
Using Low-Rate Flow Periodicities
for Anomaly Detection: Extended

ISI-TR-661, August 5th, 2009

Genevieve Bartlett
USC/ISI

Marina del Rey, CA
bartlett@isi.edu

John Heidemann
USC/ISI

Marina del Rey, CA
johnh@isi.edu

Christos Papadopoulos
Colorado State University

Fort Collins, CO
christos@cs.colostate.edu

ABSTRACT

As desktops and servers become more complicated, they em-

ploy an increasing amount of automatic, non-user initiated

communication. Such communication can be good (OS up-

dates, RSS feed readers, and mail polling), bad (keyloggers,

spyware, and botnet command-and-control), or ugly (adware

or unauthorized peer-to-peer applications). Communication

in these applications is often periodic but infrequent, perhaps

every few minutes to few hours. This infrequent communi-

cation and the complexity of today’s systems makes these

applications difficult for users to detect and diagnose. We

show that there are several classes of applications that show

low-rate periodicity and demonstrate that they are widely de-

ployed on public networks. In this paper we present a new

approach to identify changes in low-rate periodic network

traffic. We employ signal-processing techniques, using dis-

crete wavelets implemented as a fully decomposed, iterated

filter bank. This approach allows us to cover a large range of

low-rate periodicities, from seconds to hours, and to identify

approximate times when traffic changed. Network admin-

istrators and users can use our techniques for network- or

self-surveillance. To measure the effectiveness of our ap-

proach, we show that it can detect changes in periodic be-

havior caused by events such as installation of keyloggers,

an interruption in OS update checks, or the P2P applica-

tion BitTorrent. We quantify the sensitivity of our approach,

showing that we can find periodic traffic when it is at least

5–10% of overall traffic.

1. INTRODUCTION

As systems become more complicated, system main-
tenance and inter-machine coordination has become in-
creasingly automated. As a result of this automation,
communication is no longer strictly driven by user ac-
tions. Instead, computer-initiated communication is
now common. Such automatic network communication
means that users are increasingly unaware of with whom
and when their machine communicates, and what infor-
mation is being shared. Positive examples of this auto-

matic communication include automatic application or
reporting of updates to the operating system or appli-
cations and automated tracking of information for later
consumption, such as RSS feeds, aggregator polling for
new feeds and auction bots checking the current status
of an auction. Finally, long-running applications such
as peer-to-peer file sharing coordinate periodically to
share data and maintain an overlay network.

While much of this automatic communication is bene-
ficial to users, not all automatic communication is nec-
essarily desirable. Some applications may share more
information than a user may prefer, such as web as-
sistants that report the user’s click-stream to advertis-
ers. Other applications inject ads into user activities,
periodically polling their controlling sites for updates
and new ad content. Finally, compromised computers
are connected by increasingly sophisticated control net-
works, often operating over decentralized, peer-to-peer
schemes to form botnets of hundreds of thousands of
computers.

Frequently, hidden communication is periodic and hap-
pens at timescales of minutes to hours. Application and
OS updates often happen at a regular interval set by the
vendor or user, usually from hourly to weekly. Applica-
tions which poll for new information do so on a periodic
basis. For example, web sites such as cnn.com use a re-
fresh HTML directive to cause web browsers to reload
the page each half-hour. For one-time communications,
such as reports of a new operating system or applica-
tion installation, personal firewalls such as ZoneAlarm
often alert users to some of this non-user-driven com-
munication. For behind-the-scenes periodic communi-
cation however, a personal firewall does not typically
alert a user every time the communication occurs, and
such alerts would be quickly ignored if they could not
be correlated with an activity.

This paper presents a new approach to understand
low-rate, periodic communication of network flows. By
low-rate, we mean communication that occurs every

1

few minutes, hours, or days. By periodic, we mean
new connections which occur at relatively fixed inter-
vals. We show that such traffic is common in classes
of both wanted and unwanted applications, and that
these applications are widely present on computers to-
day (Section 6.5). Finally, we show that we can identify
changes in periodic behavior that can indicate the pres-
ence of malware or termination of automatic updates
(Section 6.3).

Our contribution is three-fold. First, we identify low-

rate periodicity as a phenomena in network traffic (Sec-
tion 5). Second, we develop a novel method for de-
tecting low-rate periodic signals in network traffic using
flow-level periodicity and full wavelet expansion (Sec-
tion 4). Although wavelets have been widely used for
compression [21], and have been sometimes applied to
traffic [2,6,13], we are the first to apply full expansion to
detection of very low-rate periodic traffic. We show how
our approach works (Section 6.1) and quantify its sen-
sitivity to background traffic (Section 6.2). Finally, we
show how detecting changes in periodic communication
can help protect users against unwanted and malicious
applications (Section 6.3), for a range of applications
that are pervasive in today’s networks (Section 6.5).

2. RELATED WORK

Our work builds on two general areas of related work:
network-based detection of application and classifica-
tion, and the application of spectral techniques to net-
work traffic.

2.1 Application Detection

There are several ways to detect applications in the
network or on the host. Port and payload-based sig-
nature detection is widely used to identify applications
and classify traffic. Although widely used in intrusion
detection systems and traffic classification system to-
day, port assignments can be easily changed and pay-
load can be encrypted or randomized.

An alternative to such signature-based schemes is iden-
tification of behaviors unique to specific applications,
such as patterns of communication with other comput-
ers. Examples of such schemes include work by Kara-
giannis et al. [14, 15], Constantinou and Mavromma-
tis [5], and Bartlett et al. [3] where behaviors such as
port usage, protocol usage and number of connections
made aid in classifying traffic. Our work also looks at
network behavior to identify applications; however, we
look at the previously unexplored behavior of low-rate

periodic communication.
Another class of network-based detection tools iden-

tify traffic anomalies. These systems characterize nor-
mal traffic and then watch for unexpected divergence
using traffic entropy [7,19] or through signal-processing
techniques [2]. Unlike this prior work, we focus on iden-

tifying low-rate periodicity in applications and changes
in such behavior, not general characteristics of aggre-
gate traffic.

Host-based malware detection represents another class
of application-detection schemes related to our work.
Tools such as virus- and spyware scanners run locally
on a host and use signatures specific to each malware
program to either identify unwanted files on the local
system or unwanted incoming downloads. Part of our
work looks at detecting new installations of programs
such as keyloggers and adware, but unlike typical mal-
ware detection, we are the first to look at general net-
work behavior to identify some of these applications.

2.2 Spectral Analysis

Recent research has applied spectral techniques to
identify network anomalies, and study network charac-
teristics such as routing and congestion.

Current application of spectral techniques look for
high-frequency occurrences to identify anomalous be-
havior [2, 4, 11, 16]. Hussain et al. apply spectral tech-
niques to timeseries of packet arrival times. Based on
spectral characteristics, they are able to distinguish be-
tween single- and multi-source attacks [11], and identify
repeat attacks [12]. Barford et al. use wavelets to ana-
lyze SNMP and flow-level information to identify DoS
attack and other high frequency anomalies [2]. Mag-
naghi et al. detect anomalies within TCP flows using a
wavelet-based approach to identify network misconfig-
urations [16]. Spectral techniques have also been em-
ployed to to identify bottleneck links [8, 9] and routing
information [20].

We differ from previous work in three main ways.
First, the majority of spectral analysis in computer net-
works studies events at the packet level. Our work looks
at periodicity between flows — not within a flow — to
identify hosts which maintain regular contact. Second,
most prior work considers high frequency behavior; we
instead consider events which occur at much lower fre-
quencies (sub-1Hz) and use long observation windows
(hours to days) to see such events. Lastly, our appli-
cation of full decomposition of iterated filtering differs
from previous network applications of spectral analysis.

Finally, there has been some work exploring general
approaches to applying signal processing to network
traffic [18]. Our work represents a specific instance of
this approach as applied to low-rate periodicity.

3. BACKGROUND

At the core, our work focuses on identifying and sep-
arating a periodic network behavior, the signal, from
other network traffic, noise. We show that important
kinds of traffic show periodic behavior, providing the
signal. The fields of signal processing and detection
theory provide decades of research to build upon; we ex-

2

(a) Frequency split from fil-
ters in Figure c

f
B B 4B2B

(b) Frequency split from fil-
ters in Figure d

HL

HL

L H

Original Data

4B

2B

BB

(c) Filters resulting in Fig-
ure a

HL

HL

L H

Original Data

4B

2B

BB

(d) Filters resulting in
Figure b

Figure 1: Filter bank implementation and re-
sulting split in the frequency domain.

tend this work to develop processing techniques specific
to our application, and to show that those techniques
can successfully detect low-rate periodic activities in ag-
gregate Internet traffic.

Both Fourier and wavelet analysis are widely used to
study periodicity in signals. We choose wavelets analy-
sis for two reasons. First, it is well suited to analyzing
non-stationary signals with low signal-to-noise events.

The wavelet transform represents complicated signals
as a function of wavelets [24]. Each wavelet is a version
of a basis function, possibly scaled in space or translated
in time. We use the Haar wavelet as our basis function.
The discrete Haar wavelet is:

ψ(i) =

1 i = 0
−1 i = 1
0 otherwise

Our choice of Haar as our basis function is motivated
by both theoretical and practical factors. Mathemati-
cally, the simple square shape of the Haar wavelet is a
good match for the sharp changes that occur when new
connections are represented as unit impulses. Practi-
cally, the Haar wavelet admits a very simple and fast
implementation where all operations are differencing or
averaging. Although we find Haar a good match, explo-
ration of alternative wavelets is potential future work.

The second reason we chose wavelets is that they let
us focus on frequency or time, or some combination
of both. We use their ability to focus on frequency
to indicate the presence or absence of periodic traffic
(Section 6.1), and their temporal resolution to identify
when that traffic starts and stops (Section 6.3).

Discrete wavelets are scaled and translated only in
discrete steps. One helpful way to view wavelets is as
iterated filter banks, where a single wavelet acts as a
band-pass filter, and scaling is in effect a low-pass filter.

Each pass with a high and low-pass filter pair splits the
frequency spectrum roughly in half, decomposing the
signal. The resulting set of wavelet coefficients contain
both time and frequency information. Thus iterated
application (Figure 1(c)) produces a particular split of
frequencies (Figure 1(a)).

The filter bank in Figure 1(c) is widely used in image
compression. However, other configurations are possi-
ble. The filter bank in Figure 1(d) selects a different set
of frequencies (Figure 1(b)). With very low-rate peri-
ods, this ability to “focus in” on the important parts of
frequency domain and ignore less interesting parts has
potential to improve performance.

4. METHODOLOGY

As just described, wavelets and iterated filter banks
are a useful mechanism to identify periodicity in traf-
fic. Although wavelets provide a well developed mathe-
matical theory, and there has been some work applying
them to network traffic before, discovering infrequent

periodic traffic is particularly demanding because of the
long-timescales involved. In this section we describe
the four main parts of our approach (roughly following
the outline of applying signal processing to network-
ing [18]): extracting a timeseries of events from network
traffic, decomposing the timeseries using an iterated fil-
ter bank, visualizing the resulting multi-resolution rep-
resentation, and detecting the presence of a periodic
signal. Our focus on long-timescales influences each of
these steps.

4.1 Timeseries Extraction

To apply signal processing to network traffic we first
must generate a timeseries of events that represent net-
work traffic [18]. We begin by discarding all traffic that
is not of interest, then map events of interest into a
fixed-interval timeseries of events per time period.

Our first step is to subset traffic. As we show later
(Section 6.2.2), the signal-to-noise ratio governs our abil-
ity to detect behavior of interest. Any irrelevant traffic
we can discard decreases the rate of background noise,
improving our sensitivity. Exactly what can be dis-
carded depends on the application, and we use different
rules in different cases. In general, we consider all TCP
flows, but as one example, when searching for malware
that is known to be sent over web connections, we could
discard all traffic other than TCP connections to port
80.

Next, we define an event of interest. We are interested
in long-duration interactions, so we monitor TCP flows

rather than individual packets. The arrival of a SYN-
ACK packet in the input packet stream defines the time
of an event denoting a new TCP flow. (We use SYN-
ACK since it indicates a complete three-way handshake
with two active parties.) Malicious traffic with forged

3

SYN-ACK packets may taint this data, but is unlikely
to show long-term periodicity and so does not alter our
results.

After extracting and sampling events, we create a
timeseries covering the duration of analysis. We use
fixed-duration bins, and count the number of new con-
nection events per bin. Since our target events are infre-
quent (minutes or hours apart), we study durations of
at least 18 to 96 hours so we observe multiple instances
of an event. We use a bin size of 1s, chosen to support
a large range of periods (from several seconds to sev-
eral hours). We must pick a sampling rate high enough
to keep enough precision for high frequency events, but
low enough to avoid excess filtering.

4.2 Multi-resolution Analysis

The timeseries provides observations from the net-
work, but our goal is to find periodic behavior in those
observations.

In Section 3 we described how discrete wavelets can
be implemented as an iterative filter bank. Figure 3
showed who different combinations of filters can focus
attention on different portions of the frequency spec-
trum. That figure illustrates two different filter config-
urations that extract particular bands. Using a differ-
ent path through the filter tree, efficiently gives more
resolution in a target frequency range. This ability to
“focus in” on a range is useful if the target range is
know a priori.

However, in our work we do not have a pre-determined,
specific range of frequencies we are interested in. In-
stead, we want to look for all possible low-rate periods—
anything from a period of a few seconds to a few hours
may be of interest. If we consider all the combinations
of low- and high-pass filters, the full set can be viewed
as a complete binary tree, which we will refer to as a
filter tree. Therefore, we perform a full decomposition,
and use all paths through the filter tree. Figure 2 shows
a filter bank configured for a full decomposition and the
logical frequency bands we extract.

Although wavelets are a relatively mature analytic
approach, to our knowledge, we are the first to use a full
decomposition to simultaneously explore large ranges of
frequencies in network traffic.

Full decomposition requires multiple operations on
a single timeseries and appears quite expensive. We
employ two optimizations that make our analysis quite
efficient. First, because we use the Haar wavelet as our
basis function, we can employ simple differencing and
averaging implementations of our high- and low-pass
filters. Given timeseries X, we get

XH =
x2 − x1

2
,
x4 − x3

2
,
x6 − x5

2
, ...,

xn − xn−1

2

and

f
BBBBBBBB

(a) Frequency split from fil-
ters in Figure b

HL

HL

L H

Original Data

BB

H L

BB

LH

L H

BB

H L

BB

(b) Filters resulting in Figure a

Figure 2: Full decomposition of a filter tree, with
“flip” in covered frequency bands.

XL =
x1 + x2

2
,
x3 + x4

2
,
x5 + x6

2
, ...,

xn−1 + xn

2

Second, we cease to expand nodes in certain cases,
which significantly reduces the total number of filtering
operations we perform. We discuss this optimization in
Section 4.6.

The duration of the original timeseries, and the sam-
pling rate determine the number of levels we can ex-
pand.

4.3 Periodic Events and Energy

Given a multi-scale decomposition of observations, we
must determine how to identify periodic events. The
wavelet coefficients define the energy for a given time-
series X at some path P in the decomposition tree:

e(XP) ≡ ss(XPL) + ss(XPH)

ss(X) ≡

n
∑

i=0

x2

i

A concentration of energy in a narrow frequency range
indicates the presence of a periodic signal. We show how
we use energy to automate detection in Section 4.5.1.

One benefit of the Haar wavelet is that energy is con-
served at each level of decomposition, e(X) = e(XL) +
e(XH). We can therefore normalize energy and evalu-
ate the energy of each decomposition as a percentage of
total energy.

Finally, it is possible to undershoot or overshoot a
given frequency in the filter tree. With insufficient lev-
els of decomposition, energy is spread uniformly across
large frequency ranges. With excessive decomposition,
imperfections in real-world periods cause traffic is dis-
persed across several ranges. These constraints again
motivate our desire to adaptively expand the tree until

4

Figure 3: Perfect artificial period of 8s (window
aligned).

we find periodic behavior.

4.4 Filter to Frequency

While energy identifies the presence of periodic be-
havior, we also must know where that behavior occurs—
at what frequency. We therefore must map a position
in the filter tree to a specific range of periods.

At first glance, filter mapping seems easy: low- and
high-pass filters each separate the low and high fre-
quency bands. Unfortunately, because filters are sym-
metric, repeated application of high pass filters “flip”
the covered frequency bands. If we define < as “cov-
ers lower frequencies than”, and Xab as applying fil-
ter a then b to timeseries X, then XL < XH and
XLL < XLH , but XHH < XHL. We discuss this flip-
ping further in Appendix A.

The correct mapping of filters to frequencies is essen-
tial for proper detection, and it also supports visualiza-
tion of energy over the frequency space as well. Figure 3
shows 6 levels of expansion of an artificial signal that
occurs every eight seconds. In this figure, each row cor-
responds to one level of decomposition of the filter tree,
the scale of the decomposition. The top row is scale
0, indicating the original timeseries, the next is scale 1,
showing XL and XH , and so on.

Each row is divided into several blocks, showing in-
creasing frequency from left to right. The top row shows
one block, by definition capturing 100% of the energy
across all frequencies. Each lower row shows twice as
many blocks, each representing energy over bands of
half the previous frequency.

Finally, we represent energy on the z-axis, using both
color (white is large amounts of energy, black little) and
a numeric value representing percentage of total energy.
Because frequency bands become narrower at each level,
we scale color in each row to the maximum energy in any
band of that row. Thus in Figure 3, all blocks are either
black or white since energy is perfectly distributed with
in this case, but in later examples intermediate cases

appear.
While we use visualization to observe a decomposi-

tion and assist our intuition, differences can be subtle,
particularly in real data and when traffic with different
periods is mixed. We therefor next present a quantita-
tive detection method.

4.5 Energy and Frequency to Detection

We have shown how periodic events correspond to
energy (Section 4.3), and how to relate that energy to
frequencies (Section 4.4). We now combine these to de-
scribe our detection algorithm, exploiting the temporal
structure of wavelets to identify the start and stop times
of a periodic behavior.

4.5.1 Detection

We detect events by comparing the energy in a given
frequency range to an energy threshold. Energy from
non-periodic events will disperse as we perform further
decomposition, and narrow in on smaller and smaller
frequency ranges. Conversely, energy from periodic events
will remain concentrated around a specific frequency
throughout decomposition. Therefore, to identify a pe-
riodic set of events, we must look for strong energy in
a narrow range of frequencies.

We ignore detections when the frequency range is too
wide. A range is narrow enough to consider detection if
the range of periods covered is within a set percentage of
its center period. From low to high frequency nodes we
linearly decrease this percentage from 10% to 1%. This
relaxes the definition of “wide” for lower frequencies,
since we expect lower frequency periods to have more
jitter (a few seconds of jitter on a half-hour period is
not as significant as a few seconds off on a 5 second
period).

Our energy threshold is dependent on where in the
filter tree we are making a detection decision. Further
down in the tree at higher levels of decomposition, we
lower the energy threshold since each bin represents a
narrower frequency band and overall energy will be dis-
persed over more bins. Specifically, we exponentially
decrease the energy threshold, such that the threshold
for node n is

tenergy = (cℓ/n)

where the empirically derived constant cℓ, is set based
on the tree depth. We currently start cℓ at 0.6 for the
first 5 levels and then increase it linearly.

Although we expect events occurring at interval p to
provide energy at frequency f = 1/p, they also give
energy to harmonics at small integer multiples of f .
We therefore choose the lowest frequency range in a
harmonic set as the period of an identified frequency.

We can misdetect the true frequency for several rea-
sons. We see energy at half the base frequency, or at half
of a harmonic of the base frequency. Noise and window

5

mis-alignment (frequencies that are not a power of two)
also affect the strength of signals; we look at these ef-
fects in Section 6.2. Typically we correctly find the base
frequency, but occasionally a harmonic is stronger.

4.5.2 Locating Events in Time

Once we have identified the frequency range of a pe-
riodic series of events, we can estimate when the events
started and stopped by looking at the timeseries of co-
efficients corresponding to that frequency range. Recall
that each node in path P in the decomposition contains
a timeseries XP . Each element i in this timeseries in-
dicates a time xP

i . To find the beginning and ending
of an event in time, we look for a consecutive series of
strong coefficients xP

i . Our current simple approach is
to compute the mean µ = E[XP], then search back-
wards in time to find the first xP

b < µ as the beginning,
and forwards through the signal xP

i > µ to find the
next xP

e < µ, giving a period b ≤ i ≤ e. Often, the
level of decomposition which identified the frequency
range contains too little information in the time domain
to make any useful statements about timing. In these
cases, we can back up the filter tree two or more levels
and examine coefficients at a level with better temporal
resolution.

4.6 Pruning to Reduce Computation

Although our filters reduce to a simple set of addi-
tions and subtractions, we can reduce the amount of
work done by pruning out certain paths through the
filter tree. We prune branches from the filter tree for
two reasons. First, we cease expansion in frequencies
that exceed our sampling rate. Second, we stop expan-
sion if there is minimal energy in the node. In practice,
we find that frequency-based pruning is very effective,
eliminating 70% of expansion after three levels.

We discuss the number of filtering steps pruning saves
us in Section 6.6.

4.7 Implementation and Datasets

Previous sections describe our approach; we next de-
scribe our implementation. We have implemented our
detection method as a plug-in to the LANDER system
at USC [10]. LANDER provides anonymized packet
traces taken from multiple taps into our regional net-
work. Our module takes packet traces and returns a list
of possible periods for any periodic communication de-
tected (Section 4.5.1) as well a location in time of when
the periodic communication was active (Section 4.5.2).
Sources and destinations can then be isolated with fur-
ther filtering.

We have carried out analysis on-line (in near-real-
time) and off-line. We have run our system for several
weeks in on-line mode, identifying periodic behavior in
traces provided by LANDER’s continuous trace infras-

Figure 4: Periodicity in traffic to a BitTorrent
tracker. (Single client, 300s period, 0.42 SNR).

tructure. The results presented in this paper are taken
from off-line analysis of selected traces to allow con-
trolled, repeated evaluation.

Our paper uses one main dataset, a four-day trace [23]
consisting of the majority of traffic entering and exiting
the main USC border router.

All of our traces are freely available by request from
the authors.

5. PROOF OF CONCEPT

To give a rough idea of how our approach works,
we next show several examples of periodic behavior in
network traffic. Through these examples, we wish to
demonstrate first that popular classes of applications
generate periodic traffic and that we can find such be-
havior. In the next section we move from these demon-
strations to a more systematic exploration of the effec-
tiveness of our approach. Here, we look at two different
applications that show strong periodicity: BitTorrent
and an RSS news feed aggregator.

We first consider BitTorrent. We build a timeseries of
all TCP flows originating from a single host running sev-
eral applications, including a BitTorrent client, a web
browser, and an e-mail reader. We selected the host
from our four-day trace [23] based on port-identification;
we manually verified that it was running BitTorrent by
connecting to the tracker with which it was conversing.
We then extracted all TCP flows from the host (the
host’s client was not accepting incoming connections).

Figure 4 shows our visualization of TCP flows from
this host. The tracker is used to coordinating peers
sharing a resource (file). In this case we see a strong pe-
riodicity around 300s: at the 11th decomposition (the
lowest row), 4% of the energy is in the frequency range
corresponding to a 292–315s period. We confirmed that
this BitTorrent client contacts the tracker (to coordi-
nate data exchange) every 600s. Although we do not see
particularly strong energy at 600s, 300s is a harmonic

6

Figure 5: Periodicity in an RSS News feed
reader (SNR: 0.62).

of this frequency, as is 150s that also shows strong en-
ergy. We conclude that our approach can detect
regular control messages in BitTorrent traffic, and later
in Section 6.2 we explore why the frequency of the peri-
odic network behavior does not always correlate to the
strongest concentration of energy.

Figure 5 shows traffic from a single host running an
RSS feed aggregator (the Wizz plug-in for Firefox). Again,
we found this host in our four-day dataset, this time by
identifying it by traffic with FeedBurner, a large hosting
site for RSS feeds. The RSS aggregator has a configura-
tion that polls for new information every 600s. As with
BitTorrent, application our our approach shows energy
indicating strong periodic behavior, although again it
is strongest at 300s, a harmonic of the true application
period.

These examples have shown real applications have
low-rate periodic behavior, and that our approach can
pick that behavior out of aggregate traffic. Although
both of these applications are benign, we will show
later that malicious applications are detectable (Sec-
tion 6.3.1) and common in our network (Section 6.5).
We next look more carefully at how detection process
works.

6. EVALUATION

We next systematically evaluate our approach. We
begin with artificial data to understand how observa-
tions of known behavior are affected by our our system
(Section 6.1). In Section 6.2 we then define and ex-
plore noise, the primary impediment to detection, and
demonstrate that we can detect changes in behavior
(Section 6.3). Finally we show the range of applica-
tions that show periodic behavior (Section 6.4) and in
Section 6.5 that those applications occur and are de-
tectable in real networks.

6.1 Does Identification Work?

Figure 6: Perfect artificial period of 9s (non-
window aligned).

We begin by evaluating our method with artificially
data. We start here because artificial data provides
complete control ground truth, allowing us to under-
stand the benefits and limits of our approach. In this
section we present three cases of increasingly complex
input.

6.1.1 Best case: aligned, artificial data

We earlier presented the cleanest possible case in Fig-
ure 3. That figure used and artificial timeseries with an
event every 8s with 1s time bins. This case is ideal be-
cause 8s is a power of two, and our filters decompose
time in powers of two, so this case is aligned with our
analysis window.

Figure 3 shows this case. The first four levels of de-
composition show uniform energy across all frequencies.
At additional levels of decomposition, though, energy
emerges at 8s (0.125Hz), and at 2s, 2.66s and 4s, har-
monics of this period (2, 3, and 4× the basic frequency).
Because of window alignment, energy between these
harmonics is zero. We conclude that decomposition
works very well with clean data, although harmonics
are as strong as the injected frequency.

6.1.2 Unaligned artificial data

While the results of a ideal data are clear, real-world
data is unlikely to be periodic on a perfect power-of-two
multiple of our estimate frequency. We therefore next
evaluate a perfect artificial timeseries with period of 9s.
We expect a nosier result.

Figure 6 shows the the first seven levels of decompo-
sition of a 9s artificial timeseries. We expect that there
will be energy near 9s (0.111Hz). We see this energy,
but it is split between to adjacent bins with 4% and
5% of the energy around a 9s period, and again at the
4.5s harmonic—the energy is now “blurred” between
two adjacent bins. We also see strong energy near har-
monic energies 3s and 2s (3× and 4× the base frequency
0.111Hz).

7

Figure 7: Long-duration artificial period of 600s.

This example shows that, even with perfectly periodic
data, real-world, unaligned periods will be nosier than
our ideal case.

6.1.3 Low-rate periodicity

Our goal is to discover low-rate periods: events that
occur every few minutes or hours. In the two prior ar-
tificial examples we explored periods of less than 10s
because they show up quickly with six levels of decom-
position,

To explore further decomposition, we now look at
an artificial timeseries with an event every 600s. Such
sparse events require additional levels of decomposition;
our graphs now omit the top levels since they would sim-
ply show all energy spread uniformly across all blocks.

Figure 7 shows the visualization for an artificial time-
series with an event every 600s (1.6milliHz). We expect
to see energy around 600s, but since 600s is not aligned,
we expect some blurring. The figure shows strong en-
ergy (5%) in the 588–625s. We also harmonics around
300s, 200s, and 150s. We conclude that, with sufficient
levels of decomposition, our approach can detect low-
rate periodic behavior.

6.2 Effects of Noise

The previous section showed how our methodology
worked with pure signal. Real network traffic will of
course mix the traffic we are looking for, the signal,
with other traffic, the noise, that may distort and ob-
scure our traffic of interest. In this section we explore
the effects of adding background noise to a controlled
(artificial) periodic signal. Our goals are to evaluate
how different types of noise distort the signal, and to
define a measure of the signal-to-noise ratio (SNR) for
our system to quantify interference.

6.2.1 Controlled noise

In this section we look at two types of background
traffic as noise. We begin with simulated background
traffic, since it can provide a perfectly controlled level

Figure 8: Mix of foreground traffic (600s period)
with Surge simulated background traffic.

of noise to exercise our system. We then shift to replays
of real-world traffic from trace replay to better capture
current network traffic.

Since web traffic remains the dominant use of the net-
work in terms of flows, we therefore focus on web mod-
els to simulate background noise. We use the Surge
web traffic model to generate controlled background
traffic [1] (version 1.00a). We use the example Surge
parameters, but we reduce the number of total docu-
ments retrieved to better model a single client (instead
of a server). We then extract the traffic for one client
and concatenate multiple such instances to generate an
18 hour trace. After Surge generates a web workload,
we reduce this workload to a timeseries (TCP flow starts
per unit time) as described in Section 4. Finally, we mix
this traffic with our artificial signal by simply summing
the timeseries, element-by-element. We use the 600s
periodic signal from Section 6.1.3.

Before we quantify effects of background noise, we
first show visually how it changes our observations of
the signal. We expect two kinds of interference: web
traffic will induce other periodic signals (we know it has
strong periodicities at small timescales [6]), Second, in-
terference may blur the signal, similar to the distortion
caused by non-alignment (Section 6.1.2).

Figure 8 shows the levels 6-12 of decomposition for
our periodic signal and the combined Surge background
traffic. By comparison, Figure 7 showed the same traf-
fic without background traffic. We see the same periods
and harmonics as before (around 600s, 300s, 200s, and
150s), but rather than 4–5% of energy, they show up
as 1–2%. Thus, the main result of this simulated back-
ground traffic is a large increase in the “DC component”
of our signal in the left-most bin (consistent applica-
tion of low-pass filters). This result strongly suggests
the importance of quantified (non-visual) methods for
detecting periodic behavior. It also suggests the im-
portance of quantifying noise to allow us to quantify
sensitivity. We explore this question next.

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
e

rc
e

n
t

o
f

O
ri
g

in
a

l
(n

o
 n

o
is

e
)

C
o

e
ff

ic
ie

n
t

E
n

e
rg

y

Linear Signal to Noise Ratio (SNR)

Web Client 1
Web Client 2
Web Client 3

SURGE generated

Figure 9: Effect of SNR on Coefficient Energy

6.2.2 Quantifying Noise with SNR

Figure 7 shows that background traffic greatly re-
duces our ability to observe low-rate periodicity. To
quantify this effect, we next define the signal to noise

ratio (SNR) for our environment and estimate what
SNR values allow detection.

SNR is defined as the “amount” of signal to inter-
fering background traffic. We quantify the amount of
traffic with the number of flow starts, since these are
the events in our timeseries.

We now wish to vary the SNR in a controlled manner.
There are several strategies that change this ratio, ei-
ther varying the intensity of foreground or background
traffic, or changing the period of the foreground. We
wish to draw on traces of real traffic, so we cannot eas-
ily vary the rate of background traffic (at least, without
possibly altering the nature of the application and TCP
control loops). We therefore vary the period of the pe-
riodic foreground traffic, considering a range of values
from periods of 1800s down to 1000s by 100s increments,
then by 50s increments below.

To quantify the change, we establish a target fre-
quency range that shows the strongest energy with just
foreground traffic at a specific level of decomposition
(the level of decomposition is dependent upon the fore-
ground traffic). In all cases this was the dominant fre-
quency (the frequency at the period of the foreground
traffic). We then compare the fraction of total energy
energy in that bin with and without background traffic,
and we report the fraction of original (foreground-only)
energy that appears with mixed traffic.

Figure 9 shows the effect of the SNR on the orig-
inal coefficient energy for varying foreground signals,
and for four different background traffic loads: Surge
(the squares connected with a line), and web traffic ex-
tracted from traces of three different clients. First we
consider the Surge results. We see signal energy is fairly

consistent above SNR values of 0.15—when there is at
least one flow of signal to seven of background. With
sparser signals, the percent of energy quickly drops off.
We applied our detection algorithm (Section 4.5.1), and
found good detections as long as the energy at the tar-
get period was at least 40% of original, suggesting our
approach might work reasonably to SNR values as low
as 0.05 (one flow in 20 is signal).

While Surge provides an easily controlled background
load, the model is now fairly old and may not reflect cur-
rent web traffic. We therefore chose three web clients
at random from our week-long dataset and extracted
18-hour timeseries for each client. We chose the 18-
hour period when each client was most active. As with
our artificial background traffic, we combine each web
client’s timeseries with varying frequencies of periodic
events to study the effect of SNR on detection. These
values are shown as scatter plots of three different sym-
bols on Figure 9.

As with Surge, the strength of the signal to the three
web clients are consistent and large for large SNRs (above
0.15), where noise only degrades the signal by 30% or
less. However, as SNR falls, we begin to see inconsistent
results—the fraction of original energy will be 60–80%
for a signal at one period and 20–40% for a signal that
is only 100s different. We believe this large variability is
because of “accidental” low-rate periodicity in today’s
web traffic.

We conclude that our approach works well provided
the signal is at least 10% of the selected traffic. Be-
cause of variation in background traffic, our ability to
detect lower SNRs varies a great deal and should not
be assumed.

6.3 Identifying Changes in Periodic Behavior

In the previous sections, we demonstrated that mal-
ware shows periodic behavior that can be identified,
even in the face of noise. In this section we look at iden-
tifying changes in periodic behavior, and when these
changes occur.

We wish to identify changes in the periodic behavior
of a given computer to help users understand their com-
puter. All operating systems, and an increasing number
of applications automatically poll for updates periodi-
cally. In addition, spyware and adware often reports
back to or requests new information from its external
master. In fact, application updates have sometimes
not disclosed the presence of automatic polling, or how
much information they disclose. When desired, a user
will want to know when such automatic checks stop,
and if not expected, a user will want to know about the
addition of an automatic reporting service.

We consider two examples, one negative and the other
positive changes: detecting installation of a keylogger
and detecting presence of OS updates.

9

(a) Traffic without keylogger (before installation).

(b) Traffic with keylogger (after installation).

Figure 10: Visualization before and after instal-
lation of a keylogger.

6.3.1 Detecting a keylogging application

Many keyloggers report on user activity at specified
intervals, to inform their supervisors what they have
learned and that they are still operational. Both Spy-
Buddy and Keyboard Guardian have supervisor-configurable
reporting intervals.

To investigate if we can detect keylogger reporting
we installed Keyboard Guardian on a dedicated Win-
dows computer. We monitored all TCP flows from the
test machine for a three day period while using the
test machine for occasional e-mail and web browsing
(dataset [22]). On the second day of the experiment,
we installed Keyboard Guardian at 4pm, and config-
ured Keyboard Guardian to email reports every three
hours. Our periodic use of the computer provided an
SNR of 0.1.

Figure 6.3.1 shows the visualization of traffic peri-
odicity before and after the keylogger was installed.
In Figure 10(b) shows strong periodic traffic around
our reporting period (10,800s, 92µHz), at double the
frequency (around 21,600s) and at harmonics (around
5400s, 3600s, and 2700s). Surprisingly, the base fre-
quency is not very strong, less than 1%. (Note that

this very long period requires 16 levels of decomposi-
tion.)

While these before-and-after pictures show a strong
visual change, more compelling is the ability to use
wavelets to locate in when in time keylogging began.
Note that wavelets can trade-off precision in frequency
against in time, but cannot be precise in both dimen-
sions simultaneously. We manually examined the filter
bank coefficients at level 15, to provide temporal reso-
lution of about about 9-hour, then look for changes in
coefficients similar to the approach used in Section 6.3;
we then relate these periods to time using temporal dis-
covery as described in Section 4.5.1. We then observe
that change in energy indicates a change in traffic some-
time between 12pm and 9pm on the second day of our
experiment, bracketing the 4pm installation time.

This experiment shows we can detect regular but low-
rate traffic correlated with a known spyware tool. We
anticipate that this approach could be used by a net-
work administrator to monitor a large number of user-
controlled machines for malicious activity. Although
centralized companies could do such monitoring more
easily by modifying software individual machines, some
companies (for example, Google) and most ISPs do not
have this ability. While such network monitoring is pos-
sible today with centrally maintained blacklists, our ap-
proach detects behavioral changes that would apply to
malware before the control site is blacklisted. After de-
tection, network administrators could take action to fur-
ther investigate, perhaps notifying the machine’s owner
or subjecting that host to more invasive monitoring or
quarantine.

6.3.2 Detecting operating system updates

Our approach applies to positive uses of polling as
well as negative uses. The security policy of all oper-
ating systems and many applications include automatic
polling for updates with periods from 30 minutes to
weekly. Just as network administrators wish to detect
bad behavior, they may also wish to detect the absence
of good behavior. In addition, automatic updates are
often disclosed to users only in the fine print of an end-
user license agreement, so users may wish to know when
a newly installed application regularly contacts its de-
velopers.

To confirm we can see a change in update checks we
monitored a lab machine running the Fedora 10 dis-
tribution of Linux for three days (dataset: [22]). By
default, Fedora polls update servers every hour using
yum-updatesd. During the second day of the experi-
ment, we disabled update checks at 2pm. The machine
was lightly used for web browsing and e-mail over the
three day period.

Figure 6.3.2 shows traffic periodicity with and with-
out OS update checks. In the 16th level of decomposi-

10

(a) Traffic with automatic polling for OS updates.

(b) Traffic without automatic update polling.

Figure 11: Visualization before and after re-
moval of OS update checks.

tion of Figure 11(a) we see OS update polling as energy
at the base frequency of one hour (3600s, two adjacent
3% bins), and at harmonics at double and two-thirds
the frequency (7200s, 4% energy, and 2400s, 3% en-
ergy). Disabling updates, by contrast, shows no energy
below the 14th level of decomposition (Figure 11(b).

We were also able to narrow down when updates were
disabled. Looking at decomposition level 15 with time
resolution of roughly 9 hours, we determined OS up-
date polling ceased sometime between 12pm and 9pm,
consistent with our known time of 2pm.

This example of OS update polling confirms that our
results for keylogging detection apply to the useful pe-
riodic behavior of OS update polling. Again, while in
some cases system administrators may be able directly
monitor OS update polling if they have administrative
access to the machines in question, we suggest our ap-
proach could be useful when only network access is pos-
sible. In addition, monitoring periodic checks is robust
to a potentially changing set of servers hosting OS up-
dates.

6.4 Variety of applications that show periodic
behavior

In the previous sections, we demonstrated when and
how often we can identify traffic that contains a set
of periodic events occur, even in the presence of noise.
We now look at the variety of applications which ex-
hibit periodic behavior that can be detected with our
approach. As shown in Section 6.3, application range
from the beneficial to the malicious. We enumerate im-
portant classes and examples next.

OS and application updaters: Nearly every cur-
rent operating system today Windows, MacOS, and
most distributions of Linux including Fedora, Ubuntu,
SUSE includes an automatic update service—such as
service is a necessity given the large number of Internet-
facing programs that may have vulnerabilities. As at-
tacks have become more sophisticated, an increasing
number of applications also include automatic updates,
including web browsers (Firefox, Google Chrome), tools
for browsing web content such as Adobe Acrobat, and
programs where the applications change frequently, such
as peer-to-peer file sharing clients. Update polling pe-
riods vary, from once an hour to once a week. We have
demonstrated we observe Fedora OS updates in Sec-
tion 6.3.2.

User services: Many user services poll the net-
work regularly to track weather, stocks, news, and other
things users may care about. Weather monitoring ser-
vices exist for every OS, for example, WeatherEye for
Windows and MacOS, weather sidebar of gadgets for
Windows, weather dashboard widgets for MacOS, and
the Clock applet in Gnome on Linux. These services
often poll a single site every 30 to 120 minutes.

RSS News Feeds: While weather or stock monitors
poll a central server, some applications users use watch
user-selected sites. RSS News Aggregators and podcast
trackers are probably the most commonly used example
of such applications. Specific examples of RSS read-
ers include the Wizz plugin for Firefox, NewzCrawler
and FeedDemon for Windows, Shrook and Cyndicate
for MacOS, Liferea and Akregator for Linux. Different
tools use different default polling intervals, typically 30
minutes to an hour. Some tools adapt their polling
frequency to the monitored website. We saw periodic
traffic with one RSS news reader Figure 5.

Web Counters: Many web pages include counters
and JavaScript to monitor when and how long a web
page is seen. Examples include Google Analytics, Ya-
hoo Web Analytics, Microsoft adCenter Analytics, and
the Livejournal counter. These tools often insert code
into a web site, so that every browser which views the
site also contacts the count server. They create periodic
behavior because many of the web pages in which they
are embedded automatically refresh at regular intervals,
often from 5 to 30 minutes. Even without of browser-
side scripting languages, these refreshes can quickly gen-

11

erate a large amount of periodic traffic. We have seen
such updates at news sites such as CNN, ESPN, and
MSNBC.

Peer-to-peer protocols: Peer-to-peer protocols must
coordinate activities between peers, possibly mediated
by a central tracker. Trackers can therefore be identified
by regular polling from peers. We observe this periodic
traffic at a BitTorrent tracker in Figure 4. We expect
that the periodic traffic used to maintain the Kademlia
ring will show strong periodic behavior [17]; Kademlia
is the DHT protocol behind several widely used peer-
to-peer services such eDonkey. Gnutella keep-alives are
also often periodic. Peer-to-peer protocols coordinate
fairly frequently, typically every 20 minutes or so.

Adware: A number of tools derive revenue from
showing users advertising. Although sometimes chosen
by users, these tools are often installed without com-
plete user consent. Such tools often report back to their
designers, either to fetch new ads to display user, or to
report back on the what the user is doing. There are
hundreds of adware programs; we observed 36 in our
incomplete survey of USC traffic (Section 6.5). We also
reproduced periodic behavior in a Gator adware com-
ponent that appeared in a Kazaa version 2005. These
tools often probe very few minutes to few hours.

Some adware aggregates reporting on the user and
ad updates with user-initiated search, and we did not
expect them to cause periodic traffic on their own. How-
ever, in one case (the ISTbar from 180 Solutions), we see
periodic traffic. Perhaps this traffic is an auto-update
service.

Sypware and keylogging: A step more malicious
than adware, spyware surreptitiously monitors what a
user is doing. The most benign may collect demo-
graphic information to support

while others harvest passwords and bank accounts.
We discuss detection of one keylogging application in
Section 6.3.1.

Botnet command and control: Finally, many bot-
net systems employ command and control systems. Be-
cause these are adversarial we expect them to be diffi-
cult to detect, but they often use peer-to-peer protocol
that cause traffic at regular intervals.

We have shown that we can identify example appli-
cations in several of these classes. This range of appli-
cations, and the growing use of periodic traffic for both
good and ill suggests that our ability to remotely detect
such applications is an important new tool for network
administrators, particularly to identify changes in their
network (Section 6.3).

The problems created by some of these applications
are sufficient to support an industry of adware and spy-
ware detectors and removers. Blacklists and host-based
malware scanners offer protection against a variety of
malware, but they rely on external sources to maintain

up-to-date information. The ability to identify the who,
when and where of periodic behavior, can help classify
traffic and hosts (by looking at periodic services) and
identify new adware without the need of a new signa-
ture (by looking at periodic contact with ad servers).
Additionally, detection of new types of periodic traffic
may support “zero-day” detection of malware that has
not yet been identified and placed on a blacklist. Fi-
nally, by basing discovery of adware on network traffic,
rather than with host-invasive software, allows network
administrators to identify malware on user machines.

6.5 Prevalence of applications in real networks

We have outlined categories of applications that have
periodic behavior (Section 6.4), and specific examples of
such applications. However, example applications don’t
characterize how widespread hosts exhibiting malware
with periodic behavior are.

To evaluate how prevalent such malware is, we looked
for malware in our four-day trace from USC [23]. We
compared this traffic with a widely referenced blacklist
of IP addresses that have been identified has serving
malware such spyware and adware [26]. This list rep-
resents a candidate list of questionable applications in
four of the categories we identified in Section 6.4.

We performed two levels of subsetting before apply-
ing multi-scale analysis. First, for each blacklisted ad-
dress we took all flows to that destination. We found
that many destinations had a mix of one-off connections
as well as periodic behavior, so for a second level of
subsetting, we selected subsets of source hosts in USC
that transmit to that destination in groups of up to
twenty. This step improves sensitivity because while
periodic traffic may be lost in the aggregate of thou-
sands of hosts, it can show up more strongly in smaller
aggregates. Finally, we used our detection method (Sec-
tion 4.5.1) to identify subsets that have strong periodic
traffic at periods of 600s or longer. For destinations
that have some periodic traffic, we then count all IP
addresses at USC that contact that destination.

Although these steps could be automated and ap-
plied systematically to the network by a monitoring ap-
pliance, we are not suggesting they provide a practical
implementation of such a service. However, this pro-
cess could be inverted, so that each user (or potentially,
each group of users on a LAN segment) monitor their
traffic for changes in periodic behavior (as we describe
in Section 6.3).

Table 1 shows the results of this analysis. We found
traffic to 181 of the blacklisted destinations from our
campus. About 45,000 IP addresses at USC had traf-
fic to some of these sites, nearly one-third of all active
campus addresses. (The presence of dynamic addresses
means that this count may not correspond exactly to
45,000 users, since one user may occupy multiple ad-

12

Blacklisted Unique IPs
Group Destinations (users)
active to anywhere – – 128,614 [100%]
active to blacklisted 181 (100%) – –

Non-periodic 120 (66%) n/a n/a
Periodic 61 (44%) n/a n/a

User Services 5 (3%) 22 [0%]
Web Counters 15 (8%) 16,405 [13%]
Ad Servers 36 (20%) 31,277 [24%]
Other 5 (3%) 6 [0%]

Table 1: Prevalence of malware seen participat-
ing in periodic behavior on our monitored net-
work.

dresses, and vice versa.)
For the 61 blacklisted hosts that had periodic traffic,

we manually examined the site and classified it in one of
four categories (user services, web counters, ad servers,
and other). We expected to see wide use of web coun-
ters and ad servers, since both support the advertising
driven nature of current Internet.

This observation strongly supports the presence of
servers that periodic traffic, and the pervasive contact
with those servers. While our approach cannot pick
such traffic out of aggregate traffic (an area of planned
future work), it could easily be used by a user to monitor
their own computer for suspicious outgoing traffic. In
addition, the large number of users accessing known
adware sites (24% of active USC IP addresses) and the
strong periodic nature of such traffic suggest that that
is a promising target for future automated detection.

6.6 Advantages of Pruning

As described in our methodology, while we normally
expand each node in the filter tree, we reduce the num-
ber of filtering operations we perform by pruning branches
which appear “uninteresting” (Section 4.6). We define
branches as uninteresting for two reasons. First, we
prune if further division of the frequency domain gives
us unnecessary resolution, such as resolution higher than
our sampling rate. Second, we prune if the energy in the
frequency band is insignificantly low. In this section, we
demonstrate the advantages of performing pruning by
quantifying the reduction of filtering steps we perform.

We demonstrate the advantages of pruning through
two examples. First we show the simple case of an ar-
tificial periodic signal with background noise. We then
show filtering reduction in the presence of background
noise.

We start with the simple case of a timeseries with a
periodic signal, and no background noise. In this ex-
ample, we demonstrate the effectiveness of pruning and
that pruning is performed both for frequency resolution
cutoffs and low energy. Figure 12 shows an 8s artificial
signal, sampled at 1 second, with no background noise.
Frequency bands marked with F or E are bands that we

Figure 12: Depiction of pruning. F=Pruned due
to frequency resolution. E=Pruned due to low
energy, P=Parent already pruned.

Figure 13: Percent of nodes pruned at each level.

stop filtering due to our frequency or energy thresholds
respectively. Frequency bands marked with P are fre-
quency bands we never reach because their branch was
pruned further up the tree. In six levels of decomposi-
tion, we prune nearly as often for low energy (6 times)
as we do frequency resolution (8 times) and skip nearly
70% of the filtering steps we would have performed in
the absence of pruning. In the simple case of no back-
ground noise, pruning proves advantageous.

We next look at how background noise effects prun-
ing decisions. While background noise has no effect on
pruning due to frequency resolution, we expect some ef-
fect on pruning due to low energy. To understand this
effect we look at an artificial signal with a period of
8 seconds, sampled at 1 second but with real network
background traffic with a SNR of 0.7. We expect that
due to background energy being present in many fre-
quency bands, we will be unable to identify ranges of
low energy as early as when dealing with signals with
no background noise.

Figure 13 shows at each level of decomposition, the

13

percent of nodes we are able to prune. While in the
absence of background noise, we were able to prune as
early as level 4 (see Figure 12), with background noise
we are unable to prune due to low energy until level
nine. However, pruning three nodes in level nine, saves
us 96 filtering steps in 14 levels of decomposition. In
all, we were able to prune eight times due to low energy,
and skip 280 filter steps (about 2% of the total filtering
steps). Pruning on low energy is less effective in the
presence of noise, however we are still able to easily
save a large number of extra steps.

In the previous two examples we showed pruning on
both low energy and frequency resolution proves advan-
tageous. While pruning on frequency resolution remains
constant and is based only on the sampling rate of the
initial timeseries, the effectiveness of pruning on low
energy depends heavily on the amount of background
noise. The more dissipated energy in the background
noise, the fewer branches we are able to prune. Even in
cases where we have a moderate amount of background
noise, pruning on low energy still saves filtering steps.

7. ROBUSTNESS

In previous sections we demonstrated that we can
detect and identify changes in periodic behavior. In this
section we briefly look at the robustness of our scheme,
and discuss it sensitivity to parameter settings.

7.1 Evasion

As with most security protocols, detection of low-
rate periodicity can be evaded by a determined attacker.
Evasion can be accomplished in one of two ways.

First, as shown in Section 6.2, our detection is sen-
sitive to noise. Decreasing the SNR to lower than 5%
effectively hides all periodic behavior from our current
implementation. Thus, a determined attacker can de-
crease the frequency of his traffic or generate spurious
other traffic.

Second, an application can evade our detection scheme
by adding jitter to its periodic behavior. By increasing
jitter, the energy of the signal is diffused. As a simple
example, we can vary the period of an artificial signal
and study the effect this jitter has on the coefficient
energy in a target frequency range.

Figure 14 shows an artificial signal with a 128s period
as the period varies up to 50%, based on an observation
period of 2-hours. In this case, jitter of more than 15%
is relatively effective at hiding the signal. Of course, the
countermeasure to this behavior is to employ a longer
observation period.

7.2 Parameter sensitivity

As described in Section 7.2, we have three main pa-
rameter settings to set when performing our full decom-
position: the length of our observation period, how large

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
e

rc
e

n
t

o
f

O
ri
g

in
a

l
(n

o
 j
it
te

r)
 C

o
e

ff
ic

ie
n

t
E

n
e

rg
y

Jitter as a Percentage of Period

Figure 14: Effect of jitter on coefficient energy.
Original period 128s.

a time-bin we use, and how many levels of decomposi-
tion we perform. To increase our ability to find longer
periods, we must increase the time-bin size, effectively
performing a low-pass filter. For longer periods, fur-
ther levels of decomposition might be necessary to see
the low frequencies, and our observation period must be
sufficiently long to observe several periods. A detailed
study of these effects is an area of future work. How-
ever, we can describe the trade-offs: a longer bin size
allows detection of longer periods, but reduces the tem-
poral sensitivity and may increase nose (as more traffic
is grouped into individual bins).

8. CONCLUSIONS

In this paper we have shown that low-rate periodic-
ity is common to several broad classes, both good (OS
updates), bad (keyloggers and malware), and ugly (ad-
ware), and that these applications are widely deployed
on public networks. We have explored a wavelet-based
approach to identify such periodic behavior, and be-
gun to explore the sensitivity and robustness of this
approach. A promising application of such analysis is
self-surveillance, as a user watches his or her own traffic
to detect unexpected changes.

9. REFERENCES
[1] Paul Barford and Mark Crovella. Generating

representative web workloads for network and server
performance evaluation. In Measurement and
Modeling of Computer Systems, pages 151–160, 1998.

[2] Paul Barford, Jeffery Kline, David Plonka, and Amos
Ron. A signal analysis of network traffic anomalies. In
Proc. of ACM SIGCOMM Internet Measurement
Workshop, Marseille, France, Oct 2002. ACM.

[3] Genevieve Bartlett, John Heidemann, and Christos
Papadopoulos. Inherent behaviors for on-line detection
of peer-to-peer file sharing. In Proc. of 10th IEEE
Global Internet, pages 55–60, Anchorage, Alaska,

14

USA, May 2007. IEEE. An extended version is
ISI-TR-2006-627.

[4] Chen-Mou Cheng, H.T. Kung, and Koan-Sin Tan. Use
of spectral analysis in defense against DoS attacks. In
Proc. of IEEE GLOBECOM, 2002.

[5] F. Constantinou and P. Mavrommatis. Identifying
known and unknown peer-to-peer traffic. In IEEE
International Symposium on Network Computing and
Applications (NCA), pages 93–102, Jul 2006.

[6] Anja Feldmann, Anna C. Gilbert, Polly Huang, and
Walter Willinger. Dynamics of IP traffic: A study of
the role of variability and the impact of control. In
Proc. of ACM SIGCOMM Conference, pages 301–313,
Aug 1999.

[7] Yu Gu, Andrew McCallum, and Don Towsley.
Detecting anomalies in network traffic using maximum
entropy estimation. In Proc. of ACM Internet
Measurement Conf., pages 345–350, Oct 2005.

[8] Xinming He, Christos Papadopoulos, John
Heidemann, and Alefiya Hussain. Spectral
characteristics of saturated links. Technical Report
USC-CSD-TR-827, University of Southern California
Comp. Sci. Dept., Jun 2004.

[9] Xinming He, Christos Papadopoulos, John
Heidemann, Urbashi Mitra, and Usman Riaz. Remote
detection of bottleneck links using spectral and
statistical methods. Computer Networks,
53(3):279–298, Feb 2009.

[10] A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann,
C. Papadopoulos, and J. Bannister. Experiences with
a continuous network tracing infrastructure. In
Proc. of ACM SIGCOMM Workshop on Mining
Network Data, pages 185–190, Philadelphia, PA, USA,
Aug 2005.

[11] Alefiya Hussain, John Heidemann, and Christos
Papadopoulos. A Framework for Classifying Denial of
Service Attacks. In Proceedings of the ACM
SIGCOMM’2003, Karlsruhe, Germany, Aug 2003.

[12] Alefiya Hussain, John Heidemann, and Christos
Papadopoulos. Identification of repeated denial of
service attacks. In Proceedings of the IEEE Infocom,
page to appear, Barcelona, Spain, Apr 2006. IEEE.

[13] Alefiya Naveed Hussain. Measurement and Spectral
Analysis of Denial of Service Attacks. PhD thesis,
U. of Southern California, Comp. Sci. Dept.

[14] T. Karagiannis, A. Broido, M. Faloutsos, and kc
claffy. Transport layer identification of P2P traffic. In
Proc. of ACM SIGCOMM Workshop on Internet
Measurement (IMC), pages 121–134, Oct 2004.

[15] T. Karagiannis, K. Papagiannaki, and M. Faloutsos.
BLINC: Multilevel traffic classification in the dark. In
Proceedings of the ACM SIGCOMM Conference,
pages 229–240, Philadelphia, PA, USA, Aug 2005.

[16] Antonio Magnaghi, Takeo Hamada, and Tsuneo
Katsuyama. A Wavelet-Based Framework for
Proactive Detection of Network Misconfigurations. In
Proceedings of ACM workshop on Network
Troubleshooting, Aug 2004.

[17] Petar Maymounkov and David Mazières. Kademlia: A
peer-to-peer information system based on the XOR
metric. In Proceedings of the International Workshop
on Peer-to-Peer Systems, Cambridge, MA, USA, Mar
2002. Springer-Verlag.

[18] Urbashi Mitra, Antonio Ortega, John Heidemann, and
Christos Papadopoulos. Detecting and identifying
malware: A new signal processing goal. IEEE Signal

Processing Magazine, 23(5):107–111, Sep 2006.
[19] George Nychis, Vyas Sekar, David Andersen, Hyong

Kim, and Hui Zhang. An empirical evaluation of
entropy-based traffic anomaly detection. In Proc. of
8th ACM Internet Measurement Conf., pages 151–156,
Oct 2008.

[20] C. Partridge, D. Cousins, A. W. Jackson, R. Krishnan,
T. Saxena, and W. T. Strayer. Using signal processing
to analyze wireless data traffic. In Proc. of 1st ACM
Workshop on Wireless Security, pages 67–76, 2002.

[21] D.S. Taubman and M. W. Marcellin. JPEG2000:
image compression fundamentals, standards, and
practice. Kluwer Academic Publishers, Boston, MA
USA, 2002.

[22] USC/LANDER project. Specialized TCP flow traces,
PREDICT ID
USC-LANDER/specialized_tcp_flow_usc-20081209,
Dec 2008.

[23] USC/LANDER project. TCP flow traces, PREDICT
ID USC-LANDER/tcp_flow_usc-20081209, Dec 2008.

[24] M. Vetterli and J. Kovacevic. Wavelets and Subband
Coding. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1995.

[25] Martin Vetterli and Jelena Kovačevic. Wavelets and
subband coding. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1995.

[26] YoSponge.
http://www.geocities.com/yosponge/blockips.txt.
Last upddated Jul 2008.

APPENDIX

A. FLIPPING OF FREQUENCY BANDS

(a) Low-pass filter (b) High-pass filter

(c) Up-sampled low-pass fil-
ter.

(d) Up-sampled high-pass
filter.

(e) Combination of two low-
pass filters.

(f) Combination of two high-
pass filters.

(g) Combination of a high-
and then low-pass filter.

Figure 16: Impulse response of low- and high-
pass filters and combinations.

As discussed in Section 4.4, repeated application of our fil-
ters leads to non-intuitive behavior where covered frequency
bands “flip”. We must take this flipping into account to cor-
rectly relate filter bands with specific frequencies in periodic
communication. Without correctly accounting for flipping
there is no way to even approximate a correct frequency
range for identified periodic behavior. In this section we dis-
cuss why and when this flipping occurs, and we show how to

15

/ \

/ \ / \

→ ←
/ \ / \ / \ / \

→ ← → ←

Figure 15: Filter depiction for three levels of filtering.

account for it when mapping filter coefficients to frequency.
Flipping is due to the shifting and contracting of the filters

which occurs when we iteratively apply these filters. Flip-
ping is a well known occurrence in wavelets (for example,
it is discussed in homework problem 3.16 in Vetterli’s and
Kovacevic’s Wavelets text book [25]), yet to our knowledge
it has never been precisely defined in published work. We
found careful definition essential to apply wavelets to our
problem, and such definition required a surprising level of
care, even when working with wavelet experts. In wavelets,
each successive step repeatedly applies the low- and high-
pass filters by first up-sampling the filters and then con-
volving them with the impulse response from the previous
filter(s). This up-sampling both shifts and contracts the fil-
ters, changing the expected impulse response of convolved
filters.

To clarify when flipping occurs, we visually demonstrate
how iterative application of our filters effects frequency bands.
To start, we first show the impulse response of our low- and
high-pass filters. We then show what happens to this re-
sponse at each iterative application of our filters over three
iterations.

Figures 16(a) and 16(b) depict the response of our low-
and high-pass filters respectively. In these figures, the grey
boxes represent the ranges of frequencies each filter passes.
These representations depict the ideal frequency response,
and do not indicate any overlap or fall-off which is present
in the actual filters. Note that the filters are symmetrical
about π.

From Figures 16(a) and 16(b), we can see that with the
first iteration of a high- and low-pass filters, we have no
unexpected results. The low-pass filter allows only the low
frequencies to pass, and the high-pass filter allows only the
high frequencies to pass. However, if we continue and itera-
tively filter by combining the first pass of filters with second
pass, we discover unexpected results.

To combine the first pass of filters with a second pass,
we must first up-sample. Figures 16(c) and 16(d) demon-
strate how up-sampling changes the response of the low-
and high-pass filters respectively. For each filter, the range
of frequencies passed is shifted to the right, and contracted
to half its original width.

We expect that if two iterations of low-pass filters would
result in a combined filter which passed only the lowest fre-
quencies. In other words, if we convolve the up-sampled
low-pass filter (Figure 16(c)) with the initial low-pass filter
(Figure 16(a)), we pass only the lowest frequencies. Fig-
ure 16(e) depicts the combination of two low-pass filters
(LL). The dark grey region is the spectral range of frequen-

cies allowed to pass by the combination of two filters (i.e.
where the filters align). As expected, the combined low-pass
filters pass only the lowest frequencies.

Likewise, when we combine two high-pass filters, intu-
itively we expect to pass only the highest frequencies, how-
ever this intuition is incorrect. Figure 16(f) shows the com-
bination of two high-pass filters (HH). From the dark grey
region in Figure 16(f) we can see that the combination of two
high-pass filters passes the second highest frequency range,
and not the highest range as expected. Instead, the com-
bination of a high and then low-pass filter (shown in Fig-
ure 16(g)) passes the highest range of frequencies. In other
words, the passed frequency ranges of the HL and HH filters
are flipped.

We can visually see this continued flipping in Figure 15,
which shows all combinations of filters at the third level of
decomposition. Flipping is marked by arrows indicating the
direction we flip in order to correct for the effects of shifting
and contracting. From Figure 15 we can see that flipping
occurs every time the highest half of a frequency range is
iteratively split again. In order to accurately narrow down
the frequency of periodic behavior, we need to accurately
translate between a filter path which results in identifying
a periodic behavior and the frequency range passed by the
filters.

16

