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ABSTRACT

Although the Internet is widely used today, we have little

information about the edge of the network. Decentralized

management, firewalls, and sensitivity to probing prevent

easy answers and make measurement difficult. Building on

frequent ICMP probing of 1% of the Internet address space,

we develop clustering and analysis methods to estimate how

Internet addresses are used. We show that adjacent addresses

often have similar characteristics and are used for similar

purposes (61% of addresses we probe are consistent blocks

of 64 neighbors or more). We then apply this block-level

clustering to provide data to explore several open questions

in how networks are managed. First, we provide informa-

tion about how effectively network address blocks appear

to be used, finding that a significant number of blocks are

only lightly used (most addresses in about one-fifth of /24

blocks are in use less than 10% of the time), an important is-

sue as the IPv4 address space nears full allocation. Second,

we provide new measurements about dynamically managed

address space, showing nearly 40% of /24 blocks appear to

be dynamically allocated, and dynamic addressing is most

widely used in countries more recent to the Internet (more

than 80% in China, while less than 30% in the U.S.). Third,

we distinguish blocks with low-bitrate last-hops and show

that such blocks are often underutilized.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Network topology ; C.2.3
[Computer-Communication Networks]: Network
Operations—Network management

General Terms: Measurement

Keywords: Internet address usage, survey, pattern
analysis, clustering, classification, availability, volatil-
ity, median-up, low-bitrate, RTT

1. INTRODUCTION

Previous Internet topology studies focused on AS-
and router-level topologies [6,8,10,14,27,31,32]. While
this work explored the core of the network, it provides

little insight into the edge of the Internet and the use of
the IPv4 address space. The transition to classless rout-
ing (CIDR, [13]) in the mid-1990s has made the edge
opaque. Only recently have researchers begun to study
edge-host behavior using server logs [40], web search en-
gines on textual addresses [34], and ICMP probing [15].

Yet the network edge has seen great change and de-
serves study. How is CIDR applied? How is dynamic
addressing used? How widespread are low-bitrate edge
links? In this paper we use active probing to study these
properties of the edge of the Internet.

Assumptions: In this paper we begin to explore the
potential of clustering of active probes to infer network
address usage. Our work makes three assumptions:

1. Many active addresses will respond to probes,

2. Contiguous addresses are often used similarly, and

3. Patterns of probe responses and response delay
suggest address usage.

While there are cases where these assumptions do not
hold, we believe the assumptions apply to a large frac-
tion of the Internet and so active probing can provide
insight into address usage.

We examined the first assumption and previously showed
that active probes detect the majority of addresses in
use, as verified with tests against a university and a
random sample of the general Internet [15].

While this prior work established the collection method-
ology and error bounds; this paper provides the first
evidence for the next two assumptions and their appli-
cation to understand network usage. The second as-
sumption is contiguous use, which follows from the tra-
ditional administrative practice of assigning blocks of
consecutive addresses to minimize routing table sizes.
While there is no requirement that adjacent addresses
be used for the same purpose, we will show that they
are often used similarly (Section 4.1).

Finally, we assume that repeated active probing with
ICMP provides information about how addresses are
used. We take advantage of both the pattern of posi-
tive, negative, or missing response, and the round-trip
time (RTT) of the response. While a single ICMP re-
sponse provides only limited information (consent of the
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address to reply), repeated probing can tell much more.
For example, we use response patterns to distinguish
intermittent from continuously used addresses, and we
show that RTT can identify low-bitrate edge links.

Figure 1 shows an example of what can be learned
from probing one block of 256 addresses with prefix1

p. In this figure, the 256 addresses in prefix p are
mapped into two dimensions following a Hilbert curve
(each quadrant of the square shows one-quarter of ad-
dresses, recursively). Different shades indicate differ-
ent ping response patterns from each address (white is
non-responsive; green, availability; red, volatility; met-
rics we define later in Section 3.2). Two green areas are
blocks of addresses that are almost always up: the single
address p.65/32 at the top center, and the 32-addresses
block p.128/27. The two dark areas (the lower left quar-
ter, p.192/26, and bottom right eight, p.160/27) are
used only infrequently, with low availability and volatil-
ity. We can often confirm these probe-based observa-
tions against other sources (Section 5 discusses host-
names and operator-provided ground truth). The bot-
tom of the figure shows how we automatically identify
these regions (Section 3.3).

Approach and Validation: From these assump-
tions we develop new algorithms to identify blocks of
addresses with consistent usage (Section 3). We start
with Internet survey data, where each address in around
24,000 /24 address blocks is pinged every 11 minutes for
around one week [15]. From this dataset we derive sev-
eral metrics about address usage. We then use these
statistics to automatically identify blocks of consistent
responsiveness.

Before applying these algorithms, we evaluate how
often our assumptions hold. Our first question is there-
fore are adjacent addresses used consistently and can
we discover them reasonably accurately? Before class-
less IP addressing [13] allocation strategies were aligned
with externally visible address allocation, but since then
there has been no way to easily evaluate how addresses
are used. We explore these basic questions in Sec-
tions 4.1 and 5.1.1.

Applications: A first application of this approach
is to understand how addresses are managed, beginning
with what block sizes are typical (Section 4.1). We find
that 2,529,216 addresses, or 61% of the probed address
space, show consistent responses in blocks of 64 to 256
adjacent addresses (/26 to /24 blocks). Also, we observe

1 Recall that IPv4 addresses are 32-bit numbers, usually
written in the form a.b.c.d, where each component is an 8-
bit portion of the whole address. Addresses are organized
in blocks (sometimes called subnetworks) that are sized to
powers of two. Blocks have a common prefix, the lead-
ing p bits of the address, written a.b.c.d/p. For example,
128.125.7.0/24 indicates a /24 block with 256 addresses in
it of the form 128.125.7.x. We sometimes talk about blocks
as p.0/24, where p represents the anonymized prefix.
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Figure 1: Top: a /24 block (prefix is anonymized
to p) with 4 plausible regions of different use.
Bottom: our BlockSizeId algorithm (ǫ = 2.0)
identifies these regions (Section 3.3), with best-
fit variance in (parentheses).

that most addresses (around 55%) are in /24 or bigger
blocks.

Another application is understanding how effectively
addresses are used (Section 4.2). We find that many
blocks are only lightly used (about one-fifth of /24s
show less than 10% utilization). Improving utilization is
increasingly important as the IPv4 address space nears
full allocation; improving IPv4 efficiency is a cost to
compare compared to IPv6 transition.

Third, we detect and quantify the use of dynamic ad-
dress assignment (Section 4.3). Dynamic addresses are
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used in some spam detection algorithms [40], and iden-
tifying dynamic addresses is important to estimate the
number of computers that connect to the Internet [15].
We observe that nearly 40% of /24 blocks appear to be
dynamically allocated, and dynamic addressing is much
higher in countries most recent to the Internet (more
than 80% in China, while less then 30% in the U.S.).

Finally, we distinguish blocks connected mainly by
low-bitrate edge links from those with broadband con-
nections, identifying blocks used by dial-up and older
mobile phones (Section 4.4). Study of edge bitrate
can help understand trends in technology deployment,
and automatic identification of users of low-bitrate net-
works may allow websites to automatically match con-
tent and layout. Edge links and policies also interact
with address utilization (Section 4.4); we show low-
bitrates links are correlated with short connect-times
and sparse usage.

The contribution of this paper is therefore to develop
new approaches to classify Internet address usage and
to apply those approaches to answer important ques-
tions in network management. As with other studies of
the live Internet, our approach must employ incomplete
information: our surveys cover randomly selected /24
blocks (not larger) and do not inform us about addresses
that refuse to respond. However, we suggest that the
approach is promising and our preliminary results pro-
vide new techniques, adding to what is currently known.

The main contents of this paper appeared as a con-
ference paper [4]. This technical report [5] adds sev-
eral appendices to provide additional data about stabil-
ity of the results across different surveys and in differ-
ent years (Appendix A), general characterization of the
(A, V, U∗) space (Appendix B), and details about our
training and hostname-inferred usage (Appendix C),

2. RELATEDWORK

Much prior work has explored the Internet topol-
ogy [6, 8, 10, 14, 27, 31, 32]. Recent work has begun ex-
ploring edge host behavior [15,34,40]. Our work builds
upon this prior work and the specific work listed below.

Are contiguous addresses consistent and what are the
typical block sizes? Although addresses are usually as-
signed as blocks and represented in prefixes by class-
ful [28] and classless addressing [13], there is no guar-
antee that contiguous addresses in the same block will
be used in the same way. Huston’s report has analyzed
the common prefix lengths in BGP routing table [16].
But it cannot look at usage at granularities smaller than
BGP prefixes. Our approach is able to look at these
smaller block sizes through active probing.

Are allocated addresses efficiently utilized? Several
researchers have studied rates of IPv4 address consump-
tion, predicting IANA will exhaust its allocation pool in
2011 [16]. However, full allocation does not necessarily

imply full use. Prior researchers inferred address utiliza-
tion by detecting allocated but not advertised prefixes
in BGP routing table [25]. But what is routed may dif-
fer from what is actively used. Our work tries to track
active use; and our study of individual addresses can
reveal changes that happen to blocks inside an organi-
zation (smaller than are typically routed).

How many addresses are dynamically assigned? Xie
et al. have begun to explore this question with a goal
of identifying dynamic blocks to assist spam preven-
tion [40]. Their work is based on passive collection
of Hotmail web server logs, while our method uses a
completely different approach by active probing and so
can extend and corroborate their findings. In our prior
work, we provide another perspective based on active
probing with ICMP [15]. While this prior work focused
on censuses (occasional but complete probing) and es-
tablishing the methodology, here we study survey data
(frequent probing of a sample of the Internet) and add
significant new analysis to identify block sizes and low-
rate edges.

CAIDA has long studied Internet topology with ac-
tive probing [20]. They traceroute to one address for
each routed /24 address block. Our datasets differ by
probing only a fraction of /24s (but all addresses in
them, and much more frequently). Probing /24s allows
us to take the advantage of locality to study address us-
age. Because contiguous addresses are usually admin-
istrated together and used in the same way, analyzing
the whole block instead of sampling one address from
each block can provide information not previously avail-
able. In addition, our frequent sampling shows tempo-
ral changes useful for identifying dynamic address allo-
cation.

Regional Internet Registries (RIR) have another po-
tential source of data, as they require organizations to
state the usage of current addresses and the planned
usage of new addresses [2, 3]. Such data is not gener-
ally available, but it is another possible means of future
validation.

Identifying edge-link bitrates? A great deal of work
has explored identification of edge-link bitrates (or link
capacity) and available bandwidth. While we cannot re-
view it all here, key results include packet pair [21] and
pathchar [18]. We explore the use of variance as a new
approach to estimate edge-link bitrates (Section 3.5).

3. METHODOLOGY

This section introduces our methodology: collecting
raw data through an Internet survey, transforming that
data into relevant observations, identifying blocks of
consistent use, classifying blocks into ping-observable
categories, distinguishing between low-bitrate and broad-
band blocks.
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3.1 Data Collection: Surveying the Internet

We would like as much data about Internet addresses
or hosts as possible, but we must balance that desire
against today’s security-conscious Internet culture. Our
data collection builds on prior Internet ICMP surveys
that ping each address of about 1% of the allocated
Internet address space approximately every 11 minutes
for one week or longer [15].

We use a previous selection methodology [15], select-
ing around 24,000 /24 blocks from those that were re-
sponsive in a prior census of all allocated addresses.
We select blocks of addresses rather than individual ad-
dresses so we can study how addresses are allocated and
used. Our choice of /24 blocks limits our ability to ob-
serve very large allocations, but allows the identification
of blocks smaller than 256 addresses (Section 4.1). As
with prior work, half of the selected blocks are kept
consistent across multiple surveys and half are chosen
randomly, enabling longitudinal studies while providing
a subset that is selected with very little potential bias.
We compare two surveys in Section 5.3, showing that
our study of 1% of the address space represents a large
enough fraction of the space to be representative.

Approximately every 11 minutes, each address is probed.
Probes are dispersed over this period and sent in pseu-
dorandom order to avoid correlations due to outages.
Probes taken every 11 minutes limit our ability to detect
very rapid churn of dynamic addresses, however prior
studies of dynamic addresses placed typical use dura-
tions at 75 or 81 minutes [15,22], suggesting we have rea-
sonable precision. Responses can be classified into three
broad categories: positive (echo reply), negative (for ex-
ample, destination unreachable), and non-response. In
this paper we ignore all non-positive responses. Packet
loss can cause measurement inaccuracy, so we use 1-loss
repair to cope with singleton packet losses [15] (1-repair
assumes an absent response between two consistent re-
sponses is loss and interpolates accordingly). Network
outages can also distort our survey. We manually ex-
amine our survey and select a period that has no local
network outages.

All surveys but IT16ws [35] cover more than one
week, allowing us to detect diurnal and weekly cycles.

Of course, using ICMP for probing has significant
limitations. The most serious is that large parts of
the Internet are firewalled and choose not to respond
to our probes. Some form of this bias is inherent in
any study using active probing. Prior studies of a large
university and a random sample of Internet addresses
suggest ICMP probing undercounts hosts by a factor
of 30–50%, and that ICMP is superior to TCP-based
probing [15]. We recognize this limitation as fundamen-
tal to our methodology, but we know of no evidence or
inference to suggest that the firewalled portions of the
Internet use significantly different allocation strategies

Start Date /24 Blocks
Name (# days) probed respond. Use
IT17ws [36] 2007-06-01 (10) 22,367 20,849 all

IT17wrs 2007-06-01 (10) 17,366 16,295 §C
IT17wvs 2007-06-01 (10) 100 100 §5.2
IT17wbs 2007-06-01 (10) 200 200 §5.2

IT16ws [35] 2007-02-16 (6) 22,365 20,900 §5.3
IT30ws [38] 2009-12-23 (14) 22,381 20,227 §5.3
IT31ws [39] 2010-02-08 (14) 22,376 19,909 §5.3
LTUSCs [37] 2007-08-13 (9) 768 299 §5.1
ISC-DS [17] 2007-01 hostnames §5
RIR [29] 2007-06-13 block allocation §4

Table 1: Datasets used in this paper.

than the more open parts of the Internet. In addition,
we confirm the accuracy of our results at USC (Sec-
tion 5.1), and we show similar accuracy for manual in-
spections of blocks drawn at random from the Internet
in Section 5.2. However, we are exploring additional
ways to verify this assumption, and investigation of the
firewalled Internet is future work.

Table 1 shows the datasets we use in our paper. We
use two ICMP surveys taken by USC [15]: IT17ws2 and
IT16ws; IT17ws is the main dataset used in this paper,
while we use IT16ws, IT30ws, IT31ws for validation in
Section 5.3. Not all /24 blocks we picked respond to our
pings, however, most of them did respond at least once
by one IP address. We collected LTUSCs to compare
our inferences with network operators as discussed in
Section 5.1. Finally, we use a domain name survey from
ISC [17] to validate our conclusions (Section 5).

3.2 Representation: Observations of Interest

Since one survey provides more than 5 billion obser-
vations, it is essential to map that raw data into more
meaningful metrics. We call this step data representa-
tion. We define three metrics to characterize address
usage: availability, the fraction of time an address is re-
sponsive; volatility, a normalized representation of how
many consecutive periods the address is responsive; and
median-up, the median duration of all up periods. And
we characterize edge bitrate with two metrics: median-
RTT and stddev-RTT, the median and standard devi-
ation of RTT values of all positive responses.

3.2.1 Metrics characterizing addresses usage

To define availability, volatility and median-up, let
r∗i (a) be the positive (1) or non-positive (0) measure-
ments for address a (for all i ∈ [1 . . Np], where Np is
the number of probes). We analyze these values after
1-loss repair [15]:

ri(a) =

{

1, r∗i (a) = 1 ∨ (r∗i−1(a) = 1 ∧ r∗i+1(a) = 1)
0, otherwise

2 The name IT17ws indicates: Internet Topology, the 17th
full collection, “w” collected at ISI-west in Marina del Rey,
and “s” indicates a survey rather than a full census.
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If each probe is made at time ti, we can define the series
of up durations of an address in a survey as

uj(a) = tej
− tbj

, ∀j ∈ [1 . . Nu] where

ri = 1,∀i ∈ [bj . . ej ]and r(bj)−1 = 0, r(ej)+1 = 0

(each up duration is a consecutive run of positive probes
from bj to ej , inclusive). There are Nu up durations
in total, where Nu < Np. We can now clarify that
availability, volatility, and median-up are given as:

A(a) =
1

Np

Np
∑

1

ri

V (a) = Nu/⌈Np/2⌉

U∗(a) = median(uj , ∀j ∈ [1 . . Nu])

Availability is normalized, the fraction of times a host is
reachable. Volatility is normalized by ⌈Np/2⌉, the max-
imum number of states (alternating value each time).
For example, if Np = 16, and the responses r∗i of address
a are [1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1], then firstly,
we will apply 1-loss repair on r7, because r6 and r8

are both positive responses. After 1-loss repair, the re-
sponses ri are [1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1]. Now
there are three up periods (N − u = 3) of lengths 22,
44, 55 minutes each. A(a) = 11/16 = 0.688, V (a) =
3/(16/2) = 0.375 and U∗(a) = median(22, 44, 55) = 44
minutes. (We also sometimes use un-normalized volatil-
ity, V ∗(a) = Nu, simply the count of up periods.) We
considered normalizing median-up to measurement du-
ration, but chose not to because such normalization
distorts observations about hosts that are not nearly
always present.

While these metrics are not orthogonal, each has a
purpose. Availability shows how effectively addresses
are used. High volatility indicates addresses that are in-
termittently used and often dynamically allocated. Me-
dian uptime suggests how long an address is used.

These estimates assume the ri observations are cor-
rect and represent a single host. Because we know our
data collection omits firewalled hosts (Section 3.1), we
generally ignore addresses that never respond. More
troubling are addresses used by multiple computers at
different times—such addresses actually represent mul-
tiple hosts. The purpose of dynamically allocated ad-
dresses is exactly to share one address with multiple
computers, and we know dynamic assignment is com-
mon (see Section 4). If those hosts are used for different
purposes (servers sometimes, and clients others), usage
inference will be difficult and unreliable. However, we
believe that it is relatively uncommon for a dynamic ad-
dress to transition between client and server use, since
servers usually require stable addresses. (There is some
use of dynamic DNS to place services on changing ad-
dresses. We believe such use is rare for most of the
world but plan to explore this issue in future work.)

3.2.2 Metrics characterizing edge bitrate

While address usage considers all ICMP responses
(positive and negative), round-trip time estimates are
only present in positive responses. To estimate bitrate,
we therefore define R∗(a) be the set of RTT values ex-
tracted from positive responses for address a, that is,
the set of all R∗

i (a) where r∗i (a) = 1,∀i ∈ [1 . . Np]. (So
|R∗(a)| ≤ |r∗(a)|.) From this set we compute standard
deviation of R∗(a): R∗

µ1/2
(a), when we have sufficient

samples (|R∗(a)| ≥ 10).
We use these metrics to identify low-bitrate edge links.

Median-RTT tracks typical response bitrate, while stddev-
RTT estimates variance. In Section 3.5 these metrics
can identify low-bitrate blocks.

3.3 Block Identification

We next use our observations about addresses to eval-
uate block size using a clustering algorithm that consid-
ers the address hierarchy.

We assume blocks are allocated in sizes that are pow-
ers of two, so block identification is the process of find-
ing a prefix where addresses in the block are used con-
sistently. We find that some blocks are not used consis-
tently, and different addresses show very different sta-
bility. In our analysis we will keep dividing these mixed-
use blocks until they are consistent, if necessary devolv-
ing to a single address per block. Another challenge is
that many blocks have gaps where a few addresses are
used differently, or are not responsive, perhaps because
they are unused or firewalled. Our algorithm weighs
choice of larger blocks with some inconsistencies against
smaller but more homogeneous blocks.

We only consider /24 blocks and smaller because cur-
rent data collection method gathers samples of that size.
Exploration of larger blocks is an area of potential fu-
ture work.

3.3.1 Clustering background

In clustering of address responsiveness, we want to
determine blocks that appear to be used consistently.

We therefore use partitional clustering, one of the two
general approaches to clustering in this well developed
field [19]. Partitional clustering places each element
into exactly one cluster; we choose it over the alter-
native, hierarchical clustering, which would place items
into multiple, hierarchically nested clusters. Jain de-
fines partitional clustering as: “Given n patterns in a
d-dimensional metric space, determine a partition of the
patterns into K groups, or clusters, such that the pat-
terns in a cluster are more similar to each other than
to patterns in different clusters” [19]. We build on the
basic approaches of clustering for our method: pattern
matrix, feature normalization, and using an elbow cri-
terion to select the best choice.

Although we follow traditional clustering theory, In-

5



ternet addresses impose a unique restriction. Addresses
are only grouped into blocks that are contiguous, sizes
of powers of two, and aligned at multiples of the size.
For these reasons, we cannot directly use traditional al-
gorithms such as K-means, but instead use components
of existing clustering approaches. The most radical dif-
ference from traditional clustering is that addresses are
only clustered with some number of immediate neigh-
bors, not with arbitrary other addresses. We therefore
find blocks of consecutive addresses by the definition of
our algorithm, however the size of blocks it finds de-
pends on the consistency of how the addresses are used.

A Pattern Matrix defines the features over the space
being clustered. In our case, each address is defined by
its three features (A(a), V (a), U∗(a)), and the space is a
number of disjoint /24 blocks. (We also use (R∗

µ1/2
(a), R∗

σ(a))

later in Section 3.5 to identify block connection types.)
Each /24 block has a 256× 3 pattern matrix x∗

ij , where
j enumerates the three features, and i enumerates each
address in a /24 block. From our 24,000 /24 blocks we
get 24,000 pattern matrices in total.

Although our definitions of A and V are already nor-
malized to the range [0, 1], their distribution may be
skewed, and U∗ is not normalized. We therefore em-
ploy feature normalization to give each features equal
weight. We define the normalized feature vector xij ,
given the mean and standard deviations mj and sj of
each feature j:

xij =
x∗

ij − µj

σj

where µj and σj are the mean and standard devi-
ation. We use Euclidean distance between two com-
ponents of the feature vector to measure dissimilarity
between two elements i and k over their features:

d(i, k) =

√

√

√

√

3
∑

j=1

(xij − xkj)
2

Many clustering algorithms, like K-means, require
the number of clusters be chosen in advance. We can-
not do that because clusters correspond to block size,
a quantity we wish to discover. We also cannot simply
minimize variance, because variance is trivially mini-
mized in the degenerate case where each cluster is a
singleton address.

We therefore employ an elbow criterion, a common
rule of thumb to determine the number of clusters. We
split each cluster into two whenever splitting adds sig-
nificant information, and we stop when we pass the “el-
bow” of the curve and more clusters add little bene-
fit. We measure information by the sum of variance in
each cluster across the population—homogeneous clus-
ters will have low variance; splitting them adds no new
information. Heterogeneous clusters have high variance,
and splitting them into two more self-consistent pieces

reduces the sum of variance, increasing the amount of
information.

We use partitional clustering [19] to determine blocks
that appear to be used consistently based on their re-
sponsiveness. A pattern matrix defines the features of
patterns (i.e., addresses) being clustered: (A(a), V (a),
U∗(a)) across the space of disjoint /24 blocks. (We also
use (R∗

µ1/2
(a), R∗

σ(a)) later in Section 3.5 to identify

block connection types.) Each /24 block has a 256 × 3
pattern matrix x∗

ij , where j enumerates the three fea-
tures, and i enumerates each address in a /24 block.
From our 24,000 /24 blocks we get 24,000 pattern ma-
trices in total. To give each features equal weight, we
employ feature normalization. And we define the nor-
malized pattern matrix as xij = (x∗

ij − µj)/σj , where
µj and σj are the feature’s mean and standard devia-
tion. We then use Euclidean distance to measure dis-
similarity between two patterns. Because Internet ad-
dresses impose a unique restriction that addresses are
only grouped into blocks that are contiguous, sizes of
powers of two, and aligned at multiples of the size, we
cannot directly use traditional algorithms such as K-
means. We therefore employ an elbow criterion, a com-
mon rule of thumb to determine the number of clusters.
We split each cluster into two whenever splitting adds
significant information, and we stop when we pass the
“elbow” of the curve and more clusters add little bene-
fit.

3.3.2 Our algorithm to identify block sizes

Our algorithm follows the basic structure from above:
we define a pattern matrix of addresses by features, nor-
malize the features, then recursively search for clusters
until reaching the elbow. We fill in the details next.

The algorithm is a recursive function, BlockSizeId,
taking an address-feature matrix 256×(A(a), V (a), U∗(a))
and a given prefix length P . Since the blocks in our sur-
vey are disjoint, we iterate over each /24 block in our
survey separately, beginning with P = 24.

BlockSizeId then computes the intra-block unnormal-
ized variance, vsump, for all possible prefix lengths p
(P ≤ p ≤ 32). It then selects the smallest prefix length
pelbow where longer prefixes show minimal change.

np = 2p−P , sp = 232−p, µbj =

∑bsp

i=(b−1)sp+1 xij

sp

vb =

3
∑

j=1

bsp
∑

i=(b−1)sp+1

(xij − µbj)
2
, 1 ≤ b ≤ np

vsump =

np
∑

b=1

vb, P ≤ p ≤ 32

Here np is the number of sub-blocks with prefix length
p, sp is the size of sub-blocks (number of addresses) with
prefix length p. For example, if P = 24 and p = 27, then
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np = 8 and sp = 32. mbj is the mean value of the jth

feature of addresses in the bth sub-block. vb is the intra-
block unnormalized variance of the bth sub-block. In
this example, it would be the intra-block unnormalized
variance of the bth /27 sub-block.

We define minimal change in the elbow algorithm
with an empirically selected constant threshold, ǫ = 2.0.
We select pelbow as the smallest p such that vsumi+1 −
vsumi < ǫ, p ≤ i ≤ 31. If pelbow = P , then no divi-
sion of this block reduces variance significantly and we
terminate our recursive algorithm, declaring P the con-
sistent block size. If this case does not hold, we have
determined there are splits of the block that appear to
be more consistent. We then split the block in half and
recurse, calling BlockSizeId with the next longer prefix
P = p+1 on each half of the data. In principle, a block
could be split repeatedly until it is composed on a sin-
gle address (since singletons will drive variance to zero).
In Section 4.1 we show that, in practice, our threshold
causes the majority of the Internet addresses fall into
larger blocks of consistent use.

3.3.3 A block identification example

To illustrate BlockSizeId we next show analysis of
an example /24 block taken from the Internet. The
top of Figure 1 shows the whole block, while the bot-
tom graphs show how the algorithm identifies four sub-
blocks. As described earlier (Section 1), a human iden-
tifies two bright green areas (or light grey) indicating
high availability: p.65/32 and p.128/27, and two dark
areas showing low availability and volatility, p.160/27
and p.192/26. Hostnames for this block show it is used
for wireless access, and the green areas are servers and
routers, while the dark areas are dynamically assigned
by DHCP.

The first graph in the middle of the figure shows the
first pass of BlockSizeId, with P = 24 covering all of
block p.0/24. In the graph, the y-axis shows variance
for division of the block into each possible power-of-two
smaller size. Here pelbow = 25 and pelbow > P , so we
recurse to P = 25.

The second row of two graphs shows these recur-
sive invocations, p.0/25 on the left and p.128/25 on the
right. For p.0/25 with only one responsive address, the
left graph shows a consistent variance regardless of sub-
division, and pelbow = P = 25, so this prefix is consis-
tent and this recursion terminates. For p.128/25 on the
right, a subdivision reduces variance and so we recurse
again to P = 26.

The algorithm continues until either pelbow = P or
P = 32. In this example, the initial /24 block is divided
into p.65/32, p.128/27, p.160/27, and p.192/26.

3.4 Ping-Observable Block Classification

We can now take remote measurements, convert them

into observations, and use them to identify blocks of
consistent neighboring addresses. We generalize our ob-
servations on addresses into observations about a block
b by taking the median value of each observation:

(A(b), V (b), U∗(b)) = median(A(a), v(a), U∗(a)) ∀a ∈ b

We then classify these blocks into five ping-observable
categories, using (A(b), V (b), U∗(b)). We use four thresh-
olds, αH = 0.95, indicating high availability, αL = 0.10,
indicating low availability, β = 0.0016, for low volatil-
ity (V (b) = β is equal to V ∗(b) = 1, i.e., only up for
once), and γ = 6 hours, corresponding to a relatively
long uptime.

Always-stable: highly available and stable.

(A(b) ≥ αH) ∧ (V (b) ≤ β)

Sometimes-stable: changing more often than always-
stable, but frequently up continuously for long periods
(high U∗(b)).

(U∗(b) ≥ γ) ∧ (A(b) ≥ αL) ∧ (A(b) < αH ∨ V (b) > β)

Intermittent: individual addresses are up for short
periods (low U∗(b)):

(U∗(b) < γ) ∧ (A(b) ≥ αL) ∧ (A(b) < αH ∨ V (b) > β)

Underutilized: although addresses are occasionally
used, they show low A(b) values.

A(b) < αL

Unclassifiable: we decline to classify blocks with
few active responders, currently defined as any block
where fewer than 20% of addresses respond.

We selected these categories to split the majority of
the (A(b), V (b), U∗(b)) space, informed by evaluations
of dozens of blocks (573K addresses in total) backed
by manual probing of hosts and hostnames (for de-
tails about categories, see Appendix C, and about the
(A(b), V (b), U∗(b)) space, Appendix B).

While we have defined these categories based on what
we can observe, the categories are correlated to real-
world address usage. Always-stable is typical of servers,
routers and always-up end hosts. Manual inspection
of randomly chosen reverse hostnames indicates that
more than 80% servers and routers have always-stable
addresses. Sometimes-stable correlates addresses with
hostnames that indicate statically-assigned user com-
puters, businesses (names containing “biz” or “busi-
ness”), some dynamically assigned but always-on con-
nections (cable modems or DSL connections). Intermit-
tent characterizes the majority of cable and DSL hosts
and some active dial-up hosts. We find many address
blocks, often identified as dial-up by hostname, are cat-
egorized as underutilized. (More than 50% of hostnames
that indicate dial-up have A(b) < αL.)
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Appendix C relating these ping-observable categories
to several hostname-inferred usage categories which rep-
resent real-world address usage.

We examine sensitivity to our choices in Section 5.3.
Appendix B shows how these terms divide the space.

3.5 Identifying Low-bitrate Blocks

Block categories correlate with edge link technologies,
but they are not one-to-one—we find that dial-up and
DSL appear as both intermittent and underutilized. To
better understand technology trends, we next show that
variance across repeated RTT measurements can iden-
tify blocks with low-bitrate edge links. We define low-
bitrate as less than 100Kb/s, such as dial-up (56Kb/s)
and GPRS (57.6 Kb/s). We first present a RTT model,
and then apply it.

3.5.1 Background: components of RTT

Round-trip time has several components:

RTT = 2(Dcpu + Dprop + Dt + Dq)

where Dt = S/B and Dq = nDt

The first two components, per-hop processing delay in
the routers (Dcpu ), and distance-based propagation de-
lay (Dprop) are largely independent of the edge link.
Transmission delay (Dt), however, is based on packet
size (S, approximated as constant for this simple model)
and the bottleneck link’s bitrate, B. Queuing delay
(Dq) is a multiple of Dt based on queue length. (All
terms are for the full round-trip and do not require path
symmetry; we assume the prober is well connected.)

Our goal is to distinguish addresses with low-bitrate
edge links from broadband links. In the simplest possi-
ble case, we first assume the targets are one-hop from
our prober and there is no congestion, so Dcpu and
Dprop are negligible and Dq = 0. Here the only differ-
ence is transmission delay, and we can easily distinguish
common edge technologies (Table 2) since Dt dominates
RTT. Here even a simple threshold of R∗(a) would dis-
tinguish slow edge links, since our 64B probe takes 9ms
over a 56kb/s dial-up link but much less than 1ms at
broadband (1Mb/s or faster).

In practice, our prober is distant from most of the
Internet and we encounter interfering traffic. At long
distances, Dcpu and Dprop can dominate RTT, often
approaching 200ms for communications between conti-
nents, completely obscuring the effects of the edge we
wish to observe via Dt.

Queuing delay is another source of noise, but it also
provides the means to see through distance. With queu-
ing delay, Dq = nDt = n(S/B), where B is the bitrate
on the backlogged link. Queuing delay can happen at
any location along the path, either in the backbone or
the edge link. We assume that most queuing occurs at
the edge link, since although backbones are highly mul-

link type transmission delay
packet size 64B 1500B

56Kb/s dial-up 9ms 212ms
1Mb/s ADSL 0.5ms 12ms

1Gb/s Ethernet 0.5us 12us

Table 2: Common link type and the transmis-
sion delay for 64KB and 1500KB packet respec-
tively

tiplexed, they consist of high-bitrate, carefully managed
links, and we expect queues to be short (n is low) and
to clear quickly (since Dt < 1µs at 1Gb/s, even for a
1500B interfering packet). For slow edges, each packet
in the queue ahead of a probe adds tens or hundreds
of milliseconds, since (Dt is 1ms for 1Mb/s ADSL, and
almost 10ms for dial-up, and Dq = nDt. If we assume
slow links are likely at the edges, then queuing (Dq) and
RTT are dominated by the effects of this edge link.

3.5.2 Identifying low-bitrate links from RTT

We next turn to identifying blocks with low-bitrate
edge-links with three steps: isolating the Dq component
of RTT, and generalizing results to blocks, and then
classifying blocks as low-bitrate.

Any given RTT observation is made up of the four
components identified previously. With one observa-
tion we cannot separate those contributions. However,
a week-long survey provides hundreds of observations
for most addresses. If routing is generally stable, all
components of RTT are constant except for queuing de-
lay, while Dq varies depending on how backlogged the
edge link each time it is probed. We therefore look at
variation in RTT to infer Dq, as measured by R∗

σ(a) ,
the standard deviation of the RTT. Routing techniques
such as load balancing or wide geographic distribution
of adjacent addresses [12] are sources of noise; we utilize
a fairly high threshold to mitigate their effects.

Standard deviation is well defined only with multiple
measurements and for positive probe responses; we ig-
nore R∗

σ(a) when |R∗(a)| < 10 as statistically invalid,
and RTTs for negative responses since they may be
generated by a router on either side of the edge link.
There are many addresses that fail to reply positively
to probes: in our survey, only about 41% of addresses
from blocks that have any responses at all respond,
and about one-twentieth of these respond fewer than
10 times. Our analysis of networks shows that most are
composed of large, homogeneous blocks (we show this
data in Section 4.1), so we extend our address-level ob-
servations to blocks by defining a block-level estimate
of RTT variance as the median of all address-level stan-
dard deviations: R∗

µ1/2,σ(b) = median(R∗

σ(a)) ∀a ∈ b.

Low-bitrate block: We therefore identify low-bitrate
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Figure 2: Number of addresses in each block size
and ping-observable categories in IT17ws.

blocks from broadband by large variance:

R∗

µ1/2,σ(b) > δ

We select δ = 300ms, because it is roughly 1.5× the
delay of a full-size packet at dial-up speeds (1500B takes
212ms at 56kb/s), and based on evaluation of dozens
of low-bitrate blocks. We examine the validity of this
classification approach and the threshold in Section 5.

4. APPLICATIONS

We next use the data to explore several questions in
network management: what are typical sizes of consis-
tently used Internet address blocks? How effectively
are they being used? And how prominent is dynamic
addressing?

To help answer these questions we compare our ob-
servations with the allocation data from the regional
Internet registries (RIRs) [1]. This RIR data includes
the time and country to which each address block is
assigned. Although not completely authoritative, this
data is the best public estimate for address delegation
of which we are aware. We collect data from each of
the RIRs, selecting data dated June 13, 2007 to closely
match our survey data.

4.1 Block Sizes

We begin by considering block sizes. Figure 2 and
Table 3 show our analysis of IT17wvs.

This data shows that addresses in the Internet are
most commonly managed in blocks with /24 prefixes.
In fact, even though there are more opportunities for
small blocks, we find more /24 blocks than blocks of
size /25 through /29. Since our data collection only
probes consecutive runs of 256 addresses, this preva-
lence suggests we may need to probe larger consecutive
areas to understand if even larger blocks are common
but not seen in our survey.

There are a very large number of the smallest blocks,
with about as many /29s as /24s, and roughly twice
as many /30s as /29s, and /31s as /30s. These results
may be artifacts of our block discovery algorithm: it is
statistically easier for an address to be consistent with a
few neighbors in a small block than with 128 neighbors
in a /25. We next re-examine the second assumption
underlying our work: are contiguous addresses often
used similarly? If we define consistent usage as just the
largest three block sizes (/24 through /26) that we suc-
cessfully identify, we find 2,529,216 addresses are used
consistently, or 44% of the probed address space.

While clearly defined, this percentage does not accu-
rately present how much of the Internet is consistently
used. Some of the probed address space is unclassifi-
able (with consistent usage but fewer than 20% of ad-
dresses responding), or completely non-responsive. We
cannot say anything about blocks that fail to respond
at all. The status of unclassifiable blocks is uncertain,
but a conservative position is to declare them inconsis-
tent. A more representative evaluation of the Internet
is therefore to compare how much is definitely used con-
sistently (2.5M addresses in large blocks) against that is
effectively inconsistent (the 506,178 addresses in small
blocks) and the possibly inconsistent (the 1,087,472 ad-
dresses in unclassifiable blocks). This computation sug-
gests that a lower bound of 61% of the responsive In-
ternet is used consistently, We believe this supports our
second assumption: the majority of contiguous ad-
dresses are used consistently.

4.2 Address Utilization

Given block sizes, we next evaluate how efficiently ad-
dresses are used in those blocks. Inefficient IPv4 usage
represents an opportunity for improvement, but greater
efficiency comes with greater management cost. Man-
agement cost of IPv4 should be weighed against simpler-
to-manage IPv6.

4.2.1 Quantifying underutilization and possible causes

The underutilized ping-observable category is defined
as a sequence of addresses that are used less than 10% of
the time (Section 3.4). Large blocks of such infrequently
used, public IP addresses generally indicate inefficient
address utilization. (Such low utilization seems to make
sense only in unusual circumstances, such as a DTN
satellite only infrequently in view [9].)

The underutilized column of Table 3 shows that these
blocks are quite common, accounting for 17–23% of
blocks of each size, Although not shown in the table,
the mean availability of addresses in /24 underutilized
blocks is only 3.2% of our 10-day observation (IT17ws).
Manual examination of addresses shows the mean num-
ber of up periods is less than 5 (V ∗(b) = 4.6), typically
for around 1 hour (U∗(b)).
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size sometimes- classifiable unclassifiable blocks addresses
pfx addrs always-stable stable intermittent underutilized (100%) [100%]
/24 256 1,603(18%) 2,517(29%) 2,673(30%) 1,994(23%) 8,787* 3,411 [27%] 12,198 3,122,688
/25 128 323(23%) 523(38%) 295(21%) 237(17%) 1,378* 920 [40%] 2,298 294,144
/26 64 346(21%) 617(38%) 378(23%) 274(17%) 1,615* 787 [33%] 2,402 153,728
/27 32 432(20%) 855(40%) 506(23%) 361(16%) 2,154† 872 [29%] 3,026 96,832
/28 16 759(20%) 1,301(34%) 993(46%) 734(19%) 3,787† 1,139 [23%] 4,926 78,816
/29 8 2,077(21%) 3,190(32%) 2,355(24%) 2,227(23%) 9,849† 0 9,849 78,792
/30 4 3,312(19%) 5,656(33%) 4,679(27%) 3,707(21%) 17,354† 0 17,354 69,416
/31 2 4,195(16%) 9,867(37%) 7,864(30%) 4,566(17%) 26,492† 0 26,492 52,984
/32 1 52,646(30%) 42,847(24%) 43,266(25%) 36,707(21%) 175,466† 0 175,466
entire IT17ws dataset: (1,603,086 addrs. in non-responsive blocks) + (4,122,866 in responsive blocks) 22,367 5,725,952

Table 3: Number of blocks of each size in IT17ws (10 days). Unclassifiable percentages relative to
all blocks; other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers:
non-consistent.

To understand causes of underutilized blocks we ex-
amine the address hostnames of these /24 blocks. We
find 63% of addresses provide hostnames, and many of
these hostnames (34%) include keywords that suggest
how the address is used. For example, dial and dsl sug-
gest edge link technologies, and dynamic or pool sug-
gest dynamic address assignment. (Full details are in
Appendix C.2.) Among the various usage suggested by
hostnames, underutilized blocks are correlated with pool
(68%), ppp (56%) and dial (54%) hostname categories.

We hypothesize that this low utilization is tied to
dial-up technology itself. Dial-up lines are often shared
with voice communication, encouraging short, intermit-
tent use. Yet dial-up POPs must be provisioned to
handle peak loads. A secondary factor may be trends
shifting customers from dial-up to higher speed connec-
tions. Perhaps old dial-up provisioned blocks are simply
in lower demand than previously. Finally, while dial-up
utilization is low, we cannot tell how many users each
dial-up address serves. Perhaps address reuse is high
enough to make these apparently under-provisioned ad-
dresses a bargain relative to supporting the same num-
ber of users with always-on connections. Further study
to understand these trade-offs is future work.

Reversing the question, we can ask which blocks are
well utilized? Still by examining the hostnames, we
found that blocks with keywords static, cable, biz, res,
server, router have very few underutilized addresses.
Static addresses are usually assigned to fixed-location
desktops or businesses, and these computers tend to
maintain Internet connection and occupy their address
for a fairly long time. In addition, static addresses are
often billed at a flat rate per month, while dynamic
addresses may incur a time-metered charge.

4.2.2 Locations and trends of underutilization

Evaluating underutilization by country may highlight
policy differences by regional registries or ISPs. After
merging our data with RIR data, Table 4 shows utiliza-
tion by country. We see that the United Kingdom and
Japan have the largest fraction of underutilized blocks,
40–60%, suggesting potential local policy differences.
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Figure 3: Trend of ping-observable category
change in IT17ws /24 blocks

We expected a large number of underutilized blocks in
the U.S. because of wide deployment of dial-up. While
the U.S. has the largest absolute number of underuti-
lized blocks, its fraction is relatively low.

Table 5 shows that the fraction of underutilized blocks
is fairly consistent across all five RIRs, suggesting dif-
ferences are likely due to country, not RIR policies.

Finally, the lower right graph in Figure 3 shows when
underutilized blocks were allocated. The fraction of
blocks by age seems fairly evenly distributed, except
for peaks in very early allocations (1984 and unknown),
where more than 60% of the blocks assigned are un-
derutilized. We believe these earliest allocations were
made with relatively little assessment of organizational
need, and large initial allocations allow continued use
with minimal concern for efficiency.

4.3 Intermittent and Dynamic IP Addressing

Addresses are intermittently used by statically ad-
dressed hosts that are only sometimes connected to the
network, or by hosts that obtain dynamically assigned
addresses from a pool, typically with DHCP [7].

Dynamic assignment of addresses allows ISPs to mul-
tiplex many users over fewer addresses. Dynamic ad-
dressing also provides ISPs the business opportunity of
offering static addresses as a higher-priced service, and

10



sometimes- classifiable unclassifiable blocks
code country always-stable stable intermittent underutilized (100%) [100%]
US US 673(27%) 1,106(45%)* 231(9.3%) 472(19%) 2,482 1,383 [36%] 3,865
CN China 39(4.1%) 117(12%) 615(65%)* 171(18%) 942 132 [12%] 1,074
JP Japan 383(48%)* 50(6.2%) 18(2.2%) 350(44%)* 801 288 [26%] 1,089
DE Germany 65(10%) 125(20%) 388(61%)* 62(9.7%) 640 56 [8.0%] 696
KR Korea 21(4.6%) 131(29%) 237(52%)* 68(15%) 457 142 [24%] 599
FR France 18(4.1%) 227(52%)* 167(38%) 28(6.4%) 440 58 [12%] 498
GB UK 39(13%) 37(12%) 52(17%) 179(58%)* 307 180 [37%] 487
BR Brazil 7(3.9%) 35(19%) 86(48%)* 52(29%) 180 58 [24%] 238

all others 358(14%) 689(27%) 879(35%) 612(24%) 2,538 1,114 [31%] 3,652
/24 blocks in entire IT17ws dataset: 8,787 3,411 [27%] 12,198

Table 4: The distribution of /24 blocks in ping-observable categories of 10 countries. Bold and
asterisks indicate the categories with more than 40% of blocks. Colors indicate categories and each
country’s dominant category. Countries are sorted by total number of blocks.

sometimes- classifiable unclassifiable blocks
registry always-stable stable intermittent underutilized (100%) [100%]

RIPENCC 408(14%) 798(27%) 1,084(37%)* 661(22%) 2,951 990 [25%] 3,941
APNIC 473(18%) 422(16%) 1,091(40%)* 716(27%) 2,702 795 [23%] 3,497
ARIN 706(27%) 1,185(45%)* 258(9.7%) 512(19%) 2,661 1,481 [36%] 4,142

LACNIC 13(3.2%) 94(23%) 218(53%)* 86(21%) 411 120 [23%] 531
AFRINIC 3(4.9%) 18(30%) 21(34%)* 19(31%) 61 19 [24%] 80
/24 blocks in entire IT17ws dataset: 8,787 3,411 [27%] 12,198

Table 5: The distribution of /24 blocks in ping-observable categories of 5 regional registries. Bold
and asterisks indicate the categories with more than 40% of blocks. Colors indicate categories and
each registry’s dominant category. Registries are sorted by total number of blocks.

potentially makes it more difficult for users to oper-
ate servers. Dynamic addressing has been promoted
to users as a security advantage, on the theory that
a compromised computer is more difficult to contact
if its IP address changes. Dynamic addressing pre-
vents users from running services or accepting unso-
licited inbound connections (for example, for incoming
SIP calls), although applications employ work-arounds
such as STUN [30].

Recent studies [15,34,40] have examined dynamic ad-
dressing for several reasons. First, dynamic addresses
complicate some network services, such as reputation
systems. They also are correlated with spam; some
spam filters penalize dynamic addresses because of the
frequent exploitation of dynamically addressed home
computers by spammers. We next show that our ap-
proach can identify dynamic addressees and suggest the
causes and trends that have been previously invisible.

4.3.1 Quantifying dynamic addressing

We believe that the intermittent and underutilized
ping-observable categories correspond to the short-term
dynamically assigned addresses of interest. Although
we cannot quantify what fraction of these categories ac-
tually use DHCP, our belief is supported by hostname
analysis. Hostnames shows that intermittent blocks
commonly include keywords cable (57%), dynamic (48%)
and dsl (41%), all of which often use short- or moderate-
term dynamic addressing, and underutilized blocks of-
ten include keywords for pool (68%), ppp (56%) and dial
(54%).

Table 3 shows that 40–50% of classifiable blocks (de-
pending on block size) appear to be dynamic. Even
with wide deployment of always-on connectivity, nearly
half of Internet addresses are used for short periods of
time. For intermittent blocks, the mean availability is
just under 30%, with nine use periods over the week
and a mean U∗ around 2.5 hours.

4.3.2 Locations and trends for dynamic addressing

Analysis by country can suggest how political, cul-
tural and policy factors affect addressing. Table 4 shows
that nearly two-thirds of Chinese blocks are intermit-
tent, with Germany, Korean, and Brazil all nearly half
or more. Several factors may contribute to this use.

China has a very large population and is a relative
latecomer to the Internet; from the beginning of com-
mercial deployment in China. ISPs have planned to
make best use of the relatively few IPv4 addresses per
potential user. They have therefore promoted dynamic
use to improve address utilization. An interesting di-
rection for future work would be to evaluate how effec-
tive their utilization is. Unfortunately we only know
address responsiveness, not the number of actual com-
puters users per address needed to answer this question.

Time-metered billing is another reason for intermit-
tent use. Parts of China and Germany employ metered
billing, encouraging intermittent use even with broad-
band. Other potential reasons for intermittent use in-
clude turning off a router to conserve energy, or carrying
over habits learned from dial-up use to broadband, and
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potentially continued use of dial-up connections shared
with voice communication.

Evaluation of usage by registry (Table 5) shows larger
differences in use. We see that intermittent blocks are
very prominent under APNIC and LACNIC (40–53%),
five times more common than for ARIN in North Amer-
ica (9%). We believe these differences stem largely from
policies of the countries the RIRs serve, not the RIRs
themselves. We discussed Chinese practice above; sev-
eral Latin American countries have limited choice in
ISPs, with national providers adopting pricing or poli-
cies that strongly favor dynamic address assignment
even for business use (as confirmed by LACNIC per-
sonnel [23]). We speculate that the large number of
sometimes-stable blocks in ARIN is because of long
DHCP lease times and always-on use by home users, en-
abled by relatively plentiful numbers of IPv4 addresses
per user.

Finally we consider trends in dynamic addressing.
The lower left of Figure 3 shows that intermittent blocks
are more common in new address allocations. This ob-
servation is consistent with a recognition of eventual full
allocation of the IPv4 address space and efforts to man-
age addresses in countries newer to the Internet. The
rise in intermittent blocks matches a corresponding fall
in always-stable blocks (top left, Figure 3). In addition
to growing demand for dynamic addressing, this trend
suggests most new addresses are added to provide ser-
vice for home users, intermittently. While the absolute
numbers of always-stable businesses and servers grows,
its fraction of all addresses is shrinking.

4.4 Understanding Edge Bitrates

To understand causes for utilization, we next look at
block connectivity to the Internet.

In Section 3.5.2 we suggested that RTT variance can
indicate low-bitrate edge links such as dial-up and pre-
3G mobile telephones. Here we apply this analysis to
provide a new tool to understand how edge networks
correlate with underutilization. Future work includes
using this analysis to evaluate deployment trends and
to automatically adapt websites to the user’s network.

To understand the usage of low-bitrate blocks, Fig-
ure 4 shows the availability for blocks broken into low-
and non-low-bitrate groups by RTT stability (as defined
in Section 3.5.2). From the underutilization threshold
of A(b) < 0.1, we see that nearly 80% of low-bitrate
blocks are underutilized, compared to only 20% of non-
low-bitrate blocks. Therefore low-bitrate connections
strongly correlate with sparse use.

To explain this correlation between edges and under-
utilization, we use hostnames and whois to infer oper-
ational usage—roughly, how blocks are managed (dy-
namic or static) and what type of edge-link they are
(dial-up, PPP, DSL, etc.). Such inferences are less than
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Low-bitrate with Non-low-bitrate Classifiable
/24 Blocks in IT17ws.

ideal, but they provide the best available ground truth
about the general Internet. Among the 200 randomly
selected low-bitrate blocks, we successfully inferred the
operational usage of 46 blocks: 41 dial-up, 2 PPP, and
3 DSL blocks. Dial-up and PPP are indicator of low-
bitrate edge connection while DSL is one representative
of broadband connection. While not providing defini-
tive causes of underutilization, this suggests correlation
between low use rates, low bitrates, and dial-up edge
networks.

To support this explanation, we studied the median-
uptime U∗ for both low-bitrate and broadband blocks
shown in Figure 5. We found that up durations in the
vast majority of low-bitrate blocks are quite brief: 85%
of low-bitrate blocks have a U∗(b) < 0.5 hours, com-
pared to only 15% of other blocks. This observation
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suggests that low-bitrate, dial-up blocks are provisioned
for a large number of potential users who do not use the
network concurrently. We hypothesize two reasons for
this, 1) low-bitrate edge connection lead to long delay,
which lead to less satisfying user experience, which lead
to shorter occupation time; 2) the billing of low-bitrate
edge connection are usually usage-based instead of flat-
rate, thus it is natural for the users to disconnect from
network soon after their task is done.

5. VALIDATION

We have now shown data to support our three as-
sumptions: addresses respond to probes (the subject
of prior work [15]), adjacent addresses have similar use
(Section 4.1), and probes suggest use (Section 4.2). These
results have two limitations, however. First, since they
are based on active probing, they are only available for
the portion of the Internet that respond to probes. Ev-
idence suggests that somewhat more than half of the
publicly addressed hosts respond [15]; extension of these
results to the whole Internet is an area of continuing
work. Second, our conclusions are based on data taken
from one survey (IT17ws) from the general Internet.
While not biased, we cannot compare these results to
the true network configuration that is distributed across
thousands of enterprises.

We next present three additional studies to further
validate these assumptions and address the second lim-
itation. First we evaluate data taken from USC, a
smaller and potentially biased dataset, but one where
we have ground truth from the network operations staff.
We then extract small random subsets of the general
Internet and infer the ground truth by manual inspec-
tion using ISC-DS hostname data [17] and the whois
database. Finally, we compare our Internet-wide results
with additional data taken one-half to two years later
to verify that our conclusions do not reflect something
unusual in a single measurement or time.

5.1 Validation within USC

We first compare our methodology against ground
truth obtained directly from the network operators at
USC. This section uses dataset USCs and applies the
same analysis used on our general Internet dataset.

Figure 6 shows block sizes and classifications from
our approach.

Block identification and classification at USC shows a
similar prevalence of /24 blocks (85% of USC addresses
are in /24s, compared to 61% in the Internet). However,
USC shows many fewer intermittent and underutilized
blocks compared to the Internet (only 8% among clas-
sifiable /24 blocks, Figure 2); we expect such variation
across enterprises. We next use this data to evaluate
how our assumptions affect our ability to accurately find
block size, consistency, and usage.

 0

 10000

 20000

 30000

 40000

/24 /25 /26 /27 /28 /29 /30 /31 /32

N
u

m
b

e
r 

o
f 

A
d

d
re

s
s
e

s

Block Prefix Length

Ping-observable Categories

unclassifiable
underutilized

intermittent
sometimes-stable

always-stable

Figure 6: Number of addresses in each block size
and ping-observable categories in USCs.

category: blocks percentage
in routing table 243 100%

false negative 105 43%
not in use 19
not responding 28
few responding 12
single-block multi-usage 46

/25 to /27 9
/28 to /32 37

blocks identified 147 100%
correctly identified 138 57% 94%
false positive 9 6.1%

multi-block single-usage 9

Table 6: Evaluation of accuracy of block identi-
fication USC to ground truth sizes.

5.1.1 Validation of block identification and sizes

To validate our estimation of block sizes, we compare
our analysis with the internal routing table from our
network administrators. This data helps quantify the
accuracy of our approach, measuring the false positive
rate, blocks that we detect but that do not actually
exist, and the false negative rate, blocks that exist but
we fail to detect.

Table 6 summarizes our comparison for all /24 blocks.
(Smaller blocks are not present in our ground-truth
routing table.) We find our approach correctly iden-
tifies 57% of all blocks in ground truth. Although we
find the majority of blocks, we have a significant num-
ber of false negatives, failures to detect blocks. For
this dataset, these false negatives show our approach is
somewhat incomplete. On the other hand, if we evalu-
ate our algorithm by what it says, we see very few false
positives, correctly identifying 94% of all blocks we de-
tect. For this dataset, almost no false positives show
our approach is quite accurate in what it asserts.

To understand accuracy, we looked at when our ap-
proach incorrectly identifies blocks. All nine false pos-
itives are due to multiple blocks with common usage.
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category: blocks percentage
classified 138 100%

unclassifiable (false negative) 52 38%
incorrectly classified (false positive) 3 2.1%

always stable (dynamic) 3
correctly classified (true positive) 83 60%

intermittent (dynamic) 4
sometimes stable (dynamic) 5
intermittent (VPN) 1
underutilized (VPN/PPP) 2
always stable (lab) 2
sometimes stable (lab) 2
always stable (building) 25
sometimes stable (building) 42

Table 7: Evaluation of block classification accu-
racy at USC to ground truth.

We examined each incorrect block and found that USC
administrators had placed two logically different blocks
on adjacent addresses, but these administratively dif-
ferent blocks were used for similar purposes. Since our
evaluation is based on external observations of use, we
believe there is no way any external observer could de-
termine these administrative distinctions.

For false negatives, we found several sources of missed
block identification. We found that many blocks were
either in the routing table but not assigned to loca-
tions or services (19 not in use), or in the routing ta-
ble and assigned, but with no ping responses (28 not
responding), or filled with only a few responders (12
few responding). In each case, our algorithm refuses
to make usage assertions on unused or sparsely used
space. Non- or few-responding blocks may be due to
firewalls, reflecting a limitation of our probing method.
Not-in-use blocks would be impossible for any external
observer to confirm. In principal our algorithm could
identify non-responsive blocks, but it is difficult for ex-
ternal observation to distinguish unused from firewalled
space.

Finally, other false negatives occur due to blocks that
have been administratively assigned as /24s but then
are used for different purposes. Nine of these show large,
consistent patterns, possibly indicating delegation at
the department level that is not visible to university-
wide network administrators. If so, these represent in-
completeness in our ground-truth data. Smaller mixed-
use blocks represent violations of our assertion that ad-
jacent addresses are used consistently.

5.1.2 Validation of block classification and usage

Table 7 shows the accuracy of our approach for the
138 blocks we classify. We declare 38% unclassifiable
(false negatives); here we have discovered the correct
block size but decline to declare a ping-observable cate-
gory because the block is only sparsely responsive. We
correctly classify the majority of blocks, selecting ping-
observable categories that are consistent with the use of

60% of blocks. We mis-identify three blocks (a 2% false
positive rate), all reported as dynamically allocated but
observed as always stable. These blocks perhaps rep-
resent DHCP-assigned addresses with very long lease
times for computers that are always up.

5.1.3 Validation of edge bitrate

We also validated our edge-bitrate assessment. USC
has only two low-bitrate blocks (dial-up blocks running
PPP). Experimental evaluation of LTUSCs successfully
identifies both as low-bitrate, and does not mis-identify
any of the 136 other blocks as low-bitrate. While this
100% accuracy is reassuring, the proximity of prober
and target suggests that our validation with random
Internet blocks (Section 5.2.3) is a more general result.

5.2 Validation in the General Internet

Our main validation results use USC because there
network operations can provide ground truth. We would
like to evaluate how well our approach works on the gen-
eral Internet as well, since commercial use may differ
from USC. We evaluate our ping-observable classifica-
tion results for 100 randomly selected /24 blocks, and
enlarge the sample size for our edge-bitrate validation
in Section 5.2.3.

While we cannot get ground truth from network op-
erations for the general Internet, we can get clues about
block size and usage from hostnames and the whois
database. Hostnames are often assigned in patterns
that suggest common administration and access method.
For example, hostnames in 4.168.174/24 follow the con-
vention dialup-4.168.174.*.dial1.losangeles1.level3.

net. Such consistent naming conventions strongly sug-
gest a common administrator (in this case, Level 3).
Second, the presence of “dial” in the name suggests
dial-up usage and low-bitrate connection. Whois infor-
mation provides an alternative view. For example, host-
names in 70.204.31/24 follow the convention *.sub-70-204-31.

myvzw.com. Names suggest common administration,
but not how it is used. Whois indicates this block is
assigned to Cellco Partnership DBA Verizon Wireless,
suggesting mobile phone usage.

In the 100 /24 blocks, 47 of them are not found in ISC
dataset, 7 of them have too few hostnames. Because we
can not gain the ground truth from these blocks, we
exclude them from our validation. In the 46 /24 blocks
left, 37 of them are identified as /24 by hostnames, 7
of them are potential /24 blocks (hostnames do not fol-
low exactly the same convention but share similar key-
words), 1 block is inferred to be a /25 block, and 1 block
is inferred to be composed of 1 /30 and 2 /32 blocks.
Because most addresses are in /24 blocks, to simplify,
we just give the statistics of the 37 identified by host-
names as /24 blocks and 7 as potential /24 blocks in
Table 8. The /25 is not successfully identified due to
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category: blocks percentage
/24 randomly selected 100 100%

decided (/24 inferred from hostname) 37 37% 100%
correct 25 68%
wrong (false negative) 12 32%

few responding 6
single-block multi-usage 6

undecided 63 63%
no hostname 45
few hostnames 7
potential /24 inferred 7

correct 7
has sub-/24 groupings 4

Table 8: Evaluation of block identification accu-
racy of random Internet blocks.

category: blocks percentage
classified 20 100%

unclassifiable (false negative) 2 10%
incorrectly classified (false positive) 1 5%

sometimes-stable (server) 1(1)
correctly classified (true positive) 17 85%

always-stable (server, biz) 3(2, 1)
sometimes-stable (dsl, static) 3(2, 1)
intermittent (dsl, cable) 4(3, 1)
intermittent (mobile, dynamic, dial) 4(2 ,1, 1)
underutilized (pool-pond, dsl, client) 3(1, 1, 1)

Table 9: Evaluation of block classification accu-
racy of commercial blocks

too few responding, the 1 /30 and 2 /32 are correctly
identified as small server blocks.

5.2.1 Validation of block identification and sizes

We randomly select 100 /24 blocks probed, and com-
pare their clustering results with our best estimates
about the ground truth from manual analysis of host-
name and whois in Table 8 (37 are identified as /24 by
hostnames).

As shown in Table 8, the correctly identified rate
(68%) is even higher than the one in USC validation
(57%). The reason is that address space in the general
Internet is used in a bigger granularity than campus
network, thus, blocks tend to be more consistent.

Although the results seem not bad, most blocks are
/24, we would like looking deeper into see how our
method works on smaller blocks. We randomly se-
lected 20 /24 blocks identified as composition of smaller
blocks. 4 of them have too few hostnames, 12 are actu-
ally /24 blocks but break into smaller blocks due to non-
consistent usages. 2 are partially responding, i.e., only
half of the block is responding, the other half is proba-
bly firewalled. 2 /25s are correctly identified. This fact
suggests that most smaller blocks we found are poten-
tially big blocks broke into pieces due to non-consistent
usage, however, we did find some consistent small blocks
identified by hostnames.

5.2.2 Validation of block classification and usage

To validate the ping-observable classification, we look
at the 25 correctly identified /24 blocks in the previous
100 random /24 blocks. To validate the low-bitrate clas-
sification, because of the low percentage of low-bitrate
blocks, we enlarged our random sample to 200 /24s.

About ping-observable classification, of the 25 cor-
rectly identified /24 blocks, we classified 20 of them;
5 were unclassifiable because of lack of hostname and
whois information. We summarize the validation results
in Table 9. Because we have a loose mapping between
ping-observable category and hostname-inferred usage
category, the correct rate is relatively high (85%). For
example, 2 DSL blocks are sometimes-stable, 3 DSL
blocks are intermittent and 1 DSL block is underuti-
lized. We consider the above three mappings being all
correct. Although one might argue that host firewalls
could lower down the availability metric which leads to
the classification of underutilized blocks. The results
show that most DSL blocks are still distributed among
intermittent and sometimes-stable categories which weaken
the claim of host firewall popularity. Because the map-
ping from hostname-to-ping-inferred category is not one-
to-one, our estimates of “ground truth” here are impre-
cise and we do not claim this result is definitive, but
merely suggestive that our classification works well over
the general Internet.

5.2.3 Validation of edge bitrate

Among the random 100 /24 blocks, only 10 of them
(6 dsl & 1 cable, 1 dial & 2 mobile-phone) can be
used as ground truth to validate our edge-bitrate as-
sessment. Known low-bitrate blocks are rare in the
Internet, thus we want to have more samples to vali-
date our edge-bitrate assessment. Simply adding more
random blocks to the previous 100 blocks and manu-
ally inspecting them is time-consuming. So we use an
automatic way, although a little coarser, to add more
samples. We randomly pick only classifiable /24 blocks
with consistent naming convention in hostnames that
have certain keywords (dsl, cable, dial) indicating edge
access link type. This process can be easily automated
with hostname data only without querying the whois
database. Thus, in addition to the previously identi-
fied 10 blocks, we add 26 random hostname-inferrable
edges blocks, for a total of 36 blocks as ground truth.
Table 10 summarizes our analysis.

For the 36 blocks where we can infer edge types to
evaluate accuracy, we successfully classify all low-bitrate
blocks and all broadband blocks. Our low-bitrate detec-
tion algorithm provides an 0% false-negative rate and
a 0% false-positive rate. There were three confusing-
hostname broadband blocks classified into low-bitrate.
These blocks have dial in their hostnames. However,
when we confirmed with the ISP’s network operations,
these blocks are actually fast 3G/UMTS wireless con-
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category: blocks percentage
hostname-inferrable edges 36 100%

low-bitrate blocks (6 dial, 2 mobile) 8
R∗

µ
1/2

,σ
(b) > δ (true positive) 8

R∗

µ
1/2

,σ
(b) ≤ δ (false negative) 0 0%

broadband (21 dsl, 4 cable, 3 3G) 28
R∗

µ
1/2

,σ
(b) > δ (false positive) 0 0%

R∗

µ
1/2

,σ
(b) ≤ δ (true negative) 28

clear hostname 25
confusing hostname 3

Table 10: Evaluation of low-bitrate block classi-
fication accuracy of commercial blocks.

nections. Their R∗

σ values are 20ms, 41ms and 43ms
respectively, suggesting 1Mb/s links or faster.

5.3 Consistency Across Repeated Surveys

We next wish to understand if the parameters of our
data collection or analysis have a disproportionate effect
on our conclusions about Internet-wide address usage.
To do so, we compare analysis of IT17ws with that of
three new datasets, IT16ws, taken five months earlier;
IT30ws and IT31ws, taken 30 months later. These sur-
veys allow us to consider both adjacent surveys at two
different times, and longer-term trends. Half of the /24
blocks in the survey are consistent across each survey,
and half are randomly chosen in each survey (full de-
tails of selection methodology are elsewhere [15]). This
comparison therefore observes whether network changes
alter observations of the same blocks, and whether dif-
ferent sets of blocks show very different behavior.

Our estimates of the block size distributions are al-
most identical in the four surveys. If we define sp as
the vector of number of blocks of prefix length p, the
correlation coefficient of the vectors for IT17ws against
all other surveys are all above 0.9989. We conclude that
a random sample of 1% of the Internet is large enough
that the block size observations are hardly affected if
half of the sample is changed.

Our work assumes that contiguous addresses are of-
ten used consistently. Following Section 4.1, we con-
sider blocks of size /24 through /26 as consistent, and
size /27 through /32 as inconsistent. These percentages
are quite consistent in adjacent surveys, with a possi-
ble slow downward trend over time: In IT17ws, 44%
of probed Internet, going to 43% in IT16ws, and 38%
later in both IT30ws and IT31ws. Results are similar if
we consider percentage of the responsive Internet, with
60% and 61% in IT16ws and IT17ws, and 57% and 58%
in the later two surveys.

Finally we consider the temporal consistency of our
ping-observable classification across four surveys. We
show that temporarily adjacent surveys show consis-
tent classification results, while more distant surveys
show greater divergence. First we compare each adja-
cent pair of surveys. For IT17ws and IT16ws, initially

we found the correlation of the number of blocks in each
category to be generally good but not great across all
block sizes—it ranged from 0.663 to 0.938 for blocks
smaller than /29, but the correlation for /24 blocks
was only 0.349. Examination showed that around 500
blocks were shifting between always- and sometimes-
stable. This shift occurred because of a change in volatil-
ity and our selection of the always-stable requirement
that V (b) ≤ β and β = 0.0016. For very stable hosts,
a few outages can change V ∗(b) significantly. Exam-
ination showed that IT16ws and IT17ws are of dif-
ferent duration (6 and 10 days). A longer duration
makes it easier to distinguish between sometimes- and
always-stable blocks. When we keep the observation
duration constant by considering only a 6-day subset
of IT17ws, the correlation coefficient for /24 classifi-
cation rises to 0.626. We conclude that most ping-
observable classifications are good, but the separation
between sometimes- and always-stable categories is some-
what sensitive. We plan to investigate the sensitivity in
future work by down-sampling the survey data in time.
We confirm this result by comparing the later surveys,
where full 14-days of IT30ws and IT31ws show the cor-
relations ranging from 0.77338 to 0.987. Thus we con-
clude that results taken near the same time are fairly
consistent.

We next compare surveys taken two years apart: IT17ws
and a 6-day subset of IT31ws (data for IT31ws is in Ap-
pendix A). There are two main differences: first, many
blocks shift from sometimes-stable to always-stable, where
IT31ws has 2,459 always-stable /24 blocks compared to
only 2,001 before (33% vs. 23%). The percentage of
intermittent and underutilized blocks is similar. Sec-
ond, we see a larger number of /32 blocks in the later
survey, up to 198k from 179k, with many of the new
blocks shown as /32 always-stable blocks. This change
may represent additional servers on the Internet. As
described above, we know the always/sometimes-stable
border is sensitive to observation duration, so future
work is required to understand whether these shifts are
meaningful.

6. CONCLUSION

We have shown that active probes can identify how
Internet addresses are used, confirming that contiguous
addresses are often used similarly. We have validated
our claims at USC, against randomly selected Internet
blocks, and over multiple years. Within the constraints
of active probing, our approach provides a new tool to
understand Internet use and trends.
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APPENDIX

A. DETAILSABOUT SURVEYSATDIFFER-

ENT DATES

Due to space limitations, the conference paper [4] pro-
vided details for 10-day analysis of IT17ws in Table 3.
This appendix provides data for the 6-day subset of
IT17ws (Table 11) to compare to the 6 days of IT16ws
(Table 12) and 6 days of IT31ws (Table 13). These re-
sults were discussed in Section 5.3 to establish that the
results are generally consistent across adjacent surveys
of the same length, and to describe the evolution over
surveys years apart.

We also provide all 14 days of IT31ws in Table 14 for
comparison to the 6-day subset.

B. EXAMINING THE (A,V,U*) SPACE

Section 3.4 defined our ping-observable categories based
on the (A, V, U∗) values of blocks. To develop an un-
derstanding of how these metrics help categorize the
Internet, Figure 7 shows the density plot of (A, V, U∗)
space separated in three planes. For each plot, we cre-
ate 100 bins for each of two parameters, then count the
number of /24 blocks identified in IT17ws that fall into
that bin with any value of the third parameter.

All of the planes show blocks with many different
values, providing no definitive clusters. However, there
are concentrations in some areas of some planes, even
though there are a few blocks in between those con-
centrations. The (A, V ) plane shows two concentra-
tions, with a portion of blocks tend to gather around
(A, V, U∗) = (0.975, 0.005, ∗), showing highly available
and highly stable behavior. We classify most of them
into always-stable blocks. Another portion of blocks
tend to gather around (A, V, U∗) = (0.050, 0.005, ∗) which
exhibit highly underutilized behavior. We classify them
into underutilized blocks. The rest blocks are distributed
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blocks addresses
size sometimes- classifiable unclassifiable [100%]

pfx addrs always-stable stable intermittent underutilized (100%)
/24 256 2,001(23%) 2,328(27%) 2,399(28%) 1,832(21%) 8,560* 3,522 [29%] 12,082 3,092,992
/25 128 376(%) 553(%) 292(%) 222(%) 1,443* 965 [40%] 2,408
/26 64 401(%) 602(%) 371(%) 241(%) 1,615* 824 [34%] 2,439
/27 32 550(%) 834(%) 485(%) 319(%) 2,188† 864 [28%] 3,052
/28 16 824(%) 1,258(%) 913(%) 616(%) 3,611† 1,219 [25%] 4,830
/29 8 2,506(%) 3,033(%) 2,279(%) 2,129(%) 9,947† 0 9,947
/30 4 4,052(%) 5,492(%) 4,881(%) 3,657(%) 18,082† 0 18,082
/31 2 5,933(%) 10,431(%) 8,757(%) 4,844(%) 29,965† 0 29,965
/32 1 53,433(30%) 40,266(22%) 47,497(26%) 38,254(21%) 179,450† 0 179,450
entire IT17ws dataset: (1,602,412 addrs. in non-responsive blocks) + (4,123,540 in responsive blocks) 22,367 5,725,952

Table 11: Number of blocks of each size in IT17ws (6 days). Unclassifiable percentages relative to
all blocks; other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers:
non-consistent.

blocks addresses
size sometimes- classifiable unclassifiable [100%]

pfx addrs always-stable stable intermittent underutilized (100%)
/24 256 2,173(26%) 2,007(24%) 2,409(28%) 1,915(23%) 8,504* 3,518 [29%] 12,022 3,077,632
/25 128 424(%) 489(%) 339(%) 215(%) 1,467* 965 [40%] 2,432
/26 64 421(%) 610(%) 409(%) 218(%) 1,658* 770 [32%] 2,428
/27 32 547(%) 808(%) 532(%) 326(%) 2,213† 805 [27%] 3,018
/28 16 899(%) 1,246(%) 962(%) 634(%) 3,741† 1,169 [24%] 4,910
/29 8 2,644(%) 2,909(%) 2,441(%) 2,075(%) 10,069† 0 10,069
/30 4 4,513(%) 5,514(%) 5,031(%) 3,836(%) 18,894† 0 18,894
/31 2 6,278(%) 10,327(%) 8,581(%) 5,092(%) 30,278† 0 30,278
/32 1 54,916(31%) 39,830(22%) 45,879(26%) 39,065(22%) 179,690† 0 179,690
entire IT16ws dataset: (1,609,610 addrs. in non-responsive blocks) + (4,115,830 in responsive blocks) 22,365 5,725,440

Table 12: Number of blocks of each size in IT16ws (6 days). Unclassifiable percentages relative to
all blocks; other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers:
non-consistent.

blocks addresses
size sometimes- classifiable unclassifiable [100%]

pfx addrs always-stable stable intermittent underutilized (100%)
/24 256 2,459(33%) 1,363(18%) 2,023(27%) 1,605(22%) 7,450* 4,045 [35%] 11,495 2,942,720
/25 128 449(%) 257(%) 179(%) 112(%) 997* 1007 [50%] 2,004
/26 64 540(%) 373(%) 234(%) 119(%) 1,266* 813 [39%] 2,079
/27 32 741(%) 606(%) 370(%) 201(%) 1,918† 883 [32%] 2,801
/28 16 1244(%) 919(%) 688(%) 451(%) 3,302† 1,339 [29%] 4,641
/29 8 3,494(%) 2,143(%) 1,776(%) 1,431(%) 8,844† 0 8,844
/30 4 4,640(%) 4,209(%) 3,774(%) 2,771(%) 15,394† 0 15,394
/31 2 5,847(%) 9,104(%) 7,335(%) 3,783(%) 26,069† 0 26,069
/32 1 79,283(40%) 40,136(20%) 44,116(22%) 34,785(18%) 198,320† 0 198,320
entire IT31ws dataset: (1,849,294 addrs. in non-responsive blocks) + (3,878,962 in responsive blocks) 22,376 5,728,256

Table 13: Number of blocks of each size in IT31ws (6 days). Unclassifiable percentages relative to
all blocks; other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers:
non-consistent.
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blocks addresses
size sometimes- classifiable unclassifiable [100%]

pfx addrs always-stable stable intermittent underutilized (100%)
/24 256 1,735(23%) 1,676(22%) 2,300(30%) 1,994(26%) 7,705* 3,606 [32%] 11,311 2,895,616
/25 128 313(%) 340(%) 174(%) 145(%) 972* 942 [49%] 1,914
/26 64 361(%) 487(%) 231(%) 181(%) 1,260* 761 [38%] 2,021
/27 32 514(%) 686(%) 396(%) 289(%) 1,885† 869 [32%] 2,754
/28 16 878(%) 1,236(%) 784(%) 587(%) 3,485† 1,286 [27%] 4,771
/29 8 2,016(%) 3,188(%) 1,897(%) 1,906(%) 9,007† 0 9,007
/30 4 3,020(%) 6,231(%) 4,007(%) 3,377(%) 16,635† 0 16,635
/31 2 1,113(%) 12,806(%) 7,229(%) 4,269(%) 25,417† 0 25,417
/32 1 81,320(38%) 49,609(23%) 42,767(20%) 38,969(18%) 212,665† 0 212,665
entire IT31ws dataset: (1,891,745 addrs. in non-responsive blocks) + (3,836,511 in responsive blocks) 22,376 5,728,256

Table 14: Number of blocks of each size in IT31ws (14 days). Unclassifiable percentages relative
to all blocks; other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers:
non-consistent.

blocks addresses
size sometimes- classifiable unclassifiable [100%]

pfx addrs always-stable stable intermittent underutilized (100%)
/24 256 1,884(25%) 1,522(20%) 2,256(29%) 2,008(26%) 7,670* 3,451 [31%] 11,121 2,846,976
/25 128 358(%) 291(%) 161(%) 166(%) 976* 846 [46%] 1,822
/26 64 435(%) 358(%) 217(%) 211(%) 1,221* 594 [33%] 1,815
/27 32 547(%) 568(%) 346(%) 299(%) 1,760† 729 [29%] 2,489
/28 16 856(%) 988(%) 730(%) 648(%) 3,222† 1,091 [25%] 4,313
/29 8 1,838(%) 2,306(%) 1,834(%) 2,127(%) 8,105† 0 8,105
/30 4 2,731(%) 4,624(%) 3,978(%) 3,478(%) 14,811† 0 14,811
/31 2 2,890(%) 8,915(%) 7,110(%) 4,377(%) 23,292† 0 23,292
/32 1 98,867(44%) 45,016(20%) 41,529(18%) 40,368(18%) 225,780† 0 225,780
entire IT30ws dataset: (1,988,080 addrs. in non-responsive blocks) + (3,741,456 in responsive blocks) 22,381 5,729,536

Table 15: Number of blocks of each size in IT30ws (14 days). Unclassifiable percentages relative
to all blocks; other percentages relative to classifiable blocks. Asterisks: consistent blocks, daggers:
non-consistent.
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Figure 7: Density plots of /24 blocks in IT17ws across each of the A/V, U/V, A/U planes.
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between (A, V, U∗) = (0.100 − 0.400, 0.075 − 0.022, ∗),
with no obvious boundary to differentiate sometimes-
stable and intermittent blocks on (A, V ) plane. Instead,
we inspect the (A,M) and (M,V ) planes to split these
apart. Even there, we do not see a sharp boundary.
However, we place a line at U = 0.026 (U∗ = 6 hours)
to classify sometimes-stable (U∗ ≥ 6 hours) and inter-
mittent (U∗ ≤ 6 hours) blocks.

C. TRAININGANDHOSTNAME-INFERRED

USAGE CATEGORIZATION

Our methodology takes data about use of public ad-
dresses and produces five ping-observable categories.
We would like to relate those categories to terms that
are more meaningful to network operators, and to find
what root causes correspond to and potentially cause
blocks to be intermittent or underutilized.

Determining the operational characteristics of a net-
work is quite challenging, however. In some cases we are
able to discuss network policy with the operations staff
to confirm our assumptions; we will use this approach
to validate our conclusions against a large campus net-
work in Section 5. However, such observations may be
biased by the policies of a single institution. We would
like to also draw data from the Internet at large, but
it is infeasible to contact operations for large parts of
the network. While tools such as nmap [24] can extract
significant information from a network through sophis-
ticated active probing, their use is easy confused with
hostile network activity by many network operations.3

Hostnames are a source of data that provides some
information about how public computers are used—
many hostnames contain keywords such as “www”, “dy-
namic”, or “dsl”. Wide hostnames collection is also fea-
sible: many Internet hosts suggest reverse DNS lookup [26],
reverse lookup occurs commonly as part of normal op-
eration and so is unlikely to be seen as hostile. The
Internet Systems Consortium has collected full tables
of reverse DNS regularly since 1994 [17] and makes it
available for a nominal fee.

We next describe how we map hostnames to 15 hostname-
inferred usage categories, and how this data corresponds
to our five ping-observable categories.

While one might study the Internet using hostname
data alone, without ping data, we believe the informa-
tion complements each other. About half addresses that
are used lack reverse hostnames, and about 49% of host-
names lack meaningful keywords, and reverse names
may not represent the computer’s true use (for hosts
with multiple names, where often the reverse name is
automatically assigned) so we think hostnames alone
are not sufficient.

3 Widescale nmap use would place us in contact with addi-
tional operations staff, but perhaps not on ideal terms.

ping survey 4,445,696 (100%)

ping responders 1,675,121 (37.7%)

ping survey w/ hostnames

2,197,373 (49.4%)

ping responders w/ hostnames

1,049,842 (23.6%)

ping responders

w/ hostnames

w/ keywords

573,494 (12.9%)

Figure 8: Our Investigation Targets: IP ad-
dresses ever responded in IT17wrs and have
meaningful hostnames (with keywords). It is the
middle part with 573,494 addresses in this fig-
ure.

C.1 Hostname-inferred Usage Categories

Although hostnames are not perfect, we believe they
provide a useful dataset to compare against our ping-
observable categories. We use ISC survey 17 [17], taken
slightly before our primary ping survey [36].

Figure 8 shows the overlap of these datasets. shows
our investigation targets. We begin with the 4.4M IP
addresses probed the ping survey Nearly half of these
(2.2M) have hostnames in the ISC reverse DNS survey.
Of the 1.6M ping addresses that respond, we consider
the 1.0M addresses that also have hostnames. We then
focus on the 573,494 of those that have identifiable key-
words in their hostname (12.9% of all addresses in the
ping survey).

We follow recommendations that were proposed as
standard naming conventions for Internet hosts [33] and
that occur in 2000 or more hosts in our dataset. Al-
though these were neither approved by the IETF, nor
would the be mandatory even if approved, these terms
do appear in about one-quarter of reverse hostnames.
From their recommendations we define 15 hostname-
inferred usage categories as shown in Table 16.

Figure 9 shows the count of hostnames in each cat-
egory. The sum exceeds 573k because these categories
partially overlap, and a single hostname may be in mul-
tiple categories. For example, some providers label DSL
addresses with both DSL and static or dynamic. We see
that access links keywords (DSL, dial, etc.) are very
common, occurring in 51% of hostnames, and alloca-
tion types (static, dynamic, etc.) occur in about 22%
of hostnames in ping survey w/ hostnames.

To provide some understanding the number of host-
names with multiple keywords, we subdivide each cate-
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group category keywords count
allocation static static 28,137

dynamic dynamic, dyn 105,882
dhcp dhcp 14,290
pool pool, pond 66,009
ppp ppp 44,729

access link dial dial, modem 80,090
dsl dsl 208,682
cable cable 29,761
wireless wireless, wifi 910
ded ded, dedicated 733

consumer biz business, biz 12,999
res res, resident 25,847
client client 9,994

server server server, srv, svr, mx, mail,
smtp, www, ns, ftp

12,568

router router, rtr, rt, gateway, gw 2,850

Table 16: Categories of hostname-derived usage.

gory by those that also contain static, dynamic, or any
other additional keyword. Several groups types often
have an additional indication of allocation type: while
10% of dsl are labeled dynamic (1.2% static), 50% of
biz are labeled static. These secondary attributes re-
veal some technology trends: the ratio of dial also with
static or dynamic types is around 1:17, while for DSL
it is 1:8 suggesting increased use of static addresses in
always-on DSL lines. For cable the ratio is 1:1, but
the fraction of cables with an additional type is small
enough that drawing conclusions may be risky.

C.2 Relating Hostname-Inferred to
Ping-Observable Categories

Our goal in evaluating hostnames is to use them to
understand and train our ping-observable categories.
We next compare the two to see when of our observa-
tions (A, V, U∗) are correlated with hostname-inferred
usage categories.

Figures 10 shows cumulative distribution functions of
each observation against each hostname-inferred type.
This data will prove essential to understand the root

network causes of address underutilization and loca-
tions of dynamic addresses; we therefore defer a detailed
discussion of this data to Sections [ and 4.2][4.3].

Taken together, though, these graphs support the
third assumption of our paper, that patterns of probe
responses can suggest address usage. This asser-
tion is supported because hostname-inferred categories
(our approximation of usage) show fairly distinct dis-
tributions, particularly in availability and median-up
(Figure 10). As a specific example, The left graph of
Figure 10 shows that availability of more than 50% dial
addresses is smaller than 0.1, while the A of more than
80% server addresses is larger than 0.95.

While the bulk of dial and server addresses are quite
different, a few dial addresses have with reasonably large
A (5.4% have A > 0.5), and a moderate number of
servers have poor availability (about 10% have A <
0.15). We conclude that, while ping-observable metrics
are reasonable predictors of usage, they are not exact,
and any estimates will have fairly large error bounds.
Perhaps this result is consistent with previous observa-
tions about the great variability of the Internet [11].

Finally, the observations in these CDFs help define
our thresholds for ping-observable classes (Section 3.4).
The sharp knee at A = 0.1 in the left graph Figure 10
suggests αL = 0.1. Based on V in the middle graph,
we select β = 0.0016 to separate most servers and sta-
ble uses from less stable. The sharp knee at around
U∗ = 6 hours in the right graph suggests this value for
γ, This cutoff helps separate addresses which are not
always-stable and not underutilized to two categories:
sometimes-stable and intermittent.

We observe one anomaly in U∗: the step in the right
graph of Figure 10 around hour 120 is an artifact caused
by hosts that have high A (nearly 1.0), but a brief out-
age. This outage gives them V ∗ = 2, and U∗ of half our
probing duration.

Based on these thresholds, Figure 11 and Table 17
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ping-observable
category

hostname-inferred usage
category

always-stable router, server, (static), ded,
(biz), (dhcp), (res)

sometimes-stable res, static, biz, dhcp, (server),
ded, (client), (cable), (dsl),
(router), (ppp)

intermittent cable, dynamic, dsl, (wireless),
(dial), (ppp), (dhcp)

underutilized pool, wireless, ppp, dial, client,
(dynamic), (ded), (dsl)

Table 17: The mapping from the 15 hostname-
inferred usage categories to 4 ping-observable
categories. hostname-inferred usage category
without (parentheses) is dominate.

map the 15 hostname-inferred usage categories to the
ping-observable categories (Section 3.4).
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