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Abstract

Spatial localization or the ability to locate nodes is an important building
block for next generation pervasive computing systems, but a formidable
challenge, particularly, for very small hardware and energy constrained de-
vices, for noisy, unpredictable environments and for very large ad hoc de-
ployed and networked systems. In this paper, we describe, validate and eval-
uate in real environments a very simple self localization methodology for
RF-based devices based only on RF-connectivity constraints to a set of bea-
cons (known nodes), applicable outdoors. Beacon placement has a signifi-
cant impact on the localization quality in these systems. To self-configure
and adapt the localization in noisy environments with unpredictable radio
propagation vagaries, we introduce the novel concept of adaptive beacon
placement. We propose several novel and density adaptive algorithms for
beacon placement and demonstrate their effectiveness through evaluations.
We also outline an approach in which beacons leverage a software control-
lable variable transmit power capability to further improve localization gran-
ularity. These combined features allow a localization system that is scalable
and ad hoc deployable, long-lived and robust to noisy environments. The
unique aspect of our localization approach is our emphasis on adaptive self-
configuration.

1 Introduction

Pervasive computing and sensor networks are emerging as key appli-
cation drivers for wireless networks. Pervasive computing promises
to bring an abundance of computation and communication in our
lives, by simplifying collaboration, knowledge access and by au-
tomating repetitive tasks. Recent advances in miniaturization and
low-cost, low-power design have led to active research in large-scale,
highly distributed systems of small, wireless, low-power unattended
sensors and actuators [9, 12] (referred to as wireless sensor net-
works). By allowing observation and control at unprecedented levels
of detail, wireless sensor networks offer to fundamentally revolution-
ize the ways in which we understand and construct complex physical
systems [9], from airplane wings to complex ecosystems. The most
challenging of these applications require ad hoc deployable wireless
networks that are scalable, long-lived and robust systems, despite be-
ing largely unattended, overcoming energy limitations and a lack of
pre-installed infrastructure. Some applications with stringent device
constraints in form factor and size are: environmental monitoring in
the water and soil, tagging small animals unobtrusively, or tagging
small and light objects in a factory or hospital setting.

The problem of estimating spatial coordinates is known as local-
ization, and is of fundamental importance to pervasive computing
and sensor networks. Many of these envisioned systems are embed-
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ded to monitor or control the behavior of physical systems (as com-
pared with strictly virtual information systems), and therefore nodes
often need to determine their action based on their physical location
(am I the right sensor to monitor a particular object?). Localization
is indispensable for context-aware applications that select services
based on location [11], and for sensor networks that achieve power
conservation by combining data from multiple sensors. Moreover,
location information on a scale with transmission range can enable
geographic routing algorithms that can propagate information effi-
ciently through a multi-hop network [14].

Traditional information systems have not had to have such a lo-
cation focus and as such our support for localization systems is
relatively weak. Existing geolocation systems such as GPS do
not always meet the operational (for example, low power), envi-
ronmental (for example, indoors) or cost constraints. Although a
number of localization systems have been proposed in the past few
years [8, 11, 18, 20, 7, 17], none currently satisfies the requirements
for ad hoc deployment of large scale sensor networks because no sin-
gle existing localization system simultaneously provides (1) a self
localization methodology for devices that is scalable to very large
sensor networks (2) a low cost, hardware-independent localization
approach for very small devices and (3) a self-configuring mech-
anism for the localization system to adapt to noisy environments.
Our challenge then is to develop a localization system that meets the
above requirements.

We assume all nodes we consider are equipped with a short range
radio (RF) transceiver for wireless communications. Our work
makes the following contributions toward scalable, ad hoc deploy-
able, and entirely RF-based localization:

Localization Methodology: We have developed a simple RF-
connectivity based self-localization methodology for devices in out-
door environments. In this paper, we present our localization ap-
proach, prototype implementation for two different devices, and ex-
perimental results that validate it in outdoor environments (Section
3).

Adaptive Beacon Placement: Ensuring a uniform threshold gran-
ularity across the terrain in a localization system requires not
merely uniformly dense placement of known beacon nodes, but
mechanisms to detect and adapt to radio propagation and terrain
unpredictabilities[3]. To address this problem, we have formalized
the problem of adaptive beacon placement. We discuss the design
space and present our algorithms, simulation results and future work
(Section 4).



2 Related Work

Research efforts related to our work fall into the following cate-
gories, (i) localization systems and (ii) techniques to improve node
placement.

Localization Systems

Research on localization systems has garnered a lot of attention in
recent years. We briefly cover a few important systems here, a more
detailed discussion is given in [2].

Fine-grained localization systems that provide high precision lo-
cation information, typically estimate ranges or angles relative to
beacons (known nodes) and compute the location of the unknown
node using trilateration (position estimation from distance to three
points) or triangulation (position estimation from angles to three
points).

GPS and Pinpoint[21] estimate distance from the RF signal time
of flight using time difference of arrival (TDOA) techniques (or
the amount of timing that the measured signal has to be advanced
in order for the received signal to fit into the correct time slot to
be in phase with an internally generated signal). Active Bat[11]
and Cricket [18] make explicit time-of-arrival measurements based
on two distinct modalities of communication, ultrasound and radio,
which travel at vastly different speeds (350m/s and 3 x 108m/s re-
spectively), enabling the radio signal to be used for synchronization
between the transmitter and the receiver, and the ultrasound signal to
be used for ranging. In the RADAR indoor location system [1], dis-
tance is estimated from received signal strength by applying a Wall
Attenuation Factor (WAF) based signal propagation model. The dis-
tance information is then used to locate a user by trilateration. The
U.S Wireless Corporation’s RadioCamera system[7] uses signal pat-
tern matching techniques to compute location. Directionality based
systems include VOR stations[17] and small aperture direction find-
ing, used in cellular networks. As direction estimation is quite ex-
pensive, it can only be placed at the beacons. Responsibility for lo-
calization now lies with beacons. This approach does not scale well
for larger numbers of such nodes.

Coarse-grained localization systems estimate unknown node lo-
cation from proximity to beacons or landmarks. One of the earliest
such systems was Active Badge [20], where, each person or object
is tagged with an Active Badge. The badge transmits a unique IR
signal every 10 seconds, which is received by sensors placed at fixed
positions within the building. IR tends to perform poorly in the pres-
ence of direct sunlight and hence cannot be used outdoors. Another
drawback is that it is a tracking rather than a self-localization system.
Very recently, Doherty et al[8] also propose techniques for localiza-
tion from RF-connectivity. However, their approach is centralized,
unlike ours which is decentralized, low-cost and scalable.

Beacon placement

A significant component of localization error arises due to beacon
placement!. Addressing beacon placement is orthogonal and com-
plementary to many of the other proposed techniques to reduce local-
ization error. Researchers have proposed guidelines based on knowl-
edge of environment conditions and application requirements or pro-
posed optimal approaches to placement.
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Figure 1: Localization Region Granularity vs. Range Overlap

Active Bat [11] proposes using ceiling mounted beacons to max-
imize likelihood of line of sight to beacons. Cricket [18], which is
also proximity based, proposes deployment guidelines for beacons in
indoor environments based on similarly practical considerations. [8]
proposes placing beacons on the corners of the network, for best re-
sults with their centralized convex position estimation based. While
guidelines work well for a specific localization method [8] or envi-
ronmental setting [18, 11], they are not generalizable to a variety of
environments and systems with unpredictable conditions, or to large
scale ad hoc sensor network deployments.

Optimal placement problems have been studied in various con-
texts by researchers including facility location problems in theory [5]
and pursuit evasion problems in robotics [10]. [16] proposes solu-
tions to coverage problems in wireless ad hoc sensor networks given
global knowledge of node positions using Voronoi diagrams to com-
pute maximal breach paths and find gaps.

The fundamental limitation of these fixed approaches is that they
do not take into account the unpredictable environmental conditions.
The premise of our work is that an adaptive beacon placement is
required to cope with noisy and unpredictable environmental condi-
tions.

3 Localization M ethodology

In this section, we describe our localization methodology using RF
connectivity, its prototype implementation and evaluation.

Approach

Although approaches based on received signal strength (RSSI) of
radios seem more attractive, we discarded this approach for sev-
eral reasons relating to our short-range (10m) radios, detailed in [2].
Mainly, we found that received signal strength did not correlate well
with distance for our radios due to multi-path, fading and other RF
vagaries. These reasons caused us to focus on localization using RF
connectivity. We use a mathematically simple, idealized radio model
for predicting bounds on the quality of localization based on RF-
connectivity. It makes two rather unrealistic assumptions. (i) Per-
fect spherical radio propagation and (ii) Identical transmission range
(power) for all radios. To our surprise, this model compared quite
well to outdoor radio propagation in uncluttered environments [2].
Beacons situated at known positions, (X;,Y;), transmit periodi-
cally with a time period T'. Clients listen for a period ¢t >> T to
evaluate connectivity. If the percentage of messages received from
a beacon in a time interval ¢ exceeds a threshold CMthresh, that
beacon is considered connected. When the beacon placement is uni-
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Figure 2: Experimental Testbeds

form, the centroid of the positions of all connected beacons is a fea-
sible solution in the region of connectivity overlap.For non-uniform
placement, a feasible solution can be found using more general con-
vex optimization techniques [8].

A client estimates its position (X, Yes:) to be the centroid of the
positions of all connected beacons.
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Given the actual position of the client (X,,Y,), we can compute
the accuracy of the localization estimate or the localization error
LEg(X,,Y,) , which is the distance between the client’s estimated
and actual positions.

. 1
LEB(XmYa) = [(Xest - Xa)z + (Yest - Ya)2]2 (2)
By increasing the density of the beacons that populate the grid, the
overlap regions become smaller, and hence localization granularity

improves (see Figure 1).

Prototype Implementation

We have implemented a prototype of our localization methodology
on two experimental testbeds (1) Radiometrix RPC radios connected
to laptops via. a serial interface (2) UC Berkeley Rene motes [12],
completely integrated with RFM [19] radios completely, shown in
Figure 2. Due to space restrictions, we only describe some experi-
mental results on the RPC testbed here. Details on the second set of
experiments with motes can be found in [4].

Our first experimental testbed consists of Radiometrix RPC 418
(radio packet controller) modules connected to a Toshiba Libretto
running RedHat Linux 6.0. In our experiments, one of these mod-
ules is used as a receiver and four are used as beacons. A 3 inch
antenna is used for the experimental purposes. The software for
the Radiometrix RPC-418 modules consists of two components. (i)
Beacon: The beacon periodically transmits a packet containing its
unique 1D and position. (ii) Receiver: The receiver obtains its ac-
tual position from user input and estimated position by listening to
beacon packets.

Results

We evaluated our system indoors and outdoors, and found it to be
feasible outdoors. In this section, we discuss the results of an outdoor
experiment. We placed 4 beacons at the four corners of a 10m x 10m
square in an outdoor parking lot. This square was further subdivided
into 100 smaller 1m x 1m squares and we collected data at each of
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Figure 3: Cumulative Localization Error Distribution

the 121 small square corners. We use the localization error metric
defined previously to characterize the performance. Figure 3 shows
the cumulative localization error distribution across all the square
corners, from both a theoretical model(assuming Range = 8.9m (the
measured median range)) and the experiment. They track each other
closely, including plateaus in the error levels, although the spherical
model is consistently more optimistic. In our experimental results,
for over 90% of the data points, the localization error falls within 3.0
meters. This result is based on 4 beacons. Since we observed a high
correlation between our model and experiment, improved granularity
can be expected with a higher overlap of beacons as Figure 4 shows.
More details of our experimental results may be found in [2].

Our simple localization methodology is very effective in restricted
domains (with ideal radio propagation). To generalize our scheme to
noisy environments, we have developed techniques for measurement
based adaptation of beacon placement, described next.

4 Adaptive Beacon Placement

Our approach to improving localization through beacon placement is
based on measurement based adaptation. By adaptation, we mean
we are improving the quality of localization by adjusting beacon
placement or adding a few beacons rather than by completely re-
deploying all beacons. By measurement based, we mean the deploy-
ment of additional beacons is influenced by measurements of the op-
erating localization system rather than by careful off-line analysis of
a complete system model. We have explored three complementary
approaches to adaptive beacon placement, For low beacon densities,
we investigated algorithms to augment the existing beacon infras-
tructure by adding new beacons at empirically determined points,
based on, (i) terrain exploration and measurements made by a mo-
bile robot, which is centralized, and described in [3], (ii) simulated
local exploration by beacons (HEAP), which is distributed, and de-
scribed in [4]. For high beacon densities, the suitable approach is
adaptive operational density (STROBE), which we highlight here.

4.1 STROBE Adaptive Density

Assume a localization system with static beacons, that will need to
advertise their positions periodically during the system lifetime to
support other mobile nodes. In proximity based localization systems
using only local information, regardless of actual beacon placement,
the localization granularity saturates at a certain threshold beacon
density v. This is verifiable through simulations (shown in Fig-
ure 4) and can also be proven mathematically, based on results of
[15]. For approaches based on ranging, three line of sight (LOS) and
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Figure 4: Mean localization error vs. Beacons per neighborhood.
Localization granularity saturates at a certain number of beacons per
neighborhood, around 6 in our case.

non-collinear beacons provide the critical threshold of beacons in 2D
space.

In unattended sensor networks, where new beacons cannot be
physically deployed as needed, we would begin with a very dense
initial beacon deployment for redundancy. Tuning the operational
beacon density by rotating functionality amongst beacons (by turn-
ing their radios on and off) (i) increases system lifetime without
diminishing the localization granularity (ii) reduces the probability
of self-interference amongst beacons by reducing overall transmis-
sions ([4],[18]) (iii) allows adaptation to noisy environments when
required (higher percentage of beacons could remain active in nois-
ier obstructed parts of the terrain, whereas a smaller percentage of
beacons need to be active in more benign parts of the terrain, achiev-
ing similar localization granularity overall). STROBE (Selectively
TuRning Off BEacons) is our algorithm is to achieve such an adap-
tive operational beacon density to realize these benefits. Our design
goal is to build STROBE using localized algorithms, i.e., each bea-
con determines its role during a given time interval based on coordi-
nation with its neighbors rather than from an assignment by a central
server.

411 STROBE duty cycle

Typically, each beacon transmits one position advertisement in a bea-
coning interval T's and sleeps for the remaining part of the interval.
Each position advertisement has four fields: beacon identifier, bea-
con position, sequence number, beacon status. Beacon status is usu-
ally set to be UP.

In STROBE, a beacon can be in one of three states: Voting (V),
Designated (D) and Sleep (SL). The state transition diagram is de-
picted in Figure 5. All beacons start out in the \Voting state, wherein,
a beacon turns on its radio and broadcasts position advertisements
every T'g seconds and also listens for advertisements from its neigh-
boring beacons. When a beacon node enters Voting state, it sets a
timer for Ty seconds. When the timer fires, it evaluates where it
should go to sleep based on a decision making process explained
in 4.1.2. If so, it broadcasts an advertisement with State set to be
DOWN and transitions to the Sleep (SL) state. Otherwise, it tran-
sitions to the Designated (D) state. A beacon node in sleep state
wakes up after a sleep time T'sy, and transitions back to Voting (V)
state. A beacon node in Designated state periodically advertises at
intervals T's for a time T’ and then transitions back to Voting (V)
state. A beacon node in sleep state wakes up after a sleep time T'sy,
and transitions back to Voting (V) state.

Distinct Voting and Designated states are necessary in order to
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Beacon Time

Figure 5: State Transition Diagram for STROBE

avoid the overhead incurred due to receiving advertisement messages
from other neighbor beacons when in the Voting state. Three im-
portant parameters of STROBE that influence its energy usage and
system lifetime are T, Tp, and Tsy,.

4.1.2 Beacon Decision Making

During the Voting (V) state, a beacon evaluates ¢, the number of
currently active beacons that are its neighbors.

¢ = ©)

where Bj is the set of all beacons it heard from whose most recent
advertised state is UP and B, those whose most recent advertised
state is DOWN. The number of active beacons in its neighborhood,
including itself is ¢ + 1. Let v be the threshold number of beacons
in any given neighborhood at which the localization granularity sat-
urates. If (¢ + 1) < v, then it has to remain active. If (( + 1) > v,
then its transition probability p to the sleep state is given by:

(-(w-1)
¢

With probability (1 — p) it transitions to the Designated (D) state.

More sophisticated decision making approaches would incorpo-
rate information such as energy reserve of a beacon and its neigh-
bors, while needing to maintain additional state.
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4.1.3 STROBE Evaluation

We conducted extensive performance evaluations of STROBE using
simulations [4]. We report here on a representative experiment that
demonstrates its benefits in improving system lifetime without de-
grading localization granularity.

The following metrics are used for evaluation. Percentage of ac-
tive beacons, the percentage of total beacons that are in either Voting
or Designated states at any given instant of time.

Percentage of alive beacons, the percentage of total beacons that pos-
sess energy reserves greater than zero at any given instant of time.
Median localization error in the terrain, as a function of time. First
node death, is the time elapsed since the start before any single node
in the terrain runs out of energy (dies).

System lifetime, is the time elapsed since the start before median lo-
calization error exceeds an operational threshold.

For our simulations, we choose an energy consumption model to
mimic realistic sensor radios [13], summarized in Table 1.

The following simulation experiment demonstrates STROBE ben-
efits for an applicable context (small beaconing interval, high bea-
con density). We simulate a terrain with 100 beacons distributed
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Table 1: Energy Consumption parameters
| Power Dissipation | Radio Operation Mode | Value |

Px Transmit 660 mW
Pg Receive 395 mW
Pr Idle 35 mwW
Pg Sleep 0omw

uniformly at random in a 100m x 100m terrain. The nominal ra-
dio range of these beacons is 25m. The corresponding beacons per
neighborhood p = 19 = 3.1v. We choose a reasonably small bea-
coning interval, Tg = 0.5 seconds. We set the various STROBE
parameters as follows: Tg = 0.5s, Ty = 218, Tp = 1007y,
$=10000J.

Figure 6 plots the median localization error, percentage of active
beacons and percentage of beacons alive as a function of time. Snap-
shots are taken every 100 seconds. The degradation in median lo-
calization error as well as percentage of beacons alive is smooth.
STROBE maintains a median localization error within 0.2 x Range
for up to 200000 seconds, 0.3 x Range for up to 300000 seconds,
and 0.5 x Range for up to 400000 seconds. Actual system life-
time (LstropE) is increased to around 450000 seconds or 1.5L g.
This is low compared to the best case lifetime of 850000 seconds
or 2.8L g possible[4], possible when energy usage can be uniformly
load balanced. In practice, because STROBE transitions probabilis-
tically from Voting (V) to Sleep (SL) states, a higher percentage of
beacons than the threshold level remain active, leading to lower life-
times. Leveraging auxiliary information can further improve these
lifetimes. Lifetime gains can be improved further for higher beacon
densities and energy dissipation rates in active state, and by aug-
menting STROBE with boundary detection mechanisms.

5 Conclusions and Future Work

Next generation pervasive computing applications that must scale to
large numbers of hardware and energy-constrained devices, motivate
scalable, ad hoc deployable approaches to localization that leverage
existing device capabilities. In our work highlighted in this paper,
we have (i) addressed scalability by developing an RF-connectivity
based self-localization methodology for very small devices, imple-
menting it on two different radio platforms; and validating it in out-
door environments (ii) addressed ad hoc deployability by developing
and evaluating via simulation algorithms for automatically adapting
beacon placement in more cluttered environments, and shown that
the approach to beacon placement must take into account density of
deployment. These contributions enable a low cost localization sys-

tem that is both scalable and ad hoc deployable. The algorithms and
methodology for beacon placement proposed here can be applied to
other localization approaches (for instance, those that rely on multi-
lateration/ranging), and also to other ad hoc wireless network prob-
lems influenced by node density and placement - for instance, topol-
ogy maintenance and energy-efficient geographical routing. Now
that we have validated our basic design of our adaptive beacon place-
ment approach through simulation, we are currently testing our al-
gorithms in real prototype systems with UC Berkeley motes.

Although our application space is rather forgiving in terms of lo-
calization granularity required, and does not include all applications,
it covers a good range of important and useful applications. Finally,
our localization approach is unique in its emphasis on adaptive self-
configuration i.e., adaptation to noisy environments through decen-
tralized, autonomous and measurement-based techniques rather than
careful instrumentation.
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