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Abstract

Experiencewith wired networkshasprovidesguidance
aboutwhat level of detail is appropriatefor simulation-
basedprotocolstudies.Wirelesssimulationsraisemany
new questionsaboutapproriatelevels of detail in sim-
ulation modelsfor radio propagationand energy con-
sumption. This paperdescribesthe trade-offs in more
detailedor abstractsimulationmodels.We evaluatethe
effectsof detail in four casestudiesof wirelesssimu-
lations for protocol design. Ultimately the researcher
must judgewhat level of detail is requiredfor a given
question,but we suggesttwo approachesto copewith
varying levels of detail. Whenerror is not correlated,
networking algorithmsthat arerobust to a rangeof er-
rorsareoftenstressedin similar waysby randomerror
as by detailedmodels. We also suggestvisualization
techniquesthat canhelp pinpoint incorrectdetailsand
managedetailoverload.

1 Introduction

Selectingthecorrectlevel of detail (or level of abstrac-
tion) for a simulationis a difficult problem.Adding de-
tail requirestimeto implement,debug,andlaterchange,
it slowsdown simulation,andit candistractfrom there-
searchproblemat hand,but too little detailcanproduce
simulationsthataremisleadingor incorrect.Designing
simulationsto studyaprotocolinherentlyinvolvesmak-
ing choicesin which protocol detailsto implementor
use.
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Although a numberof network simulationpackages
areavailable,they do not remove this burdenfrom the
designer. In customsimulators,researcherstypically
includeonly the minimum possibledetailsoutsidethe
immediateareaof study. Existing simulators(suchas
ns-2[3], Parsec[2], andS3[7]) provide detailedproto-
col implementations,but whatlevel of detail is required
in new protocols,or in adaptingexisting protocolsto
modelnew hardware?Somesimulatorseasethecostof
changingabstractionwith multiple, selectablelevelsof
detail(for example,ns[16]), but thedesignchoicemust
still bemade.

Choicesaboutdetailareparticularlydifficult for wire-
lessnetwork simulations.Wide experiencewith theim-
portantcomponentsof wired networksover the last 30
yearsallowssignificantabstraction.For example,point-
to-pointlinks areoftenrepresentedasasimplyby band-
width and delay with a queue; framing, coding, and
transmissionerrors are simply ignoredor mathemati-
cally modeled.The youngerfield of wirelessnetwork-
ing provideslessguidanceon whatabstractionsareap-
propriate. Low-level detailscanhave a large effect on
performance,but detailedsimulationscan be very ex-
pensive(for example,radiopropagation).

This paperexploresthequestionof what level of de-
tail is neededfor simulationsof network protocolsin
wirelessdomains. We begin by looking at the trade-
offs in different levels of detail in simulations. We
then considerfour casestudies: energy consumption
in ad hoc routing, radio-basedoutdoor localization,
communications-drivenrobotfollowing algorithms,and
visualizationof wirelesssimulations.Thesestudiesil-
lustratetimeswhenwe have beenmisledby too much
or too little detail in our models,andthey have led to
two approachesthatallow simulationto tolerateranges
of detail.
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2 Trade-offs of Detail in Wireless
Simulation

We next considerthe trade-offs of more detailedor
abstractsimulations.

A commongoal is to infuse the simulationwith as
muchdetail aspossibleto provide a “realistic” simula-
tion. This approachis attractive: a fully realisticsimu-
lation ought to be ableto reproducethe resultsof lab-
oratoryexperimentsor network useby end-users.Fail-
ing to implementdetailsguaranteesthat they won’t be
reflectedin a simulation;for examplea wirelesspropa-
gationmodelthatdoesn’t considerconcurrenttransmis-
sionswill notmodelthehiddenterminaleffect. Further-
more,detailsat multiple protocollevels canreveal im-
portantinteractionsbetweenlayers.For example,router
synchronizationwasfirst studiedin simulation[13].

Yet a “fully realistic” simulation is not possible—
doesonestopat thenetwork layer?they physicallayer?
electronsor optics?Simulationdesignersmustlimit the
level of detail somewhere. Thechallengeis to identify
what level of detail doesnot affect answersto the de-
sign questionsat hand. For example,we know of no
network simulatorthatconsidersdetailsof a CPU’s in-
structionsetor memoryhierarchy—thesedo not affect
designquestionsrelevant to wirelesssimulations(al-
thoughthey canbe critical to the designof very large
routers[10]). Balancingthe tendency to additionalde-
tail are several penalties: Simulation run-time is ad-
verselyaffectedby detail. Implementationanddebug-
ging time is increased,and undetectedbugs in distant
layerscanproduceinaccuracies.Evenif debugged,pro-
tocol details changeover time. For example, an ex-
tremely detailedimplementationof WaveLAN from a
few yearsagowould todaybesupercededby the802.11
standardtoday. Sometimesgettingall the detailsmay
be impossible,eitherbecausethey areleft unspecified,
asaresomeof theparametersof 802.111, or whentrying
to predictfuturebehavior with protocolsnot yet imple-
mentedor standardized.Finally, for many of theserea-
sonssimulationsoften mix levels of detail in different
components.A very detailed,microsecond-level MAC
simulationmay be forcedto usea moreabstractprop-
agationmodel (becauseall objectsin the terrain were
not specified)and an older TCP implementation(per-
hapsnot including SACK or recentlystandardizedex-
tensions). Simulationswith detailedhardwaremodels
may have abstract(perhapsrandomized)scenariosof
nodeplacement,transmission,andmovement.

1David B. Johnson,personalcommunication.

Thereareseveral reasonsfor intentionallychoosing
a high level of abstractionfor simulation. Distillation
of a researchquestionto its essencecan provide in-
sight not colored by arbitrary details of specific pro-
posedsolutions. For example, althoughmultiple re-
sourcereservationandquality-of-serviceprotocolshave
beenproposed,BreslauandShenkerusea very abstract
servicemodelto focuson the centralissueof the ben-
efits of reservations[5]. When exploring a new area
wheremany issuesareunclear, the needto quickly ex-
plore a variety of alternatives can be more important
than a detailedresult for a specificscenario. For this
kind of nimble simulation,relativecomparisonsof alter-
nativesareoften moreimportantthana singledetailed
quantitative result.A moreabstractsimulationcanalso
maketheeffectsof achangein algorithmdistinct,where
they would be obscuredby othereffectsin a morede-
tailedsimulation.Finally, omissionof simulationdetail
can improve performanceby multiple ordersof mag-
nitude [16]. Memory and run-time improvementsdue
canoffer resultssooner, or allow largeror longerexper-
iments,revealingdifferentaspectsof protocolbehavior.
For example,therelativeperformanceof adhocrouting
protocolsdiffersathigherscales[9].

Theprimary risk of simulationabstractionis theun-
known. Would additionaldetailchangetheconclusions
of the simulationstudy? This problemis particularly
challengingwhenenteringa relatively unexploredarea
whereresearcher’s intuitions may be underdeveloped.
Validation of simulationsagainstmore detailedsimu-
lationsandexperimentalmeasurementscananswerthis
question.But thecostof validationis fairly high: careful
experimentsrequire implementingthe detailsin ques-
tion or purchasingsufficienthardwarefor real-world ex-
periments.

Over time, the resultsof validationexperimentswill
allow thecommunityto build anunderstandingof what
detailsareimportant. The communityhasbegun shar-
ing this information through workshopssuch as the
DARPA/NIST Network Simulation Validation Work-
shop[8]. Wenext considerseveralcasestudiesthathave
arisenin our researchasfurtherexamples.

3 Energy Consumption in Ad Hoc
Routing

Our first casestudy considersenergy consumption
whenroutingdatain adhocnetworks.We examinetwo
recentstudiesin this area:an evaluationof datadiffu-
sion[17], anda studyof anenergy-saving variationsof
on-demandadhocroutingprotocols[21]. Choiceof ap-
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propriatemodelsof radioenergyconsumptionandMAC
protocolsmake cancompletelychangetheconclusions
of thesestudies.

Several modelsof energy consumptionfor wireless
communicationhavebeenusedin literature:� Successfullysentor receivedpacketsincur an en-

ergy cost.

� MAC-level costscan be considered—MAC-level
retransmissions,CTS/RTS,andpacketsthatareun-
successfullysentor receivedincura cost.

� Listening (having the radio poweredon) canalso
bemodeled.

� Non-radiosystemcostscanbeconsidered(display,
CPU,diskdrive).

� Batteryinternals(non-linearity, temperaturesensi-
tivity, batterymemory, etc.)canbeconsidered.

Selectingthe right level of detail dependson the re-
searchquestionbeing considered. For most research
questionsaboutnetworking protocols,non-radiocom-
ponents(for example,thedisplay)canbefactoredoutas
afixedoverhead,althoughin somecasesCPU-intensive
work must be considered(for example, software ra-
dios [4], or MPEGplayout). Similarly, for roughcom-
parisonsof protocols,detailedbatterymodelsare not
required—areasonablesimplifying assumptionis that
memoryor temperaturewill affectall protocolsequally.

We have foundmodelingidle time makesa largedif-
ferencein protocol comparisons. We studiedenergy
consumptionof four ad hoc routing protocols(AODV,
DSR, DSDV, and TORA) with a simple traffic model
whereafew nodessenddataoveramulti-hoppath[21].
Usingasimpleenergymodelthatdoesnotconsideridle-
time costs,we foundthaton-demandprotocolssuchas
AODV andDSRconsumemuchlessenergythanapriori
protocolssuchasDSDV andTORA/IMEP. A priori pro-
tocols areconstantlyexpendingenergy pre-computing
routes,while nodesthat do not sourcedatado not use
theseroutes. Thesedifferencesvanish,however, when
we adopta moredetailedenergy model that considers
idle-time energy consumption.WaveLAN radioshave
a 1:1.05:1.4ratioof idle:receive:sendenergy costs[20].
With this radiomodelall adhocroutingprotocolscon-
sideredconsumeroughly the sameamountof energy
(within a few percent).In this scenario,idle time com-
pletelydominatessystemenergy consumption,soanin-
sufficiently detailedenergy model(not consideringidle
time)completelychangesthestudyresults.

Choiceof MAC protocolis alsocloselytied with ra-
dio energyconsumption.Wehavestudieddatadiffusion
protocols,evaluatingthepowerconsumptionof datadif-
fusionascomparedto simplefloodingandanidealized
multicast[17]. The goal of theseexperimentswas to
provideenergy-conservingprotocolsfor long-livedsen-
sornetworks. Again we hadtroublewith inappropriate
modelsof radio energy consumption;all protocolsbe-
havedsimilarly whenidle costswereconsidered.In this
case,the problemwasan inappropriateMAC protocol.
Wirelessnetworks designedfor very long will chose
energy-optimizedMAC protocolssuchasTDMA [19],
not the 802.11protocolwe beganwith. This example
illustratesproblemsfrom incorrectdetail in the MAC
protocol—ourchoice of the off-the-shelf protocol al-
readyin our simulatorwasinappropriate.

Theseexamplessuggestthatidle-timeandMAC pro-
tocols are important details for wirelesscommunica-
tion studieswith PC-like network nodes.We have not
seenevidencethat further details(power consumption
of othersystemcomponentsor modelsof batteryinter-
nals) alter researchresultsin this domain. Additional
experienceis neededto validatethis assumption.These
assumptionsmay not hold for studiesof increasingly
tiny (dust-mote-sized)nodes[18]. We hypothesizethat
asnodeand radio power consumptionshrinks,andas
nodelifetime increases,additionaldetailswill become
important.

4 Radio Propagation Models

Our next two studiesconsiderthe problemsof radio-
basedlocalization(determininga node’s location)and
robot following. In both cases,we found the level of
detailof theradiopropagationmodelimportant.

Evenmorethanenergy models,many levelsof detail
areemployedin radiopropagationmodelswith a single
senderandreceiver:

� The simplest models consideronly propagation
distancefrom senderto receiver with a fixed for-
mulafor signalloss.

� Slightly moredetailedmodelsmight usedifferent
models for near and far receivers (for example,
theFrissandtwo-raygroundreflectionapproxima-
tions).

� A moredetailedmodelmightconsidersignalatten-
uationfrom largeobstacles.
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� More detailedmodels might model antennage-
ometries(orientation,distanceoff ground)andper-
form detailedradio ray-tracingto estimatereflec-
tion.

In addition,modelsmayor maynot take in therelative
powerof interferingtransmissions.

Radiopropagationvariesgreatly, especiallyindoors,
motiving very detailedpropagationmodels. Unfortu-
nately, accuratemodelsbecomevery computationally
expensive andrequiremuchmoredetail aboutthe en-
vironmentthanis typically available.

An attractive alternative is to couplea simplemodel
with somelevelof statisticalloss,but therehasbeenlim-
ited experiencewith how lessdetailedmodelschange
network behavior. We have evaluatedthis questionin
two casestudies,onewhereaverysimplemodelproved
surprisinglyeffective in a restricteddomain,andthena
robotics-inspiredapproachto designingsoftwareto be
robustto modelerror.

4.1 Radio-based outdoor localization

Sometimessimple radio propagationmodels can be
quite effective for the purposesof a problem. We are
exploring thetaskof spatial localization, determininga
node’s approximatelocation,usingonly radio connec-
tivity to a setof beaconswith well known locations[6].
This approachwould be importantfor nodestoo small
or inexpensiveto useGPS.

Radiopropagationis a critical aspectof this kind of
network-basedlocalization. We beganthis work using
a simple,idealizedradiomodel—weassumeeachradio
hasanidentical,sphericalpropagation.Weselectedthis
modelbecauseit wassimpleto reasonaboutandeval-
uatemathematically. We expectedthat this model, at
best,would allow us to selectalgorithmsandestablish
performancebounds.To our surprise,it comparesquite
well to experimentallymeasuredpropagationin open,
outdoorareas.Not sounsurprisingly, it doesnot model
indoorpropagationwell at all.

We evaluatethe effectivenessof this modelboth by
comparingits accuracy to experimentalmeasurements
and then by consideringits effect on our estimatesof
localizationaccuracy. First, to compareits accuracy to
measurements,we evaluatedpropagationbetweentwo
Radiometrixradiopacket controllers(modelRPC-418)
operatingat 418 MHz. A nodeperiodically sent27-
bytebeacons;we definea 90%packet receptionrateas
“connected”andempiricallymeasuredan8.94mspher-
ical rangefor our simplemodel. To evaluatehow well
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Figure 1: 90% radio connectivity for a transmitterat
(0,0)

thissimplemodelcomparesto a real-world scenariowe
placedaradioin thecornerof anemptyparkinglot then
measuredconnectivity at1mintervalsovera10msquare
quadrant.Figure1 comparesthesemeasurementswith
connectivity aspredictedby the model. Among the 78
points measured,the simple sphericalmodel matches
correctlyat 68 pointsandmismatchesat 10, all at the
edgeof therange.Errorwasnevermorethan2m.

Although we have evaluatedthe accuracy of our ra-
dio model,a moreimportantmetricis theinfluencethat
modelhason theaccuracy of localizationandour eval-
uationof alternative localizationalgorithms.We evalu-
atedournetwork localizationalgorithmsby placingbea-
consat thecornersof a 10msquarein anoutdoorpark-
ing lot. We thenestimateda node’s positionat 1m in-
tervalswithin thissquarebothexperimentallyandusing
our sphericalmodel. Localizationalgorithmstypically
evaluatetheerrorbetweenpredictedandactualposition.
Figure2 shows this metric from the modelandexperi-
ment.They trackeachotherclosely, includingplateaus
is the error levels, althoughsphericalmodel is consis-
tently slightly optimistic.

From theseexperimentswe concludethat very sim-
ple propagationmodelscanbe effective whensimulat-
ing protocolsin restricteddomains.Wecautionthatthis
approximationis not appropriatefor indoors(aswould
beexpected)wherereflectionandocclusionis common.
Our indoorsmeasurementsof propagationrangevaried
widely from 4.6–22.3mdependingon walls andexact
nodelocationsandorientations.The validatedoutdoor
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Figure2: A comparisonof localizationerrorwith spher-
ical andexperimentalpropagation.

modelallows us to explorea muchwider rangeof sce-
nariosthroughsimulationthan could be donethrough
physicalexperimentation.

4.2 Radio-based robot following

Roboticsis a domain filled with error. Autonomous
robotsinteractswith the real world throughnoisy sen-
sors and inaccurateactuators. To accommodatethe
many sourcesof environmentalerror, roboticistsdesign
veryrobustalgorithms.Insteadof trying to developvery
detailedmodelsthephysicsof robotmovement,robotics
simulatorsinsteadintroducelarge amountsof random
error. We believe this philosophyis alsoapplicablein
networking: networking algorithmsmust be robust to
network dynamics;robust algorithmscan often allow
randomerror to replacedetailedmodelsin simulation.
(Whenerroris not correlated.)

We evaluatethis hypothesisin a hybrid scenario:we
have designedand simulatedan algorithm to get one
robot to follow anotherat constantdistance[11]. The
lead robot circles a large rectangularcorridor while
emittingperiodicradiobeacons.Thefolloweradjustsits
speedto keepa constantdistancewith the leader. The
followerlistensto beaconmessagesandincreasesspeed
when the loss rate is high and decreasesit when loss
rateis low. This algorithmassumesa short-rangeradio
wherelossratecorrespondsto distance.Figure3 shows
anidealizedradiopropagationmodel.

Indoor radiopropagationis muchlessthanidealdue
to multipath reflections. To investigatetheseeffects
without extremelydetailedmodelsof theinterior of our

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 P
ro

ba
bi

lit
y

�

Transmitter-Receiver Distance (m)

Figure 3: Idealized radio propagationmodel with a
nominaltransmissionradiusof 5m.
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percent-error�
� ” propagationmodel
usedfor simulation.

building,weaddarandomerrorcomponentbasedonan
“
���
	

percent-error�
� ” model.With thismodel,apacket
is alwaysreceivedby nodeswithin radius

�
, but we add

a randomerror to this radiusbeforethresholding.This
erroris uniformly chosenwithin somepercentageof ac-
tualdistance;for example,at25%error,

��������	����������
where

�
is a randomnumberbetween��� and1. Fig-

ure4 showsour adjustedpropagationmodelat 0, 5, 15,
and50%errorlevels.Notethat0%erroris actuallybet-
ter thanour idealizedpropagationmodel.

Weevaluatethequalityof distancekeepingwith each
of theseerrormodelsin Figure5. Weweresurprisedthat
distancekeepingperformanceis essentiallythesamefor
all propagationmodels.This arguesthat,for this exper-
iment,additionaldetail in thepropagationmodelwould
not offer additionalinsight into the trackingalgorithm.
This result is independentof the underlyingmodel for
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Figure5: Cumulative distribution of error in following
distancefor thefour radiomodels.

two reasons.First, the algorithmis robust to error; its
decisionsare simple and return it to steadydistance.
Second,our expectationsin evaluating this algorithm
allow error; a following distancewithin a meterof ex-
pected90%of thetime is good.

This experimentsuggeststhatthatqualitativeevalua-
tions of this classof robust algorithmscantolerateab-
stractmodelsof underlyinglayers.Wewouldliketo fur-
therverify this claim by repeatingthis experimentwith
physicalrobots.

This result is not specific to robotics; we have ob-
served similar results in experimentsinvolving wired
networksandtheSRMprotocol[14]. SRMhasthesame
propertiesasour robot-following algorithm:it usesran-
domizedalgorithmsto repair lost messages,andit can
be evaluatedby countingnumbersof duplicaterepair
messages.We have foundthat thenumberof duplicate
repairsis similarbothwith detailedhop-by-hopnetwork
simulationsandwith abstractsimulationsthat simulate
only end-to-enddelay[16].

5 Visualization of Wireless
Simulations

Finally, we considertheeffect of detailsin visualiza-
tion. We havedevelopednam asa generictool for visu-
alizing theoutputof network simulations[12]. We find
visualizationa very importanttool for protocoldebug-
ging, but thereis needto control the amountof detail
presentedto the user. In this suggestionwe examine
wayswe usevisualizationto control details,andways
thatvisualizationis helpfulatselectingtheright level of

detailfor wirelesssimulation.
Easy-to-usevisualizationaloneprovidesa hugestep

providing a large amountof detailedinformation in a
manageablefashion. Visual representationsof packet
flow succinctly capturehigh-level information about
traffic rates,congestion,sourcesand destinations,and
interactionsfor many nodesandlinks. Determiningthe
sameinformationfrom textualpacket tracesfor asingle
nodeor link is muchmoredifficult. Oncehot spotsor
problemareasarevisually identified,tracescanbe ex-
aminedto extractspecificinformation.We stronglyen-
couragesimulationauthorsto visualizetheir protocols
early in developmentto aid debugging,andtheuseof a
generictool likenamcanreducethis effort.

Recentwork in datadiffusionprovidesoneexample
of theimportanceof visualization[17]. Ourearlyexper-
imentswith datadiffusionemployeda very high traffic
load(alargefractionof network capacity).Thisresulted
in timeoutsand anomalousbehavior completelyunre-
latedto the protocolwe werestudyingsimply because
wewereoutof anacceptableoperatingregion. Thissta-
tuswouldhavequickly andeasilybeendeterminedfrom
a protocolvisualization,but waslost in thestatisticswe
considered.

Evenwith visualizations,thedetailcanbecomeover-
whelming. We areexploring two ways to control this
detail in nam.First, we provide differentkindsof visu-
alizationfor differentkindsof wirelesscommunication.
Second,we allow theuserto control the level of detail
nampresents.

Namhastwo waysto visualizewirelesscommunica-
tions. First, we canvisualizepacket flow asrectangles
thatareanimatedandmove directly from thesourceto
destination(the lines from node1 to nodes2 and3 in
Figure6). This representationhasevolved from nam’s
use to visualize wired point-to-point networks where
packetsflow on links. This approachclearly identifies
the senderand receiver of the packet, the direction of
packet flow, and the time of transmissionand receipt.
However, thisvisualizationdoesnoteasilyadaptto sup-
port broadcasttraffic. Representinga broadcastpacket
asmultiple rectanglesvisually suggestsmultiple pack-
ets.This approachalsodoesnot easilyshow whencon-
currenttransmissionsfromdifferentnodesinterferewith
eachother.

An alternatevisualizationapproachis to show wire-
less packets as expandingcircles (the circles in Fig-
ure6). This clearlyshows the packet sourceandinter-
ferencewith otherpackets,but it doesnot show desti-
nations. If the rings disappearor fadewith distance,it
alsoshows nominalradiorange.Currentlywe useboth

6



Figure6: Wirelessvisualizationin nam

approachesin nam: unicastpacketsaresentusingrect-
angles,while broadcastsaresentwith expandingcircles.

In addition to choosingbetweentwo visualization
methods,we allow the userto control the level of de-
tail presented.Weareaddingsupportfor bothtransport-
andMAC-level tracecollection in ns. Transport-level
tracesshow packets traveling from sourcesto destina-
tions;MAC-level tracesaddMAC-layerretransmitsand
losses. Usersof namcanalsoselectandfilter dataat
run-time, focusingon datafor a particularsender, re-
ceiver, flow, packet-type,or similar characteristics.

6 Related Work

The wired networking world hasdependedon yearsof
experienceto guide detail in networking simulations.
Ahn et al. werethe first to suggestexplicitly usingab-
stractrepresentationsof packet trains to speedsimula-
tion [1]. Huangetal. haveexaminedtheuseof selective
levelsof detailor abstractionin wired multicastsimula-
tions,anddemonstratedthatabstractioncausesminimal
changesto SRMevaluations[16].

Thedifficulty of radiopropagationhaslongforcedthe
wirelessnetworkingcommunityto multiplelevelsof de-
tail. Recentlythe communityhasfocusedon the ques-
tion of validation and levels of detail in wirelesssim-
ulationsat eventssuchas the DARPA/NIST Network

SimulationValidationWorkshop[8, 15]. Johnsonhas
comparedsimulationsandexperimentalresultsfor wire-
lessadhocrouting,showing thatsimulationcanprovide
enoughdetailto modelreality in this scenario.

7 Conclusions

Choosingthe right level of detail for network simula-
tion is difficult. Sincethe networking communityhas
lessexperiencein the wirelessdomainthanwith wired
networks,choosingabstractionsthereis evenmoredif-
ficult.

Therearerisksboth in simulatingwith too muchde-
tail or too little. Too muchdetailresultsin slow simula-
tionsandcumbersomesimulators.A very detailedsim-
ulationmayaccuratelypredicttoday’sperformance,but
it may not predict tomorrows protocolvariationsor be
easilyadaptto quickly explorealternatives.Simulations
which lack necessarydetailscanresultin misleadingor
incorrectanswers.Researchersmustchosetheir level of
simulationdetailwith care.

We have offeredseveralcasestudiesin wirelessnet-
work simulationto offer guidancefor whendetail is or
is notrequired.Evenwhenexamplesarenotdirectlyap-
plicable,similarvalidationapproachesmaybe.Wehave
alsosuggestedtwo approachesto copewith varyinglev-
els of detail. Whenerror is not correlated,networking
algorithmsthatarerobust to a rangeof errorsareoften
stressedin similar waysby randomerrorasby detailed
models.Finally, visualizationtechniquescanhelppin-
point incorrectdetailsandcontroldetailoverload.
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