

1 Understanding Partial Reachability in the Internet 2 Core

3 **Guillermo Baltra**

4 USC/ISI, Marina del Rey, California, USA

5 **Tarang Saluja**

6 Swarthmore College, Swarthmore, Pennsylvania, USA

7 **Yuri Pradkin**

8 USC/ISI, Marina del Rey, California, USA

9 **John Heidemann**

10 USC/ISI, Marina del Rey, California, USA

11 — Abstract

12 Routing strives to connect all the Internet, but compete: political pressure threatens routing
13 fragmentation; architectural changes such as private clouds, carrier-grade NAT, and firewalls make
14 connectivity conditional; and commercial disputes create partial reachability for days or years. This
15 paper suggests *persistent, partial reachability is fundamental to the Internet* and an underexplored
16 problem. We first *derive a conceptual definition of the Internet core* based on connectivity, not
17 authority. We identify *peninsulas*: persistent, partial connectivity; and *islands*: when computers
18 are partitioned from the Internet core. Second, we develop algorithms to observe each across the
19 Internet, and apply them to two existing measurement systems: Trinocular, where 6 locations
20 observe 5M networks frequently, and RIPE Atlas, where 13k locations scan the DNS roots frequently.
21 Cross-validation shows our findings are stable over *three years of data*, and consistent with as few
22 as 3 geographically-distributed observers. We validate peninsulas and islands against CAIDA Ark,
23 showing good recall (0.94) and bounding precision between 0.42 and 0.82. Finally, our work has
24 broad practical impact: we show that *peninsulas are more common than Internet outages*. Factoring
25 out peninsulas and islands as noise can *improve existing measurement systems*; their “noise” is 5×
26 to 9.7× larger than the operational events in RIPE’s DNSmon. We show that most peninsula events
27 are routing transients (45%), but most peninsula-time (90%) is due to a few (7%) long-lived events.
28 Our work helps inform Internet policy and governance, with our neutral definition showing no single
29 country or organization can unilaterally control the Internet core.

30 **2012 ACM Subject Classification** Networks → Network measurement; Networks → Public Internet;
31 Networks → Network economics

32 **Keywords and phrases** Internet, Internet reliability, Network outages, Active measurements

33 **Digital Object Identifier** [10.4230/OASIcs.NINeS.2026.4](https://doi.org/10.4230/OASIcs.NINeS.2026.4)

34 **Funding** The work is supported in part by the National Science Foundation, CISE Directorate,
35 award CNS-2007106 NSF-2028279, OAC-2530698, and DARPA Contract HR001124C0403. Any
36 opinions, findings and conclusions or recommendations expressed in this material are those of the
37 author(s) and do not necessarily reflect the views of NSF or DARPA. The U.S. Government is
38 authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
39 copyright notation thereon.

40 **Acknowledgements** The authors would like to thank John Wroclawski, Wes Hardaker, Ramakrishna
41 Padmanabhan, Ramesh Govindan, Eddie Kohler, and the Internet Architecture Board for their input
42 on an early version of this paper. We would also like to thank the NINeS chairs and steering
43 committee for building a venue that is receptive for this kind of paper, and to our shepherd, Michael
44 Schapira, and the reviewers for their input.

© Guillermo Baltra, Tarang Saluja, Yuri Pradkin, John Heidemann;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).

Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 4; pp. 4:1–4:31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

45 **1** Introduction

46 The Internet was created to allow disparate networks to communicate [18, 73, 20], making
 47 *network partition* its nemesis. Routing is designed to heal partitions, so that “communication
 48 must continue despite loss of networks or gateways” [20]. Yet the reality of partitions prompts
 49 leadership-election algorithms such as Paxos [60].

50 Worse than complete network partition is *long-lived partial reachability*. Although transient
 51 reachability problems are well known (for example, [100]), and human errors occur [64],
 52 *policy choices* can cause persistent partial connectivity. Economic differences result in
 53 peering disputes [67, 76, 42]; while political choices can limit access [80], or emphasize
 54 sovereignty [71, 26, 79]. Research [2, 57, 58] and production [89, 102] work around persistent
 55 unreachability.

56 **Challenges:** But today *universal reachability in the Internet core is often challenged*:
 57 *Political* pressure may Balkanize the Internet along national borders. Examples include
 58 Russia’s 2019 sovereign-Internet law [71, 26, 79] and national “Internet kill switches” that are
 59 debated in U.S. [46] and the U.K., and deployed elsewhere [25, 23, 48, 93]. These pressures
 60 prompted policy discussions about fragmentation [33, 34]. We suggest that *technical methods*
 61 *can help inform policy discussions* and that threats such as de-peering place the global
 62 Internet at risk. We will show that no single country can unilaterally control the Internet
 63 core today (§6.2), and that de-peering *can* fragment the Internet core into pieces (§6.1).

64 *Architecturally*, 25 years of evolution have segmented the Internet core: many services live
 65 in clouds; users are usually second-class clients due to Network Address Translation (NAT);
 66 firewalls interrupt connectivity; and Internet has both IPv4 and IPv6. Politics can influence
 67 architecture, with China’s Great Firewall [4, 5], and a proposed “new Internet” [39]. We
 68 suggest that technical methods help us *reason about changes to Internet architecture*, to
 69 understand implications of partial reachability and evaluate IPv6 deployment.

70 *Operationally*, even when ISP peering is mature, disputes can cause long-term partial
 71 unreachability [67]. Such unreachability detected experimentally [31], and systems built
 72 to mitigate partial reachability [2, 57, 58]. We show several operational uses of our work.
 73 We show that *accounting for partial reachability can make existing measurement systems*
 74 *more sensitive*. By applying these results to widely used RIPE DNSmon (§6.3), we show
 75 that its observations of persistent high query loss (5–8% to the DNS Root [85]) are mostly
 76 measurement error and persistent partial connectivity. These factors are 5× and 9.7×
 77 (IPv4 and v6) larger than operationally important signals. Our analysis also helps resolve
 78 uncertainty in Internet outage detection (§6.2), clarifying “corner cases” due to conflicting
 79 observations [90, 75, 91, 81, 49]. We show partial reachability is a common cause, and it
 80 occurs at least as often as complete outages (§5.1). Finally, our work helps quantify the
 81 applicability of route-failure mitigation [2, 57, 58], and of cloud egress selection [89].

82 **Contributions:** Our first contribution is to *recognize that partial reachability is a*
 83 *fundamental part of the Internet*, and addressing it requires a *rigorous definition of what*
 84 *is the Internet’s core* (§2). In 1982, the Internet was 83 hosts [92] globally reachable with
 85 TCP/IP [73]. In 1995, the Federal Networking Council defined “Internet” as (i) a global
 86 address space, (ii) supporting TCP/IP and its follow-ons, that (iii) provides services [41].
 87 Later work added DNS [56] and IPv6. But today’s Internet is much changed: Both users
 88 on PCs and the majority of users on mobile devices access the Internet indirectly through
 89 NAT [96] and Carrier-Grade NAT (CG-NAT) [82]. Many public services operate from the
 90 cloud, visible through rented or imported IP addresses, backed by network virtualization [47].
 91 Media is replicated in Content Delivery Networks (CDNs). Access is mediated by firewalls.

data source	num. VPs	measurement		
		freq.	targets	duration
Trinocular [75]	6 ^a	11 min.	5M /24s	4 years
RIPE Atlas [83]	12,086 ^b	5 min.	13 RSOs	3 years
CAIDA Ark [14]	171 ^c	24 hrs.	all IPv4	selected
Routeviews [65]	55 ^d	1 hour	all IPv4	selected

a: In 2017 and 2019. b: On 2024-01-30. c: On 2017-12-01. d: In 2024-01.

Table 1 Types of data sources used in this paper.

92 Yet users find Internet services so seamless that technology recedes and the web, Facebook,
93 and phone apps are their “Internet”.

94 *We define Internet core as the strongly-connected component of more than 50% of active,
95 public IP addresses that can bidirectionally route to each other (§2.1).* This definition
96 has several unique characteristics. First, captures the uniform, *peer-to-peer nature of the*
97 *Internet core* necessary for first-class services. Second, it defines *one, unique* Internet core by
98 requiring reachability of more than 50%—there can be only one since multiple majorities are
99 impossible. Finally, unlike prior work, this *conceptual* definition avoids dependence on any
100 specific measurement system, nor does it depend on historical precedent, special locations,
101 or central authorities. Although an operational measurements will reflect observation error,
102 the conceptual Internet core defines an asymptote against which our current and future
103 measurements can compare, unlike prior definitions from specific systems [2, 57, 58].

104 Our second contribution is to use this definition to identify two classes of persistent
105 *unreachability* (§2.3), and develop algorithms to quantify each (§3). We define *peninsulas* as
106 when a network sees persistent, partial connectivity to part of Internet core. We present the
107 *Taitao* algorithm to detect peninsulas that often result from peering disputes or long-term
108 firewalls. We define *islands* as when one or more computers are partitioned from the main
109 Internet core as detected by *Chiloe*, our second algorithm.

110 We apply these algorithms to data from two operational systems (Table 1): Trinocular,
111 with frequent measurements of 5M networks from six Vantage Points (VPs) [75], and RIPE
112 Atlas, with frequent measurements of the DNS root [85] from 13k VPs [83]. By applying new
113 algorithms to existing, publicly available, multi-year data we are able to provide longitudinal
114 analysis with some results covering more than three years. These two systems demonstrate
115 our approach works on active probes covering millions of networks (although from few
116 observers) and also from more than 13k VPs (although probing only limited destinations),
117 strongly suggesting the results generalize, since no practical system can cover the $O(n^2)$ cost
118 of all destinations from all sources.

119 In addition varying VPs and destinations across the design space, we evaluate the
120 accuracy of our systems with rigorous measurements (§4). We quantify the independence of
121 the Trinocular sites (§4.3) with cross-validation. Our analysis shows that combinations of
122 any three independent VPs provide a result that is statistically indistinguishable from the
123 asymptote §5.1. We show our results are stable over more than three years with samples from
124 Trinocular (§4.2) and continuous results from RIPE Atlas (§6.3). Finally, we validate both
125 algorithms against a third measurement system, CAIDA Archipelago, where 171 VPs scan
126 millions of networks, daily [13]. Although comparing very different systems is challenging,
127 these results provide strong bounds on accuracy (§4.1), with very good recall (0.94) and
128 reasonable precision (lower and upper bounds from 0.42 and to 0.82).

129 Our final contribution *uses these algorithms to address current operational questions*. We

4.4 Understanding Partial Reachability in the Internet Core

130 show that partial reachability is a *pervasive problem* today, meriting attention. We prove that
131 peninsulas occur *more* often than outages, as subject of wide attention [90, 29, 75, 91, 28, 99].
132 We bring technical light to policy choices around national networks (§6.2) and de-peering
133 (§6.1). We improve sensitivity of RIPE Atlas’ DNSmon [1] (§6.3), resolve corner cases in
134 outage detection (§6.2), and quantify opportunities for route detouring (§5.1).

135 These contributions range from a theoretical definition, to experimental measurements,
136 and their practical application. Each depends on the other—the definition enables the
137 algorithms, which are then applied to show utility.

138 **Artifacts and ethics:** Data used (Table 1) and created [7] in this paper is available at
139 no cost. Our work poses no ethical concerns (§A) by not identifying individuals and avoiding
140 additional traffic by reanalysis with new algorithms. IRB review says it is non-human subjects
141 research (USC IRB IIR00001648).

142 2 Problem: Partial Reachability

143 Understanding partial reachability requires a rigorous definition of *what* is being reached.
144 We next define the *Internet core* to which we connect, to answer the political, architectural,
145 and operational questions from §1.

146 We suggest a definition must be both *conceptual* and *operational* [35]. Our conceptual
147 definition (§2.1) articulates what the Internet *is and is not*. It provides a goal which our
148 implementation (§3) approximates, and we apply it to improve real-world, operational systems
149 (§6.3). Prior definitions [18, 73, 41] are too vague to operationalize.

150 Second, a definition must give both sufficient *and* necessary conditions to be part of
151 the Internet core. Prior work gave properties the core must have (sufficient conditions, like
152 supporting TCP). We add *necessary* conditions to define when networks *leave* the Internet
153 core (§6.1).

154 2.1 The Internet: A Conceptual Definition

155 We define the Internet core as *all active IP addresses that can Bidirectionally Route to more*
156 *than 50% of the public, Potentially Reachable Internet*. We define these key terms next, and
157 expand their motivation and implications later (§2.2).

158 Two addresses are *Bidirectionally Routable* when each can initiate a connection to the
159 other. In our realization we measure connectivity with either ICMP echo-request or with
160 DNS queries and replies, considering alternatives in §2.2.

161 The *Potentially Reachable Internet* is all IP addresses in a graph-theoretic strongly-
162 connected component, with graph edges defined by Bidirectional Routability. This definition
163 means any node in the set can reach any other, either directly or perhaps through one or
164 more hops.

165 2.2 Motivation for This Definition

166 We define the potentially reachable Internet via observation, so it depends only on testable,
167 shared information, and not a central authority such as ICANN. Defining the Potentially
168 Reachable Internet as active addresses also implies that the vast parts of unallocated IPv6
169 do not change our conclusions.

170 **Why both bidirectional routability and potential reachability?** *Bidirectional*
171 *Routability* is connectivity in the networking sense, so each address must have a routing table
172 entry that covers the other, and there must be some BGP-level reachability between them.

173 *Graph-Theoretic Reachability* shows transitive connectivity, even when disputes mean some
 174 pairs cannot reach each other.

175 Bidirectional Routability is required to capture the idea of IP routing from prior
 176 definitions [18, 73, 41], where all hosts should be able to communicate directly. It excludes
 177 private, NAT’ed addresses [78], which, although useful clients, require rendezvous protocols
 178 (STUN [86], UPnP [66], or PMP [19]) to partially link to the core, and also non-public cloud
 179 addresses hidden behind load balancers [47]. However, cloud VMs with fully-reachable public
 180 addresses are part of the core, including cloud-hosted services using public IP addresses from
 181 the cloud operator or their own (BYOIP).

182 Graph-Theoretic Reachability is required to define what “100%” is, so we guarantee one
 183 (or no) Internets by looking for a non-overlapping majority, even in the face of conflicting
 184 claims (§B). The combination of terms help us resolve such conflicts as different peninsulas
 185 sharing a common Internet core (although perhaps requiring relay through a third party).

186 **Why more than 50%?** We take as an axiom that there should be *one Internet core*
 187 per address space (IPv4 and IPv6), or a reason why that Internet core no longer exists. Thus
 188 we require a definition to unambiguously identify “the” Internet core given conflicting claims;
 189 any larger value is excessive, and anything smaller would allow multiple viable claims. (In
 190 practice, Figure 8 we see 98.5–99.5% agreement on the core, so values at the 50% threshold
 191 are unlikely.)

192 Requiring a majority of active addresses ensures that there can be only one Internet core,
 193 since any two majorities must overlap. Any smaller fraction could allow two groups to make
 194 valid claims. We discuss how to identify the core in the face of conflicting claims in §B.

195 The definition of the Internet core should not require a central authority. “Majority”
 196 supports assessment independent of any authority. Any computer to prove it is in the Internet
 197 core by reaching half of active addresses, as defined by multiple, independent, long-term
 198 evaluations [51, 103, 27]. It also avoids identification of “tier-1” ISPs, an imprecise term
 199 determined only by private business agreements.

200 Finally, a majority defines *an Internet core that can end*: fragmentation occurs should the
 201 current Internet core break into three or more disconnected components where none retains
 202 a majority of active addresses. If a large enough organization or group chose to secede, or
 203 are expelled, the Internet core could become several no-longer internets (§6.1).

204 **Why all addresses?** In each of IPv4 and IPv6 we consider all addresses equally. Public
 205 Internet addresses are global, and the Internet core was intentionally designed without a
 206 hierarchy [20]. Consistent with decentralization trends [32], a definition should not create
 207 hierarchy, nor designate special addresses by age or importance.

208 These definitions are relatively apolitical and reduce first-mover bias, discussed in §6.1.
 209 Addresses are an Internet-centric metric, unlike population or countries. Requiring activity
 210 reduces the influence of large allocated, but unused, space, such as in legacy IPv4 /8s and
 211 new IPv6 allocations.

212 **Reachability, Protocols and Firewalls:** End-to-end reachability avoids difficult
 213 discovery of router-level topology.

214 Our conceptual definition allows different definitions of reachability. Reachability may be
 215 measured by protocols such as ICMP echo-request (pings), DNS or HTTP queries, or by
 216 data-plane reachability with BGP. Any specific test will provide an operational realization
 217 of our conceptual definition. (Measurement must tolerate transient failures, perhaps with
 218 multiple targets (Trinocular) or retransmissions (Atlas).) §5.1 examines how well using
 219 ICMP-based measures converge, and §6.3 shows DNS stability over years.

220 Firewalls complicate observing reachability and can make it conditional. We accept that

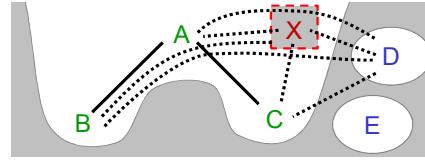


Figure 1 *A, B and C* are the connected core, *B and C* peninsulas, *D and E* islands, *X* is out.

the results of specific observations may vary with different protocols or observation times; experiments show results are stable (§5.1). Measurement allows us to evaluate policy-driven unreachability (see Appendix G.2 in [9]).

We have two implementations of peninsula and island detection; both use publicly-available data from existing measurement systems. One uses Trinocular [75], because of its frequent, Internet-wide ICMP echo requests (11-minutes to 5M IPv4 /24s). Prior work has shown ICMP provides the most response [10, 75, 36], and can avoid rate limiting [50], other other protocol options are possible. Our second uses RIPE Atlas because of its use in DNS (§6.3).

Why reachability and not applications? Users care about applications, and a user-centric view might emphasize reachability of HTTP or to Facebook rather than at the IP layer. Our second realization uses public data from RIPE Atlas, with DNS as the application, as described in §6.3. Many large outages are failures of applications such as DNS [74]; their study would require a different evaluator than IP reachability. Future work may look at other, more user-centric applications. However, we suggest reachability at the IP layer is a more fundamental concept. IP has changed only twice since 1969 with IPv4 and IPv6, but applications wax and wane, and some (like e-mail) extend beyond the Internet.

2.3 Cases of Partial Reachability

We use our definition of the Internet core to consider three types of partial reachability, shown in Figure 1. Here long-term and current routability are dotted and solid lines, and white regions show current data-plane reachability. All address blocks but *E* form the *core*. Blocks *B* and *C* are on *peninsulas* because they do not route to each other, although data could relay through *A*. Block *X* has an *outage*; its routes are temporarily down. Blocks *D* and *E* are *islands*: *D* usually can route to the core, but not currently. *E* uses public addresses, but has never announced routes publicly.

2.3.1 Outages

A number of groups have examined Internet outages [90, 75, 81, 49]. These systems observe the public IPv4 Internet and identify networks that are no longer reachable—they have left the Internet. Often these systems define outages operationally (network *X* is out since none of our VPs can reach it). In this paper, we define an outage as when all computers in a block are off, perhaps due to power loss. We next define islands, when the computers are on but cannot reach the Internet core.

2.3.2 Islands: Isolated Networks

An *island* is a group of public IP addresses partitioned from the Internet core, but still able to communicate among themselves. Operationally, outages (X in Figure 1) and islands (like

256 D and E) are both unreachable from external VPs and appear identical, but computers in
 257 an island are on and can reach each other.

258 Islands occur when an organization is no longer connected to the Internet core. A business
 259 with one ISP becomes an island when its router upstream connection fails, even though
 260 computers in the business can reach each other. An *address island* is when a computer can
 261 reach only itself.

262 **Example Islands:** Islands are common in RIPE Atlas [1] when a VP has an IPv6
 263 address on the LAN, but lacks routes to the public IPv6 Internet. In §6.3 we show that
 264 this kind of misconfiguration accounts for 5× more IPv6 unreachability than other, more
 265 meaningful problems.

266 We also see islands in reanalysis of data from Trinocular outage detection [75]. Over three
 267 years, from 2017 to 2020, we saw 14 cases where one of the 6 Trinocular VPs was active and
 268 could reach its LAN, but could not reach the rest of the Internet. Network operators confirm
 269 local routing failures in several of these cases. We provide one example in Appendix E.1
 270 of [9].

271 2.3.3 Peninsulas: Partial Connectivity

272 Link and power failures create islands, *peninsulas* are *partial* connectivity, when a group of
 273 public IP addresses can reach some destinations, but not others. (In a geographic peninsula,
 274 the mainland may be visible over water, but reachable only with a detour; similarly, in Figure 1,
 275 *B* can reach *A*, but not *C*.) Peninsulas occur when an upstream provider of a multi-homed
 276 network accepts traffic it cannot deliver or forward, when Tier-1 ISPs refuse to peer, or when
 277 firewalls block traffic. Experimental overlay networks route around peninsulas [2, 57, 58].

278 **Peninsulas in IPv6:** A long-term peninsula follows from the IPv6 peering dispute
 279 between Hurricane Electric (HE) and Cogent. These ISPs decline to peer in IPv6 (IPv4
 280 is fine), nor do they forward their IPv6 through another party. HE and Cogent customers
 281 could not reach each other in 2009 [67], and this problem persists through 2025, as we show
 282 in DNSmon (§6.3). We further confirm unreachability between HE and Cogent users in
 283 IPv6 with traceroutes from looking glasses [38, 24] (HE at 2001:470:20::2 and Cogent at
 284 2001:550:1:a::d): neither can reach their neighbor’s server, but both reach their own. Other
 285 IPv6 disputes include Cogent and Google [76], and Cloudflare and Hurricane Electric [42].
 286 Disputes can arise from an inability to agree to settlement-free or paid peering.

287 **Peninsulas in IPv4:** We observed a peninsula lasting 3 hours starting 2017-10-23t22:02Z,
 288 where five Polish Autonomous Systems (ASes) had 1716 /24 blocks that were always reachable
 289 one Los Angeles, but not from four other VPs (as seen in public data from Trinocular [98]).
 290 Before the peninsula, these blocks received service through Multimedia Polska (MP, AS21021),
 291 via Cogent (AS174), or through Tata (AS6453). When the peninsula occurred, traffic to all
 292 blocks continued through Cogent but was blackholed; it did not shift to Tata. The successful
 293 VP could reach MP through Tata for the entire event, proving MP was connected. After
 294 3 hours, we see a burst of 23k BGP updates and MP is again reachable from all VPs. We
 295 provide additional details in Appendix E.2 of [9].

296 3 Detecting Partial Connectivity

297 We now introduce the *Taitao* algorithm to detect peninsulas, and *Chiloe*, islands (names
 298 from Patagonian geography).

299 **3.1 Taitao: a Peninsula Detector**

300 Peninsulas occur when portions of the Internet core are reachable from some locations and
 301 not others. They can be seen by two VPs disagreeing on reachability.

302 Detecting peninsulas presents three challenges. Without VPs everywhere, when all VPs
 303 are on the same “side” of a peninsula (A and C in Figure 1), their reachability agrees even
 304 though VPs may disagree (like B). Second, asynchronous observations test reachability at
 305 different times: observations in Trinocular spread over 11 minutes, and in Atlas, 5 minutes.
 306 Observations at times before and after a network change will disagree, but both are true—a
 307 difference due to weak synchronization, and not a peninsula. Third, connectivity problems
 308 near the observer (or when an observer is an island) should not reflect on the intended
 309 destination.

310 We identify peninsulas by detecting disagreements in block state by comparing successful
 311 VP observations that occur at about the same time. Since probing rounds occur asynchronously,
 312 we compare measurements within the measurement system’s window (11 or 5 minutes for
 313 Trinocular and Atlas). This approach sees peninsulas lasting longer than one window duration,
 314 but may miss briefer ones, or when VPs are not on “both sides”.

315 Formally, $O_{i,b}$ is the set of observers with valid observations about block b at round i .
 316 We look for disagreements in $O_{i,b}$, defining $O_{i,b}^{up} \subset O_{i,b}$ as the set of observers that measure
 317 block b as up at round i . We detect a peninsula when:

$$318 \quad 0 < |O_{i,b}^{up}| < |O_{i,b}| \quad (1)$$

319 When only one VP reaches a block, we must classify it as a peninsula or an island, as
 320 described next.

321 **3.2 Chiloe: an Island Detector**

322 According §2.3.2, islands occur when the Internet core is partitioned, and the component
 323 with fewer than half the active addresses is the island. Typical islands are much smaller.

324 We can find islands by looking for networks that are only reachable from less than half of
 325 the Internet core. However, to classify such networks as an island and not merely a peninsula,
 326 we need to show that it is partitioned, which requires global knowledge. In addition, if
 327 islands are partitioned from all VPs, we cannot tell an island, with active but disconnected
 328 computers, from an outage, where they are off.

329 For these reasons, we must look for islands that include VPs in their partition. Because
 330 we know the VP is active and scanning we can determine how much of the Internet core is in
 331 its partition, ruling out an outage. We also can confirm the Internet core is not reachable, to
 332 rule out a peninsula.

333 Formally, we say that B is the set of blocks in the Internet core. $B_{i,o}^{up} \subseteq B$ are blocks
 334 reachable from observer o at round i , while $B_{i,o}^{dn} \subseteq B$ is its complement. We detect that
 335 observer o is in an island when it thinks half or more of the observable Internet core is down:

$$336 \quad 0 \leq |B_{i,o}^{up}| < |B_{i,o}^{dn}| \quad (2)$$

337 This method is independent of measurement systems, but is limited to detecting islands
 338 that contain VPs, so *any deployment will certainly undercount islands*. We evaluate islands
 339 in Trinocular and Atlas (§5.5), confirming more VPs see more islands, but that *nearly all*
 340 *reported islands are correct*.

341 Finally, because observations are not instantaneous, we must avoid confusing short-lived
 342 islands with long-lived peninsulas. For islands lasting longer than 11-minutes, we also require
 343 $|B_{i,o}^{up}| \rightarrow 0$. With $|B_{i,o}^{up}| = 0$, it is an address island.

		Ark		
		Conflicting	All Down	All Up
Trinocular	Sites Up	1	20	6
	Conflicting	2	13	5
		3	13	1
		4	26	4
		5	83	13
	Agree	0	6	97
		491,120	90	1,485,394

Table 2 Trinocular and Ark agreement table. Dataset A30, 2017q4.

		Ark	
		Peninsula	Non Peninsula
Taitao	Peninsula	184	251 (strict)
	Non Peninsula	12	1,976,701

Table 3 Taitao confusion matrix. Dataset: A30, 2017q4.

344 3.3 Deployment with Existing Systems

345 We have deployed our algorithms as extensions to two systems: Trinocular and RIPE Atlas.
 346 In both cases, each system provides data to us via existing APIs and we then apply Taitao
 347 and Chiloe and share results back. Processing time for both is modest, with DNSmon running
 348 in minutes and Trinocular taking less time than Trinocular outage detection.

349 For DNSmon, we provide daily outages and peninsulas since 2022-01-01 on a public
 350 website [88]. We have also discussed these results with RIPE and the root operators; RIPE
 351 currently identifies islands manually, and one root operator is using our results to guide
 352 operations. We provide 3.5 years Trinocular analysis at our website [6], and are working
 353 with Trinocular operators to operationalize our algorithms.

354 4 Validating our approach

355 We next validate our algorithms with three data sources.

356 4.1 Can Taitao Detect Peninsulas?

357 We compare Taitao detections from 6 VPs to independent observations taken from more
 358 than 100 VPs in CAIDA’s Ark [14]. This comparison is challenging, because both Taitao and
 359 Ark are imperfect operational systems that differ in probing frequency, targets, and method.
 360 Neither defines perfect ground truth, but agreement suggests likely truth.

361 We believe this complexity is warranted because Ark provides a more diverse perspective
 362 (with 171 locations), if we can account for its much sparser frequency. Ark traceroutes also
 363 allow us to assess *where* peninsulas begin. We expect to see a strong correlation between
 364 Taitao peninsulas and Ark observations. (We considered RIPE Atlas as another external
 365 dataset, but its coverage is sparse, while Ark covers all /24s.)

366 **Identifying comparable blocks:** We study 21 days of Ark observations from 2017-
 367 10-10 to -31. Ark covers all networks with two strategies. With team probing in 2017, a
 368 40 VP “team” traceroutes to all routed /24 about once per day. For prefix probing, about
 369 35 VPs each traceroute to .1 addresses of all routed /24s every day. We use both types of
 370 data: the three Ark teams and all available prefix probing VPs. We group results by /24
 371 blocks, considering /24s instead of ASes to be sensitive to intra-AS peninsulas.

372 Ark differs from Taitao’s Trinocular input in three ways: the target is a random address
 373 or the .1 address in each block; it uses traceroute, not ping; and it probes blocks daily, not
 374 every 11 minutes. Sometimes these differences cause Ark traceroutes to fail when a simple
 375 ping succeeds. First, Trinocular’s targets respond more often because it uses a curated
 376 hitlist [40] while Ark does not. Second, Ark’s traceroutes can terminate due to path *loops*
 377 or *gaps* in the path, (in addition to succeeding or reporting target unreachable). We do

4.10 Understanding Partial Reachability in the Internet Core

378 not consider results with gaps, so problems on the path do not bias results for endpoints
379 reachable by direct pings.

380 To correct for differences in target addresses, we must avoid misinterpreting a block as
381 unreachable when the block is online but Ark’s target address is not, we discard traces sent
382 to never-active addresses (those not observed in 3 years of complete IPv4 scans), and blocks
383 for which Ark did not get a single successful response. Since dynamic addressing [72] means
384 Ark often fails with an unreachable last hop, we see conflicting observations in Ark, implying
385 false peninsulas. We therefore trust Ark confirmation of outages and full reachability, but
386 question Ark-only peninsulas.

387 To correct for Ark’s less frequent probing, we compare *long-lived* Trinocular down-events
388 (5 hours or more). Ark measurements are infrequent (once every 24 hours) compared to
389 Trinocular’s 11-minute reports, so short Trinocular events are often unobserved by Ark. (Since
390 outage durations are heavy-tailed, 5 h gives Ark some time to confirm without discarding too
391 many events.) To confirm agreements or conflicting reports from Ark, we require at least 3
392 Ark observations within the peninsula’s span of time. Varying these parameters is potential
393 future work; with small quantitative changes likely, but changes to overall bounds unlikely.

394 We filter out blocks with frequent transient changes or signs of network-level filtering,
395 as prior work [75, 91, 81]. We define the “reliable” blocks suitable for comparison as those
396 responsive for at least 85% of the quarter from each of the 6 Trinocular VPs. (This threshold
397 avoids diurnal blocks or blocks with long outages; values of 90% or less have similar results.)
398 We also discard flaky blocks whose responses are frequently inconsistent across VPs. (We
399 consider more than 10 combinations of VP as frequently inconsistent.) For the 21 days, we
400 find 4M unique Trinocular /24 blocks, and 11M Ark /24 blocks, making 2M blocks in both
401 available for study.

402 **Results:** Table 3 shows outcomes, treating Taitao as prediction and Ark as truth, with
403 details in Table 2. Dark green indicates true positives (TP): when (a) either both Taitao
404 and Ark show mixed results, both indicating a peninsula, or when (b) Taitao indicates a
405 peninsula (1 to 5 sites up but at least one down), Ark shows all-down during the event
406 and up before and after. We treat Ark in case (b) as positive because the infrequency of
407 Ark probing (one probe per team every 24 hours) means we cannot guarantee VPs in the
408 peninsula will probe responsive targets in time. Since peninsulas are not common, so too are
409 true positives, but we see 184 TPs.

410 We show *true negatives* as light green and neither bold nor italic. In almost all of these
411 cases (1.4M) both Taitao and Ark reach the block, agreeing. The vast majority of these
412 are an artifact of our use of Ark as “ground truth”, when it is not designed to accurately
413 measure partitions. The challenge of an Ark claim of peninsula is that about 5/6ths of Ark
414 probes fail in the last hop because it probes a single random address (see [75] figure 6). As a
415 result, while positive Ark results support non-partitions, negative Ark results are most likely
416 a missed target and not an unreachable block; we expand on this analysis in Appendix F.1
417 of [9]. We therefore treat this second most-common result (491k cases) as a true negative.
418 For the same reason, we include the small number (97) of cases where both Ark and Taitao
419 report all-down, assuming Ark terminates at an empty address. We include in this category
420 the 90 events where Ark is all-down and Trinocular is all-up. We attribute Ark’s failure to
421 reach its targets to infrequent probing.

422 We mark *false negatives* as red and bold. For these few cases (only 12), all Trinocular
423 VPs are down, but Ark reports all or some responding. We believe these cases indicate blocks
424 that have chosen to drop Trinocular traffic.

425 Finally, yellow italics shows when Taitao’s peninsulas are *false positives*, since all Ark

				Sites	Events	Per Year
		Chiloe		W	5	1.67
		Island	Peninsula	C	11	3.67
Trinocular	Block Island	2	0	J	1	0.33
	Addr Island	19	8	G	1	0.33
	Peninsula	2	566	E	3	1.00
				N	2	0.67
				All (norm.)	23	7.67 (1.28)

(a) Chiloe confusion matrix

(b) Detected islands

Table 4 (a) Chiloe confusion matrix, events between 2017-01-04 and 2020-03-31, datasets A28 through A39. (b) Islands detected from 2017q2 to 2020q1.

probes reached the target block. This case occurs when either traffic from some Trinocular VPs is filtered, or all Ark VPs are “inside” the peninsula. Light yellow (strict) shows all the 251 cases that Taitao detects. For most of these cases (201), five Trinocular VPs responding and one does not, suggesting network problems are near one of the Trinocular VPs (since five of six independent VPs have working paths). Discarding these cases we get 40 (orange); still conservative but a *looser* estimate.

The strict scenario sees precision 0.42, recall 0.94, and F_1 score 0.58, and in the loose scenario, precision improves to 0.82 and F_1 score to 0.88. We consider these results a strong lower bound on the size of problem, and confirmation that the peninsulas detected by Taitao are correct.

Of course custom measurement could align with our analysis and should close this bound, but the need to build in long-term, existing data, motivates these early, rough bounds. We expect future work to tighten these bounds.

4.2 Can Chiloe Detect Islands?

Chiloe (§3.2) detects islands when a VP within the island can reach less than half the rest of the world.

Trinocular: To validate Chiloe’s correctness, we compare when a single VP believes to be in an island, against what the rest of the world believes about that VP. We begin with Trinocular, where we have strong evidence for a few VPs, then we summarize Atlas with 13k VPs.

Islands are unreachable, like D in Figure 1. We measure blocks, so if any address in block D can reach another, it is an island. If no external VPs can reach D ’s block, Chiloe confirms an island, but some VP reaching D ’s block implies a peninsula. In §4.3 we show that Trinocular VPs are independent, and therefore no two VPs live within the same island. We believe this definition is the best possible ground truth, since perfect classification requires instant, global knowledge and cannot be measured in practice.

We take 3 years worth of data from all six Trinocular VPs. From Trinocular’s pacing, we analyze 11-minute bins.

In Table 4a we show that Chiloe detects 23 islands across three years. In 2 of these events, the block is unreachable from other VPs, confirming the island with our validation methodology. Manual inspection confirms that the remaining 19 events are islands too, but at the address level—the VP was unable to reach anything but did not lose power, and other addresses in its block were reachable from VPs at other locations. These observations suggest a VP-specific problem making it an island. Finally, for 2 events, the prober’s block was reachable during the event by every site including the prober itself which suggests partial connectivity (a peninsula), and therefore a false positive.

	C	J	G	E	N	IPv4 Addresses		IPv6 Addresses				
						RIR	Active	Allocated	Allocated			
W	0.017	0.031	0.019	0.035	0.020	AFRINIC	15M	2%	121M	3.3%	9,661	3%
C		0.077	0.143	0.067	0.049	APNIC	223M	33%	892M	24.0%	88,614	27.8%
J			0.044	0.036	0.046	China	112M	17%	345M	9.3%	54,849	17.2%
G				0.050	0.100	ARIN	150M	22%	1,673M	45.2%	56,172	17.6%
E					0.058	U.S.	140M	21%	1,617M	43.7%	55,026	17.3%
						LACNIC	82M	12%	191M	5.2%	15,298	4.8%
						RIPE NCC	206M	30%	826M	22.3%	148,881	46.7%
						Germany	40M	6%	124M	3.3%	22,075	6.9%
						Total	676M	100%	3,703M	100%	318,626	100%

Table 5 Similarities all VPs.
Dataset: A30, 2017q4.

Table 6 RIR IPv4 hosts and IPv6 /32 allocation [53, 54].

462 In the 566 non-island events (true negatives), a single VP cannot reach more than 5%
 463 but less than 50% of the Internet core. In each of these cases, one or more other VPs were
 464 able to reach the affected VP’s block, showing they were not an island (although perhaps
 465 a peninsula). The table omits the frequent events when less than 5% of the network is
 466 unavailable from the VP, although they too are true negatives.

467 Bold red shows 8 false negatives. These are events that last about 2 Trinocular rounds or
 468 less (22 min), often not enough time for Trinocular to change its belief on block state.

469 **Atlas:** With 13k VPs, RIPE Atlas provides a broader view of islands. We find 188 (v4)
 470 and 388 (v6) Atlas VPs are islands (§6.3), accounting for *the majority of DNS unreachable*
 471 events. RIPE operators confirmed these are often misconfigurations.

472 **Operators:** Beyond this quantitative comparison, we discussed islands with Trinocular
 473 and RIPE Atlas operators. They confirm our examples and trends (Figure 7).

4.3 Are the Sites Independent?

475 Our evaluation assumes VPs do not share common network paths. VPs improve path diversity
 476 by network diversity and physical distance, particularly with today’s “flatter” Internet [59].
 477 We next quantify and validate this assumption.

478 We measure similarity of observations between pairs of VPs. We examine only cases
 479 where one of the pair disagrees with some other VP, since when all agree, we have no new
 480 information. If the pair agrees with each other, but not with the majority, the pair shows
 481 similarity. If they disagree with each other, they are dissimilar. We quantify similarity S_P
 482 for a pair of sites P as $S_P = (P_1 + P_0)/(P_1 + P_0 + D_*)$, where P_s indicates the pair agrees
 483 on the network having state s of up (1) or down (0) and disagrees with the others, and for
 484 D_* , the pair disagrees with each other. S_P ranges from 1, where the pair always agrees, to 0,
 485 where they always disagree.

486 Table 5 shows similarities for each pair of the 6 Trinocular VPs (as half of the symmetric
 487 matrix). No two sites have a similarity more than 0.14, and most pairs are under 0.08. This
 488 result shows that no two sites are particularly correlated.

4.4 Stability Across Time

489 We confirm our results are not time-dependent by repeating key results in multiple years,
 490 including operational result from 2022 to 2025 (Figure 7 in §6.3), and confirm all results with
 491 multiple sources and dates (see Appendix F.2 of [9]). We expect these results to apply today
 492 since partial reachability has persisted since 2001 [2], with some events lasting years [42], as
 493 our results document (Figure 7). We use older data in some examples to avoid limitations

495 of measurement deployments. During 2017q4, Trinocular had six active VPs and Ark had
 496 three teams, providing strong statements from many perspectives. Trinocular had fewer VPs
 497 in 2019 and early 2020, and Ark has fewer teams today, but 2020 gives quantitatively similar
 498 results (see Appendix F.2 of [9]). §5.4 uses 2020q3 data because Ark observed a very large
 499 number of loops in 2017q4.

500 4.5 Varying Parameters and Geography

501 Our algorithms are influenced by the parameters in our data sources, including how often
 502 and where they probe, where they are placed, and how many VPs they employ, and how
 503 much data we analyze. We vary *all of these parameters* across our datasets (see Table 1),
 504 but the requirement for Internet-wide data spanning months and years means we depend
 505 on existing deployed infrastructure. Systematically varying VP frequency and location is
 506 challenging future work.

507 We believe these diverse data sources *confirm our results apply over a range of geographic*
 508 *locations*. We study locations quantitatively in §4.3 and confirm stable results with Atlas
 509 across 3k ASes and 12k locations in §6.3. Thus, while we certainly greatly *undercount* the
 510 absolute numbers of peninsulas and islands observed from Trinocular’s 6 locations (§5), Atlas
 511 confirms these trends apply with 12k VPs.

512 **IPv6:** Given data, our algorithms apply to both IPv4 and IPv6. We provide results
 513 for both v4 and v6 with RIPE Atlas and DNSmon (§6.3), and for Internet-wide v4 with
 514 Trinocular. Internet-wide IPv6 results depend on v6 outage detection, an area of active and
 515 future research.

516 5 Internet Islands and Peninsulas

517 We now examine islands and peninsulas in the Internet core.

518 5.1 How Common Are Peninsulas?

519 We estimate how often peninsulas occur in the Internet core in three ways. First, we directly
 520 measure the visibility of peninsulas by summing the duration of peninsulas as seen from
 521 six VPs. Second, we confirm the accuracy of this estimate by evaluating its convergence
 522 as we vary the number of VPs—more VPs show more peninsula-time, but a result that
 523 converges suggests it is approaching the limit. Third, we compare peninsula-time to outage-
 524 time, showing that, in the limit, observers see both for about the same duration. Outages
 525 correspond to service downtime [101], and are a recognized problem in academia and industry.
 526 Our results show that *peninsulas are as common as outages*, suggesting peninsulas are an
 527 important new problem deserving attention.

528 **Peninsula-time:** We estimate the duration an observer can see a peninsula by considering
 529 three types of events: *all up*, *all down*, and *disagreement* between six VPs. Disagreement,
 530 the last case, suggests a peninsula, while agreement (all up or down), suggests no problem or
 531 an outage. We compute peninsula-time by summing the time each target /24 has disagreeing
 532 observations from Trinocular VPs.

533 We have computed peninsula-time by evaluating Taitao over Trinocular data for 2017q4 [97].
 534 Figure 2 shows the distribution of peninsulas measured as a fraction of block-time for an
 535 increasing number of sites. We consider all possible combinations of the six sites.

536 First we examine the data with all 6 VPs (the rightmost points). We see that peninsulas
 537 (the middle, disagreement graph) are visible about 0.00075 of the time. This data suggests

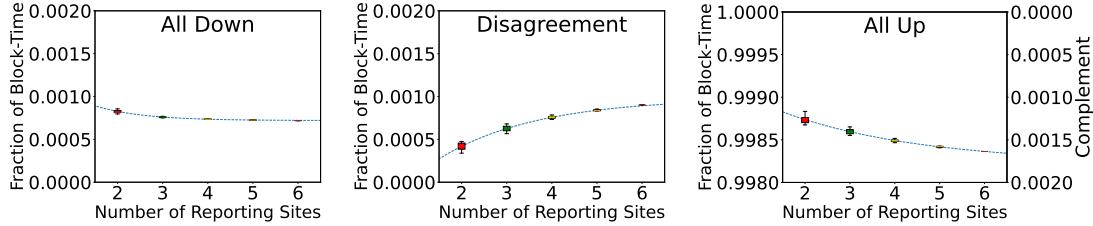


Figure 2 Distribution of block-time fraction: all-down (left), disagreement (center), and all-up (right), events ≥ 1 hour. Data: 3.7M blocks, 2017-10-06 to -11-16, A30.

538 peninsulas regularly occur, appearing at least 0.075% of the time. Fortunately, large peninsulas
 539 are rare from many locations—our 6 VPs almost always see the same targets.

540 **Convergence:** While more VPs provide a better view of the Internet core’s overall
 541 state, but the *global fraction* of affected networks will show diminishing returns after major
 542 problems are found. That is previously inferred outages (all unreachable) should have been
 543 peninsulas, with partial reachability. All-down (left) decreases from an average of 0.00082
 544 with 2 VPs to 0.00074 for 6 VPs. All-up (right) goes down a relative 47% from 0.99988 to
 545 0.99984, while disagreements (center) increase from 0.0029 to 0.00045. Outages (left) converge
 546 after 3 sites, as shown by the fitted curve and decreasing variance. Peninsulas and all-up
 547 converge more slowly. We conclude that *a few, independent sites (3 or 4) converge on a good*
 548 *estimate of the fraction of true islands and peninsulas.*

549 We support this claim by comparing all non-overlapping combinations of 3 sites. If all
 550 combinations are equivalent, then a fourth site will not add new information. Six VPs yield
 551 10 possible sets of 3 sites; we examine those combinations for each of 21 quarters, from 2017q2
 552 to 2020q1. When we compare the one-sample Student *t*-test to evaluate if the difference of
 553 each pair of combinations of those 21 quarters is greater than zero, none of the combinations
 554 are rejected at confidence level 99.75%, suggesting that any combination of three sites is
 555 statistically equivalent and confirm our claim that a few sites are sufficient for estimation.

556 **Relative impact:** Finally, comparing outages (the left graph) with peninsulas (the
 557 middle graph), we see both occur about the same fraction of time (around 0.00075). This
 558 comparison shows that *peninsulas are about as common as outages*, suggesting they deserve
 559 more attention.

560 **Generalizing:** We confirm that each of these results holds in a subsequent year in
 561 Appendix F.2 of [9], suggesting the result is not unique to this quarter. While we reach a
 562 slightly different limit (in that case, peninsulas and outages appear about in 0.002 of data),
 563 we still see good convergence after 4 VPs.

564 While this data demonstrates convergence on the *rate* of peninsulas and islands, we
 565 confirm the rate and show a larger absolute *number* of peninsulas with DNSmon’s 12k VPs.

5.2 How Long Do Peninsulas Last?

567 Peninsulas have multiple root causes: some are short-lived routing misconfigurations while
 568 others reflect long-term disagreements in routing policy. In this section we determine the
 569 distribution of peninsulas in terms of their duration to determine the prevalence of persistent
 570 peninsulas. We will show that there are millions of brief peninsulas, likely due to transient
 571 routing problems, but that 90% of peninsula-time is in long-lived events (5 h or more,
 572 following §4.1).

573 We use Taitao to see peninsula duration for all detected in 2017q4: some 23.6M peninsulas

574 affecting 3.8M unique blocks. If instead we look at *long-lived* peninsulas (at least 5 h), we
 575 see 4.5M peninsulas in 338k unique blocks.

576 [Figure 4](#) examines peninsula duration in three ways: a cumulative distribution (CDF)
 577 counting all peninsula events (left, solid, purple line), the CDF of the number of peninsulas
 578 for VP-down events longer than 5 hours (middle, solid green line), and the cumulative size of
 579 peninsulas for VP down events longer than 5 hours (right, green dashes).

580 We see that there are many very brief peninsulas (purple line): about 65% last only
 581 20–60 minutes (~2–6 observations). With two or more observations, these events are not
 582 just one-off measurement loss. These results suggest that while the Internet core is robust,
 583 there are many small connectivity glitches (7.8M events). Events that are two rounds (20
 584 minutes) or shorter may be due to transient BGP blackholes [12].

585 The number of day-long or multi-day peninsulas is small, only 1.7M events (2%, the
 586 purple line). However, about 57% of all peninsula-time is in such longer-lived events (the
 587 right, dashed line), and 20% of time is in events lasting 10 days or more, even when longer
 588 than 5 hours events are less numerous (compare the middle, green line to the left, purple line).
 589 Day-long events persist long enough for human network operators to respond, and events
 590 lasting longer than a week suggest potential policy disputes and *intentional* unreachability.
 591 Together, these long-lived events suggest that there is benefit to identifying non-transient
 592 peninsulas and addressing the underlying routing problem.

593 5.3 What Sizes Are Peninsulas?

594 When network issues cause connectivity problems like peninsulas, the *size* of those problems
 595 may vary, from country-size (see Appendix G.2 in [9]), to AS-size, and also for routable
 596 prefixes or fractions of prefixes. We next examine peninsula sizes.

597 We begin with Taitao peninsula detection at a /24 block level. We match peninsulas
 598 across blocks within the same prefix by start time and duration, both measured in one hour
 599 timebins. This match implies that the Trinocular VPs observing the blocks as up are also
 600 the same.

601 We compare peninsulas to routable prefixes from Routeviews [65], using longest prefix
 602 matches with /24 blocks.

603 Routable prefixes consist of many blocks, some of which may not be measurable. We
 604 therefore define the *peninsula-prefix fraction* for each routed prefix as fraction of blocks in
 605 the peninsula that are Trinocular-measurable blocks. To reduce noise provided by single
 606 block peninsulas, we only consider peninsulas covering 2 or more blocks in a prefix.

607 [Figure 3a](#) shows the number of peninsulas for different prefix lengths and the fraction of
 608 the prefix affected by the peninsula as a heat-map, where we group them into bins.

609 We see that about 10% of peninsulas are likely due to routing problems or policies, since
 610 40k peninsulas affect the whole routable prefix. However, a third of peninsulas (101k, at the
 611 bottom of the plot) affect only a very small fraction of the prefix. These low prefix-fraction
 612 peninsulas suggest that they happen *inside* an ISP and are not due to interdomain routing.

613 Finally, we show that *long-lived peninsulas are likely due to routing or policy choices*.
 614 [Figure 3b](#) shows the same data source, but weighted by fraction of time each peninsula
 615 contributes to the total peninsula time during 2017q4. Here the larger fraction of weight are
 616 peninsulas covering full routable prefixes—20% of all peninsula time during the quarter (see
 617 left margin).

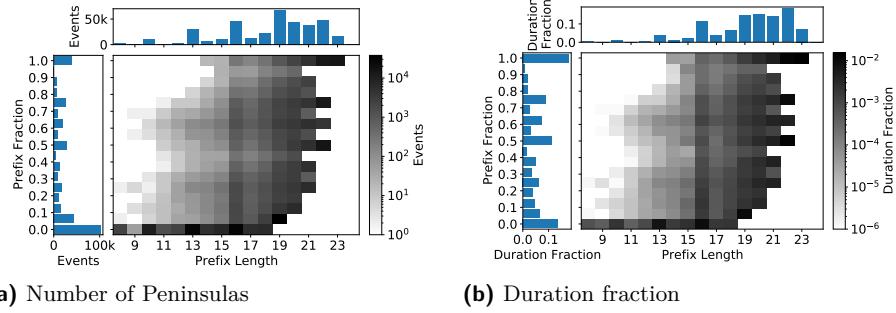


Figure 3 Peninsulas measured with per-site down events longer than 5 hours. Dataset A30, 2017q4.

Sites Up	Target AS		Target Prefix	
	At	Before	At	Before
0	21,765	32,489	1,775	52,479
1	587	1,197	113	1,671
2	2,981	4,199	316	6,864
3	12,709	11,802	2,454	22,057
4	117,377	62,881	31,211	149,047
5	101,516	53,649	27,298	127,867
1-5	235,170	133,728	61,392	307,506
6	967,888	812,430	238,182	1,542,136

Table 7 Halt location of failed traceroutes for peninsulas longer than 5 hours. Dataset A41, 2020q3.

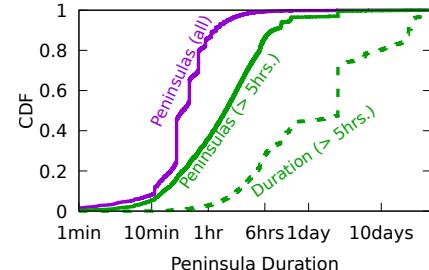


Figure 4 Cumulative peninsulas and peninsula duration. Dataset A30, 2017q4.

5.4 Where Do Peninsulas Occur?

618 Firewalls, link failures, and routing problems cause peninsulas on the Internet, and can
 619 occur at AS boundaries or inside an AS. We next show that *many peninsulas occur at AS*
 620 *boundaries, consistent with policies as a cause* for long-lived events. (Short-lived events at
 621 AS boundaries may be routing transients or operator error that is quickly corrected.)

622 To detect *where* the Internet breaks into peninsulas, we look at traceroutes that failed to
 623 reach their target address, either due to a loop or an ICMP unreachable message. Then, we
 624 examine if the traceroute halts *at* the target AS and target prefix, or *before* the target AS
 625 and prefix.

626 For our experiment we run Taitao to detect peninsulas at target blocks over Trinocular
 627 VPs, we use Ark's traceroutes [15] to find last IP address before halt, and we get target and
 628 halting ASNs and prefixes using RouteViews.

629 In Table 7 we show how many traces halt *at* or *before* the target network. The center,
 630 gray rows show peninsulas (disagreement between VPs) with their total sum in bold. For all
 631 peninsulas (the bold row), more traceroutes halt at or inside the target AS (235k vs. 134k,
 632 the left columns), but they more often terminate before reaching the target prefix (308k
 633 vs. 61k, the right columns). (While traceroutes are imperfect, these large differences (2× or
 634 more) suggest a robust qualitative conclusion.) This difference suggests policy is implemented
 635 at or inside ASes, but not at routable prefixes. By contrast, outages (agreement with 0 sites
 636 up) more often terminate before reaching the target AS. Because peninsulas are more often
 637 at or in an AS, while outages occur in many places, it suggests that long-lived peninsulas are
 638 policy choices consistent with public operator reports [67, 62, 3, 77, 94, 17].

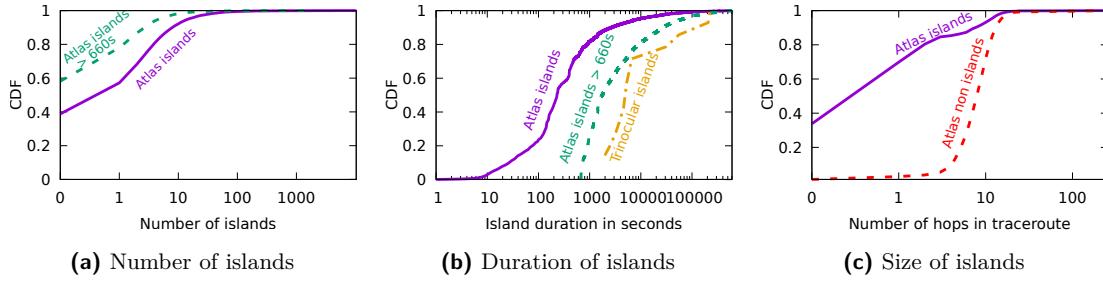


Figure 6 CDF of islands detected by Chiloe for data from Trinocular (3 years, Datasets A28-A39) and Atlas (2021q3).

5.5 How Common Are Islands?

Multiple groups have shown that there are many network outages in the Internet [90, 75, 91, 81, 49]. We have described (§2) two kinds of outages: full outages where all computers at a site are down (perhaps due to a loss of power), and islands, where the site is cut off from the Internet core, but computers at the site can talk between themselves. We next use Chiloe to determine how often islands occur. We study islands in two systems with 6 VPs for 3 years and 13k VPs for 3 months.

Trinocular: We first consider three years of Trinocular data (Table 1), from 2017-04-01 to 2020-04-01. We run Chiloe across each VP for this period.

Table 4b shows the number of islands per VP over this period. Over the 3 years, all six VPs see from 1 to 5 islands. In addition, we report as islands some cases even though not the *entire* Internet core is unreachable. This apparent discrepancy from our definition reflects the limitations of our necessarily non-instantaneous measurement of the Internet. We expect such cases, and perhaps other 12 non-islands where 20% to 50% is inaccessible, are *short-lived* true islands, that are incompletely measured because the island recovers before we complete an 11 minute-long evaluation of all 5M networks for a full Internet scan (see §C.2 for details).

RIPE Atlas: For broader coverage we next consider RIPE Atlas' 13k VPs for all of 2021q3 [69]. While Atlas does not scan the whole Internet core, they do scan most root DNS servers every 240s. Chiloe would like to observe the whole Internet core, and while Trinocular scans 5M /24s, it does so with only 6 VPs. To use RIPE Atlas' VPs, we approximate a full scan with probes to 12 of the DNS root server systems (G-Root was unavailable in 2021q3). Although far fewer than 5M networks, these targets provide a very sparse sample of usually independent destinations since each is independently operated. Thus we have complementary datasets with sparse VPs and dense probing, and many VPs but sparse probing. In other words, to get many VP locations we relax our conceptual definition by decreasing our target list.

Figure 5a shows the CDF of the number of islands detected per RIPE Atlas VP during 2021q3. During this period, 55% of VPs observed one or no islands (the solid line). We compare to Trinocular with only events longer than 660s (the dashed line). We see that 60% of VPs have no islands; 19%, one; with 21% seeing more. The annualized rate of the stable VPs that see 2 or fewer islands is 1.75 islands per year (a lower bound, since we exclude less stable VPs), compared to 1.28 for Trinocular (Table 4b). We see islands are more common in Atlas, perhaps because it includes many VPs in homes.

We conclude that islands *do* happen, but rarely, and occur at irregular times. This finding is consistent with importance of the Internet at the locations where we run VPs.

676 **5.6 How Long Do Islands Last?**

677 Islands causes range from brief connectivity loss to long-term policy differences, so we next
 678 evaluate island duration.

679 We compare the distributions of island durations observed from RIPE Atlas (the left line)
 680 and Trinocular (right) in [Figure 5b](#). Since Atlas' frequent polling means it detects islands
 681 lasting seconds, while Trinocular sees only islands of 660 s or longer, we split out Atlas events
 682 lasting at least 660 s (middle line). All measurements follow a similar S-shaped curve, but
 683 for Trinocular, the curve is truncated at 660 s. With only 6 VPs, Trinocular sees far fewer
 684 events (23 in 3 years compared to 235k in a yearly quarter with Atlas), so the Trinocular
 685 data is quantized. In both cases, about 70% of islands are between 1000 and 6000 s. This
 686 graph shows that Trinocular's curve is similar in shape to Atlas-660 s, but about 2× longer.
 687 All Trinocular observers are in datacenters, while Atlas devices are often at homes, so this
 688 difference may indicate that datacenter islands are rarer, but harder to resolve.

689 **5.7 What Sizes Are Islands?**690 **5.7.1 Island Size via Traceroute**

691 First we evaluate island sizes, comparing traceroutes before and during an island. We use
 692 traceroutes from RIPE Atlas VPs sent to 12 root DNS servers for 2021q3 [\[70\]](#). [Figure 5c](#)
 693 shows the distribution of number of traceroute hops reaching target (green), and *not* reaching
 694 their target (purple), for VPs in islands ([§5.5](#)).

695 Most islands are small, with 70% at 0 or 1 hop. We believe huge islands (10 or more
 696 hops) are likely false positives.

697 **5.7.2 Country-sized Islands**

698 We have some evidence of country-sized islands: In 2017q3, on 8 occasions it appears that
 699 most or all of China stopped responding to external pings (visualized in [Figure 10](#) in [§C.1](#)).
 700 We found no problem reports on network operator mailing lists, so we believe these outages
 701 were ICMP-specific and likely did not affect web traffic. Since there were no public reports,
 702 we assume the millions of computers inside China continued to operate, suggesting that
 703 China was briefly a country-wide *ICMP-island*. Such large examples have not re-occurred.

704 **6 Applying These Tools**705 **6.1 Can the Internet Core Partition?**

706 In [§6.2](#) we discussed secession and expulsion qualitatively. Here we ask: Does any country or
 707 group have enough addresses to secede and claim to be “the Internet core” with a majority
 708 of addresses? Alternatively, if a country were to exert control over their allocated addresses,
 709 would they become a country-sized island or peninsula? We next use our reachability
 710 definition of more than 50% to quantify control of the IP address space.

711 To evaluate the power of countries and Regional Internet Registries (RIRs) over the
 712 Internet core, Table 6 reports the number of active IPv4 addresses as determined by Internet
 713 censuses [\[51\]](#) for RIRs and selected countries. Since estimating active IPv6 addresses is an
 714 open problem, we provide allocated addresses for both v4 and v6 [\[53, 54\]](#). (IPv4 has been
 715 fully allocated since 2011 [\[55\]](#)).

716 Table 6 shows that *no individual RIR or country can secede and take the Internet core*,
 717 because none controls the majority of IPv4 addresses. ARIN has the largest share with

718 1673M allocated (45.2%). Of countries, U.S. has the largest share of allocated IPv4 (1617M, 719 43.7%). Active addresses are more evenly distributed with APNIC (223M, 33%) and the 720 U.S. (40M, 21%) the largest RIR and country.

721 *IPv6 is also an international collaboration*, since no RIR or country surpasses a 50% 722 allocation for control. RIPE (an RIR) is close with 46.7%, and China and the U.S. have 723 large allocations; with most v6 unallocated, this balance may change.

724 IPv4 reflects a first-mover bias, where early adopters acquired many addresses, but this 725 factor is smaller in IPv6. Our definition's use of active addresses also reduces this bias, 726 since numbers of *active* IPv4 addresses is similar to allocated IPv6 addresses (legacy IPv4 727 addresses are less used).

728 6.2 Other Applications of the Definition

729 We next examine how a clear definition of the Internet core can inform policy tussles [21]. 730 Our hope is that our conceptual definition can make sometimes amorphous concepts like 731 “Internet fragmentation” more concrete, and an operational definition can quantify impacts 732 and identify thresholds.

733 **Secession and Sovereignty:** The U.S. [84], China [4, 5], and Russia [22] have all 734 proposed unplugging from the Internet. Egypt did in 2011 [25], and several countries have 735 during exams [45, 30, 52, 37]. When the Internet partitions, which part is still “the Internet 736 core”? Departure of an ISP or small country do not change the Internet core much, but what 737 if a large country, or group of countries, leave together? Our definition (§2.1) resolves this 738 question, since requiring a majority defines an Internet core that can end (§6.1) if multiple 739 partitions leave none with a majority.

740 **Sanction:** An opposite of secession is expulsion. Economic sanctions are one method of 741 asserting international influence, and events such as the 2022 war in Ukraine prompted several 742 large ISPs to discontinue service to Russia [80]. De-peering does not affect reachability for 743 ISPs that purchase transit, but Tier-1 ISPs that de-peer create peninsulas for their users. As 744 described below in §6.1, *no single country can eject another by de-peering with it*. However, 745 a coalition of multiple countries could de-peer and eject a country from the Internet core if 746 they, together, control more than half of the address space.

747 **Repurposing Addresses:** Given full allocation of IPv4, multiple parties proposed 748 re-purposing currently allocated or reserved IPv4 space, such 0/8 (“this” network), 127/8 749 (loopback), and 240/4 (reserved) [43]. New use of these long-reserved addresses is challenged 750 by assumptions in widely-deployed, difficult to change, existing software and hardware. Our 751 definition demonstrates that an RFC re-assigning this space for public traffic cannot make it 752 a truly effective part of the Internet core until implementations used by a majority of active 753 addresses can route to it.

754 **IPv4 Squat Space:** IP squatting is when an organization requiring private address 755 space beyond RFC1918 takes over allocated but currently unrouted IPv4 space [8]. Several 756 IPv4 /8s allocated to the U.S. DoD have been used this way [82] (they were only publicly 757 routed in 2021 [95]). By our definition, such space is not part of the Internet core without 758 public routes, and if more than half of the Internet is squatting on it, reclamation may be 759 challenging.

760 **The IPv4/v6 Transition:** We have defined two Internet cores: IPv4 and IPv6. Our 761 definition can determine when one supersedes the other. After more than half of all IPv4 762 hosts are dual-homed, IPv6 will supersede IPv4 when a majority of hosts on IPv6 can no 763 longer reach IPv4. Current limits on IPv6 measurement mean evaluation here is future 764 work, and show the strength and limits of our definition: since IPv6 is already economically

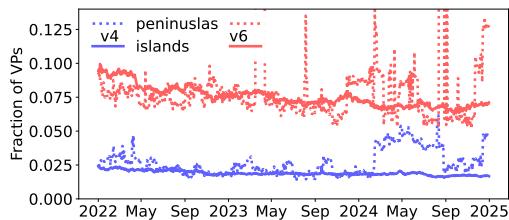


Figure 7 Fraction of VPs observing islands and peninsulas for IPv4 and IPv6, 2022–2025.

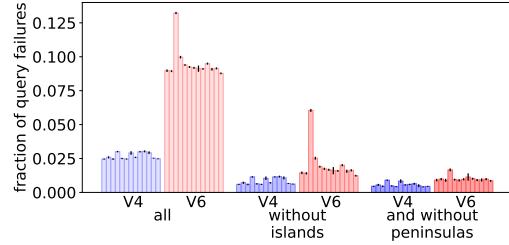


Figure 8 Atlas queries from all available VPs to 13 Root Servers for IPv4 and IPv6 on 2022-07-23.

765 important, a definition seems unnecessary. But providing a sharp threshold that makes the
 766 maturity of IPv6 definitive may help motivate late-movers.

767 **Outage Detection:** Prior outage detection systems have struggled with conflicting
 768 observations [90, 75, 91, 81, 49]. We instead recognize such cases as peninsulas in a normal
 769 Internet, not measurement error. (We expand in §6.4.)

770 6.3 Improving DNSmon Sensitivity

771 DNSmon [1] monitors the Root Server System [85], with each RIPE Atlas VP measuring its
 772 anycast-determined neighbor [83]. For years, DNSmon has often reported IPv6 loss rates of
 773 4–10%. Since the DNS root is well provisioned and anycast, we expect minimal or no loss.

774 RIPE Atlas operators are aware of problems with some Atlas VPs. Some VPs support
 775 IPv6 on their LAN, but not to the global IPv6 Internet—such VPs are IPv6 islands. Atlas
 776 periodically tags and culls these VPs from DNSmon. However, our study of DNSmon for
 777 islands and peninsulas improves their results. Using concepts pioneered here (§2 and §3),
 778 we give full analysis in a workshop paper [87]; Here we add new data showing these results
 779 persist for 3 years (Figure 7).

780 Groups of bars in Figure 8 show query loss for each of the 13 root service identifiers, as
 781 observed from all available Atlas VPs (10,082 IPv4, and 5,173 IPv6) on 2022-07-23. (We are
 782 similar to DNSmon, but it uses only about 100 well-connected “anchors”, so our analysis is
 783 wider.) The first two groups show loss rates for IPv4 (light blue, left most) and IPv6 (light
 784 red), showing IPv4 losses around 2%, and IPv6 from 9 to 13%.

785 We apply Chiloe to these VPs, detecting as islands those VPs that cannot see *any* of
 786 the 13 root identifiers over 24 hours. (This definition is stricter than regular Chiloe because
 787 these VPs attempt only 13 targets, and we apply it over a full day to consider only long-term
 788 trends.) The middle two groups of bars show IPv4 and IPv6 loss rates after removing 188
 789 v4 and 388 v6 VPs that are islands. Without islands, v4 loss drops to 0.005 from 0.01, and
 790 v6 to 0.01 from 0.06. These rates represent a more meaningful estimate of DNS reliability.
 791 Users of VPs that are IPv6 islands will not expect global IPv6, and such VPs should not be
 792 used for IPv6 in DNSmon.

793 The third bar in each red cluster of IPv6 is an outlier: that root identifier shows 13%
 794 IPv6 loss with all VPs, and 6% loss after islands are removed. This result is explained
 795 by persistent routing disputes between Cogent (the operator of C-Root) and Hurricane
 796 Electric [67]. Omitting islands (the middle bars) makes this difference much clearer.

797 Applying Taitao to detect peninsulas, we find 14 to 57 v4 peninsulas and 266 (Cogent)
 798 and 19 to 49 (others) v6 peninsulas. Peninsulas suggest persistent routing problems meriting
 799 attention from ISPs and root operators. The darker, right two groups show loss remaining
 800 (after removal of islands and peninsulas), representing *underlying events worth root operator*

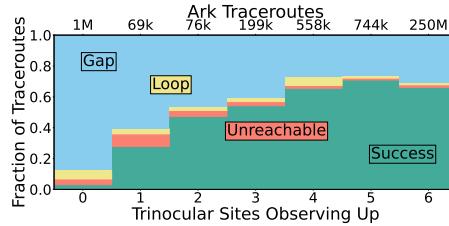


Figure 9 Ark traceroutes sent to targets under partial outages (2017-10-10 to -31). Dataset A30.

attention. These bars show all letters see similar events rates, *after* we remove persistent problems.

This example shows how *understanding partial reachability can improve the sensitivity of existing measurement systems*. Removing islands makes it easy to identify persistent routing problems. Removing peninsulas makes transient changes (perhaps from failure, DDoS, routing) more visible. Each layer of these problems can be interesting, but considering each separately, the interesting “signal” of routing changes (appearing in the right two groups in Figure 8), is hidden under the 5× or 9.7× times larger peninsulas and islands (the left two groups). Improved sensitivity also *shows a need to improve IPv6 provisioning*, since IPv6 loss is statistically higher than IPv4 loss (compare the right blue and red groups), even accounting for known problems. After sharing the results with root operators and RIPE Atlas, two operators adopted them in regular operation.

6.4 Outages Given Partial Reachability

We next re-evaluate reports from existing outage detection systems, considering how to resolve conflicting information in light of our new algorithms. We compare findings to external information in traceroutes from CAIDA Ark.

Figure 9 compares Trinocular with 21 days of Ark topology data, from 2017-10-10 to -31 from all 3 probing teams. For each Trinocular outage we classify the Ark result as success or three types of failure: unreachable, loop, or gap.

Trinocular’s 6-site-up case suggests a working network, and we consider this case as typical. However, we see that about 25% of Ark traceroutes are “gap”, where several hops fail to reply. We also see about 2% of traceroutes are unreachable (after we discard traceroutes to never reachable addresses). Ark probes a random address in each block; many addresses are non-responsive, explaining these.

With 1 to 11 sites up, Trinocular is reporting disagreement. We see that the number of Ark success cases (the green, lower portion of each bar) falls roughly linearly with the number of successful observers. This consistency suggests that Trinocular and Ark are seeing similar behavior, and that there is partial reachability—these events with only partial Trinocular positive results are peninsulas.

Since 5 sites give the same results as all 6, single-VP failures likely represent problems local to that VP. This data suggests that all-but-one voting will track true outages.

With only partial reachability, with 1 to 4 VPs (of 6), we see likely peninsulas. These cases confirm that partial connectivity is common: while there are 1M traceroutes sent to outages where no VP can see the target (the number of events is shown on the 0 bar), there are 1.6M traceroutes sent to partial outages (bars 1 to 5), and 850k traceroutes sent to definite peninsulas (bars 1 to 4). This result is consistent with the convergence we see in Figure 2.

838 **7 Related Work**

839 Prior definitions of the Internet exist at the IP-layer [18, 73, 41, 39] of their time, or the
 840 AS-level [44, 63]. We consider the IP-layer, and seek to address today’s challenges (see §2).

841 Cannon explored legal definitions of the Internet [16], recognizing limitations of early
 842 definitions and need to be application-independent. Like us, he considers connectivity and
 843 addressing important, but he questions if a firm legal definition is possible. While we do not
 844 comment legalities, we suggest our technical definition may address his questions.

845 Several systems mitigate partial outages. RON provides alternate-path routing around
 846 failures for a mesh of sites [2]. Hubble monitors in real-time reachability problems when
 847 working physical paths exist [57]. LIFEGUARD, remediates route failures by rerouting traffic
 848 using BGP to select a working path [58]. While addressing the problem of partial outages,
 849 these systems do not quantify their duration or scope.

850 Prior work studied partial reachability, showing it is a common transient occurrence during
 851 routing convergence [12]. They reproduced partial connectivity with controlled experiments;
 852 we study it from Internet-wide VPs.

853 Internet scanners have examined bias by location [51], more recently looking for policy-
 854 based filtering [99]. We measure policies with our country specific algorithm, and we extend
 855 those ideas to defining the Internet core.

856 Active outage detection systems have encountered partial outages. Thunderping’s “hosed”
 857 state recognizes mixed replies, but its study is future work [90]. Trinocular discards partial
 858 outages by reporting the target block “up” if any VP can reach it [75]. Disco identifies partial
 859 connectivity as future work [91]. None of these systems consistently report partial outages in
 860 the Internet core, nor study their extent.

861 We use the idea of majority to define the Internet core in the face of secession. That idea
 862 is fundamental in many algorithms for distributed consensus [61, 60, 68], for example, with
 863 applications to certificate authorities [11].

864 Recent work considered policies about Internet fragmentation [33, 34], but do not define
 865 it—a need we hope to meet.

866 **8 Conclusions**

867 Our new definition of the Internet core leads to new algorithms: Taitao, to find peninsulas
 868 of partial connectivity, and Chiloe, to find islands. We validate these algorithms and show
 869 partial reachability is as common as simple outages. They have important applications about
 870 Internet sovereignty and to improve outage and DNSmon measurement systems.

871 **References**

- 872 1 Christopher Amin, Massimo Cándela, Daniel Karrenberg, Robert Kisteleki, and Andreas
 873 Strikos. Visualization and monitoring for the identification and analysis of DNS issues.
 874 In *Proceedings of the International Conference on the Internet Monitoring and Protection*,
 875 Brussels, Belgium, June 2015.
- 876 2 David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient
 877 overlay networks. In *Proceedings of the Symposium on Operating Systems Principles*, pages
 878 131–145, Chateau Lake Louise, Alberta, Canada, October 2001. ACM.
- 879 3 Nate Anderson. Peering problems: digging into the Comcast/Level 3 grudgematch.
 880 *Ars Technica*, Dec. 9 2010. URL: <https://arstechnica.com/tech-policy/2010/12/comcastlevel3/>.

882 4 Anonymous. The collateral damage of Internet censorship by DNS injection. *ACM Computer*
883 *Communication Review*, 42(3):21–27, July 2012. [doi:10.1145/2317307.2317311](https://doi.org/10.1145/2317307.2317311).

884 5 Anonymous. Towards a comprehensive picture of the Great Firewall’s DNS censorship. In
885 *Proceedings of the USENIX Workshop on Free and Open Communications on the Internet*,
886 San Diego, CA, USA, August 2014. USENIX.

887 6 ANT Project. Ant internet islands and peninsula datasets. https://ant.isi.edu/datasets/ipv4_partial/, January 2017. URL: https://ant.isi.edu/datasets/ipv4_partial/.

888 7 ANT Project. ANT IPv4 island and peninsula data. https://ant.isi.edu/datasets/ipv4_partial/, November 2022.

889 8 Cathy Aronson. To squat or not to squat? blog <https://teamarin.net/2015/11/23/to-squat-or-not-to-squat/>, November 2015.

890 9 Guillermo Baltra, Tarang Saluja, Yuri Pradkin, and John Heidemann. Understanding partial
891 reachability in the internet core (extended). Technical Report arXiv:2601.12196, arXiv, January
892 2026. The technical report includes additional appendices.

893 10 Genevieve Bartlett, John Heidemann, and Christos Papadopoulos. Understanding passive and
894 active service discovery. In *Proceedings of the ACM Internet Measurement Conference*, pages
895 57–70, San Diego, California, USA, October 2007. ACM. [doi:10.1145/1298306.1298314](https://doi.org/10.1145/1298306.1298314).

896 11 Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek Mittal.
897 Bamboozling certificate authorities with BGP. In *27th USENIX Security Symposium*, pages
898 833–849, Baltimore, Maryland, USA, 2018. USENIX.

899 12 Randy Bush, Olaf Maennel, Matthew Roughan, and Steve Uhlig. Internet optometry: assessing
900 the broken glasses in internet reachability. In *Proceedings of the 9th ACM SIGCOMM conference*
901 on *Internet measurement*, pages 242–253, Chicago, Illinois, USA, November 2009. ACM. URL:
902 <http://www.maennel.net/2009/imc099-bush.pdf>.

903 13 CAIDA. Archipelago (Ark) measurement infrastructure. website <https://www.caida.org/projects/ark/>, 2007.

904 14 CAIDA. The CAIDA UCSD IPv4 routed /24 topology dataset - 2017-10-10 to -31. https://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml, 2017.

905 15 CAIDA. The CAIDA UCSD IPv4 routed /24 topology dataset - 2020-09-01 to -31. https://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml, 2020.

906 16 Robert Cannon. Will the real Internet please stand up: An attorney’s quest to define the
907 internet. In *Proceedings of the TPRC, the Research Conference on Communication, Information*
908 and *Internet Policy*. TPRC, March 2002. Also in: *Rethinking Rights and Regulations*. [doi:10.7551/mitpress/5932.003.0007](https://doi.org/10.7551/mitpress/5932.003.0007).

909 17 Ben Cartwright-Cox. Cogent-tata peering dispute? Nanog mailing list, May 17 2024. URL:
910 <https://mailman.nanog.org/pipermail/nanog/2024-May/225651.html>.

911 18 Vint Cerf and Robert Kahn. A protocol for packet network interconnection. *IEEE Transactions*
912 on *Communications*, COM-22(5):637–648, May 1974.

913 19 S. Cheshire and M. Krochmal. NAT port mapping protocol (NAT-PMP). RFC 6886, Internet
914 Request For Comments, April 2013. [doi:10.17487/RFC6886](https://doi.org/10.17487/RFC6886).

915 20 David D. Clark. The design philosophy of the DARPA Internet protocols. In *Proceedings of*
916 *the 1988 Symposium on Communications Architectures and Protocols*, pages 106–114. ACM,
917 August 1988.

918 21 David D. Clark, John Wroclawski, Karen Sollins, and Robert Braden. Tussle in cyberspace:
919 Defining tomorrow’s internet. In *Proceedings of the ACM SIGCOMM Conference*, pages
920 347–356, Pittsburgh, PA, USA, August 2002. ACM.

921 22 CNBC. Russia just brought in a law to try to disconnect its
922 Internet from the rest of the world. <https://www.cnbc.com/2019/11/01/russia-controversial-sovereign-internet-law-goes-into-force.html>, 11 2019.

923 23 N. Coca. China’s xinjiang surveillance is the dystopian future nobody
924 wants. *Engadget*, Feb. 22 2018. URL: <https://www.engadget.com/2018-02-22-china-xinjiang-surveillance-tech-spread.html>.

925 933

934 24 Cogent. Looking glass. <https://cogentco.com/en/looking-glass>, 05 2021.

935 25 James Cowie. Egypt leaves the Internet. Renesys Blog <http://www.renesys.com/blog/2011/01/egypt-leaves-the-internet.shtml>, January 2011.

936 26 RBC daily. Russia, tested the Runet when disconnected from the global network. website https://www.rbc.ru/technology_and_media/21/07/2021/60f8134c9a79476f5de1d739, July 2021.

937 27 Alberto Dainotti, Karyn Benson, Alistair King, kc claffy, Eduard Glatz, Xenofontas Dimitropoulos, Philipp Richter, Alessandro Finamore, and Alex C. Snoeren. Lost in space: Improving inference of IPv4 address space utilization. *IEEE Journal of Selected Areas in Communication*, 34(6):1862–1876, April 2016. doi:10.1109/JSAC.2016.2559218.

938 28 Alberto Dainotti, kc claffy, Alistair King, Vasco Asturiano, Karyn Benson, Marina Fomenkov, Brad Huffaker, Young Hyun, Ken Keys, Ryan Koga, Alex Ma, Chiara Orsini, and Josh Polterock. IODA: Internet outage detection & analysis. Talk at CAIDA Active Internet Measurement Workshop (AIMS), March 2017. URL: http://www.caida.org/publications/presentations/2017/ioda_aims/ioda_aims.pdf.

939 29 Alberto Dainotti, Claudio Squarcella, Emile Aben, Marco Chiesa, Kimberly C. Claffy, Michele Russo, and Antonio Pescapé. Analysis of country-wide Internet outages caused by censorship. In *Proceedings of the ACM Internet Measurement Conference*, pages 1–18, Berlin, Germany, November 2011. ACM. doi:10.1145/2068816.2068818.

940 30 Dhaka Tribune Desk. Internet services to be suspended across the country. *Dhaka Tribune*, Feb. 11 2018. URL: <http://www.dhakatribune.com/regulation/2018/02/11/internet-services-suspended-throughout-country/>.

941 31 Amogh Dhamdhare, David D. Clark, Alexander Gamero-Garrido, Matthew Luckie, Ricky K. P. Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C. Snoeren, and kc claffy. Inferring persistent interdomain congestion. In *Proceedings of the ACM SIGCOMM Conference*, pages 1–15, Budapest, Hungary, August 2018. ACM. doi:10.1145/3230543.3230549.

942 32 DINRG. Decentralized Internet Infrastructure Research Group. <https://irtf.org/dinrg>, 05 2021.

943 33 William J. Drake, Vinton G. Cerf, and Wolfgang Kleinwächter. Internet fragmentation: An overview. Technical report, World Economic Forum, January 2016. URL: https://www3.weforum.org/docs/WEF_FII_Internet_Fragmentation_An_Overview_2016.pdf.

944 34 William J. Drake (moderator). Internet fragmentation, reconsidered. CITI Seminar on Global Digital Governance at IETF 115, October 2022. URL: <https://www8.gsb.columbia.edu/citi/GlobalDigitalGovernance>.

945 35 Peter K. Dunn. Scientific research methods. <https://bookdown.org/pkaldunn/Book/>, 05 2021.

946 36 Zakir Durumeric, Michael Bailey, and J Alex Halderman. An internet-wide view of internet-wide scanning. In *23rd {USENIX} Security Symposium ({USENIX} Security 14)*, pages 65–78, San Diego, California, USA, August 2014. USENIX.

947 37 Economist Editors. Why some countries are turning off the internet on exam days. *The Economist*, July 5 2018. (Appeared in the Middle East and Africa print edition). URL: <https://www.economist.com/middle-east-and-africa/2018/07/05/why-some-countries-are-turning-off-the-internet-on-exam-days>.

948 38 Hurricane Electric. Looking glass. <http://lg.he.net/>, May 2021.

949 39 Engadget. China, Huawei propose internet protocol with a built-in killswitch. <https://www.engadget.com/2020-03-30-china-huawei-new-ip-proposal.html>, 2020.

950 40 Xun Fan and John Heidemann. Selecting representative IP addresses for Internet topology studies. In *Proceedings of the ACM Internet Measurement Conference*, pages 411–423, Melbourne, Australia, November 2010. ACM. doi:10.1145/1879141.1879195.

951 41 Federal Networking Council (FNC). Definition of “Internet”. https://www.nitrd.gov/historical/fnc/internet_res.pdf, 1995.

952 42 HE forums. Cloudflare blocked on free tunnels now? <https://forums.he.net/index.php?topic=3805.0>, 12 2017.

986 43 V. Fuller, E. Lear, and D. Meyer. Reclassifying 240/4 as usable unicast address space.
987 Work in progress (Internet draft draft-fuller-240space-02.txt), March 2008. URL: <https://datatracker.ietf.org/doc/html/draft-fuller-240space-02>.

989 44 Lixin Gao. On inferring autonomous system relationships in the Internet. *ACM/IEEE*
990 *Transactions on Networking*, 9(6):733–745, December 2001. doi:10.1109/90.974527.

991 45 Samuel Gibbs. Iraq shuts down the Internet to stop pupils cheating in exams. *The*
992 *Guardian*, 18 May 1996. URL: <https://www.theguardian.com/technology/2016/may/18/iraq-shuts-down-internet-to-stop-pupils-cheating-in-exams>.

994 46 GovTrack.us. Unplug the Internet Kill Switch Act would eliminate a 1942 law that
995 could let the president shut down the internet. <https://govtrackinsider.com/unplug-the-internet-kill-switch-act-would-eliminate-a-1942-law-that-could-let-the-president-shut-78326>
997 November 2020.

998 47 Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim,
999 Parantap Lahiri, David A. Maltz, and Parveen Pat. VL2: A scalable and flexible data center
1000 network. In *Proceedings of the ACM SIGCOMM Conference*, pages 51–62, Barcelona, Spain,
1001 August 2009. ACM.

1002 48 James Griffiths. Democratic Republic of Congo internet shutdown shows how chinese censorship
1003 tactics are spreading. *CNN*, Jan. 2 2019. URL: <https://edition.cnn.com/2019/01/02/africa/congo-internet-shutdown-china-intl/index.html>.

1005 49 Andreas Guillot, Romain Fontugne, Philipp Winter, Pascal Merindol, Alistair King, Alberto
1006 Dainotti, and Cristel Pelsser. Chocolatine: Outage detection for internet background radiation.
1007 In *Proceedings of the IFIP International Workshop on Traffic Monitoring and Analysis*, Paris,
1008 France, June 2019. IFIP.

1009 50 Hang Guo and John Heidemann. Detecting ICMP rate limiting in the Internet. In *Proceedings*
1010 *of the Passive and Active Measurement Workshop*, page to appear, Berlin, Germany, March
1011 2018. Springer.

1012 51 John Heidemann, Yuri Pradkin, Ramesh Govindan, Christos Papadopoulos, Genevieve Bartlett,
1013 and Joseph Bannister. Census and survey of the visible Internet. In *Proceedings of the ACM*
1014 *Internet Measurement Conference*, pages 169–182, Vouliagmeni, Greece, October 2008. ACM.
1015 doi:10.1145/1452520.1452542.

1016 52 Jon Henley. Algeria blocks internet to prevent students cheating during exams. *The*
1017 *Guardian*, 22 June 2018. URL: <https://www.theguardian.com/world/2018/jun/21/algeria-shuts-internet-prevent-cheating-school-exams>.

1019 53 IANA. IPv4 address space registry. <https://www.nro.net/about/rirs/statistics/>, 05
1020 2021.

1021 54 IANA. IPv6 RIR allocation data. <https://www.iana.org/numbers/allocations/>, 01 2021.

1022 55 ICANN. Available pool of unallocated IPv4 internet addresses now completely emptied.
1023 Announcement, ICANN, February 2011. URL: <https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf>.

1025 56 Internet Architecture Board. IAB technical comment on the unique DNS root. RFC
1026 2826, Internet Request For Comments, May 2000. URL: <https://www.rfc-editor.org/rfc/rfc2826>.

1028 57 Ethan Katz-Bassett, Harsha V Madhyastha, John P John, Arvind Krishnamurthy, David
1029 Wetherall, and Thomas E Anderson. Studying black holes in the internet with hubble. In
1030 *Proceedings of the USENIX Conference on Networked Systems Design and Implementation*,
1031 pages 247–262, San Francisco, CA, 2008. ACM.

1032 58 Ethan Katz-Bassett, Colin Scott, David R. Choffnes, Ítalo Cunha, Vytautas Valancius, Nick
1033 Feamster, Harsha V. Madhyastha, Tom Anderson, and Arvind Krishnamurthy. LIFEGUARD:
1034 Practical repair of persistent route failures. In *Proceedings of the ACM SIGCOMM Conference*,
1035 pages 395–406, Helsinki, Finland, August 2012. ACM. doi:10.1145/2377677.2377756.

1036 59 Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and Farnam Jahanian.
 1037 Internet inter-domain traffic. In *Proceedings of the ACM SIGCOMM Conference*, pages 75–86,
 1038 New Delhi, India, August 2010. ACM. [doi:10.1145/1851182.1851194](https://doi.org/10.1145/1851182.1851194).

1039 60 Leslie Lamport. The part-time parliament. *ACM Transactions on Computer Systems*, 16(2):133–
 1040 169, May 1998. [doi:<http://dx.doi.org/10.1145/279227.279229>](https://doi.org/10.1145/279227.279229).

1041 61 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM
 1042 Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982.

1043 62 Mike Leber. Re: Ipv6 internet broken, cogent/telia/hurricane not peering. NANOG mailing list,
 1044 October 2009. URL: <https://mailman.nanog.org/pipermail/nanog/2009-October/014017.html>.

1045 63 Matthew Luckie, Bradley Huffaker, Dhamdhere, Vasileios Giotsas, and kc claffy. AS
 1046 relationships, customer cones, and validation. In *Proceedings of the ACM Internet Measurement
 1047 Conference*, pages 243–256, Barcelona, Spain, October 2013. ACM.

1048 64 Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding BGP misconfiguration.
 1049 In *Proceedings of the ACM SIGCOMM Conference*, pages 3–16, Pittsburgh, Pennsylvania,
 1050 USA, August 2002. ACM. [doi:10.1145/633025.633027](https://doi.org/10.1145/633025.633027).

1051 65 D. Meyer. University of Oregon Routeviws. <http://www.routeviews.org>, 2018.

1052 66 Brent A. Miller, Toby Nixon, Charlie Tai, and Mark D. Wood. Home networking with
 1053 universal plug and play. *IEEE Communications Magazine*, 39(12):104–109, December 2001.
 1054 [doi:10.1109/35.968819](https://doi.org/10.1109/35.968819).

1055 67 Rich Miller. Peering disputes migrate to IPv6. website <https://www.datacenterknowledge.com/archives/2009/10/22/peering-disputes-migrate-to-ipv6>, Oct. 22 2009.

1056 68 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Released publically
 1057 <http://bitcoin.org/bitcoin.pdf>, March 2009.

1058 69 RIPE NCC. RIPE atlas IP echo measurements in IPv4. [https://atlas.ripe.net/measurements/\[1001,1004,1005,1006,1008,1009,1010,1011,1012,1013,1014,1015,1016\]/](https://atlas.ripe.net/measurements/[1001,1004,1005,1006,1008,1009,1010,1011,1012,1013,1014,1015,1016]/), 2021q3.

1059 70 RIPE NCC. RIPE atlas IP traceroute measurements in IPv4. [https://atlas.ripe.net/measurements/\[5001,5004,5005,5006,5008,5009,5010,5011,5012,5013,5014,5015,5016\]/](https://atlas.ripe.net/measurements/[5001,5004,5005,5006,5008,5009,5010,5011,5012,5013,5014,5015,5016]/), 2021q3.

1060 71 BBC News. Russia internet: Law introducing new controls comes into force. website <https://www.bbc.com/news/world-europe-50259597>, March 2019.

1061 72 Ramakrishna Padmanabhan, Amogh Dhamdhere, Emile Aben, kc claffy, and Neil Spring.
 1062 Reasons dynamic addresses change. In *Proceedings of the ACM Internet Measurement
 1063 Conference*, pages 183–198, Santa Monica, CA, USA, November 2016. ACM. [doi:10.1145/2987443.2987461](https://doi.org/10.1145/2987443.2987461).

1064 73 Jonathan B. Postel. Internetwork protocol approaches. *IEEE Transactions on Computers*,
 1065 28(4):604–611, April 1980. [doi:10.1109/TCOM.1980.1094705](https://doi.org/10.1109/TCOM.1980.1094705).

1066 74 Matthew Prince. Cloudflare outage on November 18, 2025. Cloudflare blog <https://blog.cloudflare.com/18-november-2025-outage/>, November 2025.

1067 75 Lin Quan, John Heidemann, and Yuri Pradkin. Trinocular: Understanding Internet reliability
 1068 through adaptive probing. In *Proceedings of the ACM SIGCOMM Conference*, pages 255–266,
 1069 Hong Kong, China, August 2013. ACM. [doi:10.1145/2486001.2486017](https://doi.org/10.1145/2486001.2486017).

1070 76 Dan Rayburn. Google blocking IPv6 adoption with Cogent, impacting transit customers.
 1071 <https://seekingalpha.com/article/3948876-google-blocking-ipv6-adoption-cogent-impacting-transit-customers>, 03
 1072 2016.

1073 77 Dan Rayburn. Google blocking IPv6 adoption with Cogent, impacting transit customers.
 1074 web page <https://seekingalpha.com/article/3948876-google-blocking-ipv6-adoption-cogent-impacting-transit-customers>,
 1075 March 2016. URL: <https://seekingalpha.com/article/3948876-google-blocking-ipv6-adoption-cogent-impacting-transit-customers>.

1076 1081 1082 1083 1084 1085 1086 1087

1088 78 Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address allocation for
1089 private internets. RFC 1918, Internet Request For Comments, February 1996.

1090 79 Reuters. Russia disconnected from internet in tests as it
1091 bolsters security. website <https://www.reuters.com/technology/russia-disconnected-global-internet-tests-rbc-daily-2021-07-22/>,
1092 July 2021. URL: <https://www.reuters.com/technology/russia-disconnected-global-internet-tests-rbc-daily-2021-07-22/>.

1093 80 Reuters. website <https://www.reuters.com/technology/us-firm-cogent-cutting-internet-service-russia-2022-03-04/>,
1094 July 2022. URL: <https://www.reuters.com/technology/us-firm-cogent-cutting-internet-service-russia-2022-03-04/>.

1095 81 Philipp Richter, Ramakrishna Padmanabhan, Neil Spring, Arthur Berger, and David Clark. Advancing the art of Internet edge outage detection. In *Proceedings of the ACM Internet Measurement Conference*, pages 350–363, Boston, Massachusetts, USA, October 2018. ACM. [doi:10.1145/3278532.3278563](https://doi.org/10.1145/3278532.3278563).

1096 82 Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez, Mark Allman, Randy Bush, Anja Feldmann, Christian Kreibich, Nicholas Weaver, and Vern Paxson. A multi-perspective analysis of carrier-grade NAT deployment. In *Proceedings of the ACM Internet Measurement Conference*, Santa Monica, CA, USA, November 2016. ACM. [doi:10.1145/2987443.2987474](https://doi.org/10.1145/2987443.2987474).

1097 83 RIPE NCC Staff. RIPE Atlas: A global Internet measurement network. *The Internet Protocol Journal*, 18(3):2–26, September 2015.

1098 84 Sen. John D. Rockefeller. Cybersecurity act of 2010. <https://www.congress.gov/bill/111th-congress/senate-bill/773>, 2009.

1099 85 Root Operators. <http://www.root-servers.org>, April 2016.

1100 86 J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN—simple traversal of user
1101 datagram protocol (UDP) through network address translators (NATs). RFC 3489, Internet
1102 Request For Comments, December 2003.

1103 87 Tarang Saluja, John Heidemann, and Yuri Pradkin. Differences in monitoring the DNS root
1104 over IPv4 and IPv6. In *Proceedings of the National Symposium for NSF REU Research in
1105 Data Science, Systems, and Security*, page to appear, Portland, OR, USA, December 2022.
1106 IEEE.

1107 88 Tarang Saluja and Yuri Pradkin. RIPE Atlas islands and peninsulas. https://ant.isi.edu/ripe_atlas_islands/, September 2022.

1108 89 Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V. Madhyastha,
1109 Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng. Engineering
1110 egress with Edge Fabric: Steering oceans of content to the world. In *Proceedings of the ACM SIGCOMM Conference*, pages 418–431, Los Angeles, CA, USA, August 2017. ACM.
1111 [doi:10.1145/3098822.3098853](https://doi.org/10.1145/3098822.3098853).

1112 90 Aaron Schulman and Neil Spring. Pingin’ in the rain. In *Proceedings of the ACM Internet
1113 Measurement Conference*, pages 19–25, Berlin, Germany, November 2011. ACM. [doi:10.1145/2068816.2068819](https://doi.org/10.1145/2068816.2068819).

1114 91 Anant Shah, Romain Fontugne, Emile Aben, Cristel Pelsser, and Randy Bush. Disco: Fast,
1115 good, and cheap outage detection. In *Proceedings of the IEEE International Conference
1116 on Traffic Monitoring and Analysis*, pages 1–9, Dublin, Ireland, June 2017. Springer. [doi:10.23919/TMA.2017.8002902](https://doi.org/10.23919/TMA.2017.8002902).

1117 92 D. Smallberg. Who talks TCP? RFC 832, Internet Request For Comments, December 1982.

1118 93 Berhan Taye and Sage Cheng. Report: the state of internet shutdowns. blog <https://www.accessnow.org/the-state-of-internet-shutdowns-in-2018/>, 8 July 2019.

1119 94 ThinkBroadband. NTT/Cogent peering dispute increasing latency for some routes. <https://www.thinkbroadband.com/news/9896-ntt-cogent-peering-dispute-increasing-latency-for-some-routes>, Feb. 16
1120 2024.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140 95 Craig Timberg and Paul Sonne. Minutes before Trump left office, millions of the Pentagon's
 1141 dormant IP addresses sprang to life. *The Washington Post*, Apr. 24 2021. URL: <https://www.washingtonpost.com/technology/2021/04/24/pentagon-internet-address-mystery/>.

1142 96 Paul F. Tsuchiya and Tony Eng. Extending the IP Internet through address reuse. *ACM Computer Communication Review*, 23(1):16–33, January 1993.

1143 97 USC/LANDER Project. Internet outage measurements. listed on web page <https://ant.isi.edu/datasets/outage/>, October 2014.

1144 98 USC/LANDER Project. Internet outage measurements. IMPACT ID [USC-LANDER/LANDER:internet_outage_adaptive_a30all-20171006](#) at https://ant.isi.edu/datasets/internet_outages/, October 2017.

1145 99 Gerry Wan, Liz Izhikevich, David Adrian, Katsunari Yoshioka, Ralph Holz, Christian Rossow, and Zakir Durumeric. On the origin of scanning: The impact of location on internet-wide scans. In *Proceedings of the ACM Internet Measurement Conference*, pages 662–679, Pittsburgh, PA, USA, October 2020. ACM. [doi:10.1145/3419394.3424214](https://doi.org/10.1145/3419394.3424214).

1146 100 Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A measurement study on the impact of routing events on end-to-end Internet path performance. In *Proceedings of the ACM SIGCOMM Conference*, pages 375–386, Pisa, Italy, August 2006. ACM. [doi:10.1145/1159913.1159956](https://doi.org/10.1145/1159913.1159956).

1147 101 Samuel Woodhams and Simon Migliano. The global cost of internet shutdowns in 2020. <https://www.top10vpn.com/cost-of-internet-shutdowns/>, 01 2021.

1148 102 Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman, Gary Baldus, Marcus Hines, Taeun Kim, Ashok Narayanan, Ankur Jain, Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma, Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius, Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. Taking the edge off with Espresso: Scale, reliability and programmability for global Internet peering. In *Proceedings of the ACM SIGCOMM Conference*, pages 432–445, Los Angeles, CA, USA, August 2017. ACM. [doi:10.1145/3098822.3098854](https://doi.org/10.1145/3098822.3098854).

1149 103 Sebastian Zander, Lachlan L. H. Andrew, and Grenville Armitage. Capturing ghosts: Predicting the used IPv4 space by inferring unobserved addresses. In *Proceedings of the ACM Internet Measurement Conference*, pages 319–332, Vancouver, BC, Canada, November 2014. ACM. [doi:10.1145/2663716.2663718](https://doi.org/10.1145/2663716.2663718).

1150 **A Discussion of Research Ethics**

1151 Our work poses no ethical concerns as described in §1. We elaborate here.

1152 First, we collect no additional data, but instead reanalyze data from several existing
 1153 sources (see Appendix D.1 of [9]). Our work therefore poses no additional load on the
 1154 Internet, nor any new risk from data collection.

1155 Our analysis poses no risk to individuals because our subject is network topology and
 1156 connectivity. There is a slight risk to individuals in that we examine responsiveness of
 1157 individual IP addresses. With external information, IP addresses can sometimes be traced
 1158 to individuals, particularly when combined with external data sources like DHCP logs. We
 1159 avoid this risk in three ways. First, we do not have DHCP logs for any networks (and in
 1160 fact, most are unavailable outside of specific ISPs). Second, we commit, as research policy,
 1161 to not combine IP addresses with external data sources that might de-anonymize them to
 1162 individuals. Finally, except for analysis of specific cases as part of validation, all of our
 1163 analysis is done in bulk over the whole dataset.

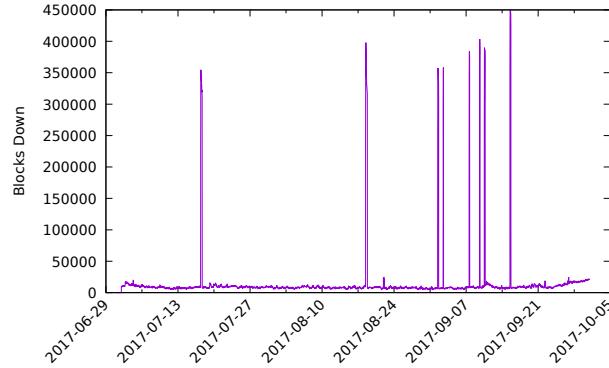
1164 We do observe data about organizations such as ISPs, and about the geolocation of blocks
 1165 of IP addresses. Because we do not map IP addresses to individuals, this analysis poses no
 1166 individual privacy risk.

1188 Finally, we suggest that while our work poses minimal privacy risks to individuals, to
 1189 also provides substantial benefit to the community and to individuals. For reasons given in
 1190 the introduction it is important to improve network reliability and understand how networks
 1191 fail. Our work contributes to that goal.

1192 Our work was reviewed by the Institutional Review Board at our university and because
 1193 it poses no risk to individual privacy, it was identified as non-human subjects research (USC
 1194 IRB IIR00001648).

1195 **B Proof of Majority Enforcing One or No Internet**

1196 Our definition in §2.1 is complete, and Bitcoin provides an example of majority forcing
 1197 consensus. However, here we provide a proof and discuss scenarios that, at first glance, may
 1198 appear challenging.


1199 Our conceptual definition is “the strongly-connected component of more than 50% of
 1200 active, public IP addresses that can initiate communication with each other”, is chosen to
 1201 ensure there can be only one Internet in each address space (IPv4 and IPv6). We next prove
 1202 this definition yields one result, both with and without peninsulas.

1203 The reasoning for this choice in §2.1 is straightforward: if a connected component has
 1204 some fraction A , where $1 > A > 0.5$, than this component *must* be larger than any other
 1205 component B . One can prove this by contradiction: (i) assume some B' exists, such that
 1206 $B' > A$. (ii) Since $A > 0.5$, then (i) implies $B' > 0.5$. (iii) We then must conclude that
 1207 $A + B' > 1$, but by definition, we measure only the whole address space, so it is also required
 1208 that $A + B' \leq 1$. Therefore $B' < A$ and A forces a single clear component. Q.E.D.

1209 **Resolving competing “cores”:** This definition handles cases with multiple overlapping
 1210 but incompletely communicating groups. If members of those groups can reach half the
 1211 active addresses, they are part of the Internet even if some are on peninsulas relative to each
 1212 other. Consider a simplified version of Figure 1 with only three with three pluralities of
 1213 connectivity, A , B , and C , each representing one third of the addresses, where A and B are
 1214 strongly and directly connected, and A and C are strongly and directly connected, but B and
 1215 C cannot directly reach each other. (Recall that strong connections in graph theory means
 1216 bi-directional connectivity, but it does not require *direct* and allows connections through
 1217 multiple hops.) In this example, B and C can reach each other, but only through A , so
 1218 they are strongly connected but not directly connected. Our Internet core requires strong
 1219 connections, but if it required direct connections, it would become a clique (a fully connected
 1220 graph), forbidding peninsulas.

1221 In this example there are two, partially overlapping, large, components that are both
 1222 strongly and directly connected: $A \cup B$ and $A \cup C$. Here *all* ($A \cup B \cup C$) are part of the
 1223 Internet, because any address can directly reach more than half of the active addresses:
 1224 address $b \in B$ can reach $A \cup B$, $c \in C$ can reach $B \cup C$, and $a \in A$ can reach anyone. While
 1225 all addresses are in one Internet, B and C are on peninsulas. The example in Figure 1 is
 1226 similar to this thought experiment. In practice, we know that peninsulas occur in less than
 1227 1% of block-time (§5.1), so typically $A \geq 0.98$, with other components $B, C < 0.01$, quite
 1228 different from this theoretical case where $A = B = C = 0.33$, or an asymmetric case where
 1229 $A = 0.49$ and $B = C = 0.02$. However, the definition applies whenever $A \cup B \cup C > 0.5$.

1230 **Resolving disagreements with incomplete knowledge:** In the above discussion we
 1231 apply our conceptual definition assuming an omniscience view of connectivity. All parties
 1232 must agree that A directly reaches both B and C , but B and C can reach each other only
 1233 indirectly through A . An omniscient observer must recognize they are all part of the same

■ **Figure 10** Unreachable blocks over time. Large spikes are unreachability to Chinese-allocated IPv4 addresses. Dataset: A29, 2017q3.

1234 core, in spite of the peninsula.

1235 In practice, no real-world system will have omniscient knowledge of connectivity. However,
 1236 this scenario works even with incomplete knowledge. Imagine observers only in B and C
 1237 both might assert they are “the” core, since both can observe direct, strong connectivity to
 1238 more than half of the active, public addresses.

1239 When faced with seemingly conflicting claims of what the core is, all parties must share
 1240 their observations with each other to make their case. In this case, B and C will recognize
 1241 they are both reporting A as part of their core, and that A overlaps—they must therefore
 1242 recognize the reachable core is $A \cup B \cup C$, even though they cannot directly reach each other.

1243 This seeming disagreement highlights the requirement that B and C recognize that the
 1244 A they each measure is the same A . This requirement is met by our definition of what a
 1245 public, global address space is—we assume some authority allocated addresses. In today’s
 1246 Internet, this authority is IANA. Note that IANA is not saying who is in or out of the
 1247 Internet, but only who is responsible for a given fraction of the address space.

1248 If all parties cannot agree on a shared address space, then our definition cannot be used.
 1249 For example, if one party asserts the entire 0/0 IPv4 address space is theirs to reallocate, then
 1250 one cannot use address to resolve disputes. Fortunately, address assignment has historically
 1251 been coordinated to avoid overlaps. (One exception is DISA’s 4 /8 prefixes. These were
 1252 clearly allocated to DISA, but lack of global routing prompted multiple organizations to
 1253 squat on them, using them as additional private address space. Fortunately this variance is
 1254 not a practical problem for several reasons: Since 2021 DISA has announced routes for these
 1255 blocks on the public Internet. Their actual allocation has never been disputed. And even if
 1256 they were disputed, this 4/256ths of the address space is not enough to change control of a
 1257 majority.)

1258 C Additional Results about Islands

1259 We define islands and give examples in §2.3.2. Here we supplement those results with
 1260 examples of country-sided islands (§5.7.2). We also show the raw data we use to justify our
 1261 choice of 50% unreachability to define islands in Trinocular (§C.2).

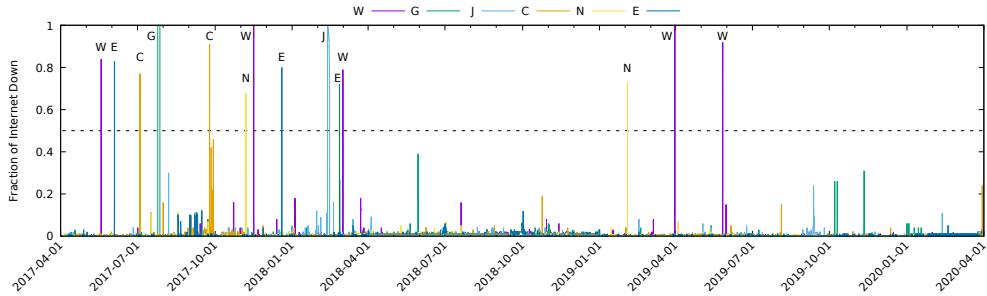


Figure 11 Islands detected across 3 years using six VPs. Datasets A28-A39.

1262 C.1 Visualizing Potential 2017q3 Islands

1263 In §5.7.2 we discuss evidence for country-sized islands. In 2017q3, on 8 occasions it appears
 1264 that most or all of China stopped responding to external pings. Figure 10 shows the number
 1265 of /24 blocks that were down over time, each spike more than 200k /24s, between two to
 1266 eight hours long.

1267 C.2 Longitudinal View Of Islands

1268 We first consider three years of Trinocular data (described in Appendix D.1 of [9]), from
 1269 2017-04-01 to 2020-04-01. Figure 11 shows the fraction of the Internet that is reachable as a
 1270 dotted line at the 50% threshold that Chiloe uses to detect an island (§3.2). We run Chiloe
 1271 across each VP for this period.