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Abstract. There is a growing interest in carefully observing the reli-
ability of the Internet’s edge. Outage information can inform our un-
derstanding of Internet reliability and planning, and it can help guide
operations. Active outage detection methods provide results for more
than 3M blocks, and passive methods more than 2M, but both are chal-
lenged by sparse blocks where few addresses respond or send traffic. We
propose a new Full Block Scanning (FBS) algorithm to improve cover-
age for active scanning by providing reliable results for sparse blocks
by gathering more information before making a decision. FBS identifies
sparse blocks and takes additional time before making decisions about
their outages, thereby addressing previous concerns about false outages
while preserving strict limits on probe rates. We show that FBS can im-
prove coverage by correcting 1.2M blocks that would otherwise be too
sparse to correctly report, and potentially adding 1.7M additional blocks.
FBS can be applied retroactively to existing datasets to improve prior
coverage and accuracy.

1 Introduction

Internet reliability is of concern to all Internet users, and improving reliability is
the goal of industry and governments. Yet government intervention, operational
misconfiguration, natural disasters, and even regular weather all cause network
outages that affect many. The challenge of measuring outages has prompted a
number of approaches, including active measurements of weather-related behav-
ior [15], passive observation of government interference [4], active measurement of
most of the IPv4 Internet [12], passive observation from distributed probes [16],
analysis of CDN traffic [14], and statistical modeling of background radiation [6].

Broad coverage is an important goal of outage detection systems. Since out-
ages are rare, it is important to look everywhere. Active detection systems re-
port coverage for more than 3M /24 blocks [12], and passive systems using CDN
data report coverage for more than 2M blocks [14]. More specialized systems
focus coverage on areas with bad weather (ThunderPing [15]), or provide broad,
country-level or regional coverage, but perhaps without /24-level granularity
inside the regions (CAIDA darknet outage analysis [4] and Chocolatine [6]). Al-
though each of the systems provide broad coverage, each recognizes there are
portions of the Internet that it cannot measure because the signal it measures
is not strong enough. Systems typically detect and ignore areas where they have
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Table 1. Coverage comparison in /24 blocks of different measuring approaches.

Approach Coverage

UCSD-NT darknet 3.2M observed [3]
Akamai passive/CDN 5.1M observed / 2.3M trackable [14]
ThunderPing active/addrs 10.8M US IP addresses [11]
Disco TCP disconnections 10.5k [16]
Trinocular active/blocks 5.9M responsive / 3.4M trackable [12]

insufficient signal (in Trinocular, blocks with fewer than 15 addresses; in Thun-
derPing, events with fewer than 100 addresses in its region; the Akamai/MIT
system, blocks fewer than 40 active addresses; in Chocolatine, blocks with fewer
than 20 active IPs). Setting thresholds too high reduces coverage, yet setting
them too low risks false outages from misinterpreting a weak signal.

The first contribution of our paper is two new algorithms: Full Block Scan-
ning (FBS), to improve coverage in outage detection with active probing, while
retaining accuracy and limits on probing rates (§3.1), and Lone-Address-Block
Recovery (LABR), to increase coverage by providing partial results blocks with
very few active addresses (§3.2). Our insight is to recognize that sparse blocks sig-
nal outages more weakly than other blocks, and so they require more information
to make a decision. We chose to delay decisions until all block addresses (the full
block) have been observed, thus gathering more information while maintaining
limits on the probing rate. (An alternative we decline is to probe more aggres-
sively.) We evaluate FBS as an extension to Trinocular §4.2, but the concept
may apply to other outage detection systems.

Our second contribution is to show that FBS can increase coverage in two
ways (§4.5). First, it correctly handles 1.2M blocks that would otherwise be too
sparse to correctly report. Second, it allows addition of 1.7M sparse blocks that
were previously excluded as unmeasurable. Together, coverage for 2017q4 can be
5.7M blocks. Moreover, FBS improves accuracy by reducing the number of false
outage events seen in sparse blocks (§4.1). We confirm that it addresses most
previously reported false outage events (§4.3).

The cost of FBS is reduced temporal precision, since it takes more time
to gather more information (assuming we hold the probe rate fixed). We show
that this cost is limited (§4.4): FBS is required for about one-fifth of blocks
(only sparse blocks, about 22% of all blocks). Timing for non-sparse majority of
blocks is unaffected, and 74% of recovered uptime for sparse blocks is within 22
minutes. About 40% of accepted outages in sparse blocks are reported within
33 minutes, and nearly all within 3.3 hours. (Reanalysis of old data shows the
same results for non-sparse and recovered uptime, but requires twice the time for
accepted outages.) Finally, we examine false uptime by testing against a series
of known outages that affected Iraq in February 2017.

All of the datasets used in this paper that we created are available at no
cost [17]. Our work was IRB reviewed and identified as non-human subjects
research (USC IRB IIR00001648).
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2 Challenges to Broad Coverage

Our goal is to detect Internet outages with broad coverage. Table 1 shows cov-
erage of several methods that have been published, showing that active probing
methods like Trinocular provide results for about 3.4M /24 blocks [12] and CDN-
based passive methods provide good but somewhat less coverage (2.3M blocks for
the Akamai/MIT system [14]). Passive methods with network telescopes provide
very broad coverage (3.2M blocks [3]), but less spatial precision (for example,
for entire countries, but not individual blocks in that country). Combinations
of methods will provide better coverage: Trinocular and the Akamai/MIT sys-
tem have a 1.6M blocks overlap, and unique contributions, each providing 1.9M
unique 0.7M, from [14]. However, Akamai/MIT data is not publicly available.

Here we examine how to improve coverage of active probing systems like
Trinocular. Trinocular gets results for 3.4M blocks, and another 2.5M blocks
have some response but are not considered “trackable” since they have too few
reliably responding addresses.

Our goal in this paper is to expand coverage by making these previously
untrackable blocks trackable. We face two problems: sparse blocks and lone ad-
dresses, each described below. In the next section we describe two new algorithms
to make these blocks trackable: Full Block Scanning (FBS), which retains spa-
tial precision and limited probing rates, but loses some temporal precision; and
Lone Address Block Recovery (LABR), an approach that allows confirmation
that lone-address blocks are up, although it cannot definitively identify when
they are down.

Other active probing systems that follow the Trinocular algorithms (such as
the active part of IODA [1]) might benefit from solutions to these problems.
We seek algorithms that can reevaluate existing years of Trinocular data, so we
follow Trinocular’s use of IPv4 /24-prefix blocks and 11-minute rounds.

2.1 Problem: Sparse Blocks

Sparse blocks limit coverage: active scanning requires responses, so we decline
to measure blocks with long-term sparsity, and we see a large number of false
outages in blocks that are not sparse long-term, but often are temporarily sparse.

Sparse blocks challenge accuracy because of a tension between the amount of
probing and likelihood of getting a response. To constrain traffic to each block,
and to track millions of blocks, Trinocular limits each block to 15 probes per
round. Limited probing can cause false outages in two ways: First, it may fail
to reach a definitive belief and mark the block as unknown. Alternatively, if the
block is usually responsive, a few non-responses may produce a down belief.

As an example, Fig. 1 shows four different levels of sparsity, (each starting
2017-10-06, 2017-10-27, 2017-11-14 and 2017-12-16) as (d) individual address
responses to Trinocular probes, and (c) Trinocular state inferences. As the block
gets denser, Trinocular improves its inference correctness.

Furthermore, every address in this block has responded in the past. But for
the first three periods, only a few are actually used, making the block temporarily
sparse. For precision, we use definitions from [12]: E(b) are the addresses in
block b that have ever responded, and A(E(b)) is the long-term probability that



4 G. Baltra and J. Heidemann

20
17

-10
-06

20
17

-10
-15

20
17

-10
-24

20
17

-11
-01

20
17

-11
-10

20
17

-11
-18

20
17

-11
-27

20
17

-12
-06

20
17

-12
-14

20
17

-12
-23

0

50

100

150

200

250

bl
oc

k 
47

02
46

00
 IP

 A
dd

re
ss

es
 (l

as
t o

ct
et

)

up (truth)
up (implied)
down (truth)
down (implied)

(d)

down
unkn

up
Tr

in
oc

ul
ar

(c)

down
unkn

up

FB
S

(b)

down
unkn

up

LA
BR (a)

Fig. 1. A sample block over time (columns). The bottom (d) shows individual address
as rows, with colored dots when the address responds to Trinocular. Bar (c) shows
Trinocular status (up, unknown, and down), bar (b) is Full Block Scanning, and the
top bar (a), Lone Address Block Recovery.

these addresses will respond. We also consider a short-term estimate, Â(E(b)).
Thus problematic blocks have low A(E(b)) or Â(E(b)). We provide further block
examples in Appendix A.

Prior systems sought to filter out these sparse blocks, both before and af-
ter measurement. Trinocular marks very sparse blocks as untrackable (when
A(E(b)) < 0.10 or |E(b)| < 15). It also marked blocks as untrackable when ob-
served A doesn’t match predicted A [12], and later used an adaptive estimate
for A [13]. Trinocular notes that its unmeasurability test is not strict enough:
indeterminate belief can occur when the A(E(b)) < 0.3 and |E(b)| ≥ 15. Accord-
ingly, Richter’s use of Trinocular data dropped all blocks with 5 or more outages
in 3 months [14], based on our recommendation.

We consider blocks sparse when it is less than a threshold (Âs(E(b)) <
Tsparse), where Âs(E(b) is a short-term estimate of the current availability of
the block, and Tsparse is a threshold, currently 0.2. Blocks have frequent outages
(like Fig. 1) when they are sparse. We find that 80% of blocks with 10 or more
down events are sparse, and yet sparse blocks represent only 22% of all blocks
(see CDFs in Appendix B).

2.2 Problem: Lone Addresses

The second challenge to coverage are blocks where only one or two addresses are
active—we call this problem lone address blocks. When a single address is active,
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then lack of a response may be a network outage, but it may also be a reboot of a
single specific computer or other causes—the implication of non-response from a
single address is ambiguous. Trinocular has avoided blocks with few addresses as
untrackable (when |E(b)| < 15). ThunderPing [15] tracks individual addresses,
but recognizing the risk of decisions on single addresses, they typically probe
multiple targets per weather event [11].

An example block with a lone-address is in Fig. 1. Of the four phases of
use, the second phase, starting 2017-10-27, and for 18 days, only the .85 address
replies. Our goal is to handle this block correctly in both of its active states,
with many addresses and with a lone address.

3 Improving Outage Detection

3.1 Full Block Scanning for Sparse Blocks

The challenge of evaluating sparse blocks is that Trinocular makes decisions
on too little information, forcing a decision after 15 probes, each Trinocular
Round (TR, 11 minutes), even without reaching a definitive belief. We address
this problem with more information: we consider a Full Round (FR), combining
multiple TRs until all active addresses (all of E(b)) have been scanned. This Full
Block Scanning algorithm makes decisions only on complete information, while
retaining the promise of limiting scanning rate.

Formally, a Full Round ends at time t when the minimum N TRs before t
that cover all E(b) ever-active addresses of the block:

∑t
i=t−N (|TRi|) ≥ |E(b)|.

Trinocular probes all addresses in E(b) in a pseudo-random sequence that is
fixed once per quarter, so we can guarantee each address is probed when we count
enough addresses across sequential TRs. (Versions of Trinocular prior to 2020q1
reverse direction at end of sequence, reanalysis of data before this time must
sense 2|E(b)| addresses to guarantee observing each. We call this retrospective
version the 2FR version of FBS, and will use 1FR FBS for new data. They differ
in temporal precision, see §4.4.)

Full Block Scanning (FBS) layers over Trinocular outage detection, re-evaluating
outages it reports and reverting some decisions. If the block is currently sparse
(Âs < Tsparse) and the most recent Full Round included a positive response,
then we override the outage. That is, if there are any positive responses in the
last Full Round FRt, we convert any outages to up if ∀TRi where i ∈ [t−N, t].

The cost of FBS is that combining multiple TRs loses temporal precision, so
we use FBS only when it is required: for blocks that are currently sparse. A block
is currently sparse if the short-term running average of the response rate for the
block Â3FR

s , computed over the last three FRs, is below the sparse threshold
(Â3FR

s < Tsparse). (We choose three FRs to smooth Â from multiple estimates.)
The reduction in temporal precision depends on how many addresses are

scanned in each TR and the size of FR (that is, E(b)). When FBS verifies an
outage, we know the block was up at the last positive response, and we know
it is down after the full round of non-responses, so an outage could have begun
any time in between. We therefore select a start time as the time of the last
confirmed down event (the first known lit address, now down). That time has
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uncertainty of the difference between the earliest possible start time and the
confirmed start time. Theoretically, if all 256 addresses in a block are in use and
15 addresses are scanned each TR, a FR lasts 187 minutes. In practice, timing
is often better; we show empirical results in §4.4

3.2 Lone-Address-Block Recovery

The FBS algorithm repairs any block with at least one responsive address in the
last FR, allowing us to extend coverage to many sparse blocks. However, when
a block has only a single active address, a non-reply may indicate an outage of
the network or a problem with that single host.

To avoid false down events resulting from non-outage problems with a lone
address, we define Lone-Address-Block Recovery (LABR). We accept up events,
but because outages are rare (much rarer than packet loss), we convert down
events to “unknown” for blocks with very few recently active addresses. We
define “few” as one or two active addresses, and recently as the last three Full
Rounds, so we use LABR when |Ê3FR| < 3. We require at least three addresses
to avoid making decisions on one or two addresses where packet loss could change
results.

This algorithm gives an asymmetric outcome: we can confirm blocks are
up, but not that they are down. We believe that outcome is preferable to the
alternatives: completely ignoring the block, or tolerating false outages. However,
we identify LABR blocks to allow researchers wanting an estimator that can be
both up and down to omit them.

4 Evaluation

4.1 Full Block Scanning Reduces Noise

Case Study of One Block Fig. 1 shows one block in CenturyLink (AS209, a
U.S. ISP) with outage analysis as a case study.

This block has initially only 8 addresses responding. On 2017-10-27, there
is a usage change that causes a down event with no address response for ∼13
hrs. This event is matched in other blocks for the same AS. Then, we see a
lone address responding for 18 days. On 2017-11-14, the block starts receiving
new users, and once again starting 2017-12-17. On 2017-11-16, it shows a partial
outage that is observed only from our Los Angeles site, not from other Trinocular
sites.

Trinocular results ((b), third bar) show frequent unknown states that result
in false down events, particularly when block usage is sparse in October and
early November.

By contrast, Full Block Scanning ((b), the second graph), resolves this un-
certainty. FBS’ more information confirms the block is usually up, while recog-
nizing the usage change and the partial outage. However, in between, there are
two down events inferred by a lone address which are changed to unknown by
LABR ((a), the top graph).

False Outages: Does FBS Remove Noise? From this single block example,
we next consider a country’s Internet. Our goal is to see if FBS reduces noise by
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Fig. 2. Iraqi Government mandated outages Feb 2-9, 2017. Whole quarter (left), and
exam week (right). Dataset A27. FBS processed using 2FR.

examining false down events (blocks correctly recovered by FBS because they
were observation noise).

We study series of known outages that affected Iraq in February 2017. That
country had seven government-mandated Internet outages (the local mornings
on February 2, and also the 4th through 9th) with the goal of preventing cheating
during academic placement exams [5]. This is a particularly challenging scenario
to FBS, as closely spaced short outages test the algorithm’s accuracy and pre-
cision. Furthermore, the fraction of sparse blocks is high in this country. We
identified 1176 Iraqi blocks using Maxmind’s city-level database [9]; 666 of these
are sparse.

Fig. 2 shows Iraqi outages in 2017q1, grouped in 660 s timebins. We show
outages without Full Block Scanning (the purple, top line) and with it (the
green line). The Iraqi exam week is highlighted in gray on the left, and we plot
that week with a larger scale on the right.

In each of the seven large peaks during exam week, most Iraqi blocks (nearly
900, or 76%) are out—our true outages. Outside the peaks, a few blocks (the 20
to 40 purple line, without FBS) are often down, likely false outages.

FBS suppresses most of the background outages (85% of outage area), from
a median of 26 to a median of 1; these differences can be seen comparing the
higher purple line to the lower green line. We confirm this reduction was due
to noise by examining blocks that FBS recovers in 10 randomly-selected time
periods with 34 down events. Nearly all down events (33 events, 97% of purple)
were in sparse blocks that resemble Fig. 1; the other block was diurnal. This
study confirms that FBS recovers false outages due to sparseness.

True Outages: Does FBS Remove Legitimate Outages? We next look
at how Full Block Scanning interacts with known outage events. Its goal is to
remove noise and false outages, but if FBS is too aggressive it may accidentally
remove legitimate outages (a “true down event”).
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Table 2. Confusion matrix of 5200 Trinocular detected down events in 50 random
blocks. Dataset A30, 2017q4.

true condition (manually observed)

F
B

S

UP DOWN

(Trinocular false down events) (Trinocular true down events)

UP 4133 (79%, FBS fixes) 0

DOWN 621 (12%, FBS misses) 446 (9%, FBS confirms)

We treat the seven nationwide outages corresponding with Iraqi exams as
true down events and compare this ground truth, with and without FBS.

The seven peaks in Fig. 2 (right) show known Iraqi outages, with purple dots
at “peak outage” without FBS, and lower, green dots with FBS. FBS removes
somewhat less than half of the down events, with peaks around 440 to 560 instead
of 790 to 910 blocks.

To understand this reduction we looked at the duration of the Iraqi events.
FBS affects only the 35% of events in the red box in the lower left corner. (Ex-
amination of just sparse blocks confirms that they are the source of attenuation.)

It is important to note that these are worst case for FBS—many blocks are
sparse, and the events are just shorter than one full round. If the event was
longer or more blocks were not sparse, there would be no attenuation. A lower
FBS threshold (Â3FR) of 0.15 trims only 15% of events. However, we choose to
leave FBS threshold at 0.2 to avoid overfitting our parameters to Iraq.

Random Sampling of Outage Events Finally, we confirm our results with
a random sample of events. We select 50 random blocks that show some outage
from the Trinocular 2017q4 dataset, then a best-estimate ground truth through
manual examination. Table 2 shows the confusion matrix after applying FBS. Of
the total 5200 down events detected by Trinocular, FBS fixes 4133 (79% are false
outages), misses 621 down events (12% are not fixed, but should have been), and
confirms 446 true down events (9% are not changed). The FBS Error Rate is
0.12 (621 false outages of 5200 events), so it is fairly successful at removing noise.
Many of the false outages are due to moderately sparse blocks (0.2 < A(E(b)) <
0.4) where FBS does not trigger.
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Fig. 4. Comparison of per-block down time (left) and number of down events (right)
between 2FR-FBS and Trinocular during 2017q4 as seen from six sites. Dataset A30.

4.2 How Often Does FBS and LABR Change Outages?

We next evaluate how FBS and LABR change the overall down event duration
and the number of down events. We expect FBS to repair false down events, so
it should show less downtime and fewer down events.

We evaluate merged results from six Trinocular sites as measured during
2017q4 (dataset A30) and compute fraction of time and number of occurrences
across the whole quarter each block was observed down. We repeat the procedure
with data processed with FBS.

We compare outages for 2017q4 (dataset A30), processing and merging re-
sults from six sites with and without FBS. We found similar results when we
repeated this study on a different quarter (2017q2, dataset A28).

FBS and Down Time: Fig. 4 (left) compares the fraction of total down
time (0.0130) with FBS (0.0027). First, the vast majority of blocks (91%) have
both values less than 0.02—they have little or no down time. (see Appendix C).
Many of the remaining blocks are on the diagonal, with prior and new values
within 0.005. We also see most of the changed blocks (9% of all blocks) appear
below the diagonal, showing that FBS usually decreases downtime.

Surprisingly, 0.5% of blocks show more downtime after FBS. We examined
a sample of these blocks and found that some sparse blocks did not transition
from up-to-down in one round when 15 negative results did not fully change
belief. FBS gathers more information and retrospectively marks the block down
earlier. We believe this result better reflects truth.

FBS and Down Events: We can also evaluate how FBS affects the number
of down events in addition to down time in Fig. 4(right). FBS reduces the number
of down events by 6% of blocks, often considerably (see the large number of
blocks near the x-axis). In these cases FBS is repairing false outages. Again, we
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Table 3. Trinocular-detected disruptions in CDN logs. Dataset A28, 2017q2.

Trinocular
filtered

Trinocular
FBS

# disruptions 380k 132k 119k
confirmed 103k 27% 98k 74% 92k 77%
reduced activity 49k 13% ∼13k 10% 16k 14%
no change 228k 60% ∼21k 16% 11k 9%

see a small number of blocks (0.1%) where FBS shows more down events than
without. Examination of these cases shows that FBS sometimes breaks longer
down events into several shorter ones, interspersed with an up event. We believe
these results better reflect the true state of the block.

LABR: In 2017q4, LABR affects only a few blocks (250k, 6% of trackable),
where it resets 4M down events to unknown. LABR affects only a few blocks,
but it allows them to be reported up much of the time, increasing coverage.

4.3 Comparing FBS Active and Passive Outages

Prior CDN-based results showed the large number of false outages that come
from a few blocks [14]. To match their system, they compare the subset of 1.6M
blocks from 2017q2 that are trackable in both Trinocular and their system and
that are at least 1 hour or longer in Trinocular. We next review that result and
show that FBS solves the problem they identified.

Table 3 shows this comparison of CDN events to Trinocular with both fil-
tering (discarding blocks with more than 5 events, a short-term fix proposed for
their paper at the time) and FBS. To recap prior results: The CDN-based results
summarized in confirm that 27% of outage events found by Trinocular without
FBS also appear in the CDN-based passive analysis. The remaining outages are
either false outages in Trinocular (likely, since 60% show no change in the CDN)
or false uptimes from the CDN. Given sparse blocks produce many events, dis-
carding blocks with 5 or more events (the “filtered Trinocular” column) should
avoid most false outages, although it may cause false uptime. As expected, most
events (74%) that remain after this filter are confirmed by the CDN.

While CDN-data is proprietary and is not available, we thank Philipp Richter
for redoing this comparison with a similar subset of our data updated, but now
with FBS. The FBS column of Table 3 shows analysis of Trinocular with FBS
compared to the same CDN results, now filtered only by the CDN requirements
(1 hour events, and reported in the CDN system). FBS brings an even larger
fraction of disruptions in-line with the CDN, with 77% of events being confirmed.
Moreover, FBS is much more sensitive than the 5-event filter, applying only to
the 22% of blocks that are sparse blocks. FBS therefore preserves Trinocular’s
11-minute timing for the majority of blocks, reducing temporal precision only
where necessary while providing generally good accuracy for outage detection
across all blocks.

This result suggests that FBS addresses the majority of false outages, and
confirms that most false outages are due to a small set of sparse blocks. (Ad-
dressing false outages due to ISP renumbering is ongoing work [2].)
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Fig. 5. FBS temporal precision analysis measured in repaired down events (false out-
ages) and accepted events minimum (true outages) duration considering 1FR and 2FRs
during 2017q4 as seen from Los Angeles. Dataset A30.

Finally, we note that FBS provides much larger coverage: 5.7M blocks com-
pared to 2.3M trackable blocks in the CDN-system. We discuss coverage in detail
in §4.5.

4.4 FBS Effects on Temporal Precision

We first examine how FBS affects temporal precision of outages. In sparse blocks,
FBS will repair down events that are shorter than a Full Round. But the exact
duration of a FR depends how many addresses are considered in the block (E(b))
and how active they are (Â(E(b))).

To analyze FBS changes to temporal precision, we consider repaired events,
false down events corrected by FBS, and accepted events, true down events that
pass through FBS unchanged. LABR does not affect temporal precision.

We study FBS effects by examining the 2017q4 outage dataset (A30) from
one site (Los Angeles). Most blocks (2.8M blocks, 70%) are never affected by
FBS because they are not sparse or do not have an outage. For the remaining
1.2M blocks that are at some point sparse (Â3FR < 0.2) and for which Trinocular
reports an outage, we examine each outage event.

We first examine the 308M events that FBS repairs (the top left, red line in
Fig. 5, 1.2M blocks). We see that for about half the cases (53% of the events),
FBS repairs a single-round of outage in 11 minutes. Almost all the remaining
events are recovered in 15 or fewer rounds, as expected. Only a tiny fraction
(0.5%) require longer than 18 rounds, for the few times when Trinocular is slow
to detect large changes in Â because it thinks the block may be down.

The light green solid line in the middle Fig. 5 shows how long full rounds
last for outages that pass FBS. Of 5.1M events, we see that 60% are approved
in less than one hour (five or fewer TRs). About 8% of events take longer than
our expected maximum of 18 TRs. We examined these cases and determined
these are cases where Trinocular has such confidence the block should be up it
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Table 4. IPv4 address space coverage of Trinocular and FBS. (a), (b) and (c) different
methods for filtering sparse blocks. (d) blocks fixed by FBS.

Blocks (in M)
Threshold reject accept %resp %Tri

IPv4 responsive |E(b)| ≥ 1 8.6 5.9 100
Trinocular trackable |E(b)| ≥ 15 ∧ A ≥ 0.1 1.9 4.0 67 100

a) mostly up blocks up time > 0.8 0.2 3.8 64 95
b) infrequently down blocks # down events < 5 0.3 3.7 63 93
c) non-sparse blocks A ≥ 0.2 0.9 3.1 53 78

d) FBS considered Â3FR < 0.2 2.8 1.2 - 30
overlap with (c) 0.6 0.8 - -

FBS trackable |E(b)| ≥ 3 0.2 5.7 96 142

does not probe all 15 tries. We confirm this result examining 50 random blocks
within the tail.

Use of FBS on old Trinocular data requires the 2FR variant of FBS, with
more TRs per FR (see §3.1). Dashed lines in Fig. 5 show 2FR analysis. We see
almost no change in temporal precision of repaired events (nearly all the range
of the solid and dashed red lines overlap). Accepted outages take roughly twice
as long as with 1FR FBS, and the number drops to roughly one half (3.1M
accepted down events); fortunately only 0.13% of all 4M blocks require 2FR and
have actual outages in 2017q4.

We currently use FBS in batch processing, and we plan to implement it in our
near-realtime (NRT) outage pipeline soon. For NRT processing one can either
delay results while FBS is considered, or report preliminary results and then
change them if FBS corrects.

4.5 Increasing Coverage

Sparse blocks limit coverage. If historical information suggests they are sparse,
they may be discarded from probing as untrackable. Blocks that become sparse
during measurement can create false outages and are discarded during post-
processing. We next show how FBS and LABR allow us to increase coverage by
correctly handling sparse blocks.

Correctly tracking sparse blocks: We first look at how the accuracy
improvements with our algorithms increase coverage. Three thresholds have been
used to identify (and discard) sparse blocks: a low response probability (A < 0.2,
quarter average, from [12]), low up time (up time < 0.8, from [13]), and high
number of down events (5 or more down events, from [14]).

We use these three thresholds over one quarter of Trinocular data (2017q4-
A30W), reporting on coverage with each filter in Table 4. With 5.9M responsible
blocks, but only 4M of those (67%) are considered trackable by Trinocular. Fil-
tering removes another 0.2M to 0.9M blocks, leaving an average of 53 to 64%.

Trinocular with FBS gets larger coverage than other methods of filtering or
detection. FBS repairs 1.2M blocks, most sparse: of 0.9M sparse blocks, we find
that FBS fixes 0.8M. The remaining 100k correspond to either good blocks that
went dark due to usage change and therefore pushing the quarterly average of
A down, or sparse blocks with few active addresses (for example, |E(b)| < 100)
where Trinocular can make a better job inferring the correct state.
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Can FBS+LABR expand baseline coverage? Finally, we examine the
number of blocks discarded as untrackable from historical data, and are not
tracked for outages. For instance, Trinocular looks at the last 16 surveys [7], and
filter all blocks with |E(b)| < 15 and A < 0.1, left with its baseline of 4M blocks.

In a similar approach, we use the 2017-04-27 survey as our upper bound of
the responsive Internet [8]. As Table 4 shows, we find 5.9M responsive blocks, of
which 5.7M had at least three active addresses during the measured period. That
is 1.7M (43%) more blocks than the baseline become trackable. When adding
1.7M with the number of FBS-repaired blocks (1.2M), our effective coverage
increment adds to 2.9M blocks.

5 Related Work

Several groups have methods to detect outages at the Internet’s edge: Thun-
derPing first used active measurements to track weather-related outages on the
Internet [15,11]. Dainotti et al. use passive observations at network telescope to
detect disasters and government censorship [4], providing the first view into fire-
walled networks. Chocolatine provides the first published algorithm using passive
network telescope data [6], with a 5 minute detection delay, but it requires AS
or country level granularity, much more data than /24s. Trinocular uses active
probes to study about 4M, /24-block level outages [12] every 11 minutes, the
largest active coverage. Disco observes connectivity from devices at home [16],
providing strong ground truth, but limited coverage. Richter et al. detect out-
ages that last at least one hour with CDN-traffic, confirming with software at
the edge [14]. They define disruptions, showing renumbering and frequent dis-
agreements in a few blocks are false down events in prior work. Finally, recent
work has looked at dynamic addressing, one source of sparsity [10]. Our work
builds on prior active probing systems and the Trinocular data and algorithms,
and addresses problems identified by Richter, ultimately due to sparsity and
dynamics.

6 Conclusions

This paper defines two algorithms: Full Block Scanning (FBS), to address false
outages seen in active measurements of sparse blocks, and Lone Address Block
Recovery (LABR), to handle blocks with one or two responsive addresses. We
show that these algorithms increase coverage, from a nominal 67% (and as low
as 53% after filtering) of responsive blocks before to 5.7M blocks, 96% of respon-
sive blocks. We showed these algorithms work well using multiple datasets and
natural experiments; they can improve existing and future outage datasets.
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A.: Analysis of country-wide Internet outages caused by censorship. In: Proceedings
of the ACM Internet Measurement Conference. pp. 1–18. ACM, Berlin, Germany
(Nov 2011). https://doi.org/http://dx.doi.org/10.1145/2068816.2068818

5. Doug Madory: Iraq downs internet to combat cheating...again! https://dyn.

com/blog/iraq-downs-internet-to-combat-cheating-again/ (2017), accessed:
2019-01-08

6. Guillot, A., Fontugne, R., Winter, P., Merindol, P., King, A., Dainotti, A., Pelsser,
C.: Chocolatine: Outage detection for internet background radiation. In: Pro-
ceedings of the IFIP International Workshop on Traffic Monitoring and Analy-
sis. IFIP, Paris, France (Jun 2019), https://clarinet.u-strasbg.fr/~pelsser/
publications/Guillot-chocolatine-TMA2019.pdf

7. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G., Ban-
nister, J.: Census and survey of the visible Internet. In: Proceedings of the ACM
Internet Measurement Conference. pp. 169–182. ACM, Vouliagmeni, Greece (Oct
2008). https://doi.org/http://dx.doi.org/10.1145/1452520.1452542

8. Internet Addresses Survey dataset, PREDICT ID: USC-LANDER/internet-
address- survey-reprobing-it75w-20170427/:

9. MaxMind: GeoIP Geolocation Products. http://www.maxmind.com/en/city

(2017)
10. Padmanabhan, R., Dhamdhere, A., Aben, E., kc claffy, Spring, N.: Rea-

sons dynamic addresses change. In: Proceedings of the ACM Internet
Measurement Conference. ACM, Santa Monica, CA, USA (Nov 2016).
https://doi.org/https://doi.org/10.1145/2987443.2987461

11. Padmanabhan, R., Schulman, A., Levin, D., Spring, N.: Residential links under
the weather. In: Proceedings of the ACM Special Interest Group on Data Commu-
nication. pp. 145–158. ACM (2019)

12. Quan, L., Heidemann, J., Pradkin, Y.: Trinocular: Understanding Inter-
net reliability through adaptive probing. In: Proceedings of the ACM SIG-
COMM Conference. pp. 255–266. ACM, Hong Kong, China (Aug 2013).
https://doi.org/http://doi.acm.org/10.1145/2486001.2486017

13. Quan, L., Heidemann, J., Pradkin, Y.: When the Internet sleeps: Correlating diur-
nal networks with external factors. In: Proceedings of the ACM Internet Mea-
surement Conference. pp. 87–100. ACM, Vancouver, BC, Canada (Nov 2014).
https://doi.org/http://dx.doi.org/10.1145/2663716.2663721

https://ioda.caida.org
https://www.isi.edu/%7ejohnh/PAPERS/Baltra19a.html
https://www.isi.edu/%7ejohnh/PAPERS/Baltra19a.html
https://doi.org/http://dx.doi.org/10.1145/2068816.2068818
https://dyn.com/blog/iraq-downs-internet-to-combat-cheating-again/
https://dyn.com/blog/iraq-downs-internet-to-combat-cheating-again/
https://clarinet.u-strasbg.fr/~pelsser/publications/Guillot-chocolatine-TMA2019.pdf
https://clarinet.u-strasbg.fr/~pelsser/publications/Guillot-chocolatine-TMA2019.pdf
https://doi.org/http://dx.doi.org/10.1145/1452520.1452542
http://www.maxmind.com/en/city
https://doi.org/https://doi.org/10.1145/2987443.2987461
https://doi.org/http://doi.acm.org/10.1145/2486001.2486017
https://doi.org/http://dx.doi.org/10.1145/2663716.2663721


Improving Coverage of Internet Outage Detection in Sparse Blocks 15

14. Richter, P., Padmanabhan, R., Spring, N., Berger, A., Clark, D.: Advancing
the art of Internet edge outage detection. In: Proceedings of the ACM Inter-
net Measurement Conference. ACM, Boston, Massachusetts, USA (oct 2018).
https://doi.org/https://doi.org/10.1145/3278532.3278563

15. Schulman, A., Spring, N.: Pingin’ in the rain. In: Proceedings of the ACM In-
ternet Measurement Conference. pp. 19–25. ACM, Berlin, Germany (Nov 2011).
https://doi.org/https://doi.org/10.1145/2068816.2068819

16. Shah, A., Fontugne, R., Aben, E., Pelsser, C., Bush, R.: Disco: Fast, good, and
cheap outage detection. In: Proceedings of the IEEE International Conference on
Traffic Monitoring and Analysis. pp. 1–9. Springer, Dublin, Ireland (Jun 2017).
https://doi.org/https://doi.org/10.23919/TMA.2017.8002902

17. USC/ISI ANT project: https://ant.isi.edu/datasets/outage/index.html

A Other Block Examples
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Fig. 6. Sample blocks over time (columns). The bottom (d) shows individual address
as rows, with colored dots when the address responds to Trinocular. Bar (c) shows
Trinocular status (up, unknown, and down), bar (b) is Full Block Scanning, and the
top bar (a), Lone Address Block Recovery.

§2.1 described the problem of sparse blocks and why FBS is needed. Here we
provide examples of other blocks where sparsity changes to illustrate when FBS
is required.

The block in the left part of Fig. 6 has no activity for three weeks, then
sparse use for a week, then moderate use, and back to sparse use for the last
two weeks. Reverse DNS suggests this block uses DHCP, and gradual changes in
use suggest the ISP is migrating users. The block was provably reachable after
the first three weeks. Before then it may have been reachable but unused, a false
outage because the block is inactive.

The third bar from the top (c) of the left of Fig. 6 we show that Trinocular
often marks the block unknown (in red) for the week starting 2017-10-30, and
again for weeks after 2017-12-12. Every address in this block has responded in
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Fig. 7. Blocks distributed according to the number of outages versus their A(E(b))
(left), and cumulative distribution function of the A value per block (right) as collected
during 2017q4 for the whole responsive IPv4 address scope. Dataset A30.

the past. But for these two periods, only a few are actually used, making the
block temporarily sparse. Fig. 6 (left, bar b) shows how FBS is able to accurately
fix Trinocular’s pitfalls in such a DHCP scenario.

Fig. 6 (right) shows a block example with a lone address. This block has three
phases of use: before 2017-02-16, many addresses are in use; then for about 9
days, nothing replies; then, starting on 2017-02-25 only the .1 address replies.
During the last phase, Trinocular (Fig. 6 (right, bar c)) completely ignores that
there is one address responding, while FBS (Fig. 6 (right, bar b)) sets block status
depending on responses of this lone-address. However, LABR (Fig. 6 (right,
bar a)) changes all the FBS detected down events to unknown, as there is not
information to claim a down event, in contrast to what the end of phase one
shows.

B Block Usage Change

As mentioned in §2.1, when blocks become temporarily sparse (showing a small
A(E(b))), the number of false outages increases. On the other hand, denser blocks
offer higher inference correctness.

Our prior work dynamically estimated A [13], but Richter et al. showed that
block usage changes dramatically, so blocks can become overly sparse even with
tracking [14].

We first show that sparse blocks cause the majority of outage events. In
Fig. 7 (left) we compare the number of outages in all 4M responsive blocks with
their measured A(E(b)) value during 2017q4. Blocks with a higher number of
outages tend to have a lower A(E(b)) value. In particular those closer to the
lower bound. Trinocular does not track blocks with long term A(E(B)) < 0.1,
however as blocks sparseness changes, this value does change during measure
time.

The correlation between sparse blocks and frequent outage events is clearer
when we look at a cumulative distribution. Fig. 7 (right) shows the cumulative
distribution of A for all 4M responsive blocks (light green, the lower line), and
for blocks with 10 or more down events (the red, upper line) as measured during
2017q4. These lines are after merging observations obtained from six Trinocular
vantage points. We find that 80% of blocks with 10 or more down events have an
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Fig. 8. Cumulative distribution of down fraction difference (left) and number of down
events difference (right) between Trinocular and FBS for 2017q4. Dataset A30.

A < 0.2, at around the knee of the curve, and yet these sparse blocks represent
only 22% of all blocks. The figure suggests a correlation between high number
of down events and low A(E(b)) per block due to the faster convergence of the
line representing blocks with multiple down events. (It confirms the heuristic of
“more than 5 events” that was used to filter sparse Trinocular blocks in the 2017
CDN comparison [14].)

Although we observe from multiple locations, merging results from different
vantage points is not sufficient to deal with sparse blocks, because these multiple
sites all face the same problem of sparseness leading to inconsistent results.
Addressing this problem is a goal of FBS, and it also allows us to grow coverage.

C Comparing Trinocular and FBS

In §4.2 we discuss how often FBS changes outages when compared to Trinocular.
We examine two different metrics: total block down time and number of down
events. Here we provide further information distribution about the distribution
of these metrics.

In Fig. 8 (left) we show block distribution of Trinocular and FBS down time
fraction difference. The majority of blocks (91%) have little or no change. Blocks
on the left side of the figure representing 9% of the total, have a higher down
time fraction when processed only with Trinocular than when processed with
FBS. For example, a −1 shows a block that was down for Trinocular during
the whole quarter, while FBS was able to completely recover it. This outcome
occurs when a historically high |E(b)| block has temporarily dropped to just a
few stable addresses.

We also see a small percentage (0.5%) where FBS has a higher down fraction
than Trinocular. This increase in outages fraction happens when Trinocular er-
roneously marks a block as UP. With more information, FBS is able to correctly
change block state and more accurately reflect truth.

In Fig. 8 (right) we look to the distribution of blocks when compared by the
number of down events observed in FBS and Trinocular. Similarly, the num-
ber of down events remains mostly unchanged for the majority of blocks (94%).
Trinocular has more down events for 6% of blocks, and FBS shows more events
for 0.1%. FBS can increase the absolute number of events in a block when break-
ing long events into shorter pieces.
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