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ABSTRACT

Although the Internet is widely used today, there are few
sound estimates of network demographics. Decentralized
network management means questions about Internet use
cannot be answered by a central authority, and firewalls and
sensitivity to probing means that active measurements must
be done carefully and validated against known data. Build-
ing on frequent ICMP probing of 1% of the Internet address
space, we develop a clustering algorithm to estimate how In-
ternet addresses are used. We show that adjacent addresses
often have similar characteristics and are used for similar
purposes (61% of addresses we probe are consistent blocks
of 64 neighbors or more). We then apply this block-level
clustering to provide data to explore several open questions
in how networks are managed. First, the nearing full allo-
cation of IPv4 addresses makes it increasingly important to
estimate the costs of better management of the IPv4 space
as a component of an IPv6 transition. We provide about
how effectively network addresses blocks appear to be used,
finding that a significant number of blocks are only lightly
used (about one-fifth of /24 blocks have most addresses in
use less than 10% of the time). Second, we provide new
measurements about dynamically managed address space,
showing nearly 40% of /24 blocks appear to be dynamically
allocated, and dynamic addressing is most widely used in
countries more recently to the Internet (more than 80% in
China, while less then 30% in the U.S.).

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Network topology; C.2.3
[Computer-Communication Networks]: Network
Operations—Network management

General Terms: Measurement

Keywords: Internet address allocation, survey, pat-

tern analysis, clustering, classification, availability, volatil-

ity

1. INTRODUCTION

Previous Internet topology studies focused on AS-
and router-level topologies [3,5,7,10,21, 25,26]. While
this work explored the core of the network, it provides
little insight into the edge of the Internet and the use
of the IPv4 address space. The transition to classless
routing [9] in the mid-1990s has made the edge opaque.
Only recently have researchers begun to study edge-host
behavior using server logs [32], web search engines on
textual addresses [28], and ICMP probing [12].

Assumptions: In this paper we begin to explore the
potential of clustering of active probes to infer network
address usage. Our work makes three assumptions:

1. many active addresses will respond to probes,

2. contiguous addresses are often used similarly, and

3. patterns of probe responses suggest address usage.

While there are cases where these assumptions do
not hold, we believe they apply to a large fraction of
the Internet and so active probing can provide insight
into address usage. Recent work has shown that ac-
tive probes detect the majority of addresses in use, con-
firmed against large university and a random sample of
the general Internet [12], supporting the first assump-
tion.

We explore the rest assumptions in this paper. Our
assumption about contiguous use follows from the tra-
ditional administrative practice of assigning blocks of
consecutive addresses to minimize routing table sizes
While there is no requirement that adjacent addresses
be used for the same purpose, we will show that they
often used similarly (Section 5.1).

Finally, we assume that repeated active probing with
ICMP provides some information about how addresses
are used. While ICMP provides only limited infor-
mation (is the addresses responsive or not), repeated
probing separates addresses in constant use from those
used intermittently. We will show that these observa-
tions correlate with servers or always-on-desktop com-
puters and dynamically assigned address block (Sec-
tions 4 and 6.1).

Figure 1 shows an example of what probing reveals,
given one block of 256 addresses with prefix pl where
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Figure 1: A /24 block (prefix is anonymized to pl)
where probing suggests seven different regions. Ad-
dresses are on a Hilbert curve.

these assumptions apply’. Different shades indicate dif-
ferent ping response patterns by each address (green
is availability and red is volatility, metrics we define
later in Section 3.2). This block clearly shows two
different patterns for seven address blocks. Manual
examination shows these regions correspond with web
servers and dial-up addresses. Hostnames suggest the
lower left quarter of the block (p1.0/26) bottom right
eighth (p1.64/27), and middle left (p1.144/28) are pop-
ulated mostly with web servers; except for a few un-
occupied addresses, these regions are almost always up
and so show as light colors. Hostnames in the dark re-
gions, upper-right (p1.192/26), upper-left (p1.160/27),
and middle-left (p1.96/27) suggest use for dial-up, and
probing shows they are only used infrequently and in-
termittently.

Approach: From these assumptions we develop new
algorithms to identify blocks of addresses with consis-
tent usage (Section 3). We start with Internet survey
data, where each address in around 24,000 /24 address

'Recall that IPv4 addresses are 32-bit numbers, usually
written in the form a.b.c.d, where each component is an
8-bit portion of the whole address. Addresses are organized
in blocks (sometimes called subnetworks) that are sized to
powers of two. Blocks have a common prefiz, the lead-
ing p bits of the address, written a.b.c.d/p. For example,
128.125.7.0/24 indicates a /24 block with 256 addresses in
it of the form 128.125.7.2z. We sometimes talk about blocks
as p.0/24, where p represents the anonymized prefix.

blocks is pinged every 11 minutes for one week [12].
From this dataset we derive several metrics about how
each address is used. We then use these statistics to au-
tomatically identify blocks of consistent responsiveness.
Ping responsiveness does not directly identify address
use, so to get a better understanding of use we correlate
our metrics with uses inferred from hostnames assigned
to those addresses (Section 4).

Validation and Applications: Before applying these
algorithms, we evaluate how often our assumptions hold.
Our first question is therefore are adjacent addresses
used consistently and can we discover them reasonably
accurately? Before classless IP addressing [9] allocation
strategies were aligned with externally visible address
allocation, but since then there has been no way to eas-
ily evaluate how addresses are used. We explore these
basic questions in Sections 5.1 and 6.1.1.

A first application of this approach is to understand
how addresses are managed, beginning with what block
sizes are typical(Section 5.1). We find that 2,529,216
addresses, or 61% of the probed address space, show
consistent responses in blocks of 64 to 256 adjacent ad-
dresses (/26 to /24 blocks). And we observe that most
addresses (around 55%) in the Internet are in /24 or
bigger blocks.

A second application is to understand how effectively
addresses are used (Section 5.2). We find that a sig-
nificant number of blocks are only lightly used (about
one-fifth of /24s show less than 10% utilization). These
questions are of growing importance as the IPv4 ad-
dress space nears full allocation; they help estimate the
costs of improving IPv4 efficiency as compared to IPv6
transition.

Finally, we detect and quantify the use of dynamic
address assignment (Section 5.3). Dynamic addresses
are important for several reasons. Since they often
represent poorly secured home computers, dynamic ad-
dresses factor in to some spam detection algorithms [32].
Identifying dynamic addresses is important to estimate
the number of computers that do connect to the In-
ternet [12]. We observe that nearly 40% of /24 blocks
appear to be dynamically allocated to computers, and
dynamic addressing is much higher in countries most
recent to the Internet (more than 80% in China, while
less then 30% in the U.S.).

The contribution of this paper is therefore to develop
new approaches to classify Internet address usage and to
apply those approaches to answer important questions
in network management. As with many prior studies of
the Internet, our approach is based on limited informa-
tion and we do not claim perfect accuracy. However, we
suggest the approach is promising and our preliminary
results add important observations to what is currently
known.



2. RELATED WORK

A lot of work has been done to understand the In-
ternet, most exploring on Internet topology [3,5,7, 10,
21,25,26]. Recent work has begun exploring edge host
behavior [12,28,32]. Our work builds upon this prior
work and specific work listed below.

Are contiguous addresses consistent and what are the
typical block sizes? Although addresses are usually as-
signed as blocks and represented in prefixes by classful
addressing [22] and classless addressing [9], there is no
guarantee that contiguous addresses in the same block
will be used in the same way. Huston’s report has an-
alyzed the common prefix lengths in BGP routing ta-
ble [13]. But it cannot look at usage at granularities
smaller than BGP prefixes. Our approach is able to
look at these smaller block sizes through active prob-
ing.

Are allocated addresses being efficiently utilized? Sev-
eral researchers have studied rates of IPv4 address con-
sumption, predicting TANA will exhaust its allocation
pool sometime between 2009 and 2016 [11,13]. How-
ever, full allocation does not necessarily imply full use.
Prior researchers have infer the address utilization by
detecting allocated but not advertised prefixes in the
BGP routing table [19]. As with allocation, what is
routed may differ from what is actively used. Our work
tries to track active use; and our study of individual ad-
dresses can reveal changes that happen to blocks inside
an organization (smaller than are typically routed).

How many addresses are dynamically assigned? Xie
et al. have begun to explore this question with a goal
of identifying dynamic blocks to assist spam preven-
tion [32]. Their work is based on passive collection of
Hotmail web server logs, while our method uses a com-
pletely different approach by active probing and so can
extend and corroborate their findings. Researchers at
USC provide another perspective based on active prob-
ing with ICMP [12]. We make use of their datasets,
while adding completely new analysis.

Active probing of the topology has long been car-
ried out by CAIDA [2]. They traceroute to one address
for each routed /24 address block. Our datasets dif-
fer, probing only a fraction of /24s, but probing all ad-
dresses in these blocks much more frequently. Probing
/24s allows us to take the advantage of locality to study
address usage. Because contiguous addresses are usu-
ally administrated together and used in the same way,
analyzing the whole block instead of sampling one ad-
dress from each block can provide information not pre-
viously available. In addition, our frequent sampling
shows temporal changes useful for identifying dynamic
address allocation.

3. METHODOLOGY

This section introduces our methodology: collecting

raw data through an Internet survey, transforming that
data into relevant observations, identifying blocks of
consistent use, classifying blocks into ping-observable
categories, in Section 4 relating these ping-observable
categories to several hostname-inferred usage categories.

3.1 Data Collection: Surveying the Internet

To understand the Internet, we begin by collecting
data about it. While we desire as much information
about each Internet address or host as possible, we must
balance that desire against today’s security-conscious
Internet culture. We chose to build on prior Internet
ICMP surveys that ping each address of about 1% of the
allocated Internet address space approximately every 11
minutes for one week or longer [12].

We believe 1% of the allocated address space repre-
sents a large enough fraction of the space to be repre-
sentative. We follow the selection methodology outlined
previously [12], selecting around 24,000 /24 blocks from
blocks that were responsive in a prior census of all al-
located addresses. We select blocks of addresses rather
than individual addresses so we can study how addresses
are allocated and used. Our choice of /24 blocks limits
our ability to observe very large allocations, but allows
the identification of blocks smaller than 256 addresses
(Section 5.1). As with prior work, a half the selected
blocks are kept consistent across multiple surveys and
half are chosen randomly, enabling longitudinal studies
while providing an subset that is selected with very little
potential bias. We compare two surveys in Section 6.2;

Probes taken every 11 minutes limit our ability to
detect very rapid churn of dynamic addresses, however
prior studies of dynamic addresses placed typical use
durations at 75 or 81 minutes [12,17], suggesting we
have reasonable precision. We use 1-loss repair to cope
with singleton packet losses [12].

Observing the same addresses for at least a week al-
lows us to detect several daily cycles, both for weekends
and days of the work week. In the future we would like
to expand to two-week surveys to provide some dupli-
cation of the weekly cycle.

Of course, use of ICMP for probing has significant
limitations. The most serious is that large parts of
the Internet are firewalled and choose not to respond
to our probes. Some form of this bias is inherent in
any study using active probing. Prior studies of a large
university and a random sample of Internet addresses
suggest ICMP probing undercounts hosts by a factor
of 30-50%, and that ICMP is superior to TCP-based
probing [12]. We recognize this limitation as fundamen-
tal to our methodology, but we know of no evidence or
inference to suggest that the firewalled portions of the
Internet use significantly different allocation strategies
than the more open parts of the Internet. However, we
are exploring additional ways to verify this assumption.



Start Date

Name (# days)
TT17ws [30] 2007-06-01 (1

IT17wrs 2007-06-01 (1
IT16ws [29] 2007-02-16 (6
VUSC s [31] 2007-08-13 (9
ISC-DS [15] 2007-01
RIR [23]  2007-06-13

/24 Blocks
probed respond. | Use
0)| 22,367 20,849 | all
0)| 17,366 16,295 | §4
)
)

22,365 20,900 | §6.2
768 299 | §6.1
hostnames 84

block allocation | §5

Table 1: Datasets used in this paper.

Table 1 shows the datasets we use in our paper. We
use two ICMP surveys taken by USC [12]: IT17ws and
IT16ws; IT17ws is the main dataset used in this paper,
while we use IT16ws for validation in Section 6.2. We
collected VUSC' s at our enterprise in order to compare
our inferences with network operators as discussed in
Section 6.1. Finally, we use a domain name survey from
ISC [15] for training in Section 4, comparing that with
IT17wrs, an overlapping subset of IT17ws.

3.2 Data Representation: Observations of In-
terest

Since one survey provides more than 5 billion obser-
vations, it is essential to map that raw data into more
meaningful metrics that characterize address usage. We
call this step data representation, and we define three
metrics: availability, the fraction of time an address
is responsive; wvolatility, a normalized representation of
how many consecutive periods the address is responsive;
and median-up, the median duration of all up periods.

To define these more formally, let

ri(a) =1or0,Yi € [1, Np]

be the positive or negative response of the it of the N,
probes to address a after 1-loss repair [12]. If each probe
is made at time ¢;, we can define the N,, up durations
(N, < N,) of a survey as
uj(a) = te; —tp,;, where

r, = 1,Vz € [bj,@j]

and rpy-1 = 0,7, )41 =0

Vj € [1,N,]
(each up duration is a consecutive run of positive probes

from b; to e;, inclusive). We can now clarify that avail-
ability, volatility, and median-up are given as:

Np

A(a) = Z\Z(Zm)
Via) = Nu/(Np/2)
U*(a) = median(u,;, ¥j € [1, N,])

Availability is normalized; it is the fraction of times
a host is reachable. Volatility is normalized by N,/2,
the maximum number of states (alternating value each

time). For example, if N, = 16, and the responses 7; of
address a are [1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1], then
there are three up periods (N — u = 3) of lengths 22,
44, 55 minutes each. A(a) = 11/16 = 0.688, V(a) =
3/(16/2) = 0.375 and U*(a) = median(22,44,55) = 44
minutes. (We also sometimes use un-normalized volatil-
ity, V*(a) = N, simply the count of up periods.) We
considered normalizing median-up to measurement du-
ration, but chose not to because such normalization
distorts observations about hosts that are not nearly
always present. Finally, we often omit the (a) when the
subject of the metric is clear.

While these metrics are not completely orthogonal,
each has a purpose. Availability shows how effectively
addresses are used. High volatility indicates addresses
that are only intermittently used and often dynamically
allocated. Median uptime suggests how long an address
is used.

These estimates assume the r; observations are cor-
rect and represent a single host. Because we know our
data collection omits firewalled hosts (Section 3.1), we
generally ignore addresses that do not ever respond.
More troubling are addresses that are used by multi-
ple computers at different times—such addresses actu-
ally represent multiple hosts. The purpose of dynam-
ically allocated addresses is exactly to share one ad-
dress with multiple computers, and we know dynamic
assignment is common (see Section 5). If those hosts
are used for different purposes (servers sometimes, and
clients others), usage inference will be difficult and un-
reliable. However, we believe that it is relatively un-
common for a dynamic address to transition between
client and server use, since servers usually require sta-
ble addresses. (There is some use of dynamic DNS to
place services on changing addresses. We believe such
use is rare for most of the world but plan to explore this
issue in future work.)

3.3 Block Identification

We next use our observations about addresses to eval-
uate block size. To do this identification we develop a
new clustering algorithm.

We assume blocks are allocated in sizes that are pow-
ers of two, so block identification is the process of find-
ing a prefix where addresses in the block are used con-
sistently. We find that some blocks are not used consis-
tently, and different addresses show very different sta-
bility. In our analysis we will keep dividing these mized-
use blocks until they are consistent, if necessary devolv-
ing to a single address per block. Another challenge is
that many blocks have gaps where a few addresses are
used differently, or are not responsive, perhaps because
they are unused or firewalled. Our algorithm weighs
choice of larger blocks with some inconsistencies against
smaller but more homogeneous blocks.



We only consider blocks of sizes /24 or smaller be-
cause current data collection method does not guar-
antee blocks larger than /24s. (Exploration of larger
blocks is an area of potential future work.)

3.3.1 Clustering background

Our goal with clustering of address responsiveness is
to determine whatever blocks that appear to be used
consistently. We therefore use partitional clustering,
one of the two general approaches to clustering in this
well developed field [16]. Partitional clustering places
each element into exactly one cluster; we choose it over
the alternative, hierarchical clustering, which would place
items into multiple, hierarchically nested clusters.

Jain describes partional clustering as: “Given n pat-
terns in a d-dimensional metric space, determine a par-
tition of the patterns into K groups, or clusters, such
that the patterns in a cluster are more similar to each
other than to patterns in different clusters” [16]. We

build on the basic approaches of clustering for our method:

a pattern matriz, feature normalization, and use of an
elbow criterion to select the best choice.

Although we follow traditional clustering theory, In-
ternet addresses impose a unique restriction. Addresses
are only grouped into blocks that are contiguous, sizes
of powers of two, and aligned at multiples of the size.
For these reasons, we cannot directly use traditional al-
gorithms such as K-means, but instead use components
of existing clustering approaches. The most radical dif-
ference from traditional clustering is that addresses are
only clustered with some number of immediate neigh-
bors, not with arbitrary other addresses. We therefore
find blocks of consecutive addresses by the definition of
our algorithm, however the size of blocks it finds de-
pends on the consistency of how the addresses are used.

A Pattern Matriz defines the features over the space
being clustered. In our case, each address is defined by
its three features (A, V,U*), and the space is a number
of disjoint /24 blocks. Each /24 block has a 256 x 3 pat-
tern matrix x7;, where j enumerates the three features,
and ¢ enumerates each address in a /24 block. From
our 24,000 /24 blocks we get 24,000 pattern matrices in
total.

Although our definitions of A and V" are already nor-
malized to the range [0,1], their distribution may be
skewed, and U* is not normalized. We therefore em-
ploy feature normalization to give each features equal
weight. We define the normalized feature vector x;;,
given the mean and standard deviations m; and s; of
each feature j:

Tij = My
«Tij =
g

where p; and o; are the mean and standard devi-
ation. We use Euclidean distance between two com-
ponents of the feature vector to measure dissimilarity

between two elements ¢ and k over their features:

Many clustering algorithms, like K-means, require
the number of clusters be chosen in advance. We can-
not do that because clusters correspond to block size,
a quantity we wish to discover. We also cannot simply
minimize variance, because variance is trivially mini-
mized in the degenerate case where each cluster is a
singleton address.

We therefore employ an elbow criterion, a common
rule of thumb to determine the number of clusters. We
split each cluster into two whenever splitting adds sig-
nificant information, and we stop when we pass the “el-
bow” of the curve and more clusters add little bene-
fit. We measure information by the sum of variance in
each cluster across the population—homogeneous clus-
ters will have low variance; splitting them adds no new
information. Heterogeneous clusters have high variance,
and splitting them into two more self-consistent pieces
reduces the sum of variance, increasing the amount of
information.

3.3.2  Our Algorithm to Identify Block Sizes

Our algorithm follows the basic structure we outline
above: we define a pattern matrix of addresses by fea-
tures, normalize the features, then recursively search for
clusters until reaching the elbow. We fill in the details
next.

The algorithm is a recursive function, BlockSizeld,
taking an address-feature matrix 256 x (A, V,U*) and
a given prefix length P. Since the blocks in our survey
are disjoint, we iterate over each /24 block in our survey
separately, beginning with P = 24.

BlockSizeld then computes the sum of intra-block
variance for all possible prefix lengths p(P < p < 32)
and selects smallest prefix length pejpow, Where longer
prefixes show minimal change. We define vsum,, as sum
of intra-block variance of sub-blocks with prefix length

p:

bsp B
Zi:(bq)spﬂ Lij

Sp

_ 9p—P _ 932— _
np_2p 751)_2 paubj_

bsp

DS

j=li=(b—1)sp+1

(@i — ,Ufbj)Z, 1<b<n,

np
vsUMm) = va,P <p<32
b=1

where n, is the number of sub-blocks with prefix
length p, s, is the size of sub-blocks (number of ad-
dresses) with prefix length p. For example, if P = 24
and p = 27, then n, = 8 and s, = 32. my; is the mean



value of the ' feature of addresses in the b*" sub-block.
vp is the intra-block variance of the b*® sub-block. In
this example, it would be the intra-block variance of the
bth /27 sub-block.

We define minimal change in the elbow algorithm
with an empirically selected constant threshold, e. We
select peipow as some p such that vsumy —vsum, <e.
If peipow = P, then no division of this block reduces
variance significantly and we terminate our recursive
algorithm, declaring P the consistent block size. If this
case does not hold, we have determined there are splits
of the block that appear to be more consistent. We then
split the block in half and recurse, calling BlockSizeld
with the next longer prefix P = p + 1 on each half of
the data. In principle, a block could be split repeatedly
until it is composed on a single address and the algo-
rithm terminates with zero variance. In practice, in
Section 5.1 we show that the majority of the Internet
addresses fall into larger blocks of consistent use.

3.3.3 A Block ldentification Example

To illustrate BlockSizeld we next show analysis of an
example /24 block taken from the Internet. Figure 2
shows the whole p2.0/24 surveyed block and the process
of identifying the 4 consistently used blocks inside of /24
subnetwork. To a human observer, common patterns in
the block are the /25 block on the left (red, indicating
large volatility), a /27 block on the top right (dark red,
indicating low availability and moderate volatility), a
second /27 block on the bottom right (dark red), and
the third /27 block on the bottom right (green, indi-
cating high availability and low volatility). Unlike Fig-
ure 1, this block does not have reverse DNS entries and
so we cannot confirm these assumptions with hostnames
as the method shown in Section 4.

The graph immediately under the address plot in Fig-
ure 2 the first pass of BlockSizeld for the feature ma-
trix for p2.0/24 and P = 24. In the graph, the y-axis
shows variance for division of the block into each pos-
sible power-of-two smaller size. Here peipow = 25 and
Petbow > P, so we recurse on p2.0/25 and p2.128/25
with P = 25.

The second row of two graphs shows these two re-
cursive invocations, p2.0/25 on the left and p2.128/25
on the right. First, considering p2.128/25 the graph
on the right shows a consistent variance regardless of
subdivision, and peipewy = P = 25. This prefix appears
to be consistently used and this branch terminates suc-
cessfully. Second, for p2.0/25 (the graph on the left),
a subdivision reduces variance and so we recurse again
with P = 26.

The algorithm recurses until either pepo, = P or
P = 32. In this example, the initial /24 block is divided
into p2.0/27, p2.32/27, p2.64/27, and p2.128/25.

3.4 Ping-Observable Block Classification

p2.64 /27

p2.128 /25

p2.0/24
12
o 1
S 08
s 06
S 04
> o2
0
124 125 126 127 128 129 130 /31 132
Prefix Length
p2.0/25 (p2.128/25)
12 1.2
o 1 o 1
S o8 S o8
S 06 & 06
S 04 S 04
> o2 > oz
0 0
/25 /26 /27 /28 /29 30 31 /32 125 /26 /27 /28 /29 30 31 [3%2
Prefix Length Prefix Length
p2.0/26 p2.64/26
12 1.2
8 oo g o
g o g o
S 06 & 06
s 04 s 04
> 02 R > 02
0 [
126 27 /28 /29 30 31 /32 126 27 /28 /29 30 31 /32
Prefix Length Prefix Length
(p2.0/27 ) (p2.32/27) (p2.64/27 )
12 12 12
o 1 o 1 o 1
S 08 S 08 S 08
s 06 s 06 & 06
s 04 s 04 3 04
> o2 > o2 > o2
0 0 0

/27 /28 /29 /30 /31 /32
Prefix Length

127 /28 /29 /30 /31 /32
Prefix Length

/27 /28 (29 /30 /31 /32
Prefix Length

Figure 2: An example of BlockSizeld with threshold
e = 2.0. A plot of the addresses is shown (top), while
each row of graphs shows the variance at each recur-
sion. Graphs of the four selected blocks are labeled
with (parentheses).

We can now take remote measurements, convert them
into observations, and use them to identify blocks of
consistent neighboring addresses. We generalize our ob-
servations on addresses into observations about a block
b by taking the median value of each observation:

(A(b), V (b), U*(b)) = median(A(a), v(a), U*(a)) Ya € b

We then classify these blocks into five ping-observable
categories, using (A(b), V(b), U*(b)). We use four thresh-
olds, ay = 0.95, indicating high availability, a; =



0.10, indicating low availability, § = 0.0016, for low
volatility, and v = 6 hours, corresponding to a rel-
atively long uptime. The specific thresholds we give
are somewhat arbitrary, but were selected to provide
reasonably good correspondence between these ping-
observable categories and the hostname-inferred usage
categories described next in Section 4. We examine sen-
sitivity to our choices in Section 6.2.

Always-stable : highly available and stable.

(AZzam) AN (V <P)

Sometimes-stable : changing more often than always-
stable, but frequently up continuously for long pe-
riods (high U™).

U >2y9)NA>Za)N(A<agVV > ()
Intermittent : individual addresses are up for short
periods (low U*):
U <yYNAZap)N(A<agVV >[)

Underutilized block : although addresses are occa-
sionally used, they show low A values.

A<ar

Unclassifiable : we decline to classify blocks with few
active responders. Currently we consider any block
where fewer than 20% of addresses responding as
unclassifiable.

We selected these categories to split the majority of
the (A, V,U") space.
Appendix A shows how these terms divide the space.

4. TRAINING AND HOSTNAME-INFERRED

USAGE CATEGORIZATION

Our methodology takes data about use of public ad-
dresses and produces five ping-observable categories.
We would like to relate those categories to terms that
are more meaningful to network operators, and to find
what root causes correspond to and potentially cause
blocks to be intermittent or underutilized.

Determining the operational characteristics of a net-
work is quite challenging, however. In some cases we are
able to discuss network policy with the operations staff
to confirm our assumptions; we will use this approach
to validate our conclusions against a large campus net-
work in Section 6. However, such observations may be
biased by the policies of a single institution. We would
like to also draw data from the Internet at large, but
it is infeasible to contact operations for large parts of
the network. While tools such as nmap [18] can extract

ping survey 4,445,696 (100%)

ping survey w/ hostnames
2,197,373 (49.4%)

Figure 3: Our Investigation Targets: IP addresses ever
responded in IT17wrs and have meaningful hostnames
(with keywords). It is the middle part with 573,494
addresses in this figure.

significant information from a network through sophis-
ticated active probing, their use is easy confused with
hostile network activity by many network operations.?

Hostnames are a source of data that provides some
information about how public computers are used—
many hostnames contain keywords such as “www”, “dy-
namic”, or “dsl”. Wide hostnames collection is also fea-

sible: many Internet hosts suggest reverse DNS lookup [20],

reverse lookup occurs commonly as part of normal op-
eration and so is unlikely to be seen as hostile. The
Internet Systems Consortium has collected full tables
of reverse DNS regularly since 1994 [15] and makes it
available for a nominal fee.

We next describe how we map hostnames to 15 hostname-

inferred usage categories, and how this data corresponds
to our five ping-observable categories.

While one might study the Internet using hostname
data alone, without ping data, we believe the informa-
tion complements each other. About half addresses that
are used lack reverse hostnames, and about 49% of host-
names lack meaningful keywords, and reverse names
may not represent the computer’s true use (for hosts
with multiple names, where often the reverse name is
automatically assigned) so we think hostnames alone
are not sufficient.

4.1 Hostname-inferred Usage Categories

Although hostnames are not perfect, we believe they
provide a useful dataset to compare against our ping-
observable categories. We use ISC survey 17 [14], taken
slightly before the ping survey used for our primary
analysis [30].

2Widescale nmap use would place us in contact with addi-
tional operations staff, but perhaps not on ideal terms.



group category keywords count
allocation static static 28,137
dynamic dynamic, dyn 105,882
dhcp dhep 14,290
pool pool, pond 66,009
pPPP ppPp 44,729
access link | dial dial, modem 80,090
dsl dsl 208,682
cable cable 29,761
wireless wireless, wifi 910
ded ded, dedicated 733
consumer biz business, biz 12,999
res res, resident 25,847
client client 9,994
server server server, Ssrv, svr, mx, 12,568
mail, smtp, www, ns, ftp
router router, rtr, rt, gateway, 2,850
gw

Table 2: Categories of hostname-derived usage.
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Figure 4: Numbers of hostname-inferred usage cate-
gories, with colors indicating those that also have al-
location types.

Figure 3 shows the overlap of these datasets. shows
our investigation targets. We begin with the 4.4M IP
addresses probed the ping survey Nearly half of these
(2.2M) have hostnames in the ISC reverse DNS survey.
Of the 1.6M ping addresses that respond, we consider
the 1.0M addresses that also have hostnames. We then
focus on the 573,494 of those that have identifiable key-
words in their hostname (12.9% of all addresses in the
ping survey).

We follow recommendations that were proposed as
standard naming conventions for Internet hosts [27] and
that occur in 2000 or more hosts in our dataset. Al-
though these were neither approved by the IETF, nor
would the be mandatory even if approved, these terms
do appear in about one-quarter of reverse hostnames.
From their recommendations we define 15 hostname-
inferred usage categories as shown in Table 2.

Figure 4 shows the count of hostnames in each cat-
egory. The sum exceeds 573k because these categories
partially overlap, and a single hostname may be in mul-
tiple categories. For example, some providers label DSL
addresses with both DSL and static or dynamic. We see
that access links keywords (DSL, dial, etc.) are very
common, occurring in 51% of hostnames, and alloca-
tion types (static, dynamic, etc.) occur in about 22%
of hostnames in ping survey w/ hostnames.

Cumulative Distribution of Hosts (%)

0 01 02 03 04 05 06 07 08 09 1
Availability

Figure 5: CDF of address availability (A) by hostname-
inferred categories in IT17ws.

To provide some understanding the number of host-
names with multiple keywords, we subdivide each cate-
gory by those that also contain static, dynamic, or any
other additional keyword. Several groups types often
have an additional indication of allocation type: while
10% of dsl are labeled dynamic (1.2% static), 50% of
biz are labeled static. These secondary attributes re-
veal some technology trends: the ratio of dial also with
static or dynamic types is around 1:17, while for DSL
it is 1:8 suggesting increased use of static addresses in
always-on DSL lines. For cable the ratio is 1:1, but
the fraction of cables with an additional type is small
enough that drawing conclusions may be risky.

4.2 Relating Hostname-Inferred to
Ping-Observable Categories

Our goal in evaluating hostnames is to use them to
understand and train our ping-observable categories.
We next compare the two to see when of our observa-
tions (A, V,U*) are correlated with hostname-inferred
usage categories.

Figures 5, 6, and 7 show cumulative distribution func-
tions of each observation against each hostname-inferred
type. This data will prove essential to understand the
root network causes of address underutilization and lo-
cations of dynamic addresses; we therefore defer a de-
tailed discussion of this data to Sections 5.2 and 5.3.

Taken together, though, these graphs support the
third assumption of our paper, that patterns of probe
responses can suggest address usage. This asser-
tion is supported because hostname-inferred categories
(our approximation of usage) show fairly distinct dis-
tributions, particularly in availability (Figure 5) and
median-uptime (Figure 7). As a specific example, Fig-
ure 5 shows that availability of more than 50% dial ad-
dresses is smaller than 0.1, while the A of more than
80% server addresses is larger than 0.95.

While the bulk of dial and server addresses are quite



Volatility*

Py 1 2 5 10 25 100 639
o
> - = static —+—
n dynamic —%—
» dhcp —*—
% pool —8—
— ppp —=—
s} dial
c dsl
2 cable
= wireless
2 ded
3 biz —~—
a res —o—
P client —e—
= erver —e—
5 router —e—
=
€
3 A A A A
© 0.003 0.0080.016 0.039 0.156 1

Volatility
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Figure 7: CDF of address median-up duration (U*) by
hostname-inferred category in IT17ws.

different, there are a few dial addresses with reasonably
large A (5.4% have A > 0.5), and a moderate num-
ber of servers have poor availability (about 10% have
A < 0.15). We conclude that, while ping-observable
metrics are reasonable predictors of usage, they are far
from exact, and any estimates will have fairly large error
bounds. Perhaps this result is in keeping with previous
observations about the great variability of the Inter-
net [8].

Finally, we use the observations in these CDF's to set
our thresholds for ping-observable classes (Section 3.4).
The sharp knees at A = 0.1 in Figure 5 suggest ay, =
0.1. Based on V in Figure 6, we select § = 0.0016
to separate most servers and stable uses from less sta-
ble. Finally, the sharp knee at around U* = 6 hours
in Figure 7 suggests this value for «, This cutoff helps
separate addresses which are not always-stable and not
underutilized to two categories: sometimes-stable and
intermittent.

Based on these thresholds, Figure 8 and Table 3 map
the 15 hostname-inferred usage categories to the ping-
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Figure 8: Relationship of ping-observed categories to
hostname-inferred categories in IT17ws.

ping-observable
category
always-stable

hostname-inferred usage
category

router, server, (static), ded,
(biz), (dhep), (res)

res, static, biz, dhcp, (server),
ded, (client), (cable), (dsl),
(router), (ppp)

sometimes-stable

intermittent cable, dynamic, dsl, (wireless),
(dial), (ppp), (dhep)
underutilized pool, wireless, ppp, dial, client,
(dynamic), (ded), (dsl)
Table 3: The mapping from the 15 hostname-

inferred usage categories to 4 ping-observable cat-
egories.  hostname-inferred usage category without
(parentheses) is dominate.

observable categories (Section 3.4).

S. APPLICATIONS

Having laid the groundwork for address analysis, we
next use the data to explore several questions in network
management: what are typical sizes of consistently used
Internet address blocks? How effectively are they being
used? And how prominent is dynamic addressing?

To assist in answering some of these questions we
compare our observations with allocation data from the
regional Internet registries (RIRs) [1]. This RIR data
includes the time and country to which each address
block is assigned. Although not completely authorita-
tive, this data is the best publicly available estimate of
address delegation of which we are aware. We collected
data from each of the RIRs, selecting data dated June
13, 2007, to closely match our survey data.

5.1 Block Sizes

We begin by considering block sizes. Figure 9 and
Table 4 show our data.

First, we observe that most addresses in the Inter-
net are in /24 blocks. In fact, even though there more
opportunities for small blocks, we find more /24 blocks
than blocks of size /25 through /29. Since our data col-
lection only probes consecutive runs of 256 addresses,
this prevalence suggests we may need to probe larger
consecutive areas to understand if even larger blocks
are common but not seen in our survey.



3.5e+06 — . —
[Ping-observable Categories]
always-stable
sometimes-stable m—
3e+06 intermittent 1
underutilized m—m
) unclassifiable m—
[} 2.5e+06 [ 4
(2]
(%]
o
% 2e+06 I E
<
kS
5 1.5e+06 | 4
o
S
= 1e+06 - .

500000

0

/24

/25 /26 /27 /28 /29

Block Prefix Length

/30 /31

Figure 9: Number of addresses in each block size and
ping-observable categories in IT17ws.

There are a very large number of the smallest blocks,
with about as many /29s as /24s, and roughly twice
as many /30s as /29s, and /31s as /30s. These results
may be artifacts of our block discovery algorithm: it is
statistically easier for an address to be consistent with
a very few neighbors in a small block than with 128
neighbors in a /25. Finally, we can re-examine the sec-
ond assumption underlying our work: are contiguous
addresses often used similarly? If we define consistent
usage as just the largest three block sizes (/24 through
/26) that we successfully identify, we find 2,529,216 ad-
dresses are used consistently, or 44% of the probed ad-
dress space.

While clearly defined, this percentage does not accu-
rately present how much of the Internet is consistently
used. Some of the probed address space is unclassifi-
able (with consistent usage but fewer than 20% of ad-
dresses responding), or completely non-responsive. We
cannot say anything about blocks that fail to respond
at all. The status of unclassifiable blocks is uncertain,
but a conservative position is to declare them inconsis-
tent. A more representative evaluation of the Internet
is therefore compare how much is definitely used consis-
tently (2.5M addresses in large blocks) against that is
effectively inconsistent (the 506,178 addresses in small
blocks) and the possibly inconsistent (the 1,087,472 ad-
dresses in unclassifiable blocks). This computation sug-
gests that a lower bound of 61% of the responsive In-
ternet is used consistently, We believe this supports our
second assumption: the majority of contiguous ad-
dresses are used consistently.

5.2 Address Utilization

Having characterized block sizes, we next evaluate
how efficiently addresses are used. If TPv4 addresses
are used inefficiently that represents an opportunity for
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improvement. However, greater efficiency comes with
greater management cost; that cost must be weighed
against simpler solutions such as IPv6.

5.2.1 Quantifying underutilization and possible causes

The underutilized ping-observable category is defined
as a sequence of addresses that are used less than 10%
of the time (Section 3.4). While one can imagine some
circumstances where a public IP address that is used
very infrequently might make sense (for example, per-
haps a DTN satellite only infrequently in view [6]), large
blocks of such addresses appear to represent a poor use
of a public IP address. Moreover, these underutilized
blocks are not simply public address space hidden be-
hind a firewall (a common management practice to sim-
plify routing), but large blocks where each address is
visible, but only very infrequently.

The underutilized column of Table 4 shows that these
blocks are quite common, accounting for 17-23% of
blocks of each size, Although not shown in the table,
the mean availability of addresses in /24 underutilized
blocks is only 3.2% of our 10-day observation (IT17ws).
Manual examination of addresses show the mean num-
ber of up periods is less than 5 (V*(b) = 4.6), typically
for around 1 hour (U*(b)).

To understand why there are blocks of underutilized
addresses we turn to our hostname-ping analysis from
Section 4.2. Figure 8 shows that underutilization corre-
sponds with several hostname-inferred usage categories,
including large fractions of categories dial and pool, and
large absolute numbers of ppp, dsl and dynamic. Our
analysis of hostname categories supports this observa-
tion, where dial has low availability and median-uptime
(Figures 5 and 7 and high volatility (Figure 6).

We hypothesize that this low utilization is tied to
dial-up technology itself. Dial-up lines are often shared
with voice communication, encouraging short, intermit-
tent use. Yet dial-up POPs must be provisioned to
handle peak loads. A secondary factor may be trends
shifting customers from dial-up to higher speed connec-
tions. Perhaps old dial-up provisioned blocks are simply
in lower demand than previously. Finally, while dial-up
utilization is low, we cannot tell how many users each
dial-up address serves. Perhaps address reuse is high
enough to make these apparently underprovisioned ad-
dresses a bargain relative to supporting the same num-
ber of users with always-on connections.

Reversing the question, we can ask which address
blocks are well utilized? Figure 8 shows that the cate-
gories of static, cable, biz, res, server, router have very
few underutilized addresses. Static addresses are usu-
ally assigned to fixed-location desktops or businesses,
and these computers tend to maintain Internet connec-
tion and occupy their address for a fairly long time.
In addition, static addresses are often billed at a flat



blocks addresses
size sometimes- classifiable unclassifiable | [100%]

pfx addrs | always-stable stable intermittent underutilized (100%)
/24 256 | 1,603(18%)  2,517(29%) 2,673 (30%) 1,004 (23%) 8.787%  3.AL1[27%] 12,108 3,122,688
/25 128 323(23%) 523 (38%) 295 (21%) 237 (17%) 1,378% 920 [40%)] 2,208 294,144
/26 64 346 (21%) 617 (38%) 378 (23%) 274 (17%) 1,615%  787[33%)] 2,402 153,728
/27 32 432(20%) 855 (40%) 506 (23%) 361(16%) 2,154t 872/29%] 3,026 96,832
/28 16 750(20%) 1,301 (34%) 993 (46%) 734 (19%) 3,787t 1,139 /23%] 4,926 78,816
/29 8| 2077(21%)  3,190(32%)  2,355(24%)  2,227(23%) 9,849¢ 0 9,849 78,792
/30 4| 3312(19%)  5656(33%)  4,679(27%)  3,707(21%) 17,3541 0 17,354 69,416
/31 2| 4195(16%)  9.867(37%)  7,864(30%)  4,566(17%) 26,492+ 0 26,492 52,984
/32 1| 52,646(30%)  42,847(24%) 43,266(25%) 36,707 (21%) 175,466+ 0 175,466
entire IT17ws dataset: (1,603,086 addrs. in non-responsive blocks) + (4,122,866 in responsive blocks) 22,367 5,725,952

Table 4: Number of blocks of each size in IT17ws. Unclassifiable percentages relative to all blocks; other percentages

relative to classifiable blocks.
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Figure 10: Trend of ping-observable category change in
IT17ws /24 blocks

rate per month, while dynamic addresses may incur a
time-metered charge.

5.2.2  Locations and trends of underutilization

Evaluating underutilization by country may highlight
policy differences by regional registries or ISPs. After
merging our data with RIR data, Table 5 shows utiliza-
tion by country. We see that the United Kingdom and
Japan have the largest fraction of underutilized blocks,
40-60%, suggesting potential local policy differences.
We expected a large number of underutilized blocks in
the U.S. because of wide deployment of dial-up. While
the U.S. has the largest absolute number of underuti-
lized blocks, its fraction is relatively low.

Table 6 shows that the fraction of underutilized blocks
is fairly consistent by across all five RIRs, suggesting
differences are likely due to country, not RIR policies.

Finally, the lower right graph in Figure 10 shows
when underutilized blocks were allocated. The fraction
of underutilized blocks by age seems fairly evenly dis-
tributed, except for peaks in very early allocations (1984
and unknown), where more than 60% of the blocks as-
signed are underutilized. Since that pre-dates widespread
dialup, we do not have an immediate explanation for
this peak.

5.3 Dynamic IP Addressing

DHCP’s automatic address assignment [4] supports
central assignment of IP addresses dynamically, requir-
ing addresses only when users connect to the Internet.
Although DHCP can be used to assign the same ad-
dress to an always-up host, here we are interested in
relatively assignments that change frequently, possibly
for hosts that are only intermittently connected.

Dynamic assignment assignment of addresses allows
ISPs to multiplex many users over fewer addresses. Dy-
namic addressing also provides ISPs the business op-
portunity of offering static addresses as a higher-priced
service, and potentially makes it more difficult for users
to operate bandwidth-consuming services.

To users, dynamic addressing has been promoted as
a security advantage, on the theory that a compromised
computer is more difficult to contact if its IP address
changes. They impede users from some Internet activi-
ties, such as running services or accepting unsolicited
inbound connections (for example, for incoming SIP
calls). Wide use of dynamic addressing has promoted
work-arounds to these problems such as STUN [24].

Dynamic addresses also complicate some network ser-
vices, such reputation systems, and are correlated with
spam sources. These reasons suggest a better under-
standing of dynamic addressing is important, and have
prompted recent study [12,28,32]. We next show that
our approach can identify dynamic addressees and sug-
gest causes and trends that have been previously invis-
ible.

5.4 Quantifying dynamic addressing

We believe that the intermittent and underutilized
ping-observable categories correspond with the short-
term dynamically assigned addresses we are interested
in. This statement is supported by hostname data,
where Figure 8 shows that intermittent blocks are promi-
nent in hostnames that include dynamic, pool, ppp,
dial, dsl, and cable, all of which often use short- or
moderate-term dynamic addressing, and underutilized
blocks are common to dynamic, pool, ppp, dial, and
dsl.



blocks
sometimes- classifiable unclassifiable | [100%]
code country | always-stable stable intermittent underutilized (100%)
US  US 673 (27%) 1,106 (45%)% 231(9.3%) 172 (19%) 2,482 1,383 [36%] 3,865
CN  China 39(4.1%) 117(12%)  615(65%)*  171(18%) 942 132/12%) 1,074
JP Japan | 383(48%)* 50(6.2%)  18(2.2%) 350 (44%)* 801  288/26%) 1,089
DE Germany | 65(10%) 125(20%) 388 (61%)* 62(9.7%) 640 56 /8.0%) 696
KR Korea 21 (4.6%) 131(29%) 237 (52%)* 68(15%) 457 142[24%] 599
FR France 18 (4.1%) 227 (52%)* 167 (38%) 28(6.4%) 440 58/12%) 498
GB UK 39(13%) 37(12%)  52(17%) 179 (58%)* 307 180/97%) 487
BR  Brazil 7(3.9%) 35(19%) 86 (48%)* 52(29%) 180 58/24%)] 238
all others 358 (14%) 689 (27%)  879(35%) 612(24%) 2,538 1,114 [91%] 3,652
/24 blocks in entire IT17ws dataset: 8,787 3,411 /27%] 12,198
Table 5: The distribution of /24 blocks in ping-observable categories of 10 countries.
blocks
sometimes- classifiable unclassifiable | [100%]
registry always-stable stable intermittent underutilized (100%)
RIPENCC | 408 (14%) 798(27%) 1,084 (37%)% 661 (22%) 2,951 990/25%] 3,941
APNIC | 473(18%) 422(16%) 1,091 (40%)* 716(27%) 2702 795 [23%) 3,497
ARIN | 706(27%) 1,185 (45%)*  258(9.7%)  512(19%) 2,661 1,481 [36%) 4,142
LACNIC | 13(3.2%) 94(23%)  218(53%)%  86(21%) 411 120/28%) 531
AFRINIC 3(4.9%) 18 (30%) 21(34%)*  19(31%) 61 19 /24 %) 80
/24 blocks in entire IT17ws dataset: 8,787 3,411 /27%] 12,198

Table 6: The distribution of /24 blocks in ping-observable categories of 5 regional registries.

Table 4 shows that there are many dynamic addresses:
40-50% of classifiable blocks (depending on block size)
appear to be dynamic. Even with wide deployment
of always-on connectivity, nearly half of Internet ad-
dresses are used for short periods of time. For inter-
mittent blocks, the mean availability is just under 30%,
with nine use periods over the week and a the mean U*
around 2.5 hours.

5.5 Locations and trends for dynamic address-
ing

Analysis by country can suggest how political or cul-
tural factors affect dynamic addressing. Table 5 shows
that nearly two-thirds of Chinese blocks are intermit-
tent, with Germany, Korean, and Brazil all nearly half
or more. Several factors are potential causes for this
use.

China has a very large population and is a relative
latecomer to the Internet; from the beginning of com-
mercial deployment in China ISPs have planned to make
best use of relatively few IPv4 addresses per potential
user. They have therefore promoted dynamic use to im-
prove address utilization. An interesting direction for
future work would be to evaluate how effective their
utilization is. Unfortunately we only know address re-
sponsiveness, not the number of actual computers users
per address needed to answer this question.

Time-metered billing is another reason for intermit-
tent use. Parts of China and Germany employ metered
billing, encouraging intermittent use even with broad-
band. Other potential reasons for intermittent use in-
clude turning off a router to conserve energy, or carrying
over habits learned from dial-up use to broadband, and
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potentially continued use of dial-up connections shared
with voice communication.

Evaluation of usage by regional registry in Table 6
presents even larger differences in use. We see that in-
termittent blocks are very prominent under APNIC and
LACNIC (40-53%), five times more common than for
ARIN in North America (9%). We believe these dif-
ferences stem largely from policies of the countries the
RIRs serve, not the RIRs themselves. We discussed
Chinese practice above; several Latin American coun-
tries have limited choice in ISPs, with national providers
adopting pricing schemes that strongly favor dynamic
address assignment even for business use. We specu-
late that the large number of sometimes-stable blocks in
ARIN is because of long DHCP lease times and always-
on use by home users, enabled by relatively plentiful
numbers of IPv4 addresses per user.

Finally we turn to trends in dynamic addressing. The
lower left portion of Figure 10 shows intermittent blocks
are increasingly likely in new address allocations. This
observation is consistent with a growing recognition of
eventual full allocation of the IPv4 address space and
efforts to manage addresses in countries newer to the
Internet. The rise in intermittent blocks matches a cor-
responding fall in always-stable blocks (top left, Fig-
ure 10). In addition to growing demand for dynamic
addressing, this trend suggests most new addresses are
added to provide service for home users, intermittently.
While the absolute numbers of always-stable businesses
and servers grows, its fraction of all addresses is shrink-
ing.

6. VALIDATION
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Figure 11: Number of addresses in each block size and
ping-observable categories in ITUSC' s.

The conclusions of this paper are based on the three
assumptions we listed in the introduction: addresses
respond to probes, adjacent addresses have similar use,
and probes suggest use. Validation of the first assump-
tion is the subject of prior work [12]; space prohibits
revisiting that work here.

We have already presented data on the two final as-
sumptions, showing that the majority of contiguous ad-
dresses are used consistently (Section 5.1) and probe
responses can suggest use (Section 4.2). These conclu-
sions are based on data taken from one survey IT17ws
from the general Internet. While not biased, we cannot
compare these results to the true network configuration
that is distributed across thousands of enterprises. We
next present two additional studies to further validate
these assumptions. First we evaluate data taken from
USC, a smaller and potentially biased dataset, but one
where we have ground truth from the network oper-
ations staff. We then compare compare our Internet-
wide results with a second dataset, IT16ws, to verify
our conclusions do not reflect something unusual in a
single time or set of addresses.

6.1 Validation within USC

We first compare our methodology against ground
truth obtained from the administrators of our network
at USC. This section uses dataset ITUSC s and applies
the same analysis used on our general Internet dataset.

Figure 11 shows block sizes and classifications from
our approach. USC shows many fewer intermittent
and underutilized blocks compared to the Internet (Fig-
ure 9); we expect such variation across enterprises. We
next use this data to evaluate how our assumptions af-
fect our ability to accurately find of block size and con-
sistency, then of block usage.
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category: blocks percentage
in routing table 243 100%
false negative 105 43%
not in use 19
not responding 28
few responding 12
single-block multi-usage 46
/25 to /27 9
/28 to /32 37
blocks identified 147 100%
correctly identified 138 57%  94%
false positive 9 6.1%
multi-block single-usage 9

Table 7: Evaluation of block identification accuracy at
USC to ground truth, with percentages relative to all
blocks (left) and all identifications (right).

6.1.1 Block Size Validation

To validate our ability to determine block sizes, and
that blocks at USC are used consistently, we compare
our analysis with the internal routing table from our
network administrators. This data helps quantify the
accuracy of our approach, measuring the false positive
rate, blocks that we detect but that do not actually
exist, and the false negative rate, blocks that exist but
we fail to detect.

Table 7 summarizes our comparison for all /24 blocks.
(We do not evaluate smaller blocks because smaller sub-
divisions are usually handled at the department level
and so are missing from our ground-truth routing ta-
ble.) Relative to /24 blocks present, we find our ap-
proach correctly identifies 57% of all blocks in ground
truth. Although we find the majority of blocks, we have
a significant number of false negatives, failures to detect
blocks. For this dataset, these false negatives show our
approach is somewhat incomplete. On the other hand,
if we evaluate our algorithm by what it says. We see
very few false positives, correctly identifying 94% of all
blocks we detect. For this dataset, almost no false pos-
itives show our approach is quite accurate in what it
asserts.

To understand accuracy, we looked at when our ap-
proach incorrectly identifies blocks. All nine false pos-
itives are due to multiple blocks with common usage.
We examined each incorrect block and found that USC
administrators had placed two logically different blocks
on adjacent addresses, but these administratively dif-
ferent blocks were used for similar purposes. Since our
evaluation is based on external observations of use, we
believe there is no way any external observer could de-
termine these administrative distinctions.

Turning to false negatives, we found several sources
of missed block identification. We found that many
blocks were either in the routing table but not assigned
to locations or services (19 not in use), in the rout-
ing table and assigned, but with no ping responses (28



category: blocks fraction
classified 138 100%
unclassifiable (false negative) 52 38%
incorrectly classified (false positive) 3 2.1%
always stable (dynamic) 3
correctly classified (true positive) 8 60%

3
intermittent (dynamic) 4
sometimes stable (dynamic) 5
intermittent (VPN) 1
underutilized (VPN/PPP) 2
always stable (lab) 2
sometimes stable (lab) 2
always stable (building) 25
sometimes stable (building) 42

Table 8: Evaluation of block classification accuracy at
USC to ground truth.

not responding), or filled with only a few responders
(12 few responding). In all cases, our algorithm refuses
to make usage assertions on unused or sparsely used
space. Non- or few-responding blocks may be due to
firewalls, reflecting a limitation of our probing method.
Not-in-use blocks would be impossible for any external
observer to confirm. In principle our algorithm could
identify non-responsive blocks, but it is difficult for ex-
ternal observation to distinguish unused from firewalled
space.

Finally, other other false negatives occur due to blocks
that have been administratively assigned as /24s but
then are used for different purposes. Nine of these
show large, consistent patterns, possibly indicating del-
egation at the department level that is not visible to
university-wide network administrators. If so, these

represent incompleteness in our ground-truth data. Smaller

mixed-use blocks represent violations of our assertion
that adjacent addresses are used consistently.

6.1.2 Block Usage Validation

Table 8 shows the accuracy of our approach for the
138 blocks we classify. We declare 38% unclassifiable
(false negatives); in these cases we have discovered the
correct block size but decline to declare a ping-observable
category because the block is only sparsely responsive.
We correctly classify the majority of blocks, selecting
ping-observable categories that are consistent with the
use of 60% of blocks. We mis-identify three blocks (a
2% false positive rate), all reported as dynamically al-
located but observed as always stable. These blocks
perhaps represent DHCP-assigned addresses with very
long lease times for computers that are always up.

6.2 Results Consistency Across Repeated Sur-
veys

We next wish to understand if the parameters of

our data collection or analysis have a disproportionate

effect on our conclusions about Internet-wide address

usage. To evaluate this, we compare our conclusions
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from IT17ws with the same analysis applied to second
dataset, IT16ws, taken five months earlier and with half
of blocks different. The survey selection methodology
is described by its authors [12]. Half of the /24 blocks
in the survey are consistent across each survey, and half
are randomly chosen in each survey. This comparison
therefore observes both if network changes alter obser-
vations of the same blocks, and if a different set of blocks
show very different behavior.

We find that our estimates of the distributions of
block sizes are almost identical in the two surveys. If
we define s, as the vector of number of blocks of prefix
length p, the correlation coefficient of these vectors for
the two surveys is 0.99998. We conclude that a random
sample of 1% of the Internet is large enough that the
block size observations are hardly affected if half of the
sample is changed.

Our work assumes that contiguous addresses are of-
ten used consistently. Following our approach in Sec-
tion 5.1, we consider blocks of size /24 through /26 as
consistent, and size /27 through /32 as inconsistent. In
IT17ws, 44% of probed Internet and 61% of responsive
Internet is consistent, while IT16ws find 43% and 60%.
We conclude that IT16ws and IT17ws both support our
assumption.

Finally we consider the consistency of our ping-observable

classification between IT16ws and IT17ws. Initially we
found the correlation of the number of blocks in each
category to be generally good but not great across all
block sizes—it ranged from 0.663 to 0.938 for blocks
smaller than /29, but it the correlation for /24 blocks
was only 0.349. Examination of the data showed that
around 500 blocks were shifting between always- and
sometimes-stable. This shift occurred because of a change
in volatility and our selection of the always-stable re-
quirement that V < § and 8 = 0.0016. For very stable
hosts, a few outages can change V* significantly. Exam-
ining our datasets, showed that I7T76ws and IT17ws are
of different duration (6 and 10 days). A longer duration
makes it easier to distinguish between sometimes- and
always-stable blocks. When we keep the observation du-
ration the same by considering only a 6-day subset of
IT17ws, the correlation coefficient for /24 classification
rises to 0.626. We conclude that most ping-observable
classifications are good, but there the separation be-
tween sometimes- and always-stable categories is some-
what sensitive.

7. CONCLUSION

In this paper we have developed a new approach to
identify how Internet addresses are used from active
probing. Our work assumes many addresses respond to
active probes (as evaluated previously [12]), contiguous
addresses are often used similarly, and probes can reveal
that use. We validate the two new assumptions with



multiple datasets of randomly selected Internet blocks
and with data from USC. We then use our approach and
data to answer important questions in network manage-
ment including common block sizes for address manage-
ment, efficiency of address utilization, and the extent
and trends in dynamic address allocation.
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APPENDIX
A. EXAMINING THE (A,V,U*) SPACE

Section 3.4 defined our ping-observable categories based
on the (A,V,U*) values of blocks. To develop an un-
derstanding of how these metrics help categorize the
Internet, Figure 12 shows the density plot of (A4, V,U*)
space separated in three planes. For each plot, we cre-
ate 100 bins for each of two parameters, then count the
number of /24 blocks identified in IT17ws that fall into
that bin with any value of the third parameter.

All of the planes show blocks with many different
values, providing no definitive clusters. However, there
are concentrations in some areas of some planes, even
though there are a few blocks in between those con-
centrations. The (A,V) plane shows two concentra-
tions, with a portion of blocks tend to gather around
(A, V,U*) = (0.975,0.005, %), showing highly available
and highly stable behavior. We classify most of them
into always-stable blocks. Another portion of blocks
tend to gather around (A, V,U*) = (0.050, 0.005, *) which
exhibit highly underutilized behavior. We classify them
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Figure 12: Density plots of /24 blocks in IT17ws across each of the A/V, U/V, A/U planes.

into underutilized blocks. The rest blocks are distributed
between (A, V,U*) = (0.100 — 0.400,0.075 — 0.022, ),
with no obvious boundary to differentiate sometimes-
stable and intermittent blocks on (A, V') plane. Instead,
we inspect the (A, M) and (M, V) planes to split these
apart. Even there, we do not see a sharp boundary.
However, we place a line at U = 0.026 (U* = 6 hours)
to classify sometimes-stable (U* > 6 hours) and inter-
mittent (U* < 6 hours) blocks.
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