
Inherent Behaviors for On-line Detection of
Peer-to-Peer File Sharing

Genevieve Bartlett† John Heidemann† Christos Papadopoulos‡
†USC/ISI ‡Colorado State University {bartlett,johnh}@isi.edu, christos@cs.colostate.edu

Abstract—Blind techniques to detect network
applications—approaches that do not consider packet
contents—are increasingly desirable because they have
fewer legal and privacy concerns, and they can be robust
to application changes and intentional cloaking. In this
paper we identify several behaviors that areinherent to
peer-to-peer (P2P) traffic and demonstrate that they can
detect both BitTorrent and Gnutella hosts using only
packet header and timing information. We identify three
basic behaviors: failed connections, the ratio of incoming
and outgoing connections, and the use of unprivileged
ports. We quantify the effectiveness of our approach
using two day-long traces, achieve up to an 83% true
positive rate with only a 2% false positive rate. Our
system is suitable for on-line use, with 75% of new P2P
peers detected in less than 10 minutes of trace data.

I. INTRODUCTION
Identifying and filtering network traffic is central to

firewalls and intrusion-detection systems. The majority
of these systems deployed today use ports or packet
signatures to classify traffic for filtering. While fast and
effective for typical traffic, these approaches are becom-
ing less effective because both ports and packet contents
are easy to conceal, either intentionally or accidentally.

We see three reasons for a greater need to identify
network applications by packet header information alone,
rather than packet payload. First, benign traffic often
varies its port usage and packet contents. For example,
traffic using remote-procedure calls, multiplexed proto-
cols such as SOAP, or UDP-based protocols such as
SIP often varies port usage and communicates ports out-
of-band. An increasing use of traffic encryption hides
packet-contents, both with network-level approaches like
IPsec, and application-level tunnels like ssh or TLS.

Second, malware and protocols that receive mixed
acceptance often intentionally hide their identity by
varying port usage and packet contents. Protocols such
as Skype and P2P file sharing often hide themselves out
of concern for restrictive use policies in some networks.

Finally, even when traffic is not accidentally or ac-
tively concealing itself, government and ISP policy con-
cerns often prevent analysis of data packet contents. For
example, in the United States, laws about student privacy
and wiretapping can be interpreted to preclude analysis
of packet data contents.

The goal of this paper is to identify network appli-
cations based on theirinherent characteristics without
considering packet contents. We therefore distinguish ap-
plication behaviors that are easily changed orincidental,
from those behaviors that areinherentand would incur a
performance penalty or require application restructuring
to change. In this sense, we are investigating blind
techniques to identify applications [7].

We evaluate our approach by considering two popular
P2P file sharing applications: BitTorrent and Gnutella.
We evaluate our detection methods with two full day
traffic traces taken from a regional ISP in 2005 and 2006,
and compare our detection rates to ground truth obtained
by manual analysis of the data.

The contribution of this paper is the identification
and evaluation of several metrics that are applicable to
blind identification of multiple types of P2P file sharing
applications. Unlike prior work, our metrics can work
when traffic views are incomplete and/or unidirectional,
and our protocols are light-weight and able to run in
near-real-time. We show that even with an incomplete
traffic view (two of five links to an ISP), these metrics
can detect hosts running BitTorrent applications with
an 83% true positive rate with a 2% false positive rate
and detect hosts running Gnutella with a a 75% true
positive rate with a 4% false positive rate. Our approach
is suitable for environments where privacy is a strong
concern, and where on-line identification of P2P sharing
can trigger secondary checks that could not be done
after-the-fact, perhaps to differentiate between sharing
of open and restricted content. Of the P2P peers caught
by our system, 75% required less than 10 minutes of
trace data to determine P2P activity.

II. RELATED WORK
There are three general areas of related work: detec-

tion based on port, packet payload, and traffic behavior.
Port- and payload-based signatures are widely used

today. Unfortunately, both rely on incidental behaviors:
port assignments are easily changed, and payload con-
tents can be hidden by encryption or randomization. We
therefore do not consider these approaches further.

An alternative is to detect based on network behaviors
such as an application’s communication pattern, since

this can often be more difficult to conceal. Karagiannis et
al., identify P2P traffic from connection patterns and the
concurrent use of UDP and TCP [6]. Constantinou and
Mavrommatis classify P2P traffic based on connection
direction and number of peers in a connected group [4].
In later work, Karagiannis et al. introduce BLINC [7],
a general classification mechanism that classifies hosts
based on protocol usage, port usage and connection
patterns. These methods rely on behavior that is inherent
to P2P applications. While our approach is similar in that
it uses inherent behavior, our metrics require significantly
less state than the methods used in this previous work;
we quantify our on-line detection time and show that we
can operate in near-real-time. Furthermore, we show that
our approach is effective even when presented with less
than complete traffic to an ISP and unidirectional traffic.

Closest to our work is that by Collins et al. [3] who
distinguish BitTorrent flows from FTP, HTTP and SMTP
flows between pairs of hosts. They study three metrics:
packet size (looking for small control messages), amount
of data exchanged between hosts, and rate of failed
connections. We do not consider packet size to be an
inherent metric since it is easily spoofable. The later
two metrics are inherent, and we have independently
determined that failed connections are an important indi-
cator of P2P traffic. Our work differs from theirs through
the addition of two other behaviors (ratio of incoming-
to-outgoing connections and privileged-to-non-privileged
ports); by demonstrating that this approach applies to
multiple kinds of P2P traffic, not just BitTorrent; by
demonstrating that our approach works even with an
incomplete traffic view; through use of an adaptive
windowing approach that is more robust to manipulation
of connection timing; and by demonstrating that our
approach can operate on-line rather than post-facto.

III. B EHAVIORS IN P2P
In this section we investigate three behaviors of P2P

applications. The first two of these behaviors are inherent
to P2P; the last behavior we include for comparison
purposes. In Section IV we map these behaviors to
specific metrics for detection.

Our target applications are BitTorrent and Gnutella.
Both are popular file sharing protocols described in detail
elsewhere. For our purposes, the important characteristic
of BitTorrent is that apeer typically contacts atracker
to find other peers. It then directly communicates with
many peers (often 20). Gnutella instead uses a two-tier
system ofleaf nodesandultrapeers. Leaf nodes typically
talk only to ultrapeers, while ultrapeers communicate
widely with both each other and leaf nodes.

A. Peer Coordination and Failed Connections
Since peers are end-user machines, there is con-

siderable churn as they come and go frequently [2].
For efficiency and scalability, P2P mechanisms which
track the presence of peers do so imperfectly, and this
information is quickly out of date when given to new
peers or peers searching for content sources. As a result,
an inherent behavior of P2P sharing is manyfailed
attempts to contact peersthat have left the network. At
the network level, these failed contacts result in TCP
RST messages from a busy or no-longer participating
peer, or in multiple SYN packets attempting to start a
connection and timing out.

This behavior is not only common to P2P traffic,
but relatively uncommon among client/server applica-
tions. In client/server protocols, the servers are often
well known and persistent. Failures are usually due to
misconfiguration or hardware failure and there are not
usually small clusters of failures.

B. Bidirectional Connections
P2P applications not only start connections with peers,

but each peer attempts to maintain this network indepen-
dently. Since, generally speaking, peers are equivalent,
this means each initiates and receives new connec-
tions. Client/server hosts instead primarily either initiate
connections (clients) or receive them (servers). Thus,
unlike client-server applications, we can identify P2P
applications by theirinherent balance of incoming and
outgoing connectionsover time.

While all P2P protocols have bidirectional connec-
tions, different protocols vary in the details. All Bit-
Torrent peers have significant bidirectionality, typically
starting 5–10 outgoing connections when they join the
network, and accepting 5–10 incoming connections over
time. By contrast, Gnutella’s leaf nodes have a wider
range of bidirectionality, maintaining around 5 outgoing
connections and accepting incoming connections only
when serving content.Shieldedleaf nodes (often nodes
behind NAT boxes) only make outgoing connections.

C. Unprivileged Port Usage
P2P file sharing applications are typically user-level

processes operating on a variety of platforms and user
environments, using unprivileged ports. Thus, a P2P
file-sharing connection will typically have source and
destination ports above 1024, unlike server applications
such as mail and web servers, which typically use well-
known privileged ports.

Unlike the other behaviors, the use of unprivileged
ports is not inherent, since applications can often easily

choose either kind of port. We use this method for com-
parison, but in Section V we demonstrate our methods
work well without relying on this behavior.

IV. I MPLEMENTATION
The previous section outlined three P2P file sharing

application behaviors which are identifiable at the net-
work level. In this section we translate these behaviors
into testable metrics, with empirically derived values
which correspond to P2P. We describe how these metrics
are used and combined in Section IV-C.

A. Translating Behaviors to Metrics
a) Peer coordination and failed connections:As

discussed in section III-A, coordination with other peers
often leads to bursts of failed connections. We capture
this behavior with the following ratio offailed connec-
tions:

MFC =
failedout

successfulout + failedout

where failedout is the total number of new outgoing
connections that fail andsuccessfulout is the total num-
ber of new outgoing connections that were successfully
established. Values ofMFC tend to be low for normal
clients and servers, medium (0.1–0.8, our thresholds) for
P2P hosts, and high (more than 0.8) for hosts doing port
scans.

b) Bidirectional connections:As discussed in sec-
tion III-B, P2P clients both initiate and receive new con-
nections. To capture this behavior we use the following
ratio of bidirectional connections,

MBC =
successfulin

successfulout + successfulin

wheresuccessfulin andsuccessfulout is the total num-
ber of new, successfully established, incoming and out-
going connections. The metricMBC will be close to1

for servers, and close to0 for clients. We consider values
between 0.2 and 0.9 indicative of P2P hosts.

c) Unprivileged Port Usage:As discussed in sec-
tion III-C, although the individual port number varies,
P2P clients connect to unprivileged ports. Thus we
define:

MUP =
successfuluser2user

successfulin + successfulout

wheresuccessfuluser2useris the number of successful
connections which have a source and destination port in
the unprivileged range andsuccessfulin+successfulout is
the number of total new connections at that host which
were successful. For clients and servers, the expected
value for ratioMUP is near0. Hosts doing user-level
P2P run closer to 1; we consider any value over 0.2 to
indicate a potential P2P host.

B. Metrics to Tests
We must now map individual metrics into binary tests

that confirm or disclaim P2P traffic on a host. P2P traffic
corresponds to medium values of each ratio, so we define
high and low thresholdshX and`X . We use high values
to indicate non-P2P behaviors (such as port-scanning),
so exceedinghX terminates the test as a non-P2P host.
Low values often occur when a new host appears, so
we consider values belowlX as inconclusive. Values
in-between the thresholds after a warm-up number of
connections positively indicate a P2P host.

Each metric is evaluated over a set of connections. To
do this we use an adaptive windowing process described
in section IV-C.

While each metric by itself corresponds to a specific
P2P behavior, we found individual metrics to be noisy.
We therefore test multiple metrics in parallel. A negative
P2P result from any metric disqualifies a host, while a
positive result from all metrics is required to flag the
host as participating in P2P activities.

Failed connections captured byMFC primarily occur
for a very brief period, whereas our other two metrics
rely on behaviors seen over longer periods of time. This
causes metricMFC to often trigger before the other
metrics, and then be “washed out” by the time other
metrics trigger. To preventMFC from being “washed
out”, we define a “sticky” equivalent,MsFC, which
always tests positive for P2P for the rest of the current
window after metricMsFC is triggered.

C. System Operation

Our system runs on top of a continuous network
tracing infrastructure [5]. We transform the packet-level
trace into a flow-level trace by observing only the TCP
SYN and SYN-ACK packets.

Our system operates with both bidirectional and uni-
directional traces. If only unidirectional traffic is present,
we identify failed connections by four or more duplicate
SYNs. If bidirectional traffic is present, we identify
failed connections by duplicate SYNs which go unan-
swered for 20 minutes.

We then compute the ratios required for each of
our tests. We process the data sequentially, on-line,
evaluating the metrics for each IP address once we have
a 10 connections “window”. If at any time the metrics
indicate a positive or negative result we classify the host
as P2P or non-P2P for that window. If classification is
indeterminate, we add connections to our window until
we can reach a conclusion. We remove connections from
a window when they are more than 20 minutes old. These

parameters are chosen for a timely response, but our
results are relatively insensitive to the specific values [1].

V. EVALUATION

In the following sections we evaluate our approach
to determine how detection accuracy interacts with false
positive rates. Our evaluation uses network packet traces
from two (out of five) links at Los Nettos, a regional
ISP in the Los Angeles area serving both commercial
and academic institutions. One link captures bidirectional
traffic, while the other captures only outgoing traffic. For
each host, we see only a fraction of the peers it might
contact, demonstrating that our methods are effective
even with partial data.

We collected two datasets, each 24 hours long on Au-
gust 31, 2005 and October 3 2006. We see qualitatively
similar results for both traces and present only the 2006
data here due to space constraints.
A. Detection Accuracy for BitTorrent

We first look at detection accuracy to verify that our
approaches successfully identify BitTorrent traffic.

To establish ground truth, we first identify flows on
the default BitTorrent tracker port (6969), and then verify
that the destination is a tracker by contacting the host.
We classify these confirmed BitTorrent peers asknown
BitTorrent hosts.

The Known BitTorrent section of Table I shows we
verified 130 hosts were running BitTorrent. We first
observe that each individual metric is successful at
detecting the majority of known BitTorrent hosts (85–
92%). We observe that our inherent metrics (MFC and
MBC) detect nearly as many P2P hosts asMUP.

Finally, we observe that the combined metrics perform
almost as well as the stand-alone metrics at detecting
true positives (83%–84% compared to 85–92%), and
the combined metrics perform much better in reducing
false positives (2% instead of 13–25%). In addition, we
observe thatMsFC+BC does nearly as well asMall , while
using only inherent information.
B. Understanding false positive rate

Even if the system performs well at detecting P2P
hosts, it will not be useful if it also falsely tags many
non-P2P hosts as P2P. We therefore evaluate the false
positive rate of individual and combined metrics.

It is easy to confirm the presence of known P2P
traffic to a host, it is significantly more difficult to prove
absence of P2P traffic. To roughly define non-P2P hosts,
we first remove all known P2P hosts from our population
(of 9,656 hosts) and select half of the remaining hosts.
(We will use the other half in Section V-D.) While these
hosts include no known P2P hosts (those running on well

known P2P ports), there may be some hosts using non-
standard ports for P2P. We assume these non-standard
ports are non-privileged, and discard 608 hosts that
have non-privileged-to-non-privileged ports aspotential
P2P. We label the remaining hosts aslikely non-P2P.
This decision is conservative (since it is possible to use
privileged ports for P2P), but it also removes hosts which
are running a number of non-P2P applications (such as
passive FTP and gaming applications) from the likely
non-P2P category. We address our ability to distinguish
between P2P and other non-privileged-to-non-privileged
applications in section V-D.

We use this set of likely non-P2P hosts to look for
false positives in our metrics. We expect individual
metrics to have some number of false positives: port
scanners and misconfigured machines or servers can
accidentally triggerMFC, and some services that have
bidirectional connections (such as DNS) and user ma-
chines that host some servers can triggerMBC. Note that
we cannot considerMUP with this methodology because
our definition of likely non-P2P distorts this metric.

The likely non-P2P section of Table I shows these
results. Individual metrics show moderate-to-high false
positive rates (13–25%). Because the number of likely
non-P2P hosts is so much larger than the number of
known P2P hosts, these false positive rates imply 5–
10 errors for every true positive. Such high false pos-
itive rates mean that an individual metric is impractical
without additional confirmation. Examination of specific
traces suggest that manyMFC failures are due to false
identification of port scans as P2P. We examined a few
cases ofMBC failure; they were typically due to user
hosts that also run small server applications.

Our hope is that combining multiple metrics can
reduce the false positive rate, andMsFC+BC shows a
false positive rate of only 2% rather than 13–25%. This
success is because the false positives are triggered by
different circumstances. With all three metrics,Mall
eliminates all false positives, but as described above this
is an anomaly due to our definition of likely-non-P2P.

From our evaluation of true and false positives we
conclude that the combination of at least metricMsFC
with metric MBC is essential for accuracy and few false
positives. MetricMsFC+BC shows only a few percent
reduction (2–5%) in detection accuracy for BitTorrent,
while the percent of false positives is cut in four.
C. Effectiveness for Gnutella

Since our detection methods are based on P2P behav-
iors in general, and not specific to the BitTorrent proto-
col, we expect that our system is capable of detecting

Individual metrics Combined Metrics
metric: M FC MBC M UP M sFC+BC M sFC+UP M all

Total unique hosts: 9,656
P2P hosts : 290

Known BitTorrent hosts: 130
True Positives 110 (85%) 114 (88%) 120(92%) 108 (83%) 109 (84%) 108 (83%)
False Negatives 20 (15%) 16 (12%) 10 (8%) 22 (17%) 21 (16%) 22 (17%)

Known Gnutella hosts: 160
True Positives 123 (77%) 109 (68%) 155 (97%) 93 (58%) 120 (75%) 91 (57%)
False Negatives 37 (23%) 51 (32%) 5 (3%) 67 (42%) 40 (25%) 69 (43%)

Other Hosts : 9,366
Likely non-P2P: 4,075

False Positives 530(13%) 1,018(25%) n/a 81(2%) n/a n/a
True Negatives 3,545(87%) 3,057(75%) n/a 3,994(98%) n/a n/a

Discarded as potential P2P: 608
Unclassified hosts: 4,683

Flagged as P2P 702 (15%) 1,639(35%) 1,592(34%)140(3%) 187(4%) 70(1%)
Not flagged as P2P 3,981(85%) 3,044(65%) 3,091(66%)4,543(97%) 4,496(96%) 4,613(99%)

TABLE I
SUMMARY OF RESULTS OFBITTORRENT DETECTION FOR2006 DATA SET.

hosts running other P2P applications. To test this claim
we next evaluate our approach on Gnutella hosts.

We establish Gnutella ground truth as all hosts that
contact known Gnutella ultrapeers. We track Gnutella
ultrapeers by joining the Gnutella network repeatedly
and recording lists of the suggested ultrapeers.

Some protocol differences between BitTorrent and
Gnutella affect our metrics, however. We expect that
metrics MFC and MUP will perform well at detecting
Gnutella, but because of Gnutella’s two-tiered architec-
ture, MBC will not perform nearly as well, since it is
unable to detect shielded leaf nodes and leaf nodes which
choose not to share P2P content. Additionally,MBC is
more sensitive to incomplete traffic views when detect-
ing Gnutella because Gnutella leaf nodes maintain few
outgoing connections and often accept few connections
(if any), as discussed in section III-B.

The known Gnutellasection in Table I shows that
MFC alone detects 77% of the Gnutella hosts. However,
as discussed in Section V-B, this metric alone has a high
false positive rate and so we need combined metrics to
reduce false positives. Though the limitations of metric
MBC hinder the combined metrics, the combined metrics
still detect 58% of the known Gnutella hosts.

Metric MsFC+UP detects nearly as many true positives
asMFC alone (75% vs. 77%), and significantly increases
the distinguishing ability. For networks where Gnutella
is popular, this metric may be preferable toMall .

D. Estimating previously undetected P2P hosts

Our above analysis isolated traffic into known-P2P
and likely-non-P2P categories to study the accuracy of
our approaches. We next look at unclassified traffic to

estimate how many hosts appear to be P2P file sharing
but were not included in our known-P2P.

To estimate P2P traffic in unclassified traffic, we start
with the half of hosts not considered above. These hosts
exclude all traffic to known trackers, so they all would
be unclassified by detection schemes using known sites.
We then run our detection algorithms on these hosts and
examine the hosts flagged as P2P.

Theunclassifiedsection of Table I shows our estimate
of P2P traffic in this sample of hosts. Our combined
metrics flagged 1.5% (70 hosts) of the unclassified hosts
as running P2P applications. Our analysis of the false
positive rate ofMsFC+BC suggests that at least half of
these are true positives. Although we do not know the
likely true positive rate forMall , it should be greater
sinceMall reduces further the number of flagged hosts
by including metricMUP.

To confirm that some of these 70 hosts have P2P traffic
we looked at what ports they use. Of these 70 hosts, 17
made connections to remote hosts on default BitTorrent
ports (6969, 6881–6888) and 15 made connections to re-
mote hosts on the default Gnutella port (6346), strongly
suggesting that we successfully found true P2P traffic.
(If the host had contacted a known tracker or ultrapeer
we would have already classified it as known-P2P.) We
conjecture that some of the other hosts were doing P2P
sharing on non-standard ports, although we could not
confirm this. Finally, our analysis of these unclassified
hosts indicates the benefit of addingMUP to formMall—
this addition reduces the number of hosts identified as
potential P2P in half (70 vs. 187). Of the 17 hosts just
described none are eliminated, suggesting (not proving)
that Mall does not reduce the true positive rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
D

F

Time in Minutes

2006, Gnutella
2005, BitTorrent
2006, BitTorrent

Fig. 1. Time until detection

E. Detection speed
As well as being accurate, we wish to detect P2P hosts

quickly. To estimate detection time we consider known
P2P hosts. We identify the first contact with a known
tracker or ultrapeer as the “start” time and then determine
how much later we classify that host as P2P. This start
time corresponds to an unrealizable, idealized detection
system based on a perfectly known P2P network, there-
fore, our results represent a conservative estimate of our
detection time. Figure 1 shows CDFs of detection time
for both BitTorrent and Gnutella. As is shown, about
75% of the time we can identify a P2P client in less
than ten minutes, and about one-fifth of the time we
can decide within a minute. Given that P2P applications
often run for tens of minutes, we believe these detection
times are more than sufficient for on-line identification.

To understand the cause of the delay we looked at
how the combined metrics operate. For BitTorrent,MFC
triggers quickly, butMBC is much slower. These timings
are consistent with the behaviors they track, since failed
connections occur when a new peer starts up and actively
probes other peers, while bidirectional communication
happens only later as other peers learn about the target
host and connect to it. In the case of Gnutella,MFC
often does not trigger till several minutes after contacting
ultrapeers. We believe this slower trigger is because
ultrapeers are more reliable than typical BitTorrent peers,
and with GnutellaMFC is triggered only when a peer
attempts to contact remote resources and download files.

In addition to the delay described above, our current
implementation batches packet traces into 2–6 minute
segments. Thus actual delay in our current implementa-
tion is up to 16 minutes 75% of the time. This batching
is due to our data collection system [5] and could be
eliminated by integrating trace collection with metric
evaluation.
F. Parameter sensitivity

Our system has several parameters that affect opera-
tion, including the time-out of connections, the minimum

size of the connection “window” and metric thresholds.
Due to space limitations we provide a detailed evaluation
of these factors in a technical report [1].

VI. FUTURE WORK AND CONCLUSIONS
We have shown that one can map inherent P2P be-

haviors into metrics that allow on-line detection of P2P
hosts, even with incomplete views of traffic. We found
that a combination of metrics allows for high accuracy
with low false positives, and is able to detect the majority
of hosts in 10 minutes or less.

Evading detection by distorting inherent behavior is
possible, but at a high price. For example, to avoid
triggering MFC, a peer could deliberately intersperse
successful connections (e.g., to stable servers) with failed
P2P connections, but regulating and synchronizing these
to reliably taint our detection window is hard and will
degrade P2P performance.

We see several important directions for future work.
First, we would like to evaluate our methods against data
that includes ground-truth based on packet contents to
further validate accuracy. Second, we have shown good
accuracy while monitoring only a fraction of an ISP’s
traffic; we need to quantify how percentage of traffic
seen affects accuracy. Finally, we are in the process
of applying our approach to estimate the total amount
of P2P traffic at a university, and to compare this to
traditional, port-based detection schemes.

REFERENCES

[1] G. Bartlett, J. Heidemann, and C. Papadopoulos. Inherent behav-
iors for on-line detection of peer-to-peer file sharing. Technical
Report ISI-TR-627, ISI, 2006.

[2] M. Bawa, H. Deshpande, and H. Garcia-Molina. Transienceof
peers and streaming media. InProceedings of the ACM HotNets
I, pages 107–112, Princeton, NJ, USA, October 2002.

[3] M. Collins and M. Reiter. Finding peer-to-peer file-sharing using
coarse network behaviors. InProceedings of the European Sym-
posium On Research In Computer Security, Hamburg, Germany,
September 2006.

[4] F. Constantinou and P. Mavrommatis. Identifying known and
unknown peer-to-peer traffic. InIEEE International Symposium
on Network Computing and Applications (NCA), pages 93–102,
Cambridge, MA, USA, July 2006.

[5] A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Pa-
padopoulos, and J. Bannister. Experiences with a continuous
network tracing infrastructure. InProceedings of the ACM
SIGCOMM Workshop on Mining network data Mine Net, pages
185–190, Philadelphia, PA, USA, August 2005.

[6] T. Karagiannis, A. Broido, M. Faloutsos, and kc claffy. Transport
layer identification of p2p traffic. InProceedings of the ACM
SIGCOMM Workshop on Internet Measurement (IMC), pages
121–134, Taormina, Sicily, Italy, October 2004.

[7] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel traffic classification in the dark. InProceedings of the
ACM SIGCOMM Conference, pages 229–240, Philadelphia, PA,
USA, August 2005.

This material is based on work partially supported by
the United States Department of Homeland Security contract
number NBCHC040137 (“LANDER”). It is also supported by
the National Science Foundation (NSF) under grant number
CNS-0626696, “NeTS-NBD: Maltraffic Analysis and Detec-
tion in Challenging and Aggregate Traffic (MADCAT)”. All
conclusions of this work are those of the authors and do not
necessarily reflect the views of the sponsors.

