolocation
Client-centric geolocation using EDNS-client-subnet

shows substantial improvement over traditional ping based
techniques [10], undns [29], and geolocation databases [21].

Dataset. To validate our approach, we use the subset
of Google frontends with hostnames that contain air-
port codes hinting at their locations. Although the air-
port location is not a precise location, we believe that
it is reasonable to assume that the actual frontend is
within a few 10s of kilometers. Using approximately
550 frontends with airport codes, we measure the error
of our technique as the distance between our estimated
location and the airport location.

Accuracy. Figure 1 shows the distribution of error
for CCG, as well as for three traditional techniques. We
compare to constraint-based geolocation (CBG), which
uses latency-based constraints from a range of vantage
points [10], a technique that issues traceroutes to fron-
tends and locates the frontends based on geographic
hints in names of nearby routers [12], and the Max-
Mind GeoLite Free database [21]. We offer substantial
improvement over existing approaches. For example,
the worst case error for CCG is 409km, whereas CBG,
the traceroute-based technique, and MaxMind have er-
rors of over 500km for 17%, 24%, and 94% of frontends,
respectively. CBG performs well when vantage points
are close to the frontend [14], but it incurs large errors
for the half of the frontends in more remote regions. The
traceroute-based technique is unable to provide any lo-
cation for 20% of the frontends because there were no

6

hops with geographic hints in their hostnames near to
the frontend. The MaxMind database performs poorly
because it places most frontends belonging to Google in
Mountain View, CA.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F
 o

f e
st

im
at

ed
 lo

ca
tio

n

Error (km)

client-centric geolocation (CCG)
CBG

undns
Maxmind

Figure 1: Comparison of our client-centric geolo-
cation against traditional techniques, using Google
frontends with known locations as ground truth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F
 o

f e
st

im
at

ed
 lo

ca
tio

n

Error (km)

client-centric geolocaiton (CCG)
CCG only sol
CCG only std

CCG only eyeballs
CCG no filtering

Figure 2: Impact of our various techniques to filter
client locations when performing client-centric geolo-
cation on Google frontends with known locations.

Importance of Filtering. Figure 2 demonstrates
the need for the filters we apply in CCG. The CCG
no filtering line shows our basic technique without any
filters, yielding a median error of 556km. Only con-
sidering client eyeball prefixes we observed in the Bit-
Torrent dataset reduces the median error to 484km and
increases the percentage of frontends located with error
less than 1000km from 61% to 74%. Applying our stan-
dard deviation filtering improves the median to 305km
and error less than 1000km to 86%. When using speed-
of-light constraints measured from PlanetLab and MLab
to exclude client locations outside the feasible location
for a frontend and to exclude clients with infeasible
MaxMind locations, we obtain a median error of 26km,
and only 10% of frontend geolocations have an error
greater than 1000km. However, we obtain our best re-
sults by simultaneously applying all three filters.

Case Studies of Poor Geolocation. CCG’s ac-
curacy depends upon its ability to draw tight speed-

of-light constraints, which in turn depends (in our cur-
rent implementation), on Planetlab and M-Lab deploy-
ment density. We found one instance where sparse van-
tage point deployments affected CCG’s accuracy. In
this instance, we observe a set of frontends in Stock-
holm, Sweden, with the arn airport code, serving a
large group of client locations throughout Northern Eu-
rope. However, our technique locates the frontends as
being 409km southeast of Stockholm, pulled down by
the large number of clients in Oslo, Copenhagen and
northern Germany. Our speed of light filtering usually
effectively eliminates clients far from the actual fron-
tend. In this case, we would expect Planetlab sites in
Sweden to filter out clients in Norway, Denmark and
Germany. However, these sites measure latencies to the
Google frontends in the 24ms range, yielding a feasible
radius of 2400km. This loose constraint results in poor
geolocation for this set of frontends.

It is well-known that Google has a large datacenter
in The Dalles, Oregon, and our map (Fig. 7) does not
show any sites in Oregon. In fact, we place this site
240km north, just south of Seattle, Washington. A
disadvantage of our geolocation technique is that large
data centers are often hosted in remote locations, and
our technique will pull them towards large population
centers that they serve. In this way, the estimated loca-
tion ends up giving a sort of “logical” serving center of
the server, which is not always the geographic location.

5.3 Accuracy of Frontend Clustering
To validate the accuracy of our clustering method,

we run clustering on three groups of nodes for which
we have ground truth: 72 PlanetLab servers from 23
different sites around world; 27 servers from 6 sites all
in California, USA, some of which are very close (within
10 miles) to each other, within 10 miles; and finally,
75 Google IP addresses that have 9 different airport
codes in their reverse DNS names. These three sets are
of different size and geographic scope, and the last set
is a subset of our target so we expect it to be most
representative.

The metric we use for the accuracy of clustering is
the Rand Index [26]. The index is measured as the
ratio of the sum of true positives and negatives to the
ratio of the sum of these quantities and false positives
and negatives. A Rand index equal to 1 means there
are no false positives or false negatives.

Table 2 shows the Rand index for the 3 node sets
for which we have ground truth. We see that in each
case, the Rand index is upwards of 97%. This accuracy
arises from two components of the design of our cluster-
ing method: eliminating outliers which result in more
accurate distance measures, and dynamically selecting
the cluster boundary using our OPTICS algorithm.

Our method does have a small number of false pos-

7

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70

R
ea

ch
ab

ili
ty

 d
is

ta
nc

e

Google servers (OPTICS output order)

mrs
muc mil

sof

lga iad ord lax nrt

Figure 3: Distance plot of Google servers with air-
port codes. Servers in the same cluster have low
reachability distance to each other thus are output
in sequence as neighbors. Cluster boundaries are de-
marcated by large impulses in the reachability plot.

Experiment Rand Index
PlanetLab 0.99
CA 0.97
Google 0.99 or 1

Table 2: Rand index for our nodesets. Our cluster-
ing algorithm achieves over 97% across all nodesets,
indicating very few false positives or negatives.

itives and false negatives. In the California nodeset,
the method fails to set apart some USC/ISI nodes from
nodes on the USC campus, and in the Planet lab node-
set, some clusters have low reachability distance that
confuses our boundary detection method. The Google
nodeset reveals one false negative which we actually be-
lieve to be correct: the algorithm correctly identifies two
distinct serving sites in mrs, as discussed below.

To better understand the performance of our method,
Figure 3 shows the output of the OPTICS algorithm
on the Google nodeset. The x-axis in this figure rep-
resents the ordered output of the OPTICS algorithm,
and the y-axis the reachability distance associated with
each node. Impulses in the reachability distance depict
cluster boundaries, and we have verified that the nodes
within the cluster all belong to the same airport code.
In fact, as the figure shows, the algorithm is correctly
able to identify all 9 Google sites. More interesting, it
shows that, within a single airport code mrs, there are
likely two physically distinct serving sites. We believe
this to be correct, from an analysis of the DNS names
associated with those front-ends: all frontends in one
serving site have a prefix mrs02s04, and all frontends
in the other serving site have a prefix mrs02s05.

Finally, Figure 4 shows the OPTICS output when us-
ing reverse-TTL (as proposed in [19]) instead of RTT for
the metric embedding. This uses a slightly different set

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

T
T

L
R

ea
ch

ab
ili

ty
 d

is
ta

nc
e

Google servers (OPTICS output order)

mrs muc mil sof
eze

syd sin bom del

Figure 4: The output of the OPTICS clustering
algorithm when reverse-TTL is used for the metric
embedding. When using this metric, the clustering
algorithm cannot distinguish serving sites at Bom-
bay (bom) and Delhi (del) in India, while RTT-based
clustering can.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

C
um

ul
at

iv
e

cl
us

te
rs

 o
bs

er
ve

d
by

 E
D

N
S

Date

Figure 6: Growth in the number of points of pres-
ence hosting Google serving infrastructure over time.

of Google servers than in our evaluation above: this set
was chosen to highlight the performance of reverse-TTL
based clustering. For this set of nodes, reverse-TTL
based embedding performs reasonably well but results
in the OPTICS algorithm being unable to distinguish
between serving sites in bom and del. RTT-based clus-
tering is able to differentiate these serving sites (not
shown). Moreover, although reverse-TTL suggests the
possibility of two sites in mrs, it mis-identifies which
servers belong to which of these sites (based on reverse
DNS names).

6. MAPPING GOOGLE’S EXPANSION
We present a longitudinal study of Google’s serving

infrastructure. Our initial dataset is from late October
to early November of 2012 and our second dataset cov-
ers March and April of 2013. We are able to capture a
substantial expansion of Google infrastructure.

6.1 Growth over time

8

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

C
um

ul
at

iv
e

IP
s

O
bs

er
ve

d

Date

EDNS
Open resolver

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

C
um

ul
at

iv
e

/2
4s

 o
bs

er
ve

d

Date

EDNS
Open resolver

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

C
um

ul
at

iv
e

A
S

es
 o

bs
er

ve
d

Date

EDNS
Open resolver

Figure 5: Growth in the number of IP addresses (a), /24 prefixes (b), and ASes/countries (c) observed to be
serving Google’s homepage over time. During our study, Google expanded rapidly at each of these granularities.

 0

 10

 20

 30

 40

 50

 60

 70

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

C
um

ul
at

iv
e

co
un

tr
ie

s
ob

se
rv

ed

Date

EDNS
Open resolver

Figure 8: Number of countries hosting Google serv-
ing infrastructure over time.

For each snapshot that we capture, we use EDNS-
client-subnet to enumerate all IP addresses returned for
www.google.com. Figure 5(a) depicts the number of
server IP addresses seen in these snapshots over time.4

The graph shows slow growth in the cumulative num-
ber of Google IP addresses observed between November
2012 and March 2013, then a major spike in mid-March
in which we saw approximately 3000 new serving IP
addresses come online. By the end of our study, the
number of serving IP addresses tripled. Figure 5(b)
shows this same trend in the growth of the number of
/24s seen to serve Google’s homepage. In Figure 5(c),
we see 82% growth in the number of ASes originating
these prefixes, indicating that this large growth is not
just Google adding new capacity to existing serving lo-
cations. Figure 6 shows the growth in the number of
distinct serving sites within those ASes.

Figure 7 shows the geographic locations of Google’s
serving infrastructure at the beginning of our measure-
ments and in our most recent snapshot. We observe
two types of expansion. First, we see new serving loca-
tions in remote regions of countries that already hosted
servers, such as Australia and Brazil. Second, we ob-
serve Google turning up serving infrastructure in coun-
tries that previously did not appear to serve Google’s
homepage, such as Vietnam and Thailand. Of new fron-
tend IP addresses that appeared during the course of
our study, 92% are in ASes other than Google. Of those

4It is not necessarily the case that each IP address maps to
a distinct frontend.

November 2012 May 2013
ASes Clients ASes Clients

Google 2 9856K 2 (+0%) 9658K (-2%)
Tier 1 2 481 2 (+0%) 201 (-58%)
Large 30 111K 46 (+53%) 237K (+114%)
Small 35 37K 64 (+83%) 63K (+71%)
Tiny 23 31K 41 (+78%) 57K (+84%)
Stub 13 21K 36 (+177%) 38K (+81%)

Table 3: Classification of ASes hosting Google serv-
ing infrastructure at the beginning and end of our
study. We count both by the number of distinct ASes
and by the number of client /24 prefixes served. Al-
though Google still directs 96% of the 10 million pre-
fixes to servers within its own network, it is evolving
towards serving fewer clients from its own network
and more clients from smaller ASes around the world.

addresses, only 13% are in the United States or Eu-
rope, places that are well-served directly from Google’s
network. Outside these regions, 45% are in Asia, 23%
in North America (outside the US), 20% are in South
America, and 8% are in Africa. Figure 8 depicts this
growth in the number of countries hosting serving in-
frastructure, from 53 or 56 at the beginning of our study
to 62 in recent measurements. We intend to continue
to run these measurements indefinitely to continue to
map this growth.

6.2 Characterizing the Expansion
To better understand the nature of Google’s expan-

sion, we examine the types of networks where the ex-
pansion is occurring and how many clients they serve.
Table 3 classifies the number of ASes of various classes
in which we observe serving infrastructure, both at the
beginning and at the end of our study. It also depicts
the number of /24 client prefixes (of 10 million total)
served by infrastructure in each class of AS. We use
AS classifications from the June 28, 2012 dataset from
UCLA’s Internet Topology Collection [33],5 except that
we only classify as stubs ASes with 0 costumers, and we
introduce a Tiny ISP class for ASes with 1-4 customers.

As seen in the table, the rapid growth in ASes that

5UCLA’s data processing has been broken since 2012, but
we do not expect the AS topology to change rapidly.

9

www.google.com

 180
°
 W 135

°
 W 90

°
 W 45

°
 W 0

°
 45

°
 E 90

°
 E 135

°
 E 180

°
 E

 90
°
 S

 45
°
 S

 45
°
 N

 90
°
 N

Google AS 2012−10−28

Other AS 2012−10−28

Google AS 2013−5−3

Other AS 2013−5−3

Figure 7: A world wide view of the expansion in Google’s infrastructure.

host infrastructure has mainly been occurring lower in
the AS hierarchy. Although Google still directs the vast
majority of client prefixes to servers in its own ASes, it
has begun directing an additional 2% of them to servers
off its network, representing a 98% increase in the num-
ber served from off the network. By installing servers
inside client ISPs, Google allows clients in these ISPs
to terminate their TCP connections locally (likely at
a satellite server that proxies requests to a datacen-
ter [25], as it is extremely unlikely that Google has
sufficient computation in these locations to provide its
services). We perform reverse DNS lookups on the IP
addresses of all frontends we located outside of Google’s
network. More than one third of them have hostnames
that include either ggc or google.cache. These results
suggest that Google is reusing infrastructure from the
Google Global Cache (GGC), Google’s content distribu-
tion network built primarily to cache YouTube videos
near users.6

Figure 9 depicts a slightly different view of the Google
expansion. It charts the cumulative distribution of the
number of serving sites by ISP type. Almost half of the
ISPs, by any type, host only one serving site. Gener-
ally speaking, smaller ISPs host fewer serving sites than
larger ISPs, with some large ISPs hosting up to 10 dif-
ferent sites. The one exception is a Tiny ISP in Mexico
hosting 20 serving sites consisting of hundreds of fron-
tend IPs. We are currently examining this outlier in
detail.

Whereas Google would be willing to serve any client
from a server located within the Google network, an
ISP hosting a server would likely only serve its own
customers. Serving its provider’s other customers, for

6GGC documentation mentions that the servers may be
used to proxy Google Search and other services.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F
 o

f I
S

P
s

Number of serving sites

Large ISP
Small ISP

Tiny ISP
Stub ISP

All

Figure 9: CDF of number of clusters in different
types of ISP

example, would require the ISP to pay its provider for
the service! We check this intuition by comparing the
location in the AS hierarchy of clients and the servers
to which Google directs them. Of clients directed to
servers outside of Google’s network, 90% are located
within the server’s AS’s customer cone (the AS itself,
its customers, their customers, and so on) [18]. Since
correctly inferring AS business relationship is known to
be a hard problem [9], it is unclear whether the re-
maining 10% of clients are actually served by ISPs of
which they are not customers, or (perhaps more likely)
whether they represent limitations of the analysis. In
fact, given that 60% of the non-customer cases stem
from just 4 serving ASes, a small number of incorrect
relationship or IP-to-AS inferences could explain the
counter-intuitive observations.

Google’s expansion of infrastructure implies that, over
time, many clients should be directed to servers that are
closer to them than where Google directed them at the

10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

C
D

F
 o

f c
lie

nt
s

Distance from Client to Estimated Server Location (km)

2013-4-14
2012-10-29

Figure 10: Distances from clients to estimated fron-
tend locations to which Google directs them.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
D

F
 o

f e
st

im
at

ed
 lo

ca
tio

n

Error (km)

client-centric geolocation (CCG) 2013-4-14
CCG no filtering 2013-4-14
CCG no filtering 2013-3-20

CCG no filtering 2012-10-29

Figure 11: As Google expands, clients become
closer to their servers, improving accuracy of filter-
less client-based geolocation.

beginning of the study. Figure 10 shows the distribu-
tion of the distance from a client to our estimate of the
location of the server serving it. We restrict the clients
to those in our BitTorrent eyeball dataset and geolocate
all client locations using MaxMind. Some of the very
large distances shown in both curves could be accuracy
limitations of the MaxMind GeoLite Free database, es-
pecially in regions outside of the United States. Overall,
results show that in mid-April 2013, many clients are
substantially closer to the set of servers they are di-
rected to than in October of 2012. For example, the
fraction of client prefixes within 500km of their servers
increases from 39% to 53%, and the fraction within
1000km increases from 54% to 73%. Because many
of the newer frontends seem to be satellites that likely
proxy traffic back to datacenters, it is hard to know
the impact that decreasing the distance from client to
frontend will have on application performance [25].

6.3 Impact on Geolocation Accuracy
A side-effect of Google directing more clients to fron-

tends closer to them is that our geolocation technique
should become more accurate over time, since we base it
on the assumption that frontends are near their clients.
To verify that assumption, we apply our basic geoloca-
tion approach–without any of our filters that increase
accuracy–to the datasets from three points in time. We

chose dates to coincide with the large jumps in Google
servers that we observe in Figure 5. Using the airport
code-based ground truth dataset from Section 5.2, Fig-
ure 11 shows the distribution of error in geolocation us-
ing these three datasets and, for comparison, the most
recent dataset using all our filters. We can see that
there is steady reduction in error over time, with me-
dian error decreasing from 817km in October 2012, to
610km in March 2013, and 475km in April 2013. How-
ever, our filters still provide substantial benefit, yielding
a median error of only 22km.

7. RELATED WORK
Closest to our work is prior work on mapping CDN

infrastructures [12, 2, 32, 1]. Huang et al. [12] map two
popular content delivery networks, Akamai and Lime-
light, by enumerating their frontends using a quarter
of a million open rDNS resolvers. They geolocate and
cluster frontends using a geolocation database as well as
using the location of penultimate hop of traceroutes to
frontends. Ager et al. [2] chart web hosting structures as
a whole. They start from probing several sets of domain
names from dozens of vantage points to collect service
IP addresses. They rely entirely on MaxMind [21] for
geolocation, and use feature-based clustering where the
goal of clustering is to separate frontends belonging to
different hosting infrastructures. Torres et al. [32] use a
small number of vantage points in the US and Europe
and constraint-based geolocation to approximately ge-
olocate serving sites in the YouTube CDN, with the
aim of understanding video server selection strategies.
Finally, Adhikari et al. [1] use open resolvers to enu-
merate YouTube servers and geolocation databases to
geolocate them, with the aim of reverse-engineering the
caching hierarchy and logical organization of YouTube
infrastructure using DNS namespaces.

In contrast to these pieces of work, our enumeration
effectively uses many more vantage points, our geolo-
cation technique leverages client locations for accuracy
instead of relying on geolocation databases, and our
clustering technique relies on a metric embedding in
high-dimensional space to differentiate between nearby
sites.

Several other pieces of work are tangentially related
to ours. Mao et al. [20] quantifies the proximity of
clients to their local DNS resolvers and finds that clients
in different geographic locations may use the same re-
solver. The EDNS-client-subnet extension we use was
designed to permit serving infrastructures to more ac-
curately direct clients to serving sites in these cases.
Other work [31, 7] has exploited the observation that
two clients directed to the same or nearby frontends
are likely to be geographically close. Our work uses
this observation to geolocate frontends. Otto et al. [23]
examine the end to end impact that different DNS ser-

11

vices have on CDN performance. It is the first work
to study the potential of the EDNS-client-subnet to ad-
dress the client CDN mapping problem, but does not
attempt to map Google’s expansion, as we do.

Finally, several strands of research have explored com-
plementary problems associated with serving infrastruc-
tures, ranging from characterizing and diagnosing la-
tency of CDNs [35, 15] as well as cloud providers [16]
and search services [6], to geolocating ASs using client
locations [27], verifying data replication strategies for
cloud providers [4], analyzing content usage in large
CDNs [5].

8. USING OUR MAPPING
In addition to our evaluation of Google’s serving in-

frastructure so far, our mapping is useful to the research
community, for what it says about clients, and for what
it can predict about other serving infrastructure.

The Need for Longitudinal Research Data. Our
results show the limitations of one-off measurement studies—
a snapshot of Google’s serving infrastructure in October
would have missed the rapid growth of their infrastruc-
ture and potentially misrepresented their strategy. We
believe the research community needs long-term mea-
surements, and we intend to refresh our maps regu-
larly. We will make our ongoing data available to the
research community, and we plan to expand coverage
from Google to include other providers’ serving infras-
tructures.

Sharing the Wealth: From Our Data to Related
Data. Our mapping techniques assume the target
sharing infrastructure is pervasive and carefully and
correctly engineered. We assume that (a) Google directs
most clients to nearby frontends; (b) Google’s redirec-
tion is carefully engineered for “eyeball” prefixes that
host end-users; and (c) Google will only direct a client
to a satellite frontend if the client is a customer of the
frontend’s AS. Google has economic incentives to en-
sure these assumptions. In practice, these assumptions
are generally true but not always, and our design and
evaluation has carefully dealt with exceptions (such as
clients occasionally being directed to distant frontends.

If we accept these assumptions, our maps allow us to
exploit Google’s understanding of network topology and
user placement to improve other datasets. Prior work
has used Akamai to chose detour routes [31]; we believe
our mapping can improve geolocation, peer selection,
and AS classification.

Geolocation is a much studied problem [11, 10, 14],
and availability of ground truth can greatly improve
results. With clients accessing Google from mobile de-
vices and computers around the world, Google has ac-
cess to ample data and measurement opportunity to
gather very accurate client locations. An interesting fu-

ture direction is to infer prefix location from our EDNS-
client-subnet observations, and use that coarse data to
re-evaluate prefixes that existing datasets (such as Max-
Mind) place in very different locations. The end result
would be either higher accuracy geolocation or, at least,
identification of prefixes with uncertain locations.

Researchers designed a BitTorrent plugin that would
direct a client to peer with other users the plugin deemed
to be nearby, because the potential peer received simi-
lar CDN redirections as the client’s [7]. However, with
the existing plugin, the client can only assess similarity
of other users of the plugin who send their CDN fron-
tend mappings. Just as we used EDNS-client-subnet
to obtain mappings from arbitrary prefixes around the
world, we could design a modified version of the plugin
that would allow a client to assess the nearness of an
arbitrary potential peer, regardless of whether the peer
uses the plugin or not. By removing this barrier, the
modified plugin would be much more widely applicable,
and could enhance the adoption of such plugins.

Finally, in Section 6.2, we showed that 90% of pre-
fixes served in ASes other than Google are within the
customer cone of their serving AS. The remaining 10%
of prefixes likely represent problems with either our IP-
to-AS mapping [13] or with the customer cone dataset
we used [18]. From talking to the researchers behind
that work and sharing our results with them, it may
be necessary to move to prefix-level cones, to accom-
modate the complex relationships between ASes in the
Internet. The client-to-frontend data we generate could
help resolve ambiguities in AS relationships and lead to
better inference in the future.

Calibrating Other Measurements. Our studies of
Google combine observations using EDNS-client-subnet
and open recursive resolvers. Not all providers support
EDNS-client-subnet, however.

In Section 5.1, we demonstrated that even using hun-
dreds of thousands of open recursive DNS resolvers would
miss discovering much of Google’s infrastructure that
we uncover using EDNS-client-subnet. We next con-
sider how we can use our results from Google to project
results for other providers that support only open re-
solvers.

To explore the feasibility of this projection, Figure 12
depicts the number of Google IP addresses discovered as
we issue additional measurements. We select one open
recursive resolver from each /24 in which we know of
at least one resolver (there are 110,000 such prefixes).
Then, we select one of these /24s at a time and resolve
www.google.com from the open resolver in the prefix
and via an EDNS-client-subnet query for that prefix.
The figure depicts the growth in the number of Google
frontend IP addresses discovered by the two approaches
(min, mean, and max over 1000 trials). As seen in the
figure, using resolvers in a set of prefixes yields very

12

www.google.com

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20000 40000 60000 80000 100000

N
um

be
r

of
 G

oo
gl

e
IP

 a
dd

re
ss

es

Number of vantage points (one per /24)

resolver min
resolver max

resolver mean
EDNS with resolver /24s min
EDNS with resolver /24s max

EDNS with resolver /24s mean

Figure 12: The relation between number of Google
IP addresses discovered and the number of vantage
points. Using one open resolver per /24 block and
one EDNS query per /24 block.

similar numbers of frontend IPs to issuing EDNS-client-
subnet queries for that same set of prefixes, so that the
benefit of EDNS-client-subnet is primarily that we can
issue queries for many more prefixes than we have access
to resolvers in.

This suggests that we may be able to extrapolate
these growth curves to understand the impact of hav-
ing more resolvers. To test this theory, we fit power
law curves to the open resolver lines (R = 0.97 in all
cases). We project that access to resolvers in all 10M
routable /24 prefixes, predicting discovery of 6990–8687
IP addresses of Google frontend servers. Using EDNS-
client-subnet queries for these 10M prefixes, we found
8563 IP addresses, within the range, suggesting that
the extrapolation approach may be reasonable. In the
future, we plan to apply it to predict the size of Aka-
mai and other infrastructures that do not yet support
EDNS-client-subnet.

9. CONCLUSIONS
As the role of interactive web applications contin-

ues to grow in our lives, and the mobile web pene-
trates remote regions of the world more than wired
networks ever had, the Internet needs to deliver fast
performance to everyone, everywhere, at all times. To
serve clients around the work quickly, service providers
deploy globally distributed serving infrastructure, and
we must understand these infrastructures to understand
how providers deliver content today. Towards that goal,
we developed approaches specific to mapping these serv-
ing infrastructures. By basing our techniques around
how providers architect their infrastructures and guard-
ing our techniques against noisy data, we are able to
accurately map the geographically-distributed serving
sites.

We apply our techniques to mapping Google’s serving
infrastructure and track its rapid expansion over the pe-
riod of our measurement study. During that time, the

number of serving sites doubled, and we see Google de-
ploying satellite frontends around the world, in many
cases distant from any known Google datacenters. By
continuing to map Google’s and others’ serving infras-
tructures, we will watch the evolution of these key en-
ablers of today’s Internet, and we expect the accurate
maps to enable future work by us and others to under-
stand and improve content delivery on a global scale.

10. REFERENCES
[1] Vijay Kumar Adhikari, Sourabh Jain, Yingying

Chen, and Zhi-Li Zhang. Vivisecting YouTube:
An active measurement study. In INFOCOM,
2012 Proceedings IEEE, pages 2521–2525. IEEE,
2012.

[2] Bernhard Ager, Wolfgang Mühlbauer, Georgios
Smaragdakis, and Steve Uhlig. Web content
cartography. In Proc. of ACM Intermet
Measurement Conference, pages 585–597, Berlin,
Germany, November 2011. ACM.

[3] Mihael Ankerst, Markus M. Breunig, Hans-peter
Kriegel, and Jörg Sander. OPTICS: Ordering
points to identify the clustering structure. In
ACM SIGMOD international conference on
Management of data, pages 49–60, Philadelphia,
PA, USA, June 1999. ACM.

[4] Karyn Benson, Rafael Dowsley, and Hovav
Shacham. Do you know where your cloud files
are? In Proc. of Cloud Computing Security
Workshop, pages 73–82, Chicago, Illinois, USA,
October 2011. ACM.

[5] Meeyoung Cha, Haewoon Kwak, Pablo
Rodriguez, Yong-Yeol Ahn, and Sue Moon. I
Tube, You Tube, Everybody Tubes: Analyzing
the World’s Largest User Generated Content
Video System. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement,
pages 1–14. ACM, 2007.

[6] Yingying Chen, Sourabh Jain, Vijay Kumar
Adhikari, and Zhi-Li Zhang. Characterizing roles
of front-end servers in end-to-end performance of
dynamic content distribution. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet
measurement conference, pages 559–568. ACM,
2011.

[7] David Choffnes and Fabian E. Bustamante.
Taming the torrent: A practical approach to
reducing cross-ISP traffic in peer-to-peer systems.
In SIGCOMM, pages 363–374, Seattle, WA, USA,
October 2008.

[8] C. Contavalli, W. van der Gaast, S. Leach, and
E. Lewis. Client subnet in dns requests, April
2012. Work in progress (Internet draft
draft-vandergaast-edns-client-subnet-01).

[9] Xenofontas Dimitropoulos, Dmitri Krioukov,

13

Marina Fomenkov, Bradley Huffaker, Young
Hyun, k. c. claffy, and George Riley. AS
relationships: Inference and validation. ACM
Computer Communication Review, 37(1):29–40,
January 2007.

[10] Bamba Gueye, Artur Ziviani, Mark Crovella, and
Serge Fdida. Constraint-based geolocation of
Internet hosts. IEEE/ACM TON,
14(6):1219–1232, December 2006.

[11] Zi Hu and John Heidemann. Towards geolocation
of millions of IP addresses. In Proc. of ACM
Intermet Measurement Conference, pages
123–130, Boston, MA, USA, 2012. ACM.

[12] Cheng Huang, Angela Wang, Jin Li, and Keith W.
Ross. Measuring and evaluating large-scale CDNs.
Technical Report MSR-TR-2008-106, Microsoft
Research, October 2008.

[13] iPlane. http://iplane.cs.washington.edu.
[14] Ethan Katz-Bassett, John P. John, Arvind

Krishnamurthy, David Wetherall, Thomas
Anderson, and Yatin Chawathe. Towards IP
geolocation using delay and topology
measurements. In IMC, pages 71–84, 2006.

[15] Rupa Krishnan, Harsha V. Madhyastha, Sridhar
Srinivasan, Sushant Jain, Arvind Krishnamurthy,
Thomas Anderson, and Jie Gao. Moving beyond
end-to-end path information to optimize CDN
performance. In IMC, 2009.

[16] Ang Li, Xiaowei Yang, Srikanth Kandula, and
Ming Zhang. Cloudcmp: comparing public cloud
providers. In Proc. of ACM Intermet
Measurement Conference, pages 1–14. ACM, 2010.

[17] Greg Linden. Make data useful.
http://sites.google.com/site/glinden/

Home/StanfordDataMining.2006-11-28.ppt,
2006.

[18] M. Luckie, B. Huffaker, A. Dhamdhere,
V. Giotsas, and k claffy. AS Relationships,
Customer Cones, and Validation. submitted to
IMC 2013.

[19] Harsha V. Madhyastha, Tomas Isdal, Michael
Piatek, Colin Dixon, Thomas Anderson, Arvind
Krishnamurthy, and Arun Venkataramani. iPlane:
An information plane for distributed services. In
OSDI, 2006.

[20] Z. M. Mao, C. D. Cranor, F. Douglis,
M. Rabinovich, O. Spatscheck, and J Wang. A
Precise and Efficient Evaluation of the Proximity
Between Web Clients and their Local DNS
Servers. USENIX Annual Technical Conference,
pages 229–242, 2002.

[21] MaxMind.
http://www.maxmind.com/app/ip-location/.

[22] David Meyer. RouteViews.
http://www.routeviews.org.

[23] John S. Otto, Mario A. Sánchez, John P. Rula,
and Fabián E Bustamante. Content delivery and
the natural evolution of DNS. In Proc. of ACM
Intermet Measurement Conference, Boston,
Massachusetts, USA, November 2012. ACM.

[24] Venkata N. Padmanabhan and Lakshminarayanan
Subramanian. An investigation of geographic
mapping techniques for Internet hosts. In Proc.
ofACM SIGCOMM, pages 173–185, San Diego,
California, USA, August 2001. ACM.

[25] Abhinav Pathak, Y. Angela Wang, Cheng Huang,
Albert Greenberg, Y. Charlie Hu, Randy Kern,
Jin Li, and Keith W. Ross. Measuring and
evaluating TCP splitting for cloud services. In
PAM, 2010.

[26] William M Rand. Objective criteria for the
evaluation of clustering methods. Journal of the
American Statistical association, 66(336):846–850,
1971.

[27] Amir H Rasti, Nazanin Magharei, Reza Rejaie,
and Walter Willinger. Eyeball ASes: from
geography to connectivity. In Proceedings of the
10th ACM SIGCOMM conference on Internet
measurement, pages 192–198. ACM, 2010.

[28] Steve Souders. High-performance web sites.
Communications of the ACM, 51(12):36–41,
December 2008.

[29] Neil Spring, Ratul Mahajan, and David
Wetherall. Measuring ISP topologies with
Rocketfuel. ACM SIGCOMM Computer
Communication Review, 32(4):133–145, 2002.

[30] Stoyan Stefanov. Yslow 2.0. In CSDN SD2C,
2008.

[31] Ao-Jan Su, David R. Choffnes Aleksandar
Kuzmanovic, and Fabi’an E. Bustamante.
Drafting behind Akamai (Travelocity-based
detouring). In Proc. ofACM SIGCOMM, pages
3–14, Pisa, Italy, September 2006. ACM.

[32] Ruben Torres, Alessandro Finamore, Jin Ryong
Kim, Marco Mellia, Maurizio M Munafo, and
Sanjay Rao. Dissecting video server selection
strategies in the YouTube CDN. In 31st
International Conference on Distributed
Computing Systems (ICDCS), pages 248–257.
IEEE, 2011.

[33] UCLA Internet topology collection.
http://irl.cs.ucla.edu/topology/.

[34] Qiang Xu and Jaspal Subhlok. Automatic
clustering of grid nodes. In Proc. of6th IEEE
International Workshop on Grid Computing.
IEEE, November 2005.

[35] Yaping Zhu, Benjamin Helsley, Jennifer Rexford,
Aspi Siganporia, and Sridhar Srinivasan.
LatLong: Diagnosing wide-area latency changes
for CDNs. IEEE Transactions on Network and

14

http://iplane.cs.washington.edu
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://www.maxmind.com/app/ip-location/
http://www.routeviews.org
http://irl.cs.ucla.edu/topology/

Service Management, 9(1), September 2012.

15

	Introduction
	Background
	Goal and Approach
	Methodology
	Enumerating Frontends
	Client-centric Geolocation
	Clustering frontends

	Validation
	Coverage of Frontend Enumeration
	Accuracy of Client-Centric Geolocation
	Accuracy of Frontend Clustering

	Mapping Google's Expansion
	Growth over time
	Characterizing the Expansion
	Impact on Geolocation Accuracy

	Related Work
	Using Our Mapping
	Conclusions
	References

