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ABSTRACT OF THE DISSERTATION

Self-Configuring Localization Systems

by

Nirupama Bulusu
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2002

Professor Deborah L. Estrin, Chair

Recent technological advances have fostered the emergence of small, low-power de-
vices that integrate micro-sensing and actuation with on-board processing and wireless
communications capabilities. Through distributed coordination, pervasive networks of
micro-sensors and actuators are expected to revolutionize the ways in which we un-
derstand and construct complex physical systems. Fundamental to such coordination

is localization, or the ability to establish spatial relationships among objects.

In this dissertation, we address the challenges involved in localization for very
large, ad hoc deployed sensor networks. Although several localization technologies
have been proposed in the past few years, none currently satisfies all our requirements
because no single localization system is simultaneously scalable, ad hoc deployable
and accommodating of the hardware constraints of very small devices. Our thesis is
that all these issues can be solved simultaneously by a self-configuring localization sys-
tem that autonomously adapts to its environmental dynamics. Our approach is based
on localized adaptive algorithms that self-configure to exploit both the local processing

on each sensor node, as well as the redundancy across densely-deployed sensor nodes.

First, to accommodate device constraints, we adopt a low cost, hardware-independent

localization approach for very small devices that leverages the existing radio (RF) com-
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munications capabilities of such devices and does not require any other sensors.

Second, to scale to very large sensor networks, we develop a decentralized, self-
localization methodology for devices. Instead of relying on a central server to compute
their positions, devices themselves perform a localized location computation based on
radio connectivity constraints to a small number of nearby beacons (nodes with known

positions), obtained by listening to radio broadcast advertisements of beacons.

Third, we need to ensure a uniform localization granularity in dynamic, unpre-
dictable environments with numerous radio propagation vagaries. One solution to
this problem is to extensively instrument and model the environment, a priori. Un-
fortunately, this approach does not scale well. Instead, we advocate and develop a
self-configuring mechanism in which beacons themselves measure and adapt to their

environment and availability of neighboring beacons.

Finally, we quantitatively analyze the impact of beacon density on localization.
We show that proximity based localization using only local information saturates at a
threshold beacon density ph-¢sn. We develop various self-configuring algorithms for
incremental beacon placement for sparse beacon deployment. For dense beacon de-
ployment, it is desirable to keep the operational beacon density close to tis4esn tO re-
duce the probability of self-interference amongst beacons and to conserve energy. We
develop a parameterized algorithm (tunable according to radio parameters) to adjust
the duty cycle of beacons based on the availability of other beacons in the neighbor-

hood to realize a low operational density.

These techniques form the bases of our self-configuring localization system. We
have implemented it as a user-level library on two test-beds, Radiometrix RPC-418
radios, and motes with RFM radios. We evaluate and demonstrate the effectiveness
of our localization system in terms of the performance of the basic localization algo-

rithms, as well as the beacon placement techniques to adapt it to noisy environments.
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CHAPTER 1

Introduction

To begin, begin.

— William Wordsworth

1.1 Motivation: Location-Aware Computing

In the last decade, we have witnessed a burgeoning amount of research and commercial
interest in the area of ubiquitous computing. As envisioned by Mark Weiser [Wei93,
Wei91] in the early nineties, in ubiquitous computing, various computing elements are
so seamlessly integrated into the environment that they will be invisible to common

awareness.

Several factors have fueled this vision. Recent advances in CMOS IC, wireless
communication, and MEMS technology have led to dramatic reductions in size, power
consumption and circuitry cost. Various functions such as sensing and signal process-
ing can now be integrated into a single wireless node. Coordination and communica-
tion among such nodes will not only enable seamless computing but also revolution-
ize information technology, especially applications related to sensing and controlling
physical environments. Small active devices or sensors can coordinate to perform
larger sensing tasks (i.e., distributed micro-sensing tasks), which could not have been

achieved with individual node capabilities.



Potential applications of such sensor networks span many domains: physiological
monitoring; environmental monitoring (air, water, soil, chemistry); condition based
maintenance; smart spaces; military surveillance; precision agriculture; transporta-
tion; factory instrumentation and inventory tracking. Coordinated efforts in exploring
such applications have already begun, the Center for Embedded Networked Sensing
[CEN] at UCLA, MIT’s Project Oxygen [OXY] and Berkeley’s CITRIS effort [CIT],

the Aware Home at Georgia Tech [AWA] to name a few.

Fundamental to such seamless coordination in these systems is location aware-
ness. Localization is a mechanism to establish spatial relationships in these devices.
Because these systems are coupled to the physical world, location measures and gives
a context to that physical coupling. Many of these envisioned systems are embedded to
monitor or control the behavior of physical systems (as compared with strictly virtual
information systems), and therefore nodes often need to determine their action based

on their physical location (am I the correct sensor to monitor a particular object?).

Networked applications are often implemented in the form of a layered network
protocol stack [Zim80] and localization benefits span several layers of the protocol
stack. At the application layer, localization is indispensable for context-aware appli-
cations that select services based on location [HHS99], and for sensor networks that
achieve power conservation by combining data from multiple sensors. At the net-
work layer, location information on a scale with the transmission range can enable
geographic routing algorithms that can propagate information efficiently through a

multi-hop network [Fin87, KK0O].

Several issues render the localization problem more challenging for large scale,
densely distributed sensor networks than in many other domains. Sensor networks
must satisfy several physical constraints. In order to be untethered and deeply em-

bedded, individual nodes must have a small form factor and provide their own energy.



The system overall must tolerate ad hoc deployment and unattended operation without

infrastructure support.

Given such constraints the network designers’ goals shift from optimizing chan-
nel throughput or minimizing node deployment, to extending system lifetime and ro-
bustness in the face of unpredictable dynamics. Moreover, in these extreme contexts,
centralized solutions are not applicable because the communications associated with
extracting the dynamic system state to a central location, and in a timely manner, will

consume excessive amounts of precious energy resources.

Any deployable localization system for sensor networks must scale to large areas,
to large numbers of devices, must accommodate the device constraints of very small
devices, and must be robust and fault-tolerant even in the presence of significant envi-

ronment and system dynamics.

Traditional information systems have not had such a location focus, consequently
our support for localization has been relatively weak. Presently, the most well known
and widely available technology for localization is the Global Positioning System
(GPS) [HLC92]. Since its introduction nearly three decades ago, both the applications
and scope of GPS usage have exploded. Nevertheless, GPS has several drawbacks
which make it ill suited to sensor networks. Firstly, it is not ubiquitously available —
GPS does not work indoors, under water, and in very cluttered urban environments.
Secondly, it may not be economically viable for sensor networks. While a typical GPS
receiver costs around 100 dollars and consumes power on the order of magnitude of
Watts, typical sensor nodes are expected to be disposable in the near future. Thus, it
does not always meet the operational (for example, low power and low cost [PK00]),

environmental (for example, indoors) or cost constraints.

Although a number of localization systems have been proposed in the past few

years [HLC92, PCB00, HHS99, BP0OOb] (these are reviewed in Chapter 2), none cur-



rently satisfies the requirements for ad hoc deployment of large scale sensor networks
because no single existing localization system is simultaneously scalable, ad hoc de-

ployable and accommodating of the hardware constraints of very small devices.

1.2 The Problem: Environment Dependent Configuration

Not surprisingly, localization has manifested itself as a classical problem in many
disciplines, including the autonomous robot navigation problem [HS98] in mobile
robotics [TFBO1], virtual reality systems [WBV99], air, land and water vehicle navi-
gation in intelligent transportation systems [VOR, HLC92], user location and tracking

in cellular networks [RAD] etc.

A key challenge in engineering localization systems for these applications has been
environmental dependence. To achieve localization in any given environment, several
characteristics of the environment need to be taken into account as they can influence
the measurements of the sensors used for localization (for example, the temperature
and speed of propagation of light in the medium, the parameters of signal attenuation
etc.). Since these properties can vary widely from one environment to another, these
environment-dependent parameters need to be configured in all nodes in the localiza-

tion system.

Traditional localization systems address this problem either (i) through extensive
environment-specific calibration and configuration of the centrally controlled, tightly
coupled localization system [WBV99, BP0OOb, RAD] or (ii) through sophisticated,

memory and compute-intensive probabilistic position-estimation algorithms [TFBO01].

Large-scale, densely distributed sensor networks that are closely coupled to the
physical world require node localization, but under far severe node-level resource con-

straints (limited energy, bandwidth, memory and processing) [BHEQO].



Consequently, localization systems that can reconcile these needs by necessity
must be based on a loosely coupled, distributed systems architecture (as in [BHEQO,
PCBO00, SHS01a, Gir00, HWBAO0]) that can adapt to the dynamics of its environment,
relying neither on any centralized controller nor on sophisticated processing and sens-

ing capabilities on each on every node.

1.3 A Solution: Self-Configuring Localization Systems

We have highlighted the deployment, configuration and operational issues for sensor
network localization. Our approach to solving the aforementioned issues for localiza-

tion is based on “self-configuration”.

Our thesis is that all these issues can be solved simultaneously by a distributed
localization system that is also self-configuring, i.e., it autonomously measures and
adapts to its environmental and system dynamics to achieve both environmental inde-

pendence and robust, unattended system-level operation.

Our approach is based on localized adaptive algorithms that self-configure to ex-
ploit both the local processing available on each sensor node, as well as the redundancy

available across densely-deployed sensor nodes.

1.3.1 Self-Localization

To accommodate existing device constraints, we adopt a low cost, hardware-independent
localization approach for very small devices that leverages the existing radio (RF)
communications capabilities of such devices and does not require any other sensors.
To scale to very large sensor networks, we develop a decentralized, self-localization
methodology for devices. Instead of relying on a central server to compute their posi-

tions, client devices themselves perform a localized location computation based on ra-



dio connectivity constraints to a small number of nearby beacons (known nodes which
are position-aware). These constraints are obtained from listening to radio broadcast

advertisements of nearby beacons.

1.3.2 Self-Configuration

As discussed earlier, one of the key challenges in localization is to ensure a uniform
localization granularity even in dynamic, unpredictable environments (with numerous
radio propagation vagaries and unpredictable terrain). One solution to this problem
is to extensively instrument and model the environment, a priori and deploy beacons
based on these measurements. Unfortunately, this approach does not scale well for
very large numbers of beacons and for very large environments. Instead, to adapt to
noisy environments, we advocate and develop a self-configuring mechanism in which
beacons themselves measure and adapt to their environment and availability of neigh-
boring beacons. Our self-configuring mechanisms apply to other ad hoc beacon-based

localization systems as well [SHSO1a].

1.4 Contributions

A number of research activities have laid the groundwork for both low-cost localiza-
tion [BPOOb, CCKO1] and scalable localization [HLC92, PCB00]. However, these
research efforts are polarized: they either solve the hardware half of the problem (ac-
commodating device constraints) or the networking half of the problem (making local-

ization scalable).

Consequently, none of the proposed systems meet all our requirements, because
in each instance, only half of the problem is solved. Our work bridges this gap. We

have developed, analyzed, simulated, and refined a comprehensive set of techniques



for making localization systems self-configuring.

We account for each component in the overall system — from the network location
protocol and position estimation algorithm to the beacon deployment and adaptation
strategy — resulting in the design and implementation of a comprehensive system for

localization in ad hoc wireless networks.

Ultimately, we believe that high-quality localization will be commonplace. But
before this can happen, we must understand, build and deploy localization systems for
sensor networks. This dissertation research is one step toward this goal. Our contri-
butions advance the state of the art in localization and energy-conserving protocols —

especially in the context of large scale sensor networks — as follows:

e Localization Methodology. We have developed a low cost, scalable and energy-
efficient RF-based localization methodology. Our localization methodology is
novel both in its highly scalable system architecture for self-localization, and in
its simple sensing model of RF-proximity through radio connectivity. Further-
more, we have implemented it on two very different experimental platforms, and
evaluated its use under a number of settings. We present experimental results to

show that our localization methodology works well outdoors.

e Density analysis. We formalize the notion of beacon density and analyze the
impact of beacon density on the localization quality — both in terms of localiza-
tion error and system responsiveness. Our analysis leads us to different problem

formulations for beacon placement at different densities.

e Solutions to Beacon Placement. We make our localization system self-configuring

by addressing the following two beacon placement problems.

— In noisy environments, the existing beacon field infrastructure might prove

insufficient to ensure localization quality. We address this issue with both



a novel problem formulation and a novel solution approach. We formulate
the problem of adaptive beacon placement — deployment of additional
beacons at new points to augment an existing infrastructure of beacons.
Our solution is novel in that it is empirically determined — based on ac-
tual measurements of the terrain rather than on an idealized model. We
have developed and evaluated through simulation and experiment, several
algorithms for this purpose. We discuss the design space and present our
algorithms, evaluation results and future work. GRID is the first algorithm
that used robotic mobility to heal and self-configure an unattended net-
work [BHEO1a]. HEAP is a localized algorithm that automates the place-

ment of new beacons.

— Alternatively, even if beacons were densely deployed to provide redundant
coverage, we may not want to keep all of them operational simultaneously.
We develop STROBE, an algorithm that exploits deployment redundancy

to improve system lifetime, without degrading the quality of localization.

Our solutions to beacon placement not only apply to other localization systems, but
also provide a methodology and case study in tuning network density as a function
of the level (fidelity) of network service required, that can be applied to several other

problems in densely deployed sensor networks.

1.5 Dissertation Overview

The remainder of this dissertation is organized as follows. In the next chapter, we
survey related work in the fields of localization at large, and adaptive protocol design

in sensor networks.

Chapter 3 precisely defines the network model that we assume for all of our work.



We also present our assumptions of nodes and argue our design principles of localized

algorithms.
Chapter 4 describes our research methodology and wireless testbed.

In Chapter 5, we discuss the design, implementation and evaluation of our RF-

based localization system based on the principles described in Chapter 3.

In Chapter 6, we discuss the role of self-configuring beacon systems. Chapters 7,
8, 9 explore three different forms of beacon self-configuration. We also present sim-
ulation and experimental results that demonstrate the advantages of self-configuring

beacon systems.

Finally, in Chapter 10, we identify a number of remaining challenges with our
approach, present plans for future work, identify applications that benefit from a lo-
calization system such as ours, and new research problems in sensor networks and

provide references to our implementation and simulation framework.



CHAPTER 2

Background and Related Work

What we have learned from others, becomes our own by reflection.

— Ralph Waldo Emerson

The real voyage of discovery comes not in seeking new landscapes but in

having new eyes.
— Marcel Proust

Localization is by nature an interdisciplinary problem involving several areas of
computer science and relevant to many kinds of engineering systems. Consequently,
research has proceeded on both the systems and algorithmic fronts in computer sci-

ence.

In this chapter, we survey background research and work related to our self-configuring
localization system framework. Rather than attempt to cover the entire spectrum of re-
search in location-aware computing or even in localization, we will concentrate on
areas that are most relevant to the work in this dissertation®. In the next few sections,
we survey related work in each of the following areas:

localization systems,

LOur discussion is not strictly chronological. Since this work was among the earliest efforts to
address node localization in ad hoc sensor networks, several of the localization technologies for sensor
networks (including Cricket[PCB00, PMBO01], [DPGO01], [ACZ01], APS [NBO00]) and adaptive sensor
network protocols (including SPAN [CIMO01]) discussed here were developed subsequent to our work.
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robust position estimation algorithms,
techniques for localization error reduction,

system deployment techniques, and

adaptive network protocols

2.1 Localization Systems: An Overview

In this section, we review previous work in localization systems for ubiquitous com-
puting and other applications. We review why state-of-the-art developments in local-
ization systems do not meet the requirements and motivate our approach. We focus
on:
measurement techniques for obtaining constraints (ranges, angles, proximity)
that correlate unknown positions,

system architecture, and

robust position estimation algorithms

2.1.1 Measurement Techniques

Measurement techniques for localization include ranging from radio Time Difference
of Arrival techniques [HLC92, WL98, AET, TIM], ranging using radio and sound [WJH97,
PCBO00], triangulation from camera-images [OK93] and video [RS00], radio signal
strength measurements [BPOOb, HWBO0O0] and measurements of radio connectivity
[BHEOO, DPGO01]. We can broadly classify them as fine-grained or coarse-grained
localization methods, depending on the granularity (or error) of the obtained measure-

ments, and also sub-classify them as ranging, directionality, pattern-matching based
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Figure 2.1: Localization from range measurements.

systems, depending on the type of measurements.

Fine-grained localization methods typically estimate ranges or angles relative to
beacons and compute the location of the unknown node using trilateration (position
estimation from distance to three points, see Figure 2.1) or triangulation (position

estimation from angles to three points, see Figure 2.2).

2.1.1.1 Ranging-based Systems

The most popular measurement type is ranging. There are two methods to obtain range

measurements — timing and signal strength. We explore both these approaches below.

Timing

The distance between a client node and a beacon may be inferred from the time of

flight of the communication signal.

The time of flight may be calculated using the timing advance technique which
measures the amount the timing of the measuring unit has to be advanced in order
for the received signal to fit into the correct time slot to be in phase with an inter-
nally generated signal. This technique is used in the Global Positioning System (GPS)
[HLC92] and Pinpoint [WL98], which estimate distance from the radio signal time
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of flight. GPS measures one-way flight time, whereas Pinpoint’s Local Positioning
System (LPS) measures round-trip time (thereby eliminating the need for time syn-

chronization).

GPS is a wide-area radio positioning system. In GPS, each satellite transmits a
unique code, a copy of which is created in real time in the user set receiver by the
internal electronics. The receiver then gradually time shifts its internal clock, until it
corresponds to the received code, an event called lock-on. Once locked on to a satel-
lite, the receiver can determine the exact timing of the received signal in reference
to its own internal clock. If that clock were perfectly synchronized with the satel-
lite’s atomic clocks, the distance to each satellite could be determined by subtracting
a known transmission time from the calculated receive time. In real GPS receivers,
the internal clock is not quite accurate enough. An inaccuracy of a mere microsecond

corresponds to a 300 m error.

Pinpoint’s 3D-iD system[WL98] is a Local Positioning System that covers an en-
tire three-dimensional indoor space and is capable of determining the 3-D location of
items within that space. The LPS subdivides the interior of the building into cell areas
that vary in size with the desired level of coverage. The cells are each handled by a
cell-controller which is attached by a coaxial cable to up to 16 antennas. It provides an
accuracy of 10m for most indoor applications, although some may require accuracy of
2m. The main drawback of this system is that it is centralized and requires significant

infra-structural setup.

Active Bat[WJH97], the acoustic range-finder [Gir00], Cricket [PCBO00], Cricket
Compass [PMB01] and AHLoS [SHS01a] make explicit time-of-arrival measurements
based on two distinct modalities of communication, ultrasound and radio, which travel
at vastly different speeds (350m/s and 3 x 108m/s respectively), enabling the radio

signal to be used for synchronization between the transmitter and the receiver, and
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the ultrasound signal to be used for ranging. The Active Bat system, however, relies
on significant effort for deployment indoors and may not work very well outdoors
because they all use a single transmission frequency (40 kHz), and hence there is a

high probability of interference from other ultrasound sources.

Signal Strength

An important characteristic of radio propagation is the increased attenuation of the
radio signal as the distance between the transmitter and receiver increases. Radio
propagation models [Rap96] in various environments have been well researched and
have traditionally focused on predicting the average received signal strength (RSSI) at
a given distance from the transmitter (large-scale propagation models), as well as the
variability of the signal strength in close proximity to a location (small-scale or fading
models). In the RADAR system [BPOOb, BP0Oa] (and also in SpotON [HWBO00]),
Bahl and Padmanabhan suggest estimating distance based on signal strength in indoor
environments. They compute distance from measured signal strength by applying a
Wall Attenuation Factor (WAF) based signal propagation model. The distance infor-
mation is then used to locate a user by trilateration. This approach, however, yielded
lower accuracy than radio mapping of signal strength corresponding to various loca-
tions for their system. Their radio-mapping-based approach is quite effective indoors,
unlike ours, but requires extensive infra-structural effort, making it unsuitable for rapid

or ad hoc deployment.

2.1.1.2 Signal Pattern Matching

Another fine-grained localization technique is the proprietary Location Pattern Match-
ing technology, used in the U.S Wireless Corporation’s RadioCamera system [RAD].

Instead of exploiting signal timing or signal strength, it relies on signal structure char-
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Figure 2.2: Localization from directionality or angle constraints.

acteristics. It turns the multi-path phenomenon to surprisingly good use: by combing
the multi-path pattern with other signal characteristics; it creates a signature unique to
a given location. The RadioCamera system includes a signal signature database for
a location grid of a specific service area. To generate this database, a vehicle drives
through the coverage area transmitting signals to a monitoring site. The system ana-
lyzes the incoming signals, compiles a unique signature for each square in the location
grid, and stores it in the database. Neighboring grid points are spaced about 30m
apart. To determine the position of a mobile transmitter, the RadioCamera system
matches the transmitter’s signal signature to an entry in the database. The system can
use data from only a single point to determine location. Moving traffic and changes
in foliage or weather do not significantly affect the system’s capabilities. The Nibble
system[CCKO01] similarly estimates location from signal intensity using Bayesian in-
ference algorithms. The major drawback of these techniques, as with RADAR, is the
substantial effort needed for the generation of the signal signature database. Conse-

quently, they are not suited for the ad hoc deployment techniques that interest us.
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2.1.1.3 Directionality-based Systems

Another way of estimating location is to estimate the angle of each beacon with respect
to the client node in some reference frame. The position of the client node can then be

computed using triangulation methods.

An important example of directionality-based systems are the VOR/VORTAC sta-
tions [VORY], which were used for long distance aviation navigation prior to GPS. The
VOR station transmits a unique omnidirectional signal that allows an aircraft aloft
to determine its bearing relative to the VOR station. The VOR signal is electrically
phased so that the received signal is in various parts of the 360 degree circle. By de-
termining which of the 360 different radials it is receiving, the aircraft can determine

the direction of each VOR station relative to its current position.

Small aperture direction finding is another directionality based technique used in
cellular networks. It requires a complex antenna array at each cell site location. The
antenna arrays can in principle work together to determine the angle (relative to the
cell site) from which a cellular signal originated. When several cell sites can deter-
mine their respective angles of arrival, the cell phone location can be estimated by
triangulation. There are two drawbacks of this approach which make it inapplicable to
our application domain. The cost of the complex antenna array implies that it can be
placed only at the cell sites. Second, the cell sites are responsible for determining the
location of the client node, which will not scale well when we have a large number of

such nodes and desire a client-based approach.

Directionality based systems are not very effective in indoor environments because

of multi-path effects.
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Figure 2.3: Localization from connectivity constraints.

2.1.1.4 Proximity-based Systems

Coarse-grained localization methods estimate unknown node location from proximity
to beacons, as in Figure 2.3). One of the earliest such systems was the Active Badge
system [WHF92] developed in 1991. Here, each person or object is tagged with an
Active Badge. The badge transmits a unique Infra Red (IR) signal every 10 seconds,
which is received by sensors placed at fixed positions (beacons) within the building
and relayed to the location manager software. The location manager software is able
to provide information about the person’s location to the requesting services and ap-

plications.

Another system based on IR technology was developed by Azuma in 1992 [Azu93]
and is the precursor to the current HiBall tracking system at the University of North
Carolina at Chapel Hill [WBV99]. This system requires IR transmitters to be located
at fixed positions inside the ceiling of the building. An optical sensor sitting on a head-
mounted unit senses the IR beacons, and system software determines the position of

the person.
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Both these IR-based solutions perform quite well in indoor environments, because
IR range is fairly small and can be limited to the logical boundaries of a region, such
as a room (by walls). On the other hand, the same technique cannot be as effectively
applied using radio in indoor environments, because radio propagation in indoor en-
vironments suffers from severe multi-path effects that make it impossible to precisely
control the radio range. The short range of IR, which facilitates location is also a
major drawback of these systems because the building has to be wired with a signif-
icant number of sensors. In the few places where such systems have been physically
deployed, sensors have been physically wired in every room of the building. Such
a system scales poorly, and incurs significant installation, configuration, and mainte-
nance costs. IR tends to perform poorly in the presence of direct sunlight and hence
cannot be used outdoors. Another drawback is that it is a tracking system rather than a

self-localization system.

More recently, Doherty et al [DPGO01] has also proposed techniques for localiza-
tion from radio-connectivity. However, unlike our approach, theirs is centralized and
requires that nodes deliver connectivity information to a centralized processor, for so-
lution as a convex optimization problem. Even allowing for a centralized solution, the
constraints in the problem are susceptible to errors, since lack of connectivity implies
great separating distance, though nearby nodes may just be blocked by an obstacle or
intermittent noise. Inaccuracies might cause solutions to oscillate or, worse yet, make

the problem infeasible.

2.1.2 System Architecture

Localization systems using similar measurement techniques can differ considerably
in their system architecture. For instance, Active Bat, the GALORE Panel [GBEO02],

and Cricket all use ranging based on acoustic and radio signals, but their system ar-
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chitectures are centralized, hierarchical and decentralized respectively. The design of
a localization system is largely influenced by application requirements — such as the
requirement for highly accurate or real time position estimation. The system could be
either

tightly coupled (uses beacons that are wired to a centralized controller and

placed at fixed positions) or

loosely coupled (uses beacons that are wireless and coordinate in a completely

decentralized manner with no central control).

2.1.2.1 Tightly coupled systems

Several of the traditional and mature localization technologies have a tightly coupled
system architecture, motivated by application requirements. These include the Active-
Bat system [WJH97] developed for sentient computing applications [ACHO1] and the
HiBall Tracker [WBV99] designed for virtual reality applications. These applications

have high accuracy and real-time tracking requirements.

Problems of time synchronization and coordination amongst beacons are easily
resolved because these systems are wired and have a centralized controller. These
systems therefore achieve high accuracy. But the drawback is that the centralized
position estimation limits the number of devices these systems can simultaneously
track (HiBall). Secondly, wiring significantly impedes deployment. A key research
challenge in these systems is achieving similar granularity outdoors where deployment

cannot be controlled and wiring may be infeasible.
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2.1.2.2 Loosely coupled systems

Motivated by deployment concerns, recently proposed localization systems [BHEQO],
Cricket [PCBO00] and AHL0oS [SHSO01a] are decentralized and completely wireless.
They sacrifice the accuracy of tightly coupled systems for ease of deployment, and
scalability to large numbers of devices. They rely on a system of beacons, each of
which periodically transmits an advertisement containing its position. Clients compute

their position based on the advertisements they receive.

Because beacons are wireless and deployed in an ad hoc manner, beacon coverage
is not guaranteed. Due to the lack of centralized control, there is no explicit coordi-
nation amongst beacons. Thus beacons can contend and self-interfere when emitting
a signal (radio, acoustic etc.). These problems need to be addressed for large scale

deployment.

2.1.3 Robust Position Estimation Algorithms

Besides ranging techniques and architectural issues in system design, a third com-
ponent of a localization system is a robust algorithm for position estimation. In this
section, we discuss three classes of algorithms for robust position estimation, namely
Monte Carlo Localization
Convex Optimization

Iterative Multilateration

2.1.3.1 Monte Carlo Localization

In the field of mobile robotics, localization has been referred to as “the most funda-
mental problem to providing a mobile robot with autonomous capabilities” [Cox91].

Environmental obstructions such as walls, moving people and objects, can greatly in-
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terfere with the sensing capabilities of a mobile robot. Statistical techniques provide
a means to represent uncertainty in sensor measurements. For example, robot local-
ization is just an example of a statistical inference problem on Lie groups [Sri96].
Consequently, the focus here lies on robust position estimation in real-time through

probabilistic localization techniques that account for unpredictable sensing error.

An interesting development in probabilistic localization algorithms for mobile robot
navigation has been Monte Carlo Localization (MCL) [TFBO01]. MCL algorithms rep-
resent a robot’s belief by a set of weighted hypotheses (samples), which approximate
the posterior under a common Bayesian formulation of the localization problem. These
algorithms are computationally efficient, versatile, resource-adaptive and robust under
a range of circumstances. However, these algorithms have been designed to localize
a single mobile robot (with PC-class computational hardware) with respect to its en-
vironment. Consequently, they have not addressed issues of scalability or hardware

constraints.

2.1.3.2 Convex Optimization

One way to formalize the problem of estimating node positions in a sensor network,
is to express relations (angular, range etc.) between different pairs of nodes (known or
unknown) as a set of convex constraints. Doherty has proposed convex optimization
techniques [DPGO01] for solving the position estimation problem in sensor networks in
an off-line, centralized manner. The advantage of this approach is that it requires very
few references (or beacons) since all system constraints are solved globally. However,
this algorithm is not very robust to failures — when there are ambiguities in measure-

ments.
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2.1.3.3 lterative Multilateration

Multilateration is the problem of estimating a node’s position from ranges to three or
more known nodes (beacons). If not all nodes have ranges to at least three beacons,
their positions must be estimated through an iterative process. Savvides et al have ex-
plored iterative techniques for robust position estimation in sensor networks [SHS01b].
Iterative techniques incur additional energy costs in communication, and are not guar-
anteed to be completely fault tolerant. Such techniques have also been explored by

[ACZ01, NB0O].

2.1.4 Summary of Localization Work

In the previous sections, we summarized related work in a number of areas relevant
to the localization issues in this thesis, namely: localization systems, algorithms, and

sensing techniques.

Most proposed systems have focused on the localization technology, relying either
on sophisticated hardware capabilities of devices or on centralized approaches incor-

porating extensive infrastructure and planning.

Although these research efforts provide a rich spectrum of work to build on, none
of these contributions have completely solved the problem of localization in very large,

ad hoc deployed sensor networks.

This work proposes a decentralized, low-cost and hardware independent approach
can substantially increase the scalability and viability of the localization system, and
is described in more detail in Chapter 5. A detailed discussion of various proposed

localization systems is given in [BHEOQO] and [HBO1].

22



2.2 Localization Error Reduction: An Overview

Any deployed localization system is subject to errors from many sources. In this sec-
tion, we discuss the various sources of localization error, the approaches developed to

address them, and their shortcomings.

2.2.1 Sources of Localization Error

Localization error in these systems stems from three main sources. Beacon unavail-
ability is caused due to sparse beacon deployment or radio propagation vagaries [Rap96])
that affect the visibility of beacons that should be in range. If the number of bea-
cons is not sufficient, then a position estimate cannot be obtained. Poor calibration
causes measurement errors whose magnitude varies depending on the ranging tech-
nology used, precision of time synchronization and the quality of equipment. Beacon
placement and density essentially control localization granularity in proximity based
localization systems such as [BHEQ0O, DPGO01] (see Figure 2.3). The geometric rela-
tionship between beacons controls localization granularity in multilateration systems
that estimate position from distances to three or more beacons (see Figure 2.1), due to

the uncertainty in range measurements [War98].

2.2.2 Error Reduction Approaches

Researchers normally use the following approaches to reduce localization error in their

systems.

Geometric and Statistical Tests The first approach is a computational approach and
is used in [WJH97, PCBO00]. The key idea is to combine simple geometric con-

sistency checks and statistical tests to identify and eliminate incorrect distance
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measurements and deal with Gaussian noise in measurements.

Multiple Sensor Modalities Geometric and statistical tests alone cannot eliminate
non-Gaussian noise. An example of such noise is the non line-of-sight (NLOS)
problem. A second approach to eliminate spurious non line-of-sight readings
(non Gaussian error) is to use multiple but orthogonal sensing modalities (for
example, acoustic and optical ranging) [GEOla]. However, it cannot be applied
to end nodes which must rely solely on radio characteristics to determine loca-

tion.

Ultra Wide Band (UWB) Ranging A promising new technology on the horizon is
ultra-wideband radio ranging [AET, TIM]. Because ultra-wideband signals have
much higher signal bandwidth than narrow-band signals, they can penetrate
through walls and other obstacles, thereby avoiding non-line-of-sight conditions.

The technology however, is still under development and not robust to foliage.

2.2.3 Summary of Error Reduction Work

We have summarized the sources of localization error and two approaches to localiza-
tion error reduction: namely, geometric and statistical tests and combining measure-
ments from multiple sensor modalities. While these approaches can locally reduce
error, to achieve a uniform localization granularity across the terrain, we need to ad-

dress the complementary problem of infrastructure deployment.

2.3 System Deployment Techniques: An Overview

When localization is accomplished using beacons, the question of where and how

many of these beacons should be placed or deployed arises. Several other researchers
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have also stressed the significance of beacon placement in determining the overall

quality of a service such as localization or coverage [PCB00, MKPO1].

An ideal placement of beacons should use the fewest possible number of beacons
to provide uniform and full coverage of the area of interest. So far, researchers have
tried to address beacon (or node) deployment issues using either guidelines (influenced
by environment conditions and application requirements) or optimal placement algo-

rithms. In this section, we review these techniques and discuss their drawbacks.

2.3.1 Guidelines

The Cricket Location Support System [PCBO00], which is also proximity based, pro-
poses deployment guidelines for beacons in indoor environments based on practical
considerations. Whenever a beacon is placed to demarcate a physical or virtual bound-
ary corresponding to a different space, it must be placed at a fixed distance away from
the boundary demarcating the two spaces. Such placement ensures that a receiver
rarely makes a wrong choice, unless caught within a small distance from the boundary

between two beacons advertising different spaces.

When ranging is based on measurements of signal time-of-flight, the transmitter
and receiver must have line-of-sight. In non line-of-sight conditions, the signal may
take a reflected path, thereby leading to an incorrect range measurement. To maximize
the likelihood of line of sight to beacons, the Active Bat system [WJH97] uses ceiling
mounted beacons. Both Active Bat and the HiBall Tracker [WBV99] use massive

redundancy in beacon deployment to improve position-estimation.
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2.3.2 Optimal Placement

Another approach to addressing the deployment problem is to formulate it as an op-
timal placement problem. Optimal placement problems have been studied in various
contexts by researchers including facility location (theory [CGS99]) and pursuit eva-

sion problems in robotics ( [GLL99]).

2.3.2.1 Art Gallery and Pursuit Evasion

In robotics, art gallery and pursuit evasion [GLL99] problems have been well studied.
In the art-gallery analogy, the robot’s goal is to move from one position to another
to maximize visual coverage of its surroundings, as a human might try to do in a
gallery. A complementary set of approaches addresses the pursuit-evasion problem in
which a robot tries to move so as to evade observation or capture by mobile trackers.
However these approaches are based on modeling the environment as a polygon and
are best suited for vision-based localization and tracking systems such as [HMS02].
They account for neither the noise nor the wide variety of terrain conditions one would

expect to encounter for ad hoc sensor networks.

2.3.2.2 Facility Location

Facility Location [CGS99, SC99] problems are a well known class of theoretical com-
puter science problems and have been the subject of extensive research over the past
thirty-five years. In these facility location problems, there is a set of locations, where
the cost of building a facility at location ¢ is f(7); furthermore, there is a set of client
locations (such as stores) that require to be serviced by a facility, and if a client at
location 5 is assigned to a facility at location i, a cost of ¢(z, j) is incurred. The objec-

tive is to determine a set of locations at which to open facilities, so as to minimize the
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total facility and assignment costs. Since these problems are NP-hard, it is unlikely
that there exist efficient algorithms to find optimal solutions. Instead, the focus has
been on designing algorithms that are guaranteed to find solutions within a particular
factor of the optimum. Solutions are based on linear relaxations to the natural integer

programming formulations that yield extremely good lower bounds.

2.3.3 Offline Analysis

Researchers have recognized that these systems will be deployed at large in an ad
hoc fashion, without controlling the placement of each and every node. Instead, they
have focused on developing techniques to identify problems in a deployed sensor field.
For example, Megeurdicherian et al [MKPO1] propose solutions to coverage problems
in wireless ad hoc sensor networks given global knowledge of node positions using

Voronoi diagrams [Aur91] to compute maximal breach paths and find gaps in coverage.

2.3.4 Summary of System Deployment Techniques

The techniques discussed for system deployment are a) not scalable to large sensor
networks, b) not suitable for rapid deployment and c) not generalizable to a variety
of environments and systems, suffering unknown and unpredictable radio propagation

vagaries.

It is virtually impossible to preconfigure to such terrain and propagation uncer-
tainties and compute a satisfying beacon placement to achieve uniform localization

granularity across the terrain.

These considerations motivate our work. The focus of this dissertation is the design
of beacon placement algorithms based on two complementary distributed and density-

adaptive approaches, described in Chapters 7, 8 and 9.
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2.4 Adaptive Network Protocols: An Overview

To our knowledge, measurement-based adaptive algorithms for beacon placement have
not been previously studied in the networking literature. However, our work has been
informed and influenced by a variety of other research efforts in several fields, which

we now describe.

2.4.1 Adaptive Protocols in the Internet

The Internet has evolved from a small, well controlled, cooperative experiment into
an enormous, chaotic, competitive infrastructure. While this has allowed a system of
enormous scale, it has also put a lot of pressure on the underlying infrastructure. Em-
pirical (or measurement-based) adaptation has served as a powerful design principle
in Internet evolution — for various networking protocols, including the Transmission
Control Protocol (TCP) [Jac88], Scalable Reliable Multicast (SRM) [FJL95], and mea-

surement based admission control [JDS95].

TCP adaptively sets its timers or congestion control windows based on round trip
time measurements in order to adapt to a wide range of link bandwidths while main-

taining high performance [Jac88].

Algorithms in the Scalable Reliable Multicast framework (SRM) [FJL95] dynami-
cally adjust their control parameters based on observed performance within a multicast
session. This allows applications using the SRM framework to adapt to a wide range
of group sizes, topologies and link bandwidth while maintaining robust and high per-

formance.

The measurement based admission control algorithm described in [JDS95] uses
ongoing measurements rather than apriori characterization to determine behavior of

existing flows, which enables it to provide predictive service with fairly reliable delay
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bounds at network utilization significantly higher than those achievable under guaran-

teed service.

2.4.2 Adaptive Protocols in Sensor Networks

Within the context of unattended ad hoc sensor networks, the design of adaptive algo-
rithms as a self-configuring mechanism is a burgeoning area of research. For instance,
the AFECA algorithm proposed in [XHEOQQ], exploits node deployment density and
demonstrates adaptive fidelity. It adapts sleep times based on node density, scaling
back node duty cycles (and so reducing routing “fidelity”’) when many interchangeable
nodes are present. This allows it to substantially increase the network lifetime. AS-
CENT [CEQ2], GAF [XHEO01] and SPAN [CJMO01] similarly apply the idea of tuning
density to trade operational quality against system lifetime for topology maintenance

and energy-efficient routing respectively.

2.4.3 Summary of Adaptive Network Protocols

We discussed empirically adaptive protocols in the Internet — to enable congestion
control in transport protocols, reliable multicast that scales to arbitrary group sizes
and topologies, and admission control; and in sensor networks — for topology main-
tenance and routing. The novel aspect of the work described in this dissertation is
applying the concept of empirical adaptation to beacon placement, in order to enable
a localization system that can self-configure and cope with a wide variety of noisy

environments.
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2.5 Summary

In this chapter, we surveyed localization systems, system deployment and localization
error reduction techniques. None of the deployment or error reduction techniques
apply for really large scale systems. All of the scalable localization systems ignore

deployment and maintenance issues.

We describe an radio-beacon based localization methodology in Chapter 5. We also
show how these localization systems can be tuned to provide probabilistic guarantees

of localization quality.
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CHAPTER 3

Network Model

The wireless telegraph is not difficult to understand. The ordinary tele-
graph is like a very long cat. You pull the tail in New York, and it meows

in Los Angeles. The wireless is the same, only without the cat.

— Albert Einstein

Sensor networks have vastly different system constraints and performance require-
ments from traditional packet switched networks such as the Internet and wireless ad
hoc networks and require a different network architecture. The work in this disserta-
tion builds heavily on the network model advocated by Estrin et al [EGH99] for large,
densely deployed sensor networks. In this chapter, we present an overview of this
network model to provide context for our self-configuring localization system. Our

system leverages upon the following concepts:

1. Tiered Architectures. Although Moore’s law predicts that hardware for sen-
sor networks will become smaller, cheaper and more powerful, technological
advances will never prevent the need to make tradeoffs. Nodes will need to
be faster or more energy-efficient, smaller or more capable, cheaper or more
durable. Instead of choosing a single hardware platform that makes a particu-
lar set of compromises, we believe that an effective design is one which uses a

tiered platform consisting of a heterogeneous collection of hardware.
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2. Broadcast Media. The wireless channel provides a medium for broadcast com-
munication. All nodes within the nominal transmission radius of the transmitter

can receive broadcasts.

3. Multi-hop Communication. The energy costs of direct long range wireless com-
munication are prohibitive. Long range communication also prohibits spectrum
reuse. Therefore, in these systems we use multi-hop communication both to
conserve power and improve network capacity. The tradeoff is that the delay is

longer.

4. Localized Algorithms. A localized algorithm is one in which communication
within nodes is restricted to a certain scope. Localized algorithms exhibit good
scalability and robustness properties and may be ideally suited for large-scale,

multi-hop sensor networks.

5. Data-centric Communication. Unlike traditional networks, a sensor node may
not need an identity (e.g., an address)?. That is, sensor network applications are
unlikely to ask the question: What is the temperature at sensor # 27? Rather,
applications focus on the data context generated by sensors, e.g., what is the

temperature in the conference room?

6. Application-specific In-network Processing. Traditional networks are designed
to accommodate a wide variety of applications. We believe it is reasonable to
assume that sensor networks can be tailored to the sensing task at hand. In
particular, this means that intermediate nodes can perform application-specific
data aggregation and caching, or informed forwarding of requests for data. This
IS in contrast to routers that facilitate node-to-node packet switching traditional

networks.

LIn some situations, for example, for querying a specific faulty sensor the ability to address an
individual sensor is clearly necessary.
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In the following sections, we describe each of these architectural components that

together form the foundation for our self-configuring localization system.

3.1 Tiered Architectures

Many recent advances in chip integration technology will enable match-box sized sen-
sor nodes equipped with a battery, a power-conserving CPU (several hundred MHz), a

memory (several tens of Megabytes) [KKP99].

Although Moore’s law [Moo] predicts that hardware for sensor networks will in-
exorably become smaller, cheaper, and more powerful, technological advances will
never prevent the need to make tradeoffs. Even as our notions of metrics such as fast
and small evolve, there will always be compromises: nodes will need to be faster or

more energy-efficient, smaller or more capable, cheaper or more durable.

Instead of choosing a single hardware platform that makes a particular set of com-
promises, we believe that an effective design is one which uses a tiered platform con-
sisting of a heterogeneous collection of hardware. Larger, faster, and more expensive
hardware (sensors) can be used more effectively by also using smaller, cheaper, and
more limited nodes. The smaller devices will trade functionality and flexibility for
smaller form factor and power. Alone, they would not be adequate to support our
sensor network applications [CEEO1]. However, in conjunction with more endowed
nodes, they significantly enhance the network’s capabilities. There are many possible

advantages to augmenting sensor nodes with small form factor tags, such as:

e Density: Tags, by definition can be significantly lower cost and therefore can
be deployed in larger numbers, more densely, than larger, higher capacity sensor

nodes.

e Longevity: Tags can be significantly lower power and therefore can be deployed
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Figure 3.1: Trends in communication costs relative to computation costs (Source: Gre-

gory J. Pottie).

for longer periods of time, or at higher duty cycles, than larger, higher capacity

sensor nodes, particularly, if we are able to exploit higher density.

e Form factor: Tags are smaller and therefore can be more easily and unobtru-
sively attached to a wider variety of targets (e.g., for tracking, condition based

maintenance, and other logging applications).

3.2 Broadcast Media

The wireless channel provides a shared broadcast communication medium. Wireless
channel access can be arbitrated using a multiple access protocol — either contention-
based (Carrier Sense Multiple Access) or contention-free (Time Division Multiple Ac-
cess (TDMA))[Tan96]. All nodes within the nominal transmission radius of the trans-

mitter can receive broadcasts, except in a TDMA-network.
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Figure 3.2: An illustration of direct long range communication.

©
o

Figure 3.3: An illustration of multi-hop communication.

3.3  Multi-hop Communication

Communications is the dominant consumer of energy in sensor networks [PKO0O0]. This

trend is expected to continue in the near future (see Figure 3.1).

The simplest way for a sender S and a receiver R to communicate is through direct-
link communication, regardless of the distance between them. This is illustrated in Fig-
ure 3.2. The energy cost of direct long range communication is prohibitive (because

received signal power attenuates exponentially with distance). Long range communi-
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cation also prohibits spectrum reuse [PK0Q].

Therefore, in these systems we use multi-hop communication. In multi-hop com-
munication, a sender S and a receiver R may communicate through intermediate nodes
R and Q. This is illustrated in Figure 3.3. Multi-hop communication conserves power
[PKOO] and also improves the capacity [Sha48] of the wireless network [GK0O]. The
tradeoff with multi-hop communication is increased latency (due to transmission and

processing delays experienced at intermediate nodes) and routing complexity.

3.4 Localized Algorithms

Sensor network coordination applications are better realized using localized algo-
rithms. This term means a distributed computation in which sensor nodes only commu-
nicate with sensors within some neighborhood, yet the overall computation achieves a

desired global objective.

The design rationale for localized algorithms may be explained as follows. Since
the sensors themselves are physically distributed it is natural to design sensor networks
using distributed algorithms. Furthermore, localized algorithms have two attractive
properties. First, because each node communicates only with other nodes in some
neighborhood, the communication overhead scales well with increase in network size.
Second, for a similar reason, these algorithms are robust to network partitions and

node failures.

3.5 Data-centric Communication Paradigm

Ad hoc networks refer to self-organizing networks of mobile wireless nodes that do

not depend on a fixed infrastructure. Several routing protocols have been proposed for
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ad hoc networks [RT99]. Unlike traditional networks, a sensor node may not need an
identity (e.g., an address) 2. That is, sensor network applications are unlikely to ask
the question: What is the temperature at sensor # 27? Rather, applications focus on
the data context generated by sensors, e.g., what is the temperature in the conference
room? Addressing may not even be required for network operation, nodes could just
select random transaction identifiers on a per transaction basis, allowing for significant

savings in addressing overhead [EEO1].

Data is named by attributes and applications request data matching certain attribute
values. So, the communication primitive in this system is a request: Where are nodes
whose temperatures recently exceeded 30 degrees? This approach decouples data from
the sensor that produced it. This allows for more robust application design: even if
sensor # 27 dies, the data it generates can be cached in other (possibly neighboring)

sensors for later retrieval.

Directed diffusion [IGEOO] is an example of a scalable and robust data-centric
communication paradigm. By eliminating the indirection, e.g. the mapping from a
name to a node address to a route, a sensor network can eliminate the maintenance
overhead associated with constructing and maintaining these mappings and directory

services [HSI01].

3.6 Application-specific In-network Processing

Traditional networks such as the Internet are general-purpose networks designed to
accommodate a wide variety of applications. We believe it is reasonable to assume
that sensor networks can be tailored to the sensing task at hand. In particular, this

means that intermediate nodes can perform application-specific data aggregation and

2In some situations, for example, for querying a specific faulty sensor the ability to address an
individual sensor is clearly necessary.
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Figure 3.4: Layered communications architecture for sensor networks.

caching, or informed forwarding of requests for data. In densely deployed networks,
this could lead to substantial bandwidth and energy savings [IEG02] by exploiting
correlations in data. This is in contrast to routers that facilitate node-to-node packet

switching in traditional networks without examining the content of data.

3.7 Summary

To close this chapter, we illustrate the communications architecture in Figure 3.4. In

summary, tiered architectures allow us to trade form factor against functionality. We
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leverage this idea in using a beacon-based architecture for localization (Chapter 5).
Broadcast communication provides a means for a transmitting node to simultaneously
reach several receiver nodes. We exploit broadcast capabilities to efficiently imple-
ment our RF-proximity localization system without degrading system responsiveness
by having beacons broadcast position advertisements. Multi-hop communication con-
serves energy and enables spectrum reuse. Localized algorithms enable scalability
and robustness besides conserving energy in a multi-hop network. Hence, our algo-
rithms for node localization (Chapter 5) and self-configuration (Chapter 9) are local-
ized algorithms. Data-centric communications simplifies network maintenance and
configuration by eliminating the indirection of naming nodes and binding them to
node addresses. It also motivates node localization (Chapter 5), since location is a
natural way to name data in a physically coupled sensor network. In-network process-
ing conserves bandwidth and energy. We leverage in-network processing to selectively
propagate only the data items with maximum utility in the HEAP approach for beacon
self-configuration described in Chapter 8. In short, these design principles are requisite
to an effective and scalable sensor network, and altogether comprise a solid foundation

for our self-configuring localization system.
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CHAPTER 4

Experimental Methodology and Wireless Testbed

What we observe is not nature itself, but nature exposed to our method of

questioning.
— Werner Heisenberg

It is a capital mistake to theorize before one has data. Insensibly one

begins to twist facts to suit theories instead of theories to suit facts.

— Sherlock Holmes, in The Whole Art of Detection, by Sir Arthur Conan

Doyle

Our goal is to enable localization that is scalable, ad hoc deployable and energy
efficient and requires minimum configuration. To achieve this goal, we use a combi-

nation of analysis, simulation, design, implementation and performance measurement.

In this chapter, we describe the methodology and tools used to perform the research
reported in this dissertation. We start by describing our research methodology and the
simulation environment we used, followed by the details of the LECS (Laboratory for
Embedded Collaborative Systems) and SCADDS testbeds and the different networks
(nodes) that form the testbed. We conclude this chapter with a description of our

measurement techniques and performance metrics.
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4.1 Research Methodology

Our general research methodology involves three phases. In the first phase, we analyze
the problems that could affect RF-based localization performance by measuring the
properties of radio propagation in deployed wireless networks. This analysis is done
using different transmission workloads, whose control parameters include the inter-
frame spacing, density of nodes, transmit power level, transmitter-receiver distance,
area of deployment etc. Using the tools described in Section 4.4, we collect packet-
level traces and analyze them in detail. This analysis yields a better understanding of
the reasons for the degraded performance, and also gives us data on realistic values
for the different parameters in the network elements, such as bandwidths, delays, error

and radio connectivity patterns, etc.

The gathered data and intuition on the nature of the problems serve as the starting
point for the second phase, simulation. Simulation is a powerful approach that enables
rapid prototyping of various ideas and solutions, and allows us to explore the design
space of parameters and algorithms more thoroughly than in a direct implementation.
It also helps us “time travel” and explore possible technology trends that help us predict
what performance might be achievable in the future using different solutions. The
principal advantage of simulation is in having a controlled environment in which we
can analyze problems and design solutions, explore a wide variety of alternatives, and

compare them equitably.

After obtaining a good understanding of the problem via measurement and simula-
tion, we move to the third phase, implementation. Here, we implement the promising

solutions from the simulation phase in our experimental testbed.

After completing an initial implementation, we proceed to the performance eval-

uation phase, which leads back to our analysis phase. Here, we measure the perfor-
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mance of our new algorithms and protocols under different environmental and network
conditions, and gather packet-level traces to understand the reasons for observed per-
formance. When we cannot expect to completely explore how the implementation
performs under a wide variety of emulated radio propagation conditions. Finally, we
compare the results of these measurements to the results obtained from simulation.
This helps us tune the implementation to perform well, and also helps us identify

shortcomings in the simulations that we correct to accurately reflect reality.

The rest of this chapter discusses our simulation environment, the experimental
networks in our wireless testbed, and the measurement techniques and the performance

metrics we used.

4.2 Simulation Environment

Simulation is an invaluable tool in networking research and our work is no exception
to this general rule. The advantages of simulation are rapid prototyping, being able
to vary a wide range of parameters in a controlled fashion repeat-ably, which is not

always possible in real implementations.

Selecting the correct level of detail (or level of abstraction) for a simulation is a
difficult problem. Choices about detail are particularly difficult for wireless network
simulations [HBEO1]. In sensor network simulation, these choices include the topol-

ogy model, radio propagation model, and the power consumption model.

4.2.1 Topology Models

Because packets are broadcast over an unguided wireless medium, the network topol-

ogy is a function of the radio propagation model and the distribution of nodes.

Nodes were either distributed uniformly or uniformly at random in a square terrain.
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There is an edge between two nodes if there is radio connectivity between them.

4.2.2 Radio Propagation Models

A radio propagation model predicts the received signal power as a function of the
transmitter and receiver positions. To receive packets successfully, the received signal

power must exceed a certain threshold.

In order to evaluate our algorithms under different propagation conditions, we car-
ried out our simulations for
ideal radio propagation conditions
noisy radio propagation and

a terrain based shadowing model based on a bitmap of the environment.

4.2.2.1 Ideal Radio Propagation

The Friis free space model [Rap96] is an ideal radio propagation model, which pre-
dicts the received signal power as a deterministic function of the distance d from the
transmitter as

P,G,G,\?

BU) = “eer

(4.1)

where P, is the transmitted power G; and G, are the antenna gains of the transmit-
ter and the receiver respectively. L(L > 1) is the system loss and A is the system

wavelength. It is normal to select G; = G, = 1 and L = 1 in simulations.

43



4.2.2.2 Noisy Radio Propagation

To study the impact of noise on our beacon placement algorithms, we model random
propagation noise as follows. For each beacon field, connectivity to any beacon B at

any given point P is determined based on a noise model.

In our noise model, connectivity to a beacon B exists at a point P, if distance(P, B)
R(1 + u.nf(B)). nf(B) is the noise factor of the beacon B, and is chosen uniformly
between 0 and Noise, the maximum noise factor for the field. « is chosen uniformly

at random between —1 and 1.

The intent was to create non-uniform propagation noise for the beacons, and to cre-
ate random regions with higher propagation noise than the rest of the location field. We
did this because the impact of noise is less evident when each beacon has an identical

propagation field.

4.2.2.3 Terrain Based Shadowing Model

<

We have ported the terrain based shadowing model from the Arena/ns simulator [YVS01]

to our simulations and describe it below.

The basic log-normal shadowing model [Rap96] consists of two parts. The first
is a path loss model which predicts the mean received power at distance d, denoted
by P,(d) relative to a close-in reference distance do. The second is a log-normal ran-
dom variable?! that reflects the variation of the received power at certain distance. The

overall shadowing model is represented by

where $ is called the path loss exponent. Typically 5 = 2 for free space propaga-

] = —108log (%) + XaB (4.2)
dB 0

tion, and lies between 3-5 for outdoor obstructed environments [Rap96]. P,(d,) can

L1t is of Gaussian distribution if measured in dB.
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be computed from the Friis free space model [Rap96]. X,z is a Gaussian random
variable with zero mean and standard deviation o45. 045 is called the shadowing devi-
ation. Its typical value in outdoor environments is 5-12. The shadowing model extends
the ideal circle model to a richer statistical model: beacons can only probabilistically
communicate when near the edge of communication range or when there is clutter in

between.

The terrain-influenced shadowing model extends the shadowing model in cluttered
environments to a terrain based model. By inspecting a bitmap of the terrain, it distin-
guishes the case when there is clear line-of-sight between two points (good propaga-
tion condition) and when there is not (bad propagation condition). Radio propagation
conditions can be varied by choosing different path loss exponents (3, for good prop-
agation and g, for bad propagation respectively), to simulate the significant difference
in signal strength and multi-path effects between direct and indirect transmission. The
communication range is decided by the transmission power, propagation condition and

the receiving threshold.

4.2.3 Energy Consumption Models

Since our goal is to build long-lived localization systems, it is important to model the
energy usage of individual nodes. An energy consumption model characterizes the

power consumption for each of the various tasks a node may perform.

Typical processing costs are much lower than communication costs [PK00]. Addi-
tionally, a task such as transmission of small beacon advertisements is not a computation-
intensive activity. Thus, communications is the dominant consumer of energy in these
systems. Therefore, our energy model only characterizes the energy usage of the radio

transceiver only and does not explicitly model the energy usage of the processor.

Radio Energy Model: A typical radio can operate in any one of four states - Trans-
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Table 4.1: Parameters of the energy consumption model.

PARAMETER | VALUE
Px 660 mW
Pr 395 mwW
Py 35 mW
P 0 mW

mit, Receive, Idle and Sleep. We represent power dissipation in each of these states
with the symbols Py, Pg, P; and Ps respectively. The relative power dissipation in
each of these states depends on the radios being used. We choose an energy consump-
tion model to mimic realistic sensor radios [Kai00]. These parameters are also used

in [IGEOQ] and are summarized in Table 9.2.

4.3 Wireless Testbeds

While simulations are a valuable design tool, radio propagation in practice deviates a
lot from mathematical models and exhibits high spatio-temporal variation. Therefore,

experimental data is invaluable to evaluating these systems.

We have implemented a prototype of our localization methodology on two different

experimental testbeds.

1. Radiometrix RPC radios connected to laptops via. a serial interface

2. UC Berkeley Rene motes [HSWO00], completely integrated with RFM [RFM]

radios completely, shown in Figure 4.1.
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(1) Librettos with Radiometrix RPC radios (2) Motes
Figure 4.1: Experimental testbed for the localization methodology.

4.3.1 Radiometrix RPC-418

Our first experimental testbed consists of Radiometrix RPC 418 (radio packet con-
troller) modules connected to a Toshiba Libretto running RedHat Linux 6.0. In our
experiments, one of these modules is used as a receiver and four are used as bea-
cons. A 3 inch antenna is used for the experimental purposes. The software for the

Radiometrix RPC-418 modules consists of two components.

e Beacon: The beacon periodically transmits a packet (every 2 seconds in our

experiment) containing its unique 1D and position.

e Receiver: The receiver obtains its current measured position based on an input
from the user. For each measured position, it samples for a time period ¢ deter-
mined by the sample size S, and logs the set of beacons it hears from and its

current localization estimate.
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4.3.2 Berkeley Motes

We have conducted further experiments on very small, embedded devices called motes,
developed at the University of California, Berkeley [HSWO0O0], and available from
Crossbow Technologies [CRO]. These devices have a RISC-like 8-bit CPU that runs
at 4AMHz. Motes are equipped with 512 bytes of SRAM, 256 Kbits of EEPROM, and
a 916 MHz ISM radio (RF Monolithics TR1000 [RFM]) that can transmit at the rate
of 10Kb/s. The transmit power level of the radio can be controlled using a digital

potentiometer on the mote.

Motes can be programmed in three configurations: Snooper, Beacon or Logger. A
Snooper mote acts as a network interface for a PC via the RS-232 interface and can
listen to all transmitted data packets and forward this to the PC. A Beacon mote can be
instructed to periodically transmit packets with its ID at a given transmit power level.
A Logger mote records all messages sent out by beacons into an EEPROM, and can

transfer this information on demand to a Snooper mote connected to a PC.

4.4 Measurement Techniques and Performance Metrics

In this section, we discuss the tools and techniques used to measure and evaluate lo-

calization quality and our improvements in these localization systems.

4.4.1 Measurement Tools

While the basic localization software consists of just two components (beacon and

client), the experimental testbed to measure it is actually a lot more elaborate.

We made the following extensions to basic localization software components.

e Beacon: It not only transmits periodic advertisements with its position, but it
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Table 4.2: Beacon control commands supported by the transceiver.

PARAMETER

DEFINITION

STANDBY

TRANSMISSION
POWER
CONTROL

TRANSMIT RATE
CONTROL

RANDOMIZED
RESUME

In this mode, a beacon sets its clock rate to the slowest
and does not transmit its coordinates. When it receives an

ON command, it will enter the NORMAL mode again.

It can adjust its own transmission power.

(valid in NORMAL mode only)

It can adjust the rate at which it transmits its coordinates

(valid in NORMAL mode only)

Since a command packet floating on the air can control
more than one beacon, each beacon in the STANDBY
mode will enter NORMAL mode x milli-seconds after
it hears the command, where z € (0, ) milli-seconds

and y is adjustable.

also listens to and responds to commands from a Beacon Remote Controller.

e Client: It not only estimates its position from the beacon advertisements it re-

ceives (the algorithm for doing this position estimation is described in Chapter

5), but also reports its estimated position to the Beacon Interpretor.

We developed the following control and visualization tools for experimental con-

trol.
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Transceiver: The Transceiver communicates with the Beacons as well as the
Clients. It is needed to send control packets to beacons and to interpret the
estimated coordinate sent by the Client. To avoid interference, problems with
beacons’ life-time, etc. the beacons can be remotely controlled. The commands

supported are enumerated in Table 4.4.1.

Beacon Remote Controller: A Java Graphical User Interface (GUI) that lets
the users select the desired TRANSMISSION POWER and TRANSMIT RATE
settings that beacons operate at. This program will encode the information and
send it as a command packet to the beacons. ON and OFF commands can be

selected to toggle the beacons between STANDBY and NORMAL modes.

Beacon Interpretor: A Java Graphical User Interface (GUI) that listens for coor-
dinates the Client report and puts them in a table. A user can manually enter the
actual coordinates of the Client is located and these coordinate will be compared

with the estimated coordinate to compute the localization error.

Visualization: The visualization program displays all transmitting motes in our
laboratory. This is useful to verify whether beacons are transmitting as expected,

or if other motes are transmitting and interfering with the experiment.

By allowing us to automatically control and configure the beacons, these tools

allow us to experiment rapidly under different beacon density and interference settings

without having to reprogram and redeploy all the beacons.

4.4.2 Performance Metrics

The metrics we use to evaluate performance of the localization system include the

mean and median localization error in the terrain. ldeally, these should be close to
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4.5 Summary

This chapter described our research methodology, which includes analysis, simulation,
design, implementation and performance evaluation. We described the simulation en-
vironment and the details of our radio propagation and radio based energy models.
We also described our wireless testbed consisting of Radiometrix RPC-418 radios and
Berkeley motes. Finally, we defined metrics used to evaluate localization performance

in the rest of this thesis.
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CHAPTER 5

Localization from Radio Proximity

The amount of misguided ingenuity which has been expended on these
two problems of submarine and aerial navigation during the nineteenth
century will offer one of the most curious and interesting studies to the

future historian of technologic progress.
— George Sutherland, American lawyer, 20th Century Inventions (1900)

Having established our network model and system model based on tiered architectures,
we now turn to a detailed discussion of the core contribution of this thesis: our self-
configuring localization system architecture. In the next four chapters, we describe
the issues in making the localization system self-configuring and the techniques for

achieving that self-configuration.

In this chapter, we develop the distributed algorithm, sensing model, and the net-
work protocol that comprise our localization system. Each unknown node can compute
its position individually, enabling the system to scale to large numbers of nodes. More-
over, several unknown nodes can compute their positions simultaneously, allowing the
system to be extremely responsive and operate in real time. In the next few sections,
we describe our localization system in detail, focusing on:

a detailed overview of our localization system
radio connectivity inference

position estimation algorithm based on radio connectivity relations.
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Table 5.1: Notation used to describe the RF-based localization methodology.

PARAMETER | DEFINITION

d Separation distance between adjacent beacons

R Transmission range of the beacon

T Time interval between two successive position advertisements transmitted
by a beacon

t client sampling or data collection time

Nyent (i, 1) Number of advertisements that have been sent by B; in time ¢

Nreey(iy 1) Number of advertisements sent by B; that have been received in time ¢

CM; Connectivity metric for B;

S Sample size for connectivity metric for beacon B;

CMipresh Threshold for CM

(Xests Yest) Estimated Location of the receiver

(X4, Ya) Actual Location of the receiver

We then describe its implementation and present a large number of experimental and

simulation results under a number of typical network and environment configurations.

5.1 Overview

In this section, we formalize the problem of node localization, state our design goals

for an ideal solution and describe our network location protocol.

5.1.1 Problem Definition

Formally, the problem of node localization can be stated as follows.

Given:
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S, a collection of sensor nodes at positions P;
M, a set of measurements that establish relations between P;.

Estimate: P, Vi

5.1.2 Design Goals

An ideal localization solution must meet the following design goals:

e RF-based: We focus on small nodes which have some kind of short-range ra-
dio frequency (RF) transceiver. Our primary goal is to leverage this radio for
localization, thereby eliminating the cost, power and size requirements of a GPS

receiver.

e Client based: In order to scale well to large distributed networks, the responsi-
bility for node localization must lie with the client node that needs to be localized

and not with the beacons.

e Ad hoc: In order to ease deployment, we desire a solution that does not require

extensive pre-planning or wired infrastructure.

e Responsiveness: We need to be able to localize individual nodes within a fairly

low response time.

e Low Energy: Small, un-tethered nodes have modest processing capabilities, and
limited energy resources. If a device uses all of its energy localizing itself, it will
have none left to perform its task. Therefore, we desire to minimize computation

and message costs to reduce power consumption.

e Adaptive Fidelity: Finally, we want the accuracy of our localization algorithms

to be adaptive to the granularity of available beacons.
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5.1.3 Network Location Protocol Description

Multiple nodes in the network with overlapping regions of radio coverage serve as
beacons, labelled B; to B,. Beacons are situated at known positions, (X1,Y;) to

(Xn, Yn).

Beacons periodically broadcast advertisement packets (period = T") containing their
respective positions. To avoid collisions, beacons randomize their packet transmis-
sions, rather than explicitly coordinate with each other. Furthermore, in any time in-

terval 7', each of the beacons would have transmitted exactly one advertisement.

5.2 Sensing

We measure radio connectivity to establish proximity relations between known nodes
(beacons) and unknown nodes (clients). In this section, we describe the statistical
methodology for inferring radio proximity and nominal radio transmission range. The
notation we use to describe our proximity inference and position estimation methods

are given in Table 5.1.

5.2.1 Proximity Inference

To drive the radio proximity-based position estimation algorithm, a client node must
determine which beacons it has connectivity to, and whether the connectivity is weak

or strong.

For a fixed time period ¢, each client node listens to and collects all the position
advertisements that it receives from various beacons. We characterize the information

ataclient c € C, where C is the set of all clients, for each beacon B; by a connectivity
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metric (C'M.;), defined as:

Nrecv (’i, t)
Nsent(ia t)

Since each client has its own connectivity metrics, we implicitly drop the ¢ subscript.

CM.,; x 100 (5.1)

In order to improve the reliability of our connectivity metric in the presence of var-
ious radio propagation vagaries, we would like to base our metric on a sample of at
least S packets, where S is the sample size, a tunable parameter of our method (i.e.,
Nsent(1,t) = S). Since we know T to be the time period between two successive bea-

con signal transmissions, we can set ¢, the receiver’s sampling time as:

t=(S+1-T (0<e<1) (5.2)

Note that a beacon message can be heard by all the clients in its range.

5.2.2 Nominal Radio Transmission Range

The nominal transmission range of a radio cannot be theoretically determined, but
must be established empirically. We define the nominal radio transmission range of a

beacon statistically as the median range with 90% connectivity.

5.3 Position Estimation

In this section, we describe our algorithm for position estimation and discuss its com-

plexity.
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5.3.1 Algorithm Description

From the position advertisements that it receives, the client node infers proximity to
a collection of reference points for which the respective connectivity metrics exceed
a certain threshold, C M5 (sSay 90%). We denote the collection of beacons by
Bi,, Bi,, ..., B;,. The client localizes itself to the region which coincides to the in-
tersection of the connectivity regions of this set of beacons, which is defined by the

centroid of these beacons.

Moot Xy Vb4 ¥
k ’ k

(Xestayzast) = ( (53)

We characterize the accuracy of the estimate by the localization error LE defined

as,

LE = \(Xest — Xa)* + (Yant — Yo (5.4)

By increasing the range overlap of the beacons that populate the grid i.e., increas-
ing the ratio £, the granularity of the localization regions becomes finer, and hence the

accuracy of the location estimate improves. This is illustrated in Figure 5.1.

5.3.2 Algorithm Complexity

Both the communication and computation complexity for a device to infer its position

once are O(k), where k is the number of beacons in radio range.

Because both the computation and communication complexity grow linearly with
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THE SHADED AREA REFLECTS ONE LOCALIZATION REGION
Figure 5.1: Granularity of localization regions vs. range overlap.

the density of the beacon infrastructure, rather than the size of the system, our system

is generally scalable.

5.4 Preliminary Measurements

Since our localization method depends on the spherical radio propagation assumption,

we checked the validity of our assumption in both outdoor and indoor environments.

In outdoor environments, we evaluated the effectiveness of our idealized radio
model by comparing its accuracy to experimental measurements. We evaluated propa-
gation between two Radiometrix radio packet controllers (model RPC-418) operating
at 418 MHz. A node periodically sent 27 byte position advertisements; we define a
90% packet reception rate as connected and empirically measured an 8.94m spherical

range for our simple model.

To evaluate how well our simple model compares to a real-world scenario, we
placed a radio in the corner of an empty parking lot (i.e., at the origin (0,0)) and

then measured connectivity at 1m intervals over a 10m square quadrant. Figure 5.3
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Figure 5.2: An illustration of localization with multiple transmit power levels.

compares these measurements with connectivity as predicted by the model. Among
the 78 points measured, the simple spherical model matches correctly at 68 points (an
87% correlation) and mismatches at 10, all at the edge of the range. Error was never

more than 2m. No dead spots were observed.

As expected, our simple, idealized radio model approximation is not appropriate
for indoor environments where reflection and occlusion are common. Our indoor mea-
surements of propagation range varied widely from 4.6m to 22.3m, depending on walls
and exact node locations and orientations. Furthermore, these measurements were not
time invariant. We found that connectivity could vary from 0 to even 100% for the

same transmitter receiver positions, at different times of the day.

Hence the idealized radio model may be considered valid for outdoor unconstrained

environments only.
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5.5 Position Estimation with Multiple Power Levels

To further improve the granularity of beacons, we can leverage the capability of nodes
to transmit at software controllable radio power levels. Using a small number of differ-
ent power levels we can create a number of distinct ranges for each beacon(see Figure

5.4).

As usual, beacons situated at known positions, (X;, Y;), transmit periodically with
a time period T'. However, they cycle through a discrete number of transmission power

levels.

Clients listen for a period ¢ > T to evaluate connectivity. If the percentage of mes-
sages received from a beacon B; with range r; in a time interval ¢ exceeds a threshold
C Mynresn, that beacon is considered connected at ;. The smallest of all connectivity

ranges is considered for each beacon.

When the beacon placement is uniformly distributed, the weighted centroid of the

positions of all connected beacons is a feasible solution in the region of connectivity
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Figure 5.4: Nominal transmission range vs. transmit power setting.

overlap [BEG95]. A client estimates its position (X, Yes:) to be the centroid of the

positions of all connected beacons.

NG
w; = (m (5.5)

(Xests Yeur) = (SEjwi- X, SE w; - ) (5.6)

A more general convex optimization technique to determine a feasible solution can

be found in [DPGO01] (for non-uniform placement.)

Given the actual position of the client (X,, Y,), we can compute the accuracy of
the localization estimate or the localization error LE3(X,, Y,) , which is the distance

between the client’s estimated and actual positions.

D=

LEB(Xaa }/;L) - [(Xest - Xa)2 + (}/;st - Y;L)2] (57)
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5.6 Experimental Results

5.6.1 Experimental Testbed

Our experimental testbed [TES] consisted of 5 Radiometrix RPC-418 (radio packet
controller) modules connected to a Toshiba Libretto running RedHat Linux 6.0. One
of these modules is used as a receiver and the rest are used as beacons. A 3 inch

antenna is used for the experimental purposes.

The software for the Radiometrix RPC-418 modules consists of two components.

e Beacon: The beacon periodically transmits a packet (every 2 seconds in our

experiment) containing its unique 1D and position.

e Client: The receiver obtains its current measured position based on an input from
the user. For each measured position, it samples for a time period ¢ determined
by the sample size S, and logs the set of beacons it hears from and its current

localization estimate.

For our experiment, we placed the 4 beacons at the four corners of a 10m x 10m
square, in an outdoor parking lot. This square was further subdivided into 100 smaller

1m x 1m grids and we collected data at each of the 121 small grid intersection points.

5.6.2 OQOutdoor Results

In this section, we discuss the results obtained from our outdoor experiments. Our

experimental parameters were 1" = 2 seconds, S=20, t=41.9 seconds.

Figure 5.5 shows the areas of connectivity of the 4 beacons in the grid. We see
several distinct regions in the grid, based on the areas of overlap. Each distinct region

constitutes an equivalence class, defined by the centroid of the beacons in the region.
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Figure 5.5: Experimental vs. theoretical 90% connectivity ranges for the four beacons.

These can be contrasted with the theoretically predicted overlap regions, also seen in

Figure 5.5.

The location estimate at each grid point is the centroid. We use the localization

error metric defined previously to characterize the performance.

In Figure 5.6, the localization error obtained from experiment is plotted as a func-
tion of the position. The localization error is lowest at the the position corresponding
to the centroid of the region and increases towards the edges of the region. The mean
localization error was 1.83 m and the standard deviation was 1.07 m. The minimum

error was 0 m and the maximum error was 4.12 m across 121 grid points.

Figure 5.7 shows the cumulative localization error distribution across all the grid
points, from both the theoretical model and the experiment. They track each other
closely, including plateaus in the error levels, although the spherical model is consis-
tently more optimistic. In our experimental results, for over 90% of the data points,
the localization error falls within 3.0 meters i.e within 30% of the separation-distance
between two adjacent beacons. This result is based on 4 beacons only. Since we ob-
served a high correlation between our model and experiment, improved granularity

can be expected with a higher overlap of beacons.
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Figure 5.6: Localization error vs. position.

5.7 Detailed Simulations

Based on our validated outdoor model, we performed numerical simulations to predict
how the granularity of localization could be expected to improve in our scheme when

the overlap of beacons is increased.

In our simulation, we assume an infinite two-dimensional mesh of beacons, with
any two adjacent beacons spaced a distance d apart and transmission range R. Our

coordinate system is centered at one such beacon, which is assumed to be at (0, 0).

The localization estimate of any point (X, Y") in the mesh can be obtained in two

steps.

Step 1: Determine all the beacons which are within range R of (X, Y"), by considering
all the beacons in the rectangular region defined by (X — R, Y — R) and (X +
RY + R).

Step 2: Localize (X, Y) to the centroid of the selected beacons and compute the cor-
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Figure 5.7: Cumulative localization error distribution.

responding localization error.

5.7.1 Localization Improvements with Increased Range Overlap

For a given d, we increase the overlap R/d from 1 to 4. We consider the mean and
maximum localization errors of the localization estimates for 10201 uniformly spaced
points within one grid in the mesh, for each R/d value. Figure 5.8 presents the simu-
lation based scaling result of the localization error behavior. Although the maximum
and mean error do not decrease monotonically, non-trivial increments to R/d, (for in-
stance, an increment of 1) lead to lower maximum and mean localization errors on the
whole. In particular, the maximum localization error experiences a substantial drop

(from 0.5d to 0.25d) when the overlap R/d is increased from 1 to 4.
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Figure 5.8: Localization error vs. range overlap, R/d. (Simulations)

5.7.2 Localization Improvements with Multiple Power Levels

Figure 5.9 illustrates the improvement in median localization error as the number of
transmit power levels increases with ideal radio propagation. We see again that be-
yond a certain limit, additional transmit power levels do not provide much gains in

localization.

5.8 Summary

In this chapter, we addressed the problem of node localization for very small devices

that do not have GPS receivers. We explored an RF-based localization methodology in
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Figure 5.9: Median localization error vs. number of unique transmit power levels.

which the client localizes itself with high confidence (under an idealized radio model)
to the weighted centroid of a set of proximate beacons using a connectivity metric.
Although our approach uses a very simple radio model, in outdoor environments it

correlated very well with reality (87 percent).

Our approach is simple, entirely RF-based, receiver-based and adaptive to the gran-
ularity of beacons available. Additionally, it requires no coordination among beacons
or sensor nodes. It is therefore potentially scalable to very large distributed networks

of devices.

Our experiments have shown promising results with our scheme for a small number
of beacons. Our simulation results suggest that the granularity of localization can be
further improved by increasing the overlap of beacons and by using multiple power

levels.

The localization granularity from our RF-proximity based approach may not be

sufficient for certain classes of applications. It is nevertheless useful for several appli-
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cations with less stringent accuracy requirements. We will explore these in Chapter 10.
However, several general problems still need to be tackled for large scale deployment,
for example, adapting to noisy environments. We will address these in the next four

chapters.
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CHAPTER 6

Self-Configuring Beacon Systems

Making a system reliable is not really hard, if you know how to go about

it. But retrofitting reliability to an existing design is very difficult.

— Butler Lampson [Lam83]

6.1 Introduction

The localization system we have developed and described in Chapter 5 uses a set of
beacons (nodes with known positions) that are spatially distributed throughout the ge-
ographical region of interest, so that client nodes (nodes whose positions are known)
can localize themselves by listening to nearby beacons. Besides our approach, several
other proposed localization systems rely on beacons [PCB00, HHS99, WBV99]. Al-
though such localization systems require an underlying infrastructure of beacons, they
have two advantages over localization systems without beacons such as [Nag99], in
which clients must establish a coordinate system and locate themselves in that coordi-
nate system solely by communicating with each other. First, having beacons spatially
distributed throughout the geographical region lets devices compute their location ef-
ficiently in a scalable, decentralized manner without loss of accuracy. Second, even
when the application permits off-line, centralized position-estimation algorithms (as

in [DPGO1]), both the convergence and estimation accuracy can be significantly im-
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proved by having some nodes as beacons [DPGO01].

In large ad hoc sensor networks that must operate unattended, our primary goal is
to make the localization system simple to configure and deploy. In a beacon based

localization architecture, this includes two major concerns.

e Beacon Configuration. Beacons must know their positions with respect to some
coordinate system in order to advertise them. Each beacon needs to be config-

ured with its spatial coordinates during deployment.

e Beacon Placement. How many beacons do we need? Where should they be
placed? The beacon density and placement are important in influencing the over-
all localization quality. Uniformly dense placement is good and has its benefits,

it is not adequate.

In the following sections, we explore various configuration issues for beacon sys-

tems in greater detail and motivate our approach based on self-configuration.

6.2 Automating Beacon Configuration

Automating the process of configuring beacons with their spatial coordinates is impor-
tant for large scale and highly dense beacon deployment. This includes two issues —
establishing a coordinate system (geodetic, Cartesian, polar) and a frame of reference,

and estimating beacon locations in that coordinate system.

We can automate the process of assigning beacon coordinates using several tech-
niques. In an outdoor setting, we can assume that beacons will infer their position
through GPS [HLC92]. In this case, these positions would need to be transformed
from geodetic coordinates (latitude, longitude) to Cartesian coordinates in the frame
of reference [HLC92] if desired.
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Table 6.1: Notation used to describe beacon systems for localization.
PARAMETER | DEFINITION

B A beacon device that has knowledge of its position
(and is presumed to be statically placed.)
C A client device whose position is unknown

(and can either be static, portable or autonomously mobile.)

B An assigned placement of beacons.
N The total number of deployed beacons.
A The total area in which beacons are deployed.

position(B) and | The position (X and Y coordinates) of a beacon B.
(XBa YB )

Range, R The nominal transmission range of the beacons, in an area A.

In an indoor setting, we believe that initial beacon placement will be structured.
Only a few beacons will need to have their positions assigned manually, the rest can
exploit this structure (for example, in a rectangular grid) in beacon placement to infer

their coordinates. This is the approach used in fact in the HiBall tracker [WBV99].

6.3 Impact of Beacon Density

To understand the issues involved in beacon placement, we start by considering the
impact of beacon density on the quality of localization in these systems. Table 6.3

describes the notation used to describe beacon systems used for localization.
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Figure 6.1: Beacons per nominal coverage area is the number of beacons in the circle

of radius R (radio range).

6.3.1 Characterizing Beacon Density

How should we define beacon density?

Beacon deployment density p , a classical notion, denotes the number of beacons per

unit area.

(6.1)

=

However, this definition does not abstract away the effect of the nominal communica-
tion (radio transmission) radius on the perceived density. We have come up with a new

density metric that encapsulates the effect of the radio transmission range.

Beacons per neighborhood p (also referred to as beacons per nominal radio cover-

age area bpnrca) denotes the number of beacons that exist in a nominal radio
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Figure 6.2: Impact of beacon placement on localization granularity.
transmission coverage area (m - Range?). This is illustrated in Figure 6.1.

i = p-7- Range? (6.2)

6.3.2 Impact on Localization Granularity

For a given beacon placement B and a square terrain of area A = Side x Side. Let

r denote the ratio 1. | et us the define a grid of points step units apart, the point
P

P(k,1) as follows:

P(k,l) = (k-step,l-step) YO<Ek,I<r (6.3)

The quality of localization in the terrain can be characterized in terms of statisti-
cal metrics such as the mean and median localization error over various points in the
terrain, defined as follows.

MeanErr(B) = EZ:OE%fiEl’;(QP (k, ) (6.4)

MedianErr(B) = median(LEg(P(k,l))) VYO<kEk,I<r (6.5)

Figure 6.3 plots the mean localization error as a function of beacon density. Re-

gardless of actual beacon placement, the localization granularity saturates at a certain
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Figure 6.3: Mean localization error vs. Beacons per nominal radio coverage area.

(Simulations).

threshold beacon density 155 LOCalization granularity saturates at a certain number
of beacons per neighborhood, around 6 in our case. The graph is based on simulations

of 1000 random topologies per beacon density.

6.3.3 Impact on Channel Contention and Self-Interference

Consider a contention-based underlying media access protocol, wherein more than one
node may attempt to transmit at the same time i.e., contend for the wireless channel.
An example of such a media access protocol designed for wireless sensor networks is
SMAC [YHEO02].

Let us assume the beacons per nominal radio coverage area is p. Assume that any
given instant, the probability of a beacon transmitting an advertisement packet is p. If

T, is the transmission time of an advertisement packet and the beaconing interval is T’
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then
P = = (6.6)

Let p,uccess denote the probability that the packet is successfully received without
any interference. Let p.ouision, denote the probability of collision in the wireless system.

\We can model the channel contention as follows.

Let X indicate number of beacons that will try to transmit a packet.

Psuccess = PT[X = ]-] (67)
= p-(1-p)" (6.8)
Pcollision = 1- Psuccess (69)

This shows us that the probability of packet collision increases exponentially with
the beacon density u. In order to maintain the same collision probability p.ouision
at a higher beacon density, we need to significantly reduce the packet transmission
probability p. Since the transmission time of a beacon advertisement packet T'x is
fixed, this means that we must correspondingly increase the beaconing interval 7.
Since the sampling time of a client for its location computation (defined in Chapter
5) is directly proportional to 7', this means that there is a corresponding increase in
location computation latency. Thus, we cannot simultaneously increase beacon density

and maintain the same system responsiveness for localization.

6.3.4 Two Assertions about Beacon Density

We can make two assertions about beacon density in the context of proximity-based

localization systems with localized location computation (Chapter 5).

1. Regardless of actual beacon placement, the localization granularity saturates at

a certain threshold beacon density pinresn (S€€ Figure 6.3, pinres, = 6 bpnrca).
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Figure 6.4: Impact of RF propagation vagaries on localization granularity.

2. As the beacon density increases, the probability of collisions among competing
beacons vying for the same transmission slot increases. (Chapter 5, see also
[PCBO00]).

At low and medium beacon densities, the quality of localization suffers due to poor
placement of beacons due to various environment and calibration-dependent vagaries
which we will discuss in the next two sections. Unfortunately, we cannot predict these
problems before hand. These problems cannot be addressed at design-time. This

motivates run-time self-configuration of the localization system.

6.4 Impact of Environment

We discussed the characteristics of radio propagation in Chapter 2. In various subtle
ways (e.g. path-loss, shadowing and multi-path), the environment affects the quality of
radio propagation, and consequently localization in an RF-based localization system

(see Figure 6.4).

Tolerance of random placement (see Figure 6.2) or high node mobility are not the
only reasons to design sensor networks to be self-configuring. Even in cases where
they are placed uniformly and do not move, nodes must independently self-organize to

coordinate for collaborative sensing functions [SGA00, CHZ02].
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The environments in which these systems are expected to operate will be time-
varying due to RF propagation vagaries and other environmental dynamics (for ev-
idence of time-varying behavior, see measurements by Zhao [ZGE02, Zha02]). In
addition to time-varying components, many characteristics of the environment will be
a function of fixed elements, such as trees or hills on a terrain. Although time-varying
effects can be analyzed statistically [GKWO02], errors and distortions resulting from
fixed elements must be compensated by detecting and adapting to these conditions.
An approach aimed at characterizing the environment has the potential to improve
sensing fidelity as well as energy efficiency. For example, in the multi-modal localiza-
tion system [GEO1b] previously described, nodes could retain long-term information

about non line of sight pairs detected when obstructions change slowly.

Savvides et al [SHS01a] propose an approach by which nodes in a wireless net-
work can improve the accuracy of their RSSI based location estimates (discussed in
Section 2) by dynamically deriving (learning) the surrounding wireless channel prop-
erties. The algorithm starts with an initial guess of channel properties® and tries to
obtain node position estimates through a sequence of successive multilateration. The
initial set of position estimates can now be used to obtain an initial estimate of the
channel properties by providing two crucial components: (i) A large set of inputs for
the estimation of the channel parameters. (ii) A corresponding error variance that is

used as a weight for each input in the channel model estimator.

Using these inputs, the channel model estimator can produce a new estimate of the
channel properties which can be used in subsequent multilaterations. The process is
repeated until the values of the channel model, and consequently position estimates

converge to a specified tolerance.

This approach makes it a versatile solution that even without prior calibration can

LFor instance, parameters such as the additive Gaussian channel noise in the log-normal shadowing
model[Rap96].
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work in many different settings where the propagation channel properties are different.
Furthermore, if the sensors are deployed over a wide area, the signal propagation char-
acteristics may vary widely even across the region of interest. Calculating the propa-

gation characteristics locally yields better accuracy in the node location estimates.

6.5 Impact of Sensor Calibration

As in any sensor system, calibration is important to our RF-based localization system.
Calibration refers the creation of beacon specific information such that any given bea-
con can transmit at the same power as the others and can accurately map its transmit
power level to a nominal transmission range. Characterizing and accounting for bea-
con specific variations in this way insulates higher level localization algorithms from

hardware dependencies and the details of signal processing.

When beacons are un-calibrated, variations among beacons can cause large varia-
tions in perceived beacon density, anisotropic coverage, asymmetric connectivity, etc.

These can degrade the performance of the localization scheme.

While simple filtering techniques can eliminate some outliers, beacons must still
be able to auto-calibrate and compensate for the perceived differences. Hightower et
al [HWBO00] and the TinyOS project at Berkeley have been studying how to implement

self-calibration in sensor nodes. We can potentially leverage their techniques.

6.6 Goals of Self-Configuration

The goal of self-configuration is for beacons to automatically adapt to variations in
density, environment and miscalibration. Others have addressed adapting to a fixed

environment [SHS01a, GE01b] and to miscalibration [HWBO0].
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Figure 6.5: A self-configuring localization system architecture.

This dissertation focuses on adapting to beacon density. We have formally intro-
duced the notion of beacon density and shown that the quality of localization can be
related to the density of beacons. The deployed density of beacons is however not

equal to the actual beacon density.

We have shown that different problems arise at different deployment densities, such
that density guides the approach to self-configuration. We discuss the following two

forms of self-configuration in this dissertation.

e At low and medium densities: Are the deployed beacons enough to guarantee
good localization quality throughout the terrain? How do we ensure this? If they

are not enough, how can we add beacons to improve the quality of localization.

e At high densities: How do we coordinate densely deployed beacons so as to
reduce channel contention while best exploiting the spatial diversity and redun-

dancy of densely-deployed beacons?

6.7 Summary

In this chapter, we explored various issues in deploying beacon systems for localiza-

tion. We studied the impact of beacon density, environment and sensor calibration on
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localization quality. Our approach was bimodal — we studied these issues to moti-
vate why beacon systems must self-configure. Conversely, we also identified various
forms of self-configuration and show how self-configuring beacon systems (organized
according to the architecture described in Figure 6.5) can eliminate these deployment

issues.

We discuss three different forms of self-configuration in Chapters 7, 8 and 9 re-

spectively.
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CHAPTER 7

GRID: Centralized Incremental Beacon Placement

To measure is to know. If you cannot measure it, you can not improve it.
— Lord Kelvin

In Chapter 6, we established that beacon placement would affect the quality of lo-
calization. In this chapter, we formalize and address the problem of adaptive beacon
placement: given an existing field of beacons, how should additional beacons be placed

for best advantage?

We develop novel algorithms that permit a person or mobile robot to place addi-
tional beacons to incrementally extend an initial beacon field. This allows for measurement-
based adaptation to terrain conditions. We also evaluate the gains from incrementally

improving an RF-based location field using extensive simulations.

If the only way to improve the quality of localization in a region by adding an
additional beacon is to place it at a single point in the region, then it is difficult to design
algorithms that can identify that point in the presence of so much noise. The design
of our algorithms is predicated on the notion of solution space density [BEGO01]. The
efficacy of algorithms (such as our beacon placement algorithms) designed to work
in noisy environments is predicated on the assumption that the solution space for the
problem must be dense in number of satisfying solutions. We are seeking a reasonable

solution, not necessarily a unique optimal solution.
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7.1 Motivation

Intuitively, a uniformly dense placement of beacons should suffice to ensure a certain
quality of localization. Uniform placement is good, but insufficient due to the follow-

ing reasons:

e Beacons may be perturbed during deployment. Consider for instance, a terrain
comprising of a hilltop. Air dropped beacon nodes will roll over the hill, while

lighter sensor nodes may stay atop the hill.

e Even when beacon placement is uniform, noise (in the form of terrain and propa-
gation uncertainties) may affect the visibility of beacons that should be in range.
Radio signal propagation in general is significantly affected by multi-path ef-
fects, fading, shadowing etc. Uneven terrains and obstacles bring in an addi-

tional dimension of uncertainty [Rap96].

Very dense placement may not be a viable solution due to several reasons:

e Cost or Power: The cost of the beacons may preclude very dense beacon place-
ment. Power considerations may require that only a restricted smaller sub-
set of beacon nodes be active at any given time so as to prolong system life-

time [EGH99, XHEO0].

e Terrain Commonality: Even when cost is not a concern, the environmental or
terrain conditions may be such that merely increasing the density uniformly will
not overcome the problem. For instance, if the number of air-dropped beacons
were doubled, the same situation would persist. Also, the terrain may already
have a very high density of beacons (enough to achieve the maximum possible
quality of localization under ideal conditions) and hence the new beacons must

be added in particular places to cope with noise.
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Figure 7.1: Mobile robot capabilities for instrumenting terrain.

e Self-interference: At very high densities, the probability of collisions among
signals transmitted by the beacons increases. Therefore even if we had unlimited

numbers of beacons, we would like to limit their use.

The fundamental limitation of these two approaches is that they are basically fixed
strategies, that do not take into account environmental conditions that cannot be pre-
dicted a priori. It is virtually impossible to preconfigure to such terrain and propa-
gation uncertainties and compute an ideal (or even satisfying) beacon placement that
uniformly achieves a desired quality of localization across the region. Clearly, the bea-

con placement needs to adapt to the noisy and unpredictable environmental conditions.

7.2 Design Considerations

Given a localization algorithm, one must deploy a field of beacons as infrastructure,

and then extend this field if it proves insufficient.

Our approach to incremental improvement of localization through beacon place-
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ment is based on measurement-based adaptation. By adaptation, we mean we are
improving the quality of localization by adjusting beacon placement or adding a few
beacons rather than by completely re-deploying all beacons. By measurement-based,
we mean the deployment of additional beacons is influenced by measurements of the
operating localization system rather than by careful or complete off-line analysis of a

complete system model.

Our general approach is to use a GPS-equipped mobile robot or human to explore
the terrain. We assume that the robot (or human) can determine its geographic position
using a high precision differential GPS receiver and map it to the local coordinate
system. The robot has a short range radio similar to the one used by the sensor nodes,
and can thus compute its localization estimate using the connectivity based localization
algorithm. Thus it has a means of computing the localization error at any point on the
terrain. Italso has a capability to carry a certain number of beacons that it can deploy as
additional beacons wherever it deems necessary (see Figure 7.1). Therefore, based on
its measurements of localization error at different points in the region, it must compute
good places to deploy additional beacons (illustrated in Figure 7.2) and deploy them.

1 We define this problem as adaptive beacon placement.

7.2.1 Assumptions

The design space of possible robot-based beacon placement algorithms is very large.
We have begun with a simple choice: an off-line algorithm with complete terrain ex-
ploration and no measurement noise. We use this simple problem to define the problem

and preliminary solutions. These solutions can be generalized to other problems.

In general, the SCOWR project [SCO] focuses on incorporating robotic motion and communication
into distributed sensing applications (e.g see [MS00]).
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Figure 7.2: The GRID approach to adaptive beacon placement.

7.2.2 Problem Definition: Incremental Beacon Placement

More formally, the problem of incremental beacon placement can be stated as follows.

Given:

7 - A square terrain of side Side and area A.

B - An initial placement of beacons in area A.

M - A set of localization error measurements at various points in the terrain step
meters apart (step < Side) recorded by a robot.

R - Nominal transmission range for each beacon.

Find:

C - A candidate point where a new beacon can be added to improve localization.
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7.3 Grid Design

Before we describe Grid, we describe two simple and intuitive off-line algorithms,
Random and Max, for incremental beacon placement. The goal of all these algo-
rithms is to determine candidate points for placement of an additional beacon, so as
to maximize the gains obtained. These three algorithms differ in the amount of global

knowledge and processing used to make their decision.

7.3.1 Random

This is the simplest algorithm, which pays no attention to the quality of localization
at different areas of the region and simply selects a random point in the region as a

candidate point for adding an additional beacon.
Step 1 Select a random point (X, Y;) in the terrain.
Step 2 Add a new beacon at (X, Y;).

We investigate this primarily for comparison with the other algorithms, but also
because it is similar in character to uncontrolled airdrop of additional nodes. The

complexity of this algorithm is O(1).
7.3.2 Max

The Max algorithm (illustrated in figure 7.3) can be described in three steps:

Step 1 Divide the terrain into step x step squares.

Step 2 Measure localization error at each point (i x step, j x step) in the terrain that

Side
step

corresponds to a square corner. (0 < i,j <

Number of data points in the terrain, Pr = (32 + 1)°.
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Figure 7.3: An illustration of the Max algorithm.

Step 3 Add new beacon at the point (X, Y;,,) that has the highest measured localiza-

tion error among all points.

This algorithm is predicated on the assumption that points with high localization
error are spatially correlated. The advantage of this algorithm is that it can be computed
in a very straightforward way. However, it may be overly influenced by propagation
effects or random noise that may cause very high localization error at one point while
the localization error at points very close to it remains low; i.e., it is sensitive to local

maxima.

The complexity of the Max algorithm is linear in Pr, the number of data points at

which the localization error is measured i.e., O(Pr).

733 Grid

The Grid approach to determining a candidate point is to compute the cumulative lo-
calization error over each grid, for several overlapping grids in the terrain. This is
based on the observation that adding a new beacon affects its nearby area, not just the

point where it is placed.

The Grid algorithm (illustrated in figure 7.4) consists of the following steps:
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Figure 7.4: An illustration of the Grid algorithm.
Steps 1 and 2 are the same as the Max algorithm.
Step 3 Divide the terrain into N partially overlapping grids as follows:

Step 3.1 Each grid has a side, gridSide = 2R. Thus each grid encloses the

radio reachability region of its center.

Step 3.2 For1 <4, j < y/Ng, the grid G(4, j) is defined by its center G.(7, j) =
(Xc(iaj)a ch(%])) where

XC(Z,]) — grid25ide + (i—l)(Sicjs;zqidSide)
and Y.(7,5) = gridQSide + (j—l)(Si(]i\e;G—grlidSide)'

Step 4 For each grid G(3, j), compute the cumulative localization error S(3, j) at all
the points measured in Step 2 that lie in the grid G(4, j). Number of data points

per grid, P = Pr x él—dgg

Step 5 Add the new beacon at the center G..(i, 7) of the grid G (3, j) with the maximum

cumulative localization error.

While the Grid algorithm has the advantage that it can improve many points at

once, it is computationally far more expensive than the Max and Random algorithms
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because it additionally divides the terrain into several grids and computes the cumula-

tive localization error in each grid.

The complexity of the Grid algorithm is linear in the product of N, the number of
grids considered and P, the number of data points per grid at which the localization

error is measured., i.e O(Ng.Pg).

Section 7.4 provides a performance comparison of these three algorithms. We note
that these are by no means the only possible algorithms, but these are representative of

the effectiveness attainable with different degrees of processing.

7.4 Performance Evaluation

In this section, we report on some results from a preliminary performance evaluation
of our beacon placement algorithms. We use numeric simulations to explore, in some

detail, the implications of several design choices.

7.4.1 Goals, Metrics and Methodology

Our goals in conducting this evaluation study were three-fold:

e Place the performance of Grid and Max algorithms in the context of the Random
algorithm. This serves as a sanity check for the intuition behind the Grid and
Max algorithms, as also to explore the influence of the level of knowledge on

algorithm performance.
e Understand role of beacon density on algorithm performance.

e Understand impact of noise such as propagation losses and terrain features on

the beacon placement algorithms.
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We choose two metrics to analyze and compare the performance of our algorithms.
These metrics are statistics evaluated for the observed localization error at all step x

step square corners obtained by subdividing the region.

Improvement in mean localization error M; computes the difference between mean
localization error at all measured points in the terrain before and after the beacon node
is added. This metric indicates the overall impact of adding a beacon to quality of

localization in the entire terrain. For a given beacon placement B

Side Side

Ve XiZg LEs(P(k, 1))

(Giep +1)?

MeanErr(B) =

where P(k,l) = (k - step,l - step)

M, = MeanErr(B;,;) — MeanErr(Byinal)

Improvement in median error M, computes the difference between the median
localization error at all the measured points in the terrain before and after the beacon
node is added. This metric indicates the improvement due to adding a beacon on the
quality of localization at the top 50% of the points with the highest localization error

at the terrain.

M, = MedianErr(B;,;;) — MedianErr(Byina) (7.1)

We study these metrics as a function of beacon density. We consider a square
terrain of side 100m. Each node has a nominal radio range of 15m. To study the
performance of our algorithms as a function of beacon density, we generate a variety

of beacon fields of different densities.

In each of our experiments, we vary the number of beacon nodes from 20 to 240 in

increments of 10 beacon nodes. The corresponding beacon density varies from 0.002
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Table 7.1: Various GRID simulation parameters.

PARAMETER | VALUE
Stide 100m
R 15m
step Im
N¢ 400

beacons per square m to 0.024 beacons per square m. To put these density values in
context, the corresponding number of beacons per nominal radio coverage area (7 R?)
varies from 1.41 to 17. For each density, we generate 1000 different beacon fields.
Each beacon field is generated by randomly placing the beacons in the 100m x 100m
square terrain. The performance metrics, for each algorithm and beacon density, are
averaged over the 1000 beacon fields. To characterize the stability of our results, all
graphs include 95% confidence intervals. The simulation parameters are listed in Table

7.1.

7.4.2 Impact of Beacon Density

As observed earlier, beacon density has a considerable impact on quality of localiza-
tion. To quantify this effect, we evaluate the relationship between mean localization
error and beacon density. Figure 7.5 graphs mean localization error for varying beacon
densities under idealized radio propagation conditions. We see that the mean localiza-
tion error falls sharply with increasing beacon density, until it reaches a density of
0.01 beacons per square m (approximately 7 beacons per nominal radio coverage area)
and saturates at around 4m (0.3R). We refer to this density as the saturation beacon
density. There is little to be gained from deploying beacon nodes at more than this

density.
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Figure 7.5: Mean localization error vs. beacon density (Ideal)

Our first experiment compares the three algorithms under idealized radio propa-
gation conditions (i.e., perfect connectivity for distances < R, no connectivity other-
wise). The aim of this experiment is to isolate and study the impact of beacon density

on the Random, Max and Grid beacon placement algorithms.

Figures 7.6 graphs the improvements in mean and median localization error for
various beacon densities. As expected the Random algorithm has the least improve-

ment.

At low densities (< 0.005, much below saturation density), the Grid algorithm
clearly performs best, with improvements in mean localization error at least twice that
of the Max algorithm. Grid achieves such performance because it considers the quality
of localization over a grid, and can improve many points at once. The performance of
Max is slightly better than Grid for regions of moderate density (0.008 to 0.02 per
square m). At these densities, the points with maximum localization error are very
loud, and Max suppresses them better. At very high beacon densities(> 0.02 beacons
per square m), the quality of localization is saturated, and the performance of the three

algorithms is about the same.

A similar trend with respect to beacon density is observed for the median localiza-

tion error, although the improvements in median localization error are relatively more
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Figure 7.6: Improvement in mean and median errors vs. beacon density (Ideal)

modest (roughly 25% of the improvements in the average localization error with Grid).
This is because the algorithms are effective in fixing a few hot spots with high localiza-
tion error with the addition of a single beacon rather than in improving the localization

throughout the terrain.

From our analysis we infer that, at least under idealized conditions, our beacon
placement algorithms (Grid and Max) are applicable only to a regime corresponding

to low or insufficient beacon density.

7.4.3 Impact of Noise

As stated earlier, idealized radio propagation conditions are rather unrealistic. Random
noise can severely affect radio connectivity [Rap96], and thereby degrade the quality

of localization. Since this noise cannot be predicted, beacon placement algorithms
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Figure 7.7: Mean localization error vs. beacon density (Noise)

must adapt to it through measurements. To study the impact of noise on our beacon
placement algorithms, we model random propagation noise as follows. For each bea-
con field, connectivity to any beacon B at any given point P is determined based on
a noise model. In our noise model, connectivity to a beacon B exists at a point P, if
distance(P, B) < R(1+u.nf(B)). nf(B) is the noise factor of the beacon B, and is
chosen uniformly between 0 and Noise, the maximum noise factor for the field. w is
chosen uniformly at random between —1 and 1. The intent was to create non-uniform
propagation noise for the beacons, and to create random regions with higher propaga-
tion noise than the rest of the location field. We do this because the impact of noise is
less evident when each beacon has an identical propagation field. Note that this noise
model is location based and static with respect to time i.e., not time varying. We use 4

different settings of Noise, 0 (corresponding to Ideal propagation), 0.1, 0.3 and 0.5.

To quantify the impact of noise, we evaluate the variation in mean localization error
from the ideal case in the presence of noise. Figure 7.7 plots the mean localization error

as a function of beacon density for various noise levels. We observe a steady increase
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Figure 7.8: Performance of the Random algorithm with Noise

as the level of Noise increases from 0 to 0.5, in both the mean localization error for
each beacon density (e.g., from 18m to 23m for 0.02 beacons per square m) and in
the saturation beacon density (from 0.01 to 0.015 beacons per square m). The mean
localization error follows the same general trend with increasing beacon density with

noise as with idealized radio propagation.

Figure 7.8 graphs the improvement in the mean and median localization error when
an additional beacon is placed with the Random algorithm, for various beacon deploy-
ment densities and noise levels. The gains in both metrics with the Random algorithm
are somewhat unchanged with noise. This result is as expected, because noise is not

an input in the Random algorithm, which does not make any measurements.

Figures 7.9 and 7.10 graph the improvement in the mean and median localization
error when an additional beacon is placed with the Max and Grid algorithms respec-

tively, for various beacon deployment densities and noise levels. We observe that noise
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makes regions of moderate beacon densities (0.005 to 0.01 beacons per square m) more
amenable to improvement (improvements of 0.5m to 1m in mean error for correspond-
ing increases in mean error of 1m to 3m) with the Grid algorithm, and to a lesser
extent with the Max algorithm. The improvements to the median error are relatively
unchanged with noise, because as we noted earlier, the focus of the algorithms is on

improving a few hot spots.

7.4.4 Summary of Results

There are several lessons that we can draw from this evaluation of or beacon placement

algorithms:

e Our beacon placement algorithms are applicable to a regime corresponding to

low or insufficient beacon density deployment(< 0.01 beacons per square m or
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Figure 7.10: Performance of the Grid algorithm with Noise
7 beacons per nominal radio coverage area in the ideal case).

At low densities, the Grid algorithm has the potential for significant improve-
ments to the mean and median errors compared to the Max or Random algo-

rithms.

When noise level is increased from 0 to 0.5, there is a steady increase in both the

mean localization error (up to 33%) and saturation beacon density (up to 50%).

The Grid algorithm is clearly superior to Max and Random algorithms even in
the presence of noise. The performance of the Random algorithm is unchanged
with noise, whereas noise makes even moderate density regions more amenable

to improvement with the Grid algorithm.
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7.5 Summary

In this chapter, we emphasized the importance of beacon placement in localization
approaches and motivated the need for empirically adaptive beacon placement algo-
rithms. We described the notion of solution space density, which forms the basis for

our algorithms.

We outlined a general approach for adaptive beacon placement based on explo-
ration and instrumentation of the terrain by a mobile human or robot agent. We de-
signed and evaluated three algorithms based on this approach: Grid, Max and Random.
Our algorithms are applicable to a regime of low and medium beacon density deploy-
ment. In this regime, Grid clearly outperforms the Max and Random algorithms. In
our simulations, we showed that beacon density rather than the noise level has a higher
impact on the performance of beacon placement algorithms. When the noise level is
increased from 0 to 0.5, there is a steady increase in both mean localization error (up to
33%) and saturation beacon density (up to 50%). The algorithms exhibited the same
relative trend in the presence of noise as in an ideal scenario, although noise makes

regions of moderate beacon density more amenable to improvement.

Although, we have evaluated our algorithms in the context of beacon placement
for RF-based localization, they may generalize to other problem domains where issues
of node placement are rather critical: global coverage or universal connectivity in
wireless sensor networks, measurement based repositioning of seismic sensor nodes
(surface conditions, coupling with the ground are significant influences on the quality
of sensing attainable in these nodes). In traditional Internet web caching, the placement

of web caches may be done based on analyses of web traffic, web server requests.

The novel aspect of our approach is the emphasis on empirical adaptation. The

drawback with that approach is that its reliance on a mobile agent to make terrain
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measurements limits its scalability to large terrains and its applicability when agent-

based measurements of localization error at arbitrary positions are not possible.
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CHAPTER 8

HEAP: Localized Incremental Beacon Placement

An approximate answer to the right question is worth a good deal more

than the exact answer to an approximate problem.

— John Tukey

You only need sit still long enough in some attractive spot in the woods

that all its inhabitants may exhibit themselves to you by turns.
— Henry David Thoreau, from the chapter ”’Brute Neighbors” in Walden

At low and medium densities, the beacons deployed in an ad hoc manner for lo-
calization may not be sufficient to ensure robust localization throughout the terrain.
Although GRID serves a critical function in addressing this problem, its drawback is
its reliance on a mobile agent to make terrain measurements. This limits its scalability
to large size terrains. Furthermore, it cannot be applied when agent-based measure-

ments of localization error at arbitrary positions in the terrain may not be possible.

In this chapter, we describe HEAP, an adaptive, localized algorithm that enables
beacons to select candidate points for incremental beacon placement in order to im-

prove the quality of localization in the terrain.

As in the case of GRID, the goal of HEAP is incremental beacon placement i.e., to
discover places to add a few new beacons to maximize improvement in localization,

rather than to completely re-deploy the beacon field.
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Figure 8.1: Information flow in HEAP.

However, HEAP differs from GRID in two significant respects. First, the system
measurements are made by beacons themselves, not by an external agent. This means
it is applicable when physical measurements of localization error in the terrain are not
possible. Second, the HEAP measurements are distributed, not centralized. Conse-

quently, it is more scalable as the number of nodes in the network increases.

In the rest of this chapter, we describe both the network architecture underlying
HEAP as well as the algorithms. In the next section, we describe the design of HEAP.
We present extensive simulations of HEAP in Section 8.2 and experimental results in
Section 8.3 to validate its benefits in a real deployed RF-based localization system.

Finally, we conclude.

8.1 HEAP Design

The HEAP approach to incremental beacon placement is based on system measure-
ments. In HEAP, the wireless network consists of three entities: Node, Beacon and
a Placer. Beacons exchange neighborhood information with each other to determine

suitable candidate points within their local neighborhood (for example, within a region
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Figure 8.2: Illustration of the HEAP-GRID algorithm.

of radius r around the beacon) for adding new beacons. Because new beacons need to
be physically deployed, a controlling agency is needed. Beacons send their candidate

points to the Placer via intermediate nodes. The Placer deploys new beacons.

In systems where the Placer is fixed and located far from energy-constrained bea-
cons, hop-by-hop communication rather than direct long range communication to the
destination site is preferable for energy-efficiency. Furthermore, it is infeasible to
transmit all data across the network, even hop-by-hop. By performing local com-

putation to reduce data before transmission, orders of magnitude energy savings can
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be obtained [PKO0Q]. Intermediate nodes aggregate and relay data from the beacons to

the placer hop by hop.

Information flow in HEAP is illustrated in Figure 8.1. Data is transmitted from

beacons to the placer, with in network aggregation at intermediate nodes.

HEAP measurement is a distributed algorithm that depends on in-network process-
ing to select placement sites. The only centralized part is the placer. It is required only
because we assume incremental node deployment from a single agency (we selected
this definition for comparison with prior central algorithms such as Grid, described in
Chapter 7). A fully distributed variation on the HEAP algorithm would allow a node

to deploy additional beacons if improvement passed some threshold.

8.1.1 Algorithms

Information flow in HEAP can be set up using one of several data dissemination mech-
anisms proposed in the research literature [HCBO0O, IGEQQ]. Once this is in place, the

three entities Beacon, Node and Placer execute their parts.

Beacon B : A beacon exchanges information and learns to estimate its beacon

neighborhood. It then selects a candidate point and sends it to its parent node.

Node N : An intermediate node in the hierarchy receives candidate points from all
its neighbor beacons and child nodes. It selects and forwards one of these candidate

points to its parent node.

Placer P : The placer receives candidate points from all its neighboring beacons
and child nodes. It eliminates any candidate points that do not satisfy constraints and

selects good points for adding new beacons.
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8.1.2 Neighborhood Estimation

Before a beacon in HEAP can select a candidate point, it needs to estimate its beacon
neighborhood to the number of hops appropriate to its candidate point selection algo-
rithm. This is accomplished by executing the algorithm Beacon Neighborhood ( B, NumH ops )
at Beacon B. In this algorithm, beacons include information about other beacons
in their neighborhood of a certain scope in their advertisements. A beacon iterates

NumH ops times, increasing its scope by 1 each time.

Algorithm BeaconNeighborhood ( B, NumHops )
Input: B - A beacon.
NumHops - The Number of hops (or the scope) to which neighborhood
must be computed.

Output: A set of all beacons within Num H ops of beacon B.

Step 0 NumPhases < NumHops
Step1l Phase + 1
Step 2 Neighborhood (0 ) < position ( B )

Step 3 while (Phase < NumH ops) do
BROADCAST ( B, Phase — 1, Neighborhood ( Phase — 1))
Listen to broadcasts of other beacons’
Phase — 1 neighborhoods.
Neighborhood ( Phase ) is the union of all the
Phase — 1 neighborhoods heard during this period.
Phase < Phase + 1

Step 4 Return Neighborhood ( NumH ops )
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We consider HEAP-GRID, a simple algorithm for selecting candidate points, that
extends the basic GRID algorithm proposed in [BHEO1a]. We also experimented with
HEAP-MAX (see [BHEO1b]), the HEAP distributed algorithm with the MAX eval-
uation function in [BHEO1a], but do not report on it here because the HEAP-GRID

function gives better performance.

8.1.3 Candidate Point Selection

The HEAP-GRID algorithm for candidate point selection, learns the neighborhood of
a beacon, but with a larger scope of 4 hops. This is illustrated in Figure 8.2. Bea-
con B determines candidates points in its neighborhood, in this case a square of side
3 - Range based on the locations of its neighbor beacons. Its approach is to simulate
the cumulative localization error over each grid for several uniformly separated points
in its neighborhood. It divides the neighborhood into a few square grids, and picks the
grid center with the highest error as a candidate point. This is based on the observation

that adding a new beacon affects its nearby area, not just the point where it is placed.

Algorithm HEAP — GRID(B)
Input: B - A beacon.

Output: A candidate point where a new beacon could be added.
Step 0 NeighborSet «+— BeaconN eighborhood(B,4)

Step 1 side < 3 - Range
Q < position(B) = (Xp, Yp)

Consider a square S with side side and center (.
Step 2 Divide S into Ng partially overlapping grids as follows.

Step 2.1 gridSide = 2 - Range
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Let the side of each grid be gridSide.

Each grid encloses the radio reachability region of its center.

Step 2.2 For 1 < 4,5 < /Ng, the grid G(i, j) is defined by its center G (i, 7).

Gc(za]) = (GCX(iaj)a ch(i,j))where
o side — gridSide 1 — 1) x (side — gridSide
Gex(ij) = x, - g ) =1 x( g )

2 vVNg —1
. (side — gridSide)  (j — 1) x (side — gridSide)
G = Yp—
CY (Z’ .7) B 2 + \/N—G 1 )

Step 3 Foreach grid G (i, j), compute the cumulative localization error C E(3, )

for the grid G (i, 5) as follows.

Step 3.1 Divide the grid into squares of size step x step.

ridSide
Step 3.2 V 0 < k,1 < (520%),

let P(k,l) = (Px(k,l), Py(k,1)) be the point in the

region that corresponds to a square corner.

Px(k,l) = Gex(i,)) — gridSide/2 + k - step

Py (k,l) = Geyl(i,j) — gridSide/2 + 1 - step

Step 3.3 Estimate localization error at each point P(k,[) as follows.
Let x be the set of all beacons in NeighborSet that are within
distance Range of P(k,1).
LE(P(k,l)) «+ EstimateLocalizationError(P(k,l), x)

Step 3.4

__gridSide 1= gridSide

CE(i,]) + S, %,_, " LE(P(k,))
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Step 4 Return (G.(p, q), S(p, q)) of the grid G(p, ¢) with maximum cumulative local-

ization error as the selected candidate point.

Although HEAP-GRID is by no means the only possible algorithm, it is represen-

tative of the effectiveness attainable with a localized algorithm.

8.1.4 Error Estimation

One of the aspects of candidate point selection by a beacon is to estimate localization
error at various points based on its knowledge of the beacon neighborhood. This error
estimation is the domain-specific part of beacon placement, one can substitute the

procedure below for connectivity based localization with other procedures.

Algorithm EstimateLocalization Error (P, x)
Input: P - A point in 2 dimensional space.
X - A set of beacons within radio range Range of point P.

Output: An estimate of localization error at point P.
Step 0 x' < {(position(B), Range)|B € x }
Step 1 P,y < LocalizationFromConnectivity(x)
Step 2 € « LocalizationError(P, Peg)

Step 3 Return e.

8.2 Detailed Simulations

We have used simulations to explore, in some detail, the implications of several design

choices in HEAP. In this section, we report on some results from these simulations.
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8.2.1 Goals, Metrics and Methodology

Our goals in conducting this evaluation were two-fold: (i) Compare HEAP perfor-
mance to a completely Random algorithm as well as to a centralized algorithm (GRID)
with global knowledge of beacon positions and terrain or connectivity conditions. (ii)
Understand the impact of noise caused by propagation losses and terrain features on

the beacon placement algorithms.

We choose the same metrics to analyze the performance of our algorithms as those
used in Chapter 7. These metrics are statistics evaluated by sampling the localization

error at all step x step square corners obtained by subdividing the region.

Improvement in mean localization error M; computes the difference between mean
localization error at all measured points in the terrain before and after the beacon node
is added. This metric indicates the overall impact of adding a beacon to quality of

localization in the entire terrain. For a given beacon placement B

Side Side

Vet BiZg LEs(P(k, 1))

Side
( sZep + 1)2

MeanErr(B) =

where P(k,l) = (k - step, [ - step)
M, = MeanErr(Bii) — MeanErr(Brina)

Improvement in median error M, computes the difference between the median local-
ization error at all the measured points in the terrain before and after the beacon node
is added. This metric indicates the improvement due to adding a beacon on the quality
of localization at the top 50% of the points with the highest localization error at the

terrain.
M, = MedianErr(B;,;;) — MedianErr(Byina) (8.1)

We study these metrics as a function of beacon density. In addition, we assume step =

1m.
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Table 8.1: Terrain-influenced shadowing model parameters.

PARAMETER | DEFINITION VALUE
A Wavelength 0.333m
ot Path loss exponent(unobstructed) 2
Ba Path loss exponent (obstructed) 4
04B Standard deviation of noise 5
P, Transmitted Power 660mwW

To understand how HEAP copes with noisy radio propagation, we evaluated HEAP
for both (i) ideal radio propagation conditions and (ii) a terrain based shadowing model
(uses a bitmap of the terrain). We ported the latter from Arena/ns [YVS01] to our
simulations. The experiments were carried out in a simulated square terrain of side
100m. From Figure 8.4 we can see that the environment contains both obstructions
and good terrain, so the terrain based propagation model is quite appropriate. The
various propagation model parameters we chose is summarized in Table 8.1. The
values of 3 and o45 are chosen from the ranges of their typical values [Rap96]. The
terrain-based shadowing model has different values of g for line of sight and non line
of sight respectively. P, the transmit power is selected from [Kai00] and Py;csr, the
receiving threshold is set to be the receive power at the nominal radio range Range
using Friis free space model [Rap96]. These do not necessarily reflect the details
of real environment but are representative of a range of environments in which our

algorithms may be used.

8.2.2 Impact of Beacon Density

To compare the performance of HEAP, our localized algorithm for various beacon den-

sities with GRID, centralized measurement based algorithm described in [BHEO1a],
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Figure 8.3: Performance comparison of HEAP with centralized algorithms for the

mean and median localization granularity metrics.

we conducted the following simulation experiment. We varied the number of beacons,

N from 20 to 80 in increments of 20. The nominal radio transmission range of a bea-

con R = 15m. Correspondingly, , the number of beacons per nominal radio coverage

area (bpnrca) varies from 1.41 to 5.64. We generated 1000 different beacon fields per

beacon density. Each beacon field is generated by randomly placing the beacons in

the 100m x 100m square terrain. Performance metrics for each algorithm and beacon

density are averaged over the 1000 beacon fields. To characterize the stability of our

results, all graphs include 95 percentile confidence intervals.

Figure 8.3 plots the improvements in the mean and median localization errors as a
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Figure 8.4: HEAP Candidate Point Selection. Ideal case vs. terrain with wall.

function of beacon deployment density for both ideal radio propagation model and the

terrain based shadowing model.

With ideal radio propagation, both algorithms perform well for low densities (<
3 bpnrca), but GRID has the potential for significant improvements. For all the three
algorithms, the metric M; (improvement in mean localization error) decreases rapidly
for densities > 3 bpnrca, and saturates for densities > 6 bpnrca. The gain in me-
dian localization error (metric M,), for GRID relative to HEAP-GRID is considerably
lower than metric M. Because HEAP-GRID selects candidate points only in the local
neighborhood, it is unlikely to identify noisy points as well as the centralized algo-
rithms. Its worst case improvement, and consequently, mean improvement M tends

to be much smaller.

The trend exhibited by metric M, for ideal radio propagation is further exemplified
for the terrain-influenced shadowing model for radio propagation, as Figure 8.3 shows.
In the terrain case, for low densities, the total number of noisy points far exceeds the
ideal case. GRID which instruments the whole terrain leverages this and posts higher
gains in mean error by substantially improving a large number of bad points. HEAP-
GRID focuses on moderately bad points and therefore improvement is relatively lower.
The median error improvements for the terrain case for HEAP are also much better for

higher densities.
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Although the gain for HEAP does not equal the centralized algorithm, both are

comparable. Moreover, HEAP is distributed and therefore much more scalable.

8.2.3 Impact of Terrain Features

To qualitatively evaluate the effectiveness of HEAP in selecting good candidate points
in a noisy terrain, we conducted a second simulation experiment wherein initial beacon
placement is always uniform, varying the number of beacons N and the transmission
range R. N =25, 36, 49, 64, 81 and 100. R =15m, 20m, and 25m. In each case, HEAP
is run to determine the candidate points for two scenarios (a) an ideal terrain with no
obstacles and (b) a terrain with a wall in the middle shown in Figure 8.4. In Figure 8.4,
each point represents a new placed beacon from one simulation run. Candidate points
shown are those selected in 20 runs of HEAP with uniform placement for both the
ideal case and for a terrain with a wall in the middle. The right plot adds a wall (shown
in grey) as terrain. A simple boundary constraint is applied to remove algorithm bias
towards candidate points at the corners of the terrain. Candidate points shift closer to

the center when there is a wall in the middle.

In the ideal case, HEAP-GRID selects candidate points closer to the periphery of
the region enclosed by the boundary constraint. This is because it selects the center of
the grid with the highest cumulative localization error, and in the ideal case such grids
are more likely to be located at the edges of the terrain (even with uniform beacon
placement and the boundary constraint). For the terrain, the candidate points shift
closer to the center near the wall. The actual points selected depend on the beacon

density, range and positions of the beacons relative to the wall.

Despite having to deal with erroneous information (poor neighborhood approxi-
mation, idealized radio model etc.), the HEAP algorithms are able to select candidate

points closer to a terrain feature such as a wall. However, such a result may not be
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Figure 8.5: Beacon deployment in the UCLA LECS Laboratory.

valid for very small terrain objects, such as foliage.

8.3 Experimental Results

We also evaluated HEAP in a real testbed deployment to verify its effectiveness. We
deployed a localization system consisting of 16 beacons in an indoor environment, the
Laboratory for Embedded Collaborative Systems (LECS) at UCLA (see Figure 8.5).
Beacon motes are attached to the ceiling tiles of a lab with partitions and open space.
The configuration in which beacons are placed is shown in Figure 8.6. Each + sign
indicates a beacon. 16 beacons are uniformly located in a 24 x 24 feet square region,
with adjacent beacons 8 feet apart. We chose an indoor setting for this experiment be-
cause the radio propagation is not ideal indoors due to multi-path effects, and therefore
it provides us an interesting test case to study how well HEAP helps the system adapt

to its environmental conditions.

We varied the transmission power and frequency settings using software-enabled
control commands (see Section 4.4). For each unique setting, we collected the follow-

ing data:
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Figure 8.6: The configuration in which beacons are placed in the LECS laboratory.

Table 8.2: Control parameters for the beacon system.
PARAMETER VALUE

Transmission Power/Potentiometer Setting | 75

Beaconing Interval (seconds) 3

e Beacon Connectivity Measurements: Each beacon measures its connectivity to
other beacons. We obtain the beacon network topology from the connectivity

measurements of all beacons.

e Localization Error Measurements: We measure localization error at various
points in the terrain by walking across the room and collecting data at spac-
ings of 2 feet. For each point, the localization error is averaged over several

trials.

We found real experiments to be very valuable. We observed the following for our

experiment with 16 beacons:
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e At the same physical point, the localization estimate varied over time.

e The connectivity relation between two beacons varies over time.

Because candidate point selection in HEAP is based on beacon connectivity rela-
tions, the connectivity graph provides us complete information to emulate the HEAP
algorithm. We physically deployed new beacons at candidate points selected by HEAP

and recomputed the localization error at various points in the terrain.

Table 8.2 refers to the control settings used for the experiment whose results are

shown in Figures 8.7 and 8.8.
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Figure 8.8: Candidate point selected by HEAP.

Figure 8.7 plots the Beacon Connectivity Graph. Connectivity of each beacon is
shown in a separate graph and beacons are numbered. Connectivity between beacons
is sometimes asymmetric (as in beacons 1 and 6), and some beacons have a greater
connectivity degree than others (compare 5 with 9). The corner beacon 4 has no con-
nectivity. We can see that it is asymmetric, some beacons have greater connectivity

than the others.This connectivity graph was used to emulate the HEAP algorithm.

Figure 8.8 displays the candidate point selected by HEAP to add a new beacon. The
plus (+) sign indicate positions of beacons. The cross (X) sign indicates the position
of the candidate point selected by the HEAP algorithm. We can see that the candidate
point is very close to the position of the failed beacon (beacon 4 in the lower right

corner in Figure 8.7).

We physically added a new beacon at the candidate point. Figure 8.9 plots the cu-
mulative distribution function of the localization error before and after the new beacon

was added at the candidate point selected by the HEAP algorithm. While the median
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Figure 8.9: Cumulative distribution function (CDF) of localization error (experiment).

error remains the same, there is significant improvement in the 90%ile error (drops
almost 50% from 11 feet to 6 feet). This shows us that HEAP can be effective in a real

environment.

8.4 Discussion

From our design and evaluation of HEAP, we can draw the following general lessons.

1. Our simulations show that localized and adaptive algorithms such as HEAP are
effective in comparison to centralized adaptive algorithms such as GRID in ad-
dressing beacon placement. This is because the relevance of information needed
by a beacon for algorithmic computation drops as a function of distance or num-

ber of hops to the beacon.

2. Our experimental results show that HEAP can benefit a real deployed localiza-

tion system. This proves that adaptive self-configuration to terrain and envi-
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ronment characteristics based only on local coordination among beacons and

without a system or terrain model is both feasible and worthwhile.

3. Proximity-based localization has a beacon density beyond which the benefit of
additional beacons falls off. This observation suggests the STROBE algorithm
targeting high beacon densities, evaluated in the next chapter. More generally,
the study of performance as a function of density is important for algorithms

involving many nodes.

8.5 Summary

In this chapter, we presented HEAP, our low-complexity algorithm for self-configuration
at low and medium beacon densities. HEAP uses the design principle of localized al-

gorithms set forth in Chapter 3.

We presented detailed simulations to show that HEAP can achieve results compara-
ble to centralized adaptive algorithms. Finally, we presented experimental results that
demonstrated the benefits of HEAP in a real deployed localization system. HEAP is a
general framework to select candidate points for adding new beacons. The only aspect
of HEAP that is domain specific is the error estimation function described in Section

8.1.4. HEAP could be applied to other localization systems which use beacons.
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CHAPTER9

STROBE: Selectively TuRning Off BEacons

Sleep is the interest we have to pay on the capital which is called in at
death; and the higher the rate of interest and the more regularly it is paid,

the further the date of redemption is postponed.

— Arthur Schopenhauer

In this chapter, we describe STROBE, an algorithm for rotating functionality in
densely deployed beacon networks in order to enable coordination amongst beacons
without interference and extend overall system lifetime. We motivate our choice of
density-adaptive protocols as a building block, especially in the context of beacon
networks for localization in Section 9.1. We present the design of STROBE in Section
9.3 and an analysis of its energy usage in Section 9.4. We present the evaluation of
STROBE using simulations and experiment in Sections 9.5 and 9.6 respectively. We

present our concluding remarks in Section 9.8.

9.1 Motivation

A key requirement for large scale sensor networks is robust, unattended operation.
Here it may not be feasible to improve localization by adding new beacons at empir-
ically determined points, as with HEAP. Instead, we would begin with a very dense

beacon deployment initially, and then rotate functionality amongst beacons (by turn-
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ing them on and off) to maximize lifetime. Note that the economies of scale involved
in massive deployment provide a sound incentive for deploying beacons very densely
initially, instead of deploying a few beacons initially and then replacing them or re-
charging them whenever they run out of energy. If nodes are cheap enough, pre-

deployment reduces later administrative costs.

The acronym STROBE stands for Selectively TuRning Off BEacons. The goal of
the STROBE algorithm is for beacons to cooperatively achieve an adaptive operational

density without diminishing the localization granularity.

For beacon deployment densities ji,4.tuo; much greater than the saturation threshold
Ihresh, tUNING the operational beacon density can provide several advantages without
diminishing localization quality. First, the duty cycles of individual beacons can be
reduced without diminishing localization granularity, thus increasing system lifetime.
Second, with fewer operational beacons at any instant, the overall number of bea-
con transmissions are reduced, thereby reducing the probability of self-interference
amongst beacons 6.3. Finally, a higher percentage of beacons could remain active in
noisier obstructed parts of the terrain, whereas a smaller percentage of beacons may
need to be active in unobstructed terrain, achieving similar localization granularity and

the adaptive self-configuration that motivates this work.

9.2 Design Considerations

We have made some assumptions in the design of STROBE. We state these assump-

tions and discuss their implications below.

e Beacons are static and compute their position only once. Therefore, we can ig-
nore both the computational and communication energy for continuous position

estimation of beacons (for example, GPS acquisition overhead).
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e Clients may be mobile and need to update their positions continuously. There-
fore, beacons need to remain active throughout the system lifetime. * This moti-

vates the need for a continuous or periodically adaptive algorithm like STROBE.

e The interval between successive beacon transmissions remains fixed during the
system lifetime. While this is not inherently necessary, it considerably simplifies

our design and analysis.

STROBE must accomplish several goals. First, it must maintain uniform local-
ization granularity both across the system and over time. Second, it must maximize
system lifetime both by minimizing the energy usage at each beacon as well as by load
balancing energy usage across the beacons. Third, it must minimize convergence time
of the beacon infrastructure from an initial state where all the beacons are active to an
energy-efficient state, where only the threshold level of beacons needed to maintain
the desired localization granularity are active. Finally, after convergence to a steady

state, the system should not deviate significantly from it.

9.3 STROBE Design

In this section, we discuss the design of STROBE. We discuss the duty cycle of a bea-
con in STROBE, and the decision making approach that governs the state transitions

in this duty cycle.

9.3.1 STROBE Duty Cycle

Typically, each beacon transmits one position advertisement in a beaconing interval

Tg and sleeps for the remainder of the interval. Each position advertisement has four

LIf the ratio of clients to beacons is very small, then these systems could be triggered.
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Beacon Identifier | Beacon Position | Packet Sequence Number | Beacon Status

Figure 9.1: Beacon Position Advertisement Packet Format for STROBE.

fields: beacon identifier, beacon position, sequence number, beacon status. Beacon

status is usually set to be UP (see Figure 9.1).

In STROBE, a beacon can be in one of three states: Voting (V), Designated (D)
and Sleep (SL). The state transition diagram is depicted in Figure 9.2. Beacons can
switch from Voting to Designated or Sleep states and vice versa. All beacons start out
in the Voting state, wherein, a beacon turns on its radio and broadcasts position adver-
tisements every Tz seconds and also listens for advertisements from its neighboring
beacons. When a beacon node enters Voting state, it sets a timer for Ty, seconds.
When the timer fires, it evaluates where it should go to sleep based on a decision mak-
ing process explained in Section 9.3.2. If so, it broadcasts an advertisement with State
set to be DOWN and transitions to the Sleep state. Otherwise, it transitions to the
Designated state. A beacon node in sleep state wakes up after a sleep time 7’s;, and
transitions back to Voting state. A beacon node in Designated state periodically adver-
tises at intervals T’z for a time T, and then transitions back to Voting state. A beacon

node in Sleep state wakes up after a sleep time 7’s;, and transitions back toVoting state.

Distinct Voting and Designated states are necessary in order to avoid the overhead
incurred due to receiving advertisement messages from other neighbor beacons when
in the Voting state. Three important parameters of STROBE that influence its energy

usage and system lifetime are Ty, Tp, and Ts;,.
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Figure 9.2: State Transition Diagram for STROBE.

9.3.2 Beacon Decision Making

During the Voting state, a beacon evaluates ¢, the number of currently active beacons

that are its neighbors.

g = ‘Bup_Bdown| (91)

where B, is the set of all beacons it heard from whose most recent advertised state is

UP and By, those whose most recent advertised state is DOWN.

This means that the number of active beacons in its neighborhood, including itself
is ¢ + 1. Let 50 be the threshold number of beacons in any given neighborhood at

which the localization granularity saturates.

If (C+ 1) < pnresn, then it has to remain active. If (¢ + 1) > pipresn, then its

transition probability p to the Designated state is given by:

Hthresh
= 9.2
p Cr1 (9.2)

With probability (1 — p) it transitions to the Sleep state.
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Probability Analysis

Suppose we have n = pigquq; DEacons in some area. Only & = pigpe5, NEEd to perform

a given task, the rest can go to sleep.

Let each node independently decide to participate in the task with probability p.
What should the probability p of a node participating in a given task be?

Let X be the random variable that indicates how many beacons actually partic-
ipate in the task. The probability distribution function of X is the simple binomial
distribution:

?

PriX =i = ( ' )pi(l -p)"

Probability that the task is accomplished is Pr[X > k].

k=1 n . .

PriX>kl=1-) p(l-p)""

i=1 7

This equation gives a phase transition at p = &£/n [KBWO02]. Thus, the actual
probability of state transition should be set to slightly higher than & /n.

Note that this is a very simple decision making approach, influenced only by the
number of currently active neighbors . It is memoryless [Pap91] — state transitions
depend only on the current state are not governed by a history of previous state transi-

tions. This makes it really simple to implement and analyze.

More sophisticated approaches could incorporate information such as energy re-
serve of a beacon and its neighbors, as well as bias a beacon’s current estimate of
based on a previous history of measurements. However this would require beacons to

maintain some additional state, which increases complexity.
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Table 9.1: Terminology used in energy analysis of STROBE.

TERM | DEFINITION

Px Transmit power of a beacon’s radio transceiver

Pr Receive power

Py Idle power

Pg Sleep power

Tg Beaconing interval

Tx Transmit time of a beacon advertisement

) Maximum (Initial) Energy of a beacon node

tnresh | Threshold beacons per nominal radio coverage area
Lactuar | Actual mean beacons per nominal radio coverage area

9.4 Energy Analysis

As we stated in Section 3.4, localized algorithms such as STROBE are sensitive to
choice of parameters. To better understand the influence of such parameter choices and
to characterize the performance of STROBE, we present a simple model and analysis

of energy usage.

Our energy model characterizes only the energy usage of the radio transceiver only
and does not explicitly model processor energy. There is a reason for this: Typi-
cal processing costs are much lower than communication costs [PK00]. Additionally,

transmission of beacon advertisements is not a compute intensive activity.

Table 9.4 summarizes the terminology we use in our energy analysis.
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9.4.1 Simple Beaconing

In simple beaconing, each beacon transmits one advertisement in a beaconing interval
T's and sleeps for the remaining part of the interval. Energy consumed by a beacon

node per beaconing interval:

Ep = Px-Tx+ Ps-(Tg—Tx) 9.3

Power dissipated by a beacon node per beaconing interval:

Ep
Pgp = — 9.4
5= (9.4)
Lifetime of a beacon node with simple beaconing:
P
Lg = — 9.5
P = B (95)

We observe that the lifetime of any adaptive operational density scheme can never

exceed (Lactual ) p,

Hthresh

We observe that in a realistic engineering design, we would try to keep T'z, the
beaconing interval as high as possible. Even when beacons are densely deployed, they
will not be deployed at a factor several times higher than pipyesn, SO @s to minimize
costs. The proportion of P;, Pg, and Px depends on the specifics of the radio consid-
ered. For radios such as the WINS-NG transceiver [Kai00], this ratio is approximately

1:10:20, for WaveLan radios this is measured as 1:1.05:1.6 [SK97].

942 STROBE

As discussed, a beacon can be in any of three different states in STROBE.

Let d be the mean degree of a beacon node i.e., the number of active neighbors

from whom it receives advertisements during the Voting cycle.
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The overhead incurred in the Voting state is substantial compared to simple beacon-
ing. This means that a node must transition from the Voting state to simple beaconing

Designated, which also justifies the use of 3 states in STROBE.

Without loss of generality, we assume that 77, and Ts;, are integral multiples of
Ts. Thus, the energy consumption in the three states for STROBE is given by:

T
By = T—V-(PX-TX+d-PR-TX+PI-(TB—(d+1)-TX))
B

Es;, = Tsr-Ps

ED:PD

The power consumption in the three states of STROBE is given by:
(Px - Tx+d-Pgp-Tx+Pr-(Tg—(d+1)-Tx))

Py = =
B

PSL:PS

PD:PB

Let ¢y, and t5;, be the time spent by the beacons in the V and SL states respectively.

Thus, the lifetime of a beacon node in STROBE:

Lsrrope = tv+tp+isL

¢ = tV'Pv+tD'PD+tSL-P5L

Additionally, from the state transition diagram of STROBE we conclude

lsL n ip )
Tyv+Tsy, Tv+Tp

tV = Tv<

Ideally in a system, each node listens and sleeps for the same proportion of time
as all the other nodes. Assuming p.:-esn D€aCONS per neighborhood are active at any

point of time,

lsL _ Mactual — Hthresh (9 6)
tv +1p Hithresh
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Substituting for tg;, from Eqgn. 9.6 in Eqn. 9.6 and setting Ts;, = T for good load

balancing, we get

tV + tD MHthresh * (2 + ;_‘[/))

tV Mactual (9 7)

This implies that the best case lifetime of a beacon node in STROBE,

Mactual @
Py-ty+Pp-ip
Hthresh ( tv+tp )
:U’actualLB

Py
Pp L
T
94D
+72

*CSTROBE =

»CSTROBE =

Hactual + Hthresh

Our analysis of the above equation gives us the insight that 7p = Ts;, should be set
very high compared to 73,. However this disguises one simple fact, setting the ratio

Tp /Ty very high may not load balance energy very well.

9.5 Detailed Simulations

We have conducted extensive evaluations of STROBE using simulations. In this sec-

tion, we discuss our findings.

9.5.1 Goals, Metrics and Methodology

Our goals in evaluating STROBE using simulations are to answer the following ques-

tions:

e Is STROBE effective?
e How do various parameters affect its performance?

e How well does STROBE perform compared to the optimal case?
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We use several metrics in our evaluation. We study the following metrics as a

function of time.

e % Beacons Active - P,.,.(t): Percentage of total beacons that are in either

\Voting or Designated (D) states at any given instant of time.

e % Beacons Alive - P,;,.(t): Percentage of total beacons that possess energy

reserves greater than zero at any given instant of time.

e Median localization error of the terrain - MedErr(t): at any given instant is
calculated as follows. Divide the terrain into squares of size 1m x 1m. Consider
all the points in the terrain that correspond to corners of the square. Compute
localization estimates at these points based on beacons active at that instant and
the corresponding localization errors. The median of these localization errors is

approximated to be the median localization error in the terrain.

We use two other metrics.

e First node death: Time elapsed since the start before any single node in the

terrain runs out of energy.

e System lifetime: Time elapsed since the start before the median localization error

exceeds a n operational error threshold (for example, 0.4 - Range).

For our simulations, we choose an energy consumption model to mimic realistic
sensor radios [Kai00]. These parameters are also used in [IGE00] and are summarized

in Table 9.2.
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S

Tp

Table 9.2: Energy consumption parameters used in STROBE evaluation.

POWER DISSIPATION | RADIO OPERATION MODE | VALUE

Px Transmit 660 mW

Pr Receive 395 mw

P, Idle 35 mwW

P Sleep 0 mwW
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Figure 9.3: STROBE performance for two ratios of %’

9.5.2 Sensitivity to STROBE Parameters

To study the sensitivity of STROBE performance to its parameters, especially the rate
of adaptation, % we simulated a terrain of area 100m x 100m with 100 randomly
placed beacons in the terrain. The nominal radio range is 20m. Thus the number of
beacons per nominal radio coverage area is around 12 (tqctuar = 12, fenresh, = 6). Each
node has a starting energy of 10000J. Transmit time (7’x) of a beacon advertisement is

0.025 seconds. Beaconing interval T is set to be 1 second. 7y is set to be 5 seconds

and T is varied to be Ty, and 10077,.
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Figure 9.3 compares the performance of the STROBE algorithm for various ratios
of :_ﬂ—lV’ with respect to these metrics: median localization error, percentage of active
beacons, percentage of beacons alive at nodes. The simulation terminates when none

of the nodes has sufficient energy to either transmit or receive packets.

The top row corresponds to the ration %’ = 1 and the bottom row corresponds to
% = 100. The simulation parameters are R = 20m, N = 100,75 =1s, Ty, = 515, ®
= 10000J, and the snapshot period is 100s.

Increasing the ratio % improves the system lifetime. For instance, the first node
deaths occur at 90000 seconds and 200000 seconds respectively for values of %’ set
to 1 and 100. It also improves the time duration between the first node death ¢ and
the last node death ¢;,. In addition it also minimizes the variations in median error over

small periods of time.

The median localization error over time is closely correlated to the percentage of
beacons alive. The step wise degradation (i.e., increase) in the median localization
error after the first node death mirrors the step wise decrease in the percentage of
beacons alive over time. A closer inspection of the terrain snapshots over time reveals
that because beacons are distributed uniformly in limited-size terrain, we see boundary
conditions at the edges. For boundary beacons, the observed neighborhood size is
either close to or less than pu.¢sh, therefore they all tend to remain active and die first
at approximately the same time. The next phase occurs when the next set of beacons
that die are the ones that were adjoining the previous boundary beacons and are now

the new boundary beacons, leading to a cascading failure of nodes.

9.5.3 STROBE Benefits

Our second simulation experiment demonstrates STROBE benefits for an applicable

context (small beaconing interval, high beacon density). We simulate a terrain with
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Figure 9.4: STROBE performance for N=100, R=25m, T = 0.5s, Ty = 2T,
Tp = 1007y, $=10000J.

100 beacons distributed uniformly at random in a 100 m x 100 m terrain. The nominal
radio range of these beacons is 25m. The corresponding beacons per neighborhood
Mactual = 19 = 3.1 psmresn. We choose a reasonably small beaconing interval, g = 0.5
seconds. We set the various STROBE parameters as follows: Tg = 0.5s, Ty, = 2T,

Tp = 1007y, $=10000J. The lifetime of a beacon using simple beaconing L 3 is
d
L = — 9.8
= (9.8)
In this case, Ly = 300000s.

The best case system lifetime in STROBE from our previously described energy
usage analysis

acltua L
MP_vt_ll B 9.9)

P
Hactual DTD + Mithresh
2+w

'CSTROBE =

where pi,.40q; 1S the actual number of beacons per neighborhood, zisxresn 1S the threshold
number of beacons per neighborhood for localization, Py and P, are the mean power

dissipated in the Voting and Designated states respectively.

Figure 9.4 plots the median localization error, percentage of active beacons and per-
centage of beacons alive as a function of time. Snapshots are taken every 100 seconds.
The degradation in median localization error as well as percentage of beacons alive
over time is considerably smoother than in our previous simulation experiment. Life-

time of the algorithm using simple beaconing Lz = 300000s. In this case, STROBE
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maintains a median localization error within 0.2 x Range for up to 200000 seconds,
0.3 x Range for up to 300000 seconds, and 0.5 x Range for up to 400000 seconds.
Actual system lifetime (Lsrrogg) is increased to around 450000 seconds or 1.5L p.
This is low compared to the best case lifetime predicted by our model substituting
% = 100 of 850000 seconds 2.8Lg. That calculation assumes energy usage can be
load balanced effectively across beacons and that beacons are uniformly distributed
in the terrain. However, as we have seen boundary nodes tend to die first, causing a
cascading effect. To improve further on these lifetimes, beacons could perform edge
detection to identify boundary conditions and adjust their beaconing period 7'z to be
higher compared to other beacons. Alternatively, a higher density of beacons could be

deployed near the boundary.

STROBE transitions probabilistically from Voting to Sleep states, causing a higher
percentage of beacons than the threshold percentage to remain active. Leveraging

auxiliary information may significantly improve this lifetime.

9.5.4 Summary of Simulation Results

For densely-deployed beacon systems (density above the threshold density), our exam-
ple shows that a completely localized algorithm like STROBE can extend the system
lifetime 1.5 times without diminishing localization granularity with 3.1 times satura-
tion density of nodes. Lifetime gains can be improved further for higher beacon den-
sities and energy dissipation rates in active state, and by augmenting STROBE with

boundary detection mechanisms.
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9.6 Experimental Results

We have also evaluated STROBE experimentally. This is slightly harder to do because
we have to measure both the energy depletion at different nodes over time and the
degradation of localization quality at various points across the terrain and over time
(which requires manual intervention and is therefore not feasible at a very fine grained

time scale). Instead, the methodology we used was experimental emulation.

e \We collect real beacon connectivity data and play back this connectivity data in a
custom simulator to emulate the beacons’ decision making process in STROBE.
In modeling the behavior of a localization system, radio propagation is the hard-

est to model well, and hence it is important to verify it using real data.

e \We simulate power consumption over time using a radio energy model. Since
radio communication (as opposed to computation) dominates the power con-
sumption of these nodes, this provides us with a good approximation of energy
usage. Moreover, by using the same energy consumption model as our simula-

tion, we can also validate the simulation.

e We emulate localization error in our connectivity based localization method us-
ing the connectivity data. This allows us to analyze the degradation in localiza-

tion quality at a very fine-grained time scale.

Figure 9.5 plots the median localization error as a function of time (for both the
experiment and simulation). We notice that the system lifetime with experimental em-
ulation is comparable to idealized simulation, but the quality of localization is only
slightly worse (20%). Thus, our idealized simulations can be considered a good in-
dicator of STROBE performance. The localization quality is slightly worse in the

experimental case because we did not account for link asymmetry in initial design of
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Figure 9.5: Median localization error vs. time. Comparing experimental emulation

with the simulation.

the STROBE decision making. Beacons can turn themselves off even when neighbor
is a stray far-away beacon. To avoid this, we may need a geographic filtering technique

in the beacon decision making process.

9.7 Discussion
We draw two general lessons from our design and evaluation of STROBE.

1. For density regimes above the threshold density, our example shows that a com-
pletely localized algorithm like STROBE can extend the system lifetime 1.5
times without diminishing localization granularity with 3.1 times saturation den-
sity of nodes. Lifetime gains can be improved further for higher beacon densities
and energy dissipation rates in active state, and by augmenting STROBE with

boundary detection mechanisms.
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2. Adaptation to terrain conditions and node availability invariably has an associ-
ated measurement overhead. Therefore adaptive density should be applied only
when the benefit of adaptation greatly exceeds its overhead. Examples of this
are high density beacon deployment and high energy dissipation in active states.
STROBE is not justifiable in contexts when beacons are already operating at
a very low duty cycle or when the deployment density is not high enough to

provide enough interchangeable beacons.

9.8 Summary

In this chapter, we presented STROBE, our algorithm for self-configuration at high
beacon densities. STROBE builds on the observation that proximity-based localization
saturates at a certain beacon density to rotate functionality amongst redundant beacons

and extend system lifetime.

We described the duty cycle of beacons in STROBE, and its decision making ap-
proach. We presented our justification for choosing three states in STROBE and the

relative time periods for each state via energy usage analysis.

We presented detailed simulations to show that STROBE (i) converges quickly, (ii)
maintains uniform localization quality both across the terrain and over time, and (iii)

can significantly extend overall system lifetime.

Like HEAP, STROBE is also a general approach that can be applied to localiza-
tion systems not based on RF-proximity. The only aspect of STROBE that is domain

specific is the decision making function.

Furthermore, our design and evaluation methodology for STROBE can be applied
to other networking problems where the measured performance is a function of node

density.
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CHAPTER 10

Conclusions and Future Work

The outcome of any serious research can only be to make two questions

grow where only one grew before.

— Thorstein Veblen

This is not the end. It is not even the beginning of the end. But, it is

perhaps the end of the beginning.
— Winston Churchill

We close this dissertation with an enumeration of several remaining challenges to our
proposed approach. We then present a number of research problems that may be ad-
dressed in future work. Next we describe several cases where our algorithms may
potentially impact research areas outside of our self-configuring localization system
architecture. Finally, we outline the availability of our reference implementations,

simulation scripts, and tools, and conclude.

10.1 Outstanding Problems

Although the self-configuring localization system framework provides a promising
foundation for scalable, ad hoc deployable, RF-based localization in unpredictable

environments, a number of outstanding problems must be addressed.
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Sensor self-calibration

What is the nominal transmission range of a beacon for a given transmit power level?
The answer varies depending upon the environment, and for different COTS beacons in
the same environment. Sensor and radio calibration remains one of the single biggest
problems in the use of sensor networks. Many sensors (seismic, acoustic, radio etc.)
apply amplitude based models that relate distance to received signal power for sensing.
These can change very easily in different environments and across different COTS sen-
sors. Automating sensor calibration is an important issue that needs to be addressed.
Some initial problem formulations and solutions may be found in [WC02, BMEO02].
Useful ideas for formalizing the calibration problem can be leveraged from the field of

computer vision.

Measured power consumption

Power-conservation is the key design factor in sensor networks, and in our algorithms
such as STROBE. Although, we have evaluated STROBE using real radio data, we
have not measured the real power consumption of the sensor nodes. Instead, we have
emulated the radio energy usage. It is increasingly desirable to evaluate these algo-
rithms using real power measurements to completely validate the algorithms. Tech-

niques to measure battery capacity are suggested in [PSS01].

Convergence

Our simulations show that STROBE converges quickly to a stable state (within 6 cy-
cles) — in which only the desired number of beacons are active. Our simulations
assume beacons are distributed uniformly at random. However, we have not proved

the convergence properties of STROBE theoretically. The convergence properties of
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distributed self-configuring protocols (such as STROBE [BHEO01b], ASCENT [CE02],
SPAN [CIMO01] and GAF [XHEOQ1]) are not well understood and need to be further an-
alyzed.

10.2 Future Directions

The work in this dissertation motivates some interesting and potentially fruitful areas
for future work. Some of these are direct extensions derived from our work in this
dissertation and are closely related to our self-configuring framework. Other ideas
focus on interesting new areas or novel applications of our framework and motivate

research in significantly new directions.

10.2.1 Self-Configuration

There are a number of areas of future work related to self-configuration.

Self-configuring Network Protocols

Lately there has been significant research in self-configuring, density-adaptive network
protocols — to establish a connected network topology, beacon systems, and perform
adaptive routing. In these protocols, only some nodes in the network must participate
to perform the task, the rest can go to sleep. However in sensor networks, some nodes
may be participating in several different tasks (routing, topology control, beaconing).
A node’s decision making process must thus be integrated across all the tasks it is par-
ticipating in. Implementing such integrated decision-making seems to be an interesting

problem to explore in the future.

In STROBE, the decision of a beacon to remain active or sleep is influenced only

by requirements to maintain a uniform localization granularity across the system at all
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times. We may not really need homogeneous localization granularity in the system at
all times, especially if the system is event based (as in STEM [STS02]). Instead we
may want the beacon network to self-configure in response to application dynamics
or events. We have experimented with triggered beacon systems in our laboratory and

these can lead to orders of magnitude improvements in energy-conservation.

A Theory of Self-Configuring Networks

So far the focus has been in the development of network protocols for self-configuration.
However, the performance of these protocols is extremely sensitive to the choice of
parameters. Consequently, it is important to establish a cohesive theoretical founda-
tion for self-configuring systems. Besides our density-based analysis, analyses based
on phase transitions [KBWO02] and geometric relationship maintenance [Gui02] seem

promising approaches in this direction.

10.2.2 Localization

There are a number of areas of future work related to localization.

Robust Position Estimation Algorithms

In our localization methodology, nodes simply inferred position from beacons they
were directly connected to. A more challenging problem is to make beacons them-
selves learn their positions without any references, and in a distributed computation.
We need robust distributed position estimation algorithms when there are very few
references. While there have been some algorithmic and system developments lately,
they have assumed simple error models [SHS01b] or relied on centralized location

computation [GBE02].
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Federated Spatial Coordinate Systems

Because no single localization technology works everywhere, one expects the use of
several localization technologies for pervasive computing applications, each with their
own frames of reference, location granularity and error models. An interesting area
of future work is the development of algorithms for establishing federated coordinate
systems that can combine location information from several frames of reference and

will allow a new class of seamlessly integrated applications.

Location Models

Several location-aware computing applications act not on the physical location (e.g.

X, Y, Z coordinates) but logical location [SAW94] (room 210, Building A).

Hightower et al [HBBO02] have proposed a seven layer Location Stack, analogous
to the OSI networking stack [Zim80] for organizing functionality in location-aware
applications. However, applications can be more robust and adaptive if they are aware
of the uncertainty in the location information (for example, the accuracy or update
latency in location information) or the costs involved in obtaining that location infor-

mation (for example, power expended) [BEHO01].?

Developing location models that present the appropriate abstraction of location
information to an application is a challenging problem for the future, especially given

the wide range of applications.

1This concept can be considered equivalent to the well-known Application Layer Framing (ALF)
argument of Clark and Tennenhouse [CT90] for network applications, which states that applications
can best decide how to adapt to the network conditions.
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Applications

Several technologies currently exist for fine-grained localization. These achieve finer
granularity at the expense of scalability [WJH97], form factor or energy expended
[PCBO00] or responsiveness [GBEO2] — that precludes their use for a wide-range of
applications where localization granularity requirements are lower — but where node
localization must be scalable, responsive, unobtrusive and not waste energy. Our lo-
calization system is applicable in these contexts and we enumerate these applications

below.

1. Tag and track: Really small devices are cheap, low-power, unobtrusive and en-
able measurement in the physical world. Thus, they are ideal for tagging and
tracking the movements of wild animals in biological studies to monitor their
behavior, or migration patterns. They could also be used to track the movements
of users in a field, such as an auditorium or stadium (for example, tracking sports
players around a field). They could be used for search and rescue in ski-hill re-
sorts where one would want to beacon for help, or want to search for a person

lost in an avalanche.

2. Power-conservation in the network: Localization on a scale with transmission

range opens up new ways of power conservation in multi-hop wireless networks.

It could be used to implement directional broadcasts — when an event is only of
interest to nodes located in a certain direction, only broadcast in that direction.
It could also be used to implement range-limited broadcasts that conserve power
—- a base station estimates the farthest distance it must transmit to cover all

nodes, and reduces its transmission power accordingly.

Once nodes know where they are, they can advertise this information to their

neighbors. Distributed nodes can elect leaders based on best location. Services
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needed near a location can be active, while further from a location, nodes can

power down.

3. Approximate Navigation: Limited mobility sensors such as Robomote [SRS02]
could automatically replace sensors that have died. Each failed sensor could
pass along its position to the others so that if it goes down, another sensor could
be sent automatically to take its place, given the last position it was known to

occupy.

10.2.3 HEAP/STROBE Beyond Localization

Several concepts from this dissertation could be applied to areas outside our self-

configuring localization system architecture.

Passive Localization and Tracking Systems

We considered self-configuration in a localization system that relies on active beacons
and has passive clients (target nodes that need to be located). An alternative kind of
localization and tracking systems are sensor networks deployed to passively detect and
track objects (such as [CHZ02, WEGO03, LWHO02, B198]). Sensors tracking an event
can calculate a trajectory and alert nodes in the path of the event to listen, while nodes
not in the trajectory can sleep and conserve energy. Chu et al [CHZ02] have studied
high-level algorithms for self-configuration based on sensor information. These could
be combined with our complementary density-based protocols for self-configuration

to make the system robust.
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Time Synchronization in Multi-hop Sensor Networks

Reference Broadcast Synchronization (RBS) [EGEO02] is a recently developed, promis-
ing fine-grained network time synchronization scheme wherein a set of receivers are
synchronized with each other by listening to the sender’s reference broadcast, in con-
trast to a traditional time synchronization protocol in which a receiver synchronizes
with a sender. To achieve network-wide time synchronization in a multi-hop network,
broadcast regions of two or more senders must overlap with each other. Techniques
like STROBE can be applied to determine which set of nodes should send a reference

broadcast to accomplish network-wide time synchronization.

10.2.4 New Research Problems in Sensor Networks

From our experiences with the localization problem, we derive several observations
on more general problems encountered in wireless sensor networks — which motivate

significantly new areas of research.

Code Construction

During our experiments on radio propagation, a problem we frequently encountered
was interference from external sources (such as cell phones and wireless repeaters)
and sensor noise — which led to high packet loss in the wireless channel. Such a
situation could be severely exacerbated in dynamic, unpredictable environments. Tra-
ditional error-correcting codes such as Hamming codes [Ham50] enable reliable com-
munication without retransmission over a noisy channel with a low error rate, and
are not equipped to cope with such noise. Enabling reliable communication in rapidly
deployable, wireless sensor networks poses the following algorithmic challenge — de-

veloping new code constructions that are designed to tolerate extremely large amounts

144



of noise and yet are computationally efficient to be usable in sensor nodes with modest

processing capabilities.

Distributed Feature Extraction

Readers may recall our discussion in Chapter 9 where we stated that the performance
of the STROBE algorithm could be further improved if beacons on the boundary could
perform edge detection and operate conservatively. This is an example of the general
problem of distributed feature extraction — how do sensor nodes sharing a common
feature (for example, they all lie on the same temperature 1SO-contour) collaborate to
establish that feature and act accordingly? Techniques from image processing may be

fruitfully applied here (as in [GEHO02, SE02]).

Random Sampling

Our adaptive, measurement-based algorithms such as GRID (Chapter 7) and HEAP
(Chapter 8) use comprehensive measurements of the terrain to diagnose problems. Ap-
plying random sampling techniques [MR95, MRL99] to measure only select parts of
the terrain or process measurements selectively could considerably improve the com-
putational efficiency of our algorithms. Furthermore, random sampling techniques
could also find application in the feature extraction problems discussed above. An

initial example of such efforts is [BEG02].

Byzantine fault-tolerance

Wireless sensor networks are vulnerable to a number of failures (such as node failures
due to energy depletion) and security threats common to wireless networks (such as

spoofing, snooping, and jamming the channel). While recent research has addressed

145



low-level security primitives such as efficiently authenticating broadcast communica-
tion [PSWO01], higher-level issues such as providing system-wide fault tolerance have
not been sufficiently explored. Byzantine fault-tolerance seems to be an appropriate

goal for wireless sensor networks, and can be provided through redundant nodes.

An interesting challenge will be building networks that are both dependable and
energy-efficient. For instance, redundant nodes (in a factor of 3) in sensor networks
can be used for Byzantine fault-tolerance, as well as to achieve energy conservation
by reducing the duty cycles of individual nodes. Can we accomplish both without

requiring 9 times the numbers of nodes?

10.3 Availability

All of the software and protocol implementation developed in this dissertation are
available on-line at:

http://lecs.cs.ucla.edu/ bulusu/localization

10.4 Summary

In this dissertation, we proposed several general techniques to make a localization

system self-configuring.

Localization, or the problem of estimating spatial relationships among objects, has
been a classical problem in many disciplines, including mobile robotics [TFBO1], vir-
tual reality systems [WBV99], navigation systems [VOR, HLC92], and cellular net-
works [RAD].

A key challenge in engineering localization systems for these applications has been

environmental dependence, because the nature of the environment often influences the
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characteristics of the sensors used for localization.

Traditionally, this has been addressed through extensive environment-specific cal-
ibration and configuration of the centrally controlled, tightly coupled localization sys-
tem [WBV99, BPOOb, RAD] and sophisticated, memory and compute-intensive prob-

abilistic position-estimation algorithms [TFBO1].

Large-scale, densely distributed sensor networks that are closely coupled to the
physical world require node localization, but under far severe node-level resource
constraints (limited energy, bandwidth, memory and processing) [BHEO0O0]. Local-
ization systems that can reconcile these needs by necessity must be loosely coupled,
distributed systems [BHEO0O, PCB00, SHSO01a, Gir00, HWBO00].

We have highlighted the deployment, configuration and operational issues of such
a localization system and argued that it must itself self-configure, that is, autonomously
measure and adapt to the environmental and system dynamics in order to achieve en-

vironmental independence and robust, unattended system-level operation.

In this dissertation, we have presented the design and evaluation of algorithms to
achieve that self-configuration. Our design process relied on the following four pieces

of insight.

First, beacons are one key approach to localization as they can guarantee the con-
vergence and accuracy of loosely-coupled distributed localization systems [SHS01a].

This realization argues for a beacon-based approach to self-configuration.

Second, the localization granularity can be directly related to the beacon density
when beacons are distributed uniformly at random. Our simulations show that the
localization granularity saturates at a threshold beacon density zi¢4¢s,. This realization

argues for a density-sensitive approach to self-configuration.

Third, the beacon density is not a homogeneous phenomenon in real environments.

147



Rather, the beacon density varies throughout the terrain due to deployment perturba-
tions and due to environment-dependent propagation vagaries even when beacons are
placed uniformly. Note that this observation implies that just deploying beacons be-
low or at this theoretical density pn-.sn Will Not be adequate. Instead, beacons must
themselves establish the density through measurements and suggest local candidate
points where new beacons could be added so as to improve the localization quality,
as in the HEAP algorithm proposed herein. Care was taken to propagate neighbor-
hood information beyond a single hop, so that beacons can select the candidate points

effectively.

Fourth, beacons contend for the wireless channel when they broadcast advertise-
ment packets containing their position. When beacons are deployed at high densities
(greater than ;p.¢55) in order to provide redundancy, the responsiveness and granu-
larity of the system degrades due to the self-interference caused by the channel con-
tention. Instead of having all the beacons simultaneously participate, beacons must
explicitly coordinate so that only some of them participate at a time. For a variety
of performance reasons, characterizing the measured and threshold density allowed a
simple randomized algorithm that achieved the desired statistical behavior in main-
taining localization granularity. Careful analysis of energy usage allows us to tune
sleep probabilities and periods so as to maximize system lifetime. This idea could be
relevant to not only beacons but also to routing [ XHEO1], media access [YHEOQ2] and

topology control [CE02].

Our experimental results show that these various algorithms have significantly im-

proved the performance of the localization system proposed in Chapter 5.
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