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ABSTRACT
There is a growing interest in carefully observing the relia-
bility of the Internet’s edge. Outage information can inform
our understanding of Internet reliability and planning, and
it can help guide operations. Outage detection algorithms
using active probing from third parties have been shown
to be accurate for most of the Internet, but inaccurate for
blocks that are sparsely occupied. Our contributions include
a definition of outages, which we use to determine howmany
independent observers are required to determine global out-
ages. We propose a new Full Block Scanning (FBS) algorithm
that gathers more information for sparse blocks to reduce
false outage reports. We also propose ISP Availability Sensing
(IAS) to detect maintenance activity using only external in-
formation. We study a year of outage data and show that FBS
has a True Positive Rate of 86%, and show that IAS detects
maintenance events in a large U.S. ISP.

1 INTRODUCTION
Internet reliability is of concern to all Internet users, and
improving reliability is the goal of industry and governments.
Yet government intervention, operational misconfiguration,
natural disasters, and even regular weather all cause net-
work outages that affect many. The challenge of measuring
outages has prompted a number of approaches, including ac-
tive measurements of weather-related behavior [12], passive
observation of government interference [3], active measure-
ment of most of the IPv4 Internet [9], passive observation
from distributed probes [13], and analysis of CDN traffic [11].

Each outage measurement system has strengths and weak-
nesses. Passive approaches and CDN analysis provide unique
insight into firewalled areas that will not respond to active
probing, but require longer observation and so provide some-
what less temporal or spatial precision. Active systems can-
not see behind firewalls or NAT, but allow control of the preci-
sion and coverage and can provide very broad coverage. This
control allows active systems to provide relatively precise
timing of outage onset and duration (typically 11minutes,
compared to 60minutes or more for passive), and scope (in-
dividual IP addresses or /24 blocks of addresses), but the cost

is measurement traffic that is sometimes misinterpreted as
malicious, drawing complaints or firewalling. Thus a funda-
mental trade-off in active systems is balancing correctness
and precision with minimizing measurement traffic.
A huge advantage of multiple outage measurement sys-

tems is their results can be compared. Recent work in CDN-
based analysis has provided confidence in the field, showing
most blocks show similar responses with both active mea-
surement and CDN analysis [11]. However, it also showed
that a few percent of blocks are challenging to measure, gen-
erating frequent outage reports that are false positives—not
confirmed in passive data. These relatively few blocks can
generatemany incorrect outage reports, so while active finds
94% of passive outage events, passive confirms only 74% of
active events. This work highlights two sources of these dif-
ferences: a few blocks where active outage detection makes
premature decisions, and ISP maintenance activity.
As the field matures, a second problem is that we need

a definition of network outages that is independent of any
measurement system. Such a first-principles definition will
allow us to work towards evaluating how closely different
outage detection systems compare to a “platonic ideal”. It
also allows us to answer pressing operational questions, such
as how many observers are required to avoid bias.

This paper makes three contributions. First, we propose a
theoretical definition of an Internet outage (§3.1). We then
use this definition and data to show, empirically, that three
independent observers are sufficient to identify global outages
with active detection (§4.1).

Second, we develop Full Block Scanning (FBS), an algorithm
to improve outage detection in blocks where use is sparse or
transient (§3.2). Examination of random down events show
FBS has a True Positive Rate of 86% (§4.2).

Our final contribution is the ISP Availability Sensing (IAS)
algorithm. IAS detects ISP maintenance with only external
information (§3.3). We evaluate it with a natural experiment
at CenturyLink, showing that IAS corrects 23 events, 13
confirmed in their maintenance window (§4.3).
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Figure 1: A sample block over time (columns). The
bottom (c) shows individual address as rows, with col-
ored dots when the address responds. The middle bar
(b) shows Trinocular status (up, unknown, and down),
and bar (a) is Trinocular with Full Block Scanning.

All of the data used in and created this paper will be avail-
able at no cost. Our work was IRB reviewed and identified
as non-human subjects research (USC IRB IIR00001648). .

2 CHALLENGES TO ACTIVE DETECTION
Our goal is to detect outages with third-party, active mea-
surements. Such approaches provide large coverage (more
than 3M blocks [9]), but we must address several causes
of false outages: partial outages, sparse blocks, and usage
changes.

2.1 Problem: Partial Outages
A partial outage is a destination that is not reachable from
one location but is reachable from elsewhere on the Internet.
They may occur due to link or route failures in the middle
of the path. Hubble states that two-thirds of reachability
problems are what are partial outages [5].
Figure 1 shows an 8.5 hour-long outage on 2017-11-16.

This event is an outage because we see the same addresses
(rows) active (dark dots) before and after the event, but no
addresses are active during it. We know this outage is local
to this Vantage Point (VP) because other VPs (not shown)
can reach these addresses the whole time.
Trinocular handles partial outage by reporting the tar-

get block up if any VP can reach it [9]. In §4.1 we explore
alternative voting strategies and how many VPs are needed.

2.2 Problem: Sparse Blocks
Sparse blocks pose a problem in that active scanning will find
many empty addresses. When probing is rate-limited, these
non-responses may result an a hasty decision that marks the
block down, a false outage.

To constrain traffic to each block, and to track millions of
blocks, Trinocular limits itself to 15 probes per round. This
limit can cause incorrect decisions two ways. First,it may
fail to reach a definitive belief and mark the block unknown.
Alternatively, if the block is usually responsive, several non-
responses may produce a down belief.

In Figure 1(b), the middle bar shows that Trinocular often
marks the block unknown for the week starting 2017-10-30,
and again for weeks after 2017-12-12. Trinocular knows all
addresses in this block may be used (all addresses are in
E(b), defined as the set of ever-active addresses), but in both
of these periods, only a few are used—the block is sparse
(A(E(b)), defined as the probability E(b) responds, is small).

Prior work has filtered sparse blocks with several ad hoc
ways: Trinocular marks very sparse blocks as unmeasurable
(when A(E(b)) < 0.10 or |E(b)| < 15), and dropped blocks
when observed A doesn’t match predicted A [9]. Richter’s
use of Trinocular data dropped all blocks with more than
5 outages in 3 months [11], based on our recommendation.
Trinocular notes that its unmeasurability test is not strict
enough: indeterminate belief can occur when the A(E(b)) <
0.3 and |E(b)| ≥ 15. Moreover, later work [10] dynamically
trackedA, but Richter et al. showed that block usage changes
dramatically, so blocks can become overly sparse.
We can define the sparseness of the block by its current

availability (Âs (E(b)). We consider blocks sparse when it is
less than a threshold (Âs (E(b)) < Tsparse), currently with
Tsparse of 0.2. We observe that blocks show frequent out-
ages (like Figure 1) when they are sparse. We find that 85%
of blocks with 10 or more outages meet the sparse thresh-
old, and yet sparse blocks represent only 22% of all blocks.
(Graphs showing these results are omitted due to space.)

2.3 Problem: Changes in Usage
Outage detection systems determine a block is reachable
because it sends traffic, responding to probes for active detec-
tion, or for other reasons with passive detection. However,
traffic may be absent for reasons other than an outage: a
network operator may reassign dynamic addresses, shifting
users to other blocks, or users may deploy firewalls. Changes
in block usage may cause false outages.

We see an example of usage change in Figure 1. The block
has no activity for three weeks, then sparse use for a week,
then moderate use, and back to sparse use for the last two
weeks. Reverse DNS suggests this block uses DHCP, and
gradual changes in use suggest the ISP is migrating users.
The block was provably reachable after the first three weeks.
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Before then it may have been reachable but unused, a false
outage because the block is inactive.

3 DESIGN
We next describe our definition of outages and algorithms
to correct two sources of false outages.

3.1 Outages: Global and Partial
We first define global outages so we can consider how to
detect partial outages, proposing the following theoretical
definition: A network outage is the unavailability of an
active network frommore than half of the Internet. By
unavailable we mean lack of a logical or physical path to or
from a network, or lack of response from a host. By active
network we mean some prefix of addresses that is likely to
fail together, and that is intended to be on the public Internet.
By Internet we mean as observed from all public IP addresses.
This definition implies that unavailability from less than 50%
of the Internet is a partial outage.
Translating this theory to practice requires care, since

measurement systems observe from a few (or at most, tens)
of VPs. (But three independent sites are enough, see §4.1.)

We also must recognize that down events that appears to
be an outagemay be false, because only the network operator
knows what networks are active. Richter et al. used internal
information from clients to demonstrate that address reas-
signment cause false outages, defining disruptions to include
both true and false outages [11]. We show a new algorithms
to identify disruptions with only external information in
§3.3, and define up and down events as the raw observations.

3.2 Full Block Scanning for Sparse Blocks
The challenge of evaluating sparse blocks is that Trinocular
makes decisions on too little information, forcing a decision
after 15 probes (a Trinocular Round or TR, every 11 minutes),
even without reaching a definitive belief. We address this
problem with more information: we Scan the Full Block (in
a Full Round or FR) to consider all addresses that have ever
been active (all of E(b)). By requiring decisions to consider all
addresses we overcome the 15-probe limit. For Trinocular, we
maintain this limit per Trinocular Round, but we assemble
Full Rounds from “enough” adjacent Trinocular Rounds.
Formally, we define a Full Round ending at time t as the

minimum N TRs before t that cover all E(b) ever-active ad-
dresses of the block:

∑t
i=t−N (|TRi |) ≥ |E(b)|.

Full Block Scanning (FBS) tests outages from Trinocular.
If the block is currently sparse (Âs < Tsparse) and the most
recent Full Round included a positive response, then we over-
ride the outage. That is, if there are any positive responses
in the last Full Round FRt , we convert any outages to up if
∀TRi where i ∈ [t − N , t].

We only use FBS for blocks where it is required because
they are recently sparse. A block is recently sparse if the

short-term running average of the response rate for the block
Â3FR
s , computed over the last three FRs, is below the sparse

threshold (Â3FR
s < Tsparse).

Finally, since FBS uses information from several TRs, it
decreases the temporal precision of outage reporting. We
know the block was up at the last positive response, and we
know it is down after the full round of non-responses, so an
outage could have begun any time in between. We therefore
select a start time as the time of the last confirmed down
event (the first known lit address, now down). That time has
uncertainty of the difference between the earliest possible
start time and the confirmed start time.

3.3 ISP Availability Sensing for Maintenance
We next identify disruptions due to ISP maintenance events
that cause false outages due to inactive blocks. ISP main-
tenance actions such as renumbering users to different IP
addresses appear as outages to an external observer when
active blocks become inactive. However, they are disruptions
and not user-affecting outages, since the users continue to
get service at new IP addresses. Richter et al. identified this
problem with data from sensors inside the ISP; we next iden-
tify such disruptions using only external information.
Our insight is that in user-affecting outages, ISPs lose ac-

tive addresses, but maintenance with renumbering merely
reassigns users to different addresses. We therefore detect
non-outage disruptions with ISP Availability Sensing based
on stability of the number of active addresses across the ISP.

Our approach starts by tracking the availability (the total
number of active addresses) in the ISP. The availability of
AS a at time t isAt (a) =

∑
b ∈Ba Â

1FR
s (b), where Â1FR

s (b) is the
availability of block b over the last Full Round before time t ,
and Ba are all the blocks in AS a.

When the number of active addresses is roughly unchanged
we infer that block-level outages are renumbering events
(since each address departure is matched by another address
appearance). We look for change ∆t , defined as the difference
in availability estimates between the last two adjacent Full
Rounds (t and t ′): ∆t = (At −At ′)/(max(At ,At ′)). We com-
pare to a threshold, so an event is maintenance if ∆t ≤ Tu .
We currently set Tu = 0.05, meaning real outages require a
5% drop in addresses.

4 EVALUATION
We next evaluate correctness of our three algorithms: partial,
outages, sparse blocks, and block usage change.

4.1 How Many Vantage Points Is Enough?
We first consider outage definition (§3.1 to explore howmany
vantage points we need to rule out partial outages. Recall
that a partial outage (an outage near a vantage point) makes
it seem to that VP that most of the Internet is down. Par-
tial outages can be removed by voting from independent
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Figure 2: Down time fraction for all 63 possible com-
binations out of six sites with jittered individual read-
ings. Dataset: A28.

observers. We next evaluate how many VPs are needed, how
to confirm independence, and choices for how to vote.

4.1.1 Converging onGlobal Outages. When sampling from
a distribution, additional samples converge on the true value
as they reduce the margin of error. (For a normal distribution,
confidence intervals on the mean fall as the square-root of
the number of samples.) Although we do not posit a distri-
bution for Internet outages, we expect to see diminishing
changes as new vantage points to eliminate partial outages,
and we converge on global outages.
To evaluate this question we take observations from a

large number of vantage points and then look at subsets to
see if they converge. Assuming VPs are basically independent
(evaluated in §4.1.2), we can explore 63 possible combinations
and test empirical convergence. Here we merge with any-up
voting; we revisit voting in §4.1.3.

Figure 2 shows the fraction of time blocks are out, observed
over 3 months of data for dataset A28 in 2017q2. Each point is
one of the 63 possible combinations of 6 VPs (6 with 1 VP, 15
combinations of 2 VPs, etc., to 1 with all 6). For each cluster,
we jitter points in the x axis to avoid plotting combinations
on top of each other. (For this analysis we do not use the FBS
and IAS algorithms to focus on basic detection. Use of those
algorithms would flatten curve slightly.)

This data confirms our hypothesis of diminishing returns.
Visually, the observations converge on 0.0039. Quantitatively,
an exponential of (0.0043x−0.875 + 0.0039) fits the data well,
with a correlation coefficient of 0.9371.

This data suggests that 4 sites are definitely enough to filter
partial outages (the worst combination of 4 sites is 0.0042,
within 7%). In fact, we claim that three independent sites
are a reasonable goodmatch to global outages, with 12%
(0.0044) of the convergence. While we believe three sites are
sufficient and four sites are safe, of course more sites do not
hurt convergence, so we recommend using more if available.

Table 1: (a) Similarities between sites relative to all six.
Dataset: A33, 2018q3. (b) Comparison of different vot-
ing policies with 6 VPs. Dataset: A28, 2017q2.

j e c g n
w 0.079 0.064 0.084 0.061 0.093
j 0.061 0.168 0.154 0.118
e 0.069 0.068 0.073
c 0.128 0.075
g 0.130

(a)

policy up down
any up 0.9961 0.0039
two up 0.9960 0.0040
1/2 up 0.9956 0.0044
2/3 up 0.9951 0.0049
all−{1} 0.9917 0.0083
all up 0.9174 0.0826

(b)

4.1.2 Are the sites correlated? Our evaluation of conver-
gence assumes VPs do not share common network paths.
VPs in different physical locations must have dissimilar ac-
cess links, and with the trend towards a “flatter” Internet
graph [6], they should have diverse WAN paths. We next
quantify this similarity to validate our assumption.
We next measure the similarity of observations between

each pair of VPs.We examine only caseswhere one of the pair
disagrees with some other VP, since when all agree, we have
no new information. If the pair agree with each other, but not
some other VP, the pair show similarity. If they disagree with
each other, they are dissimilar. We quantify similarity SP for
a pair of sites P as SP = (P1 + P0)/(P1 + P0 + D∗), where Ps
indicates the pair of sites agree on the network having state s
of up (1) or down (0) and disagree with the others, and forD∗,
the pair disagree with each other. SP ranges from 1, where
the pair always agree, to 0, where they always disagree.
Table 1(a) shows similarity values for each pair of the

6 Trinocular VPs (locations: w: Los Angeles, j: Tokyo, e:
Washington, DC, c: Colorado, g: Athens, n: Amsterdam). (We
show only half of the symmetric matrix.) No two sites have
a similarity more than than 0.17, and many pairs are around
0.08. This result shows that no two sites are particularly
corrected, although j, g, and n (the three non-U.S. sites) seem
more correlated than the others.

4.1.3 Voting Options To Resolve VP Disagreement. Partial
outages introduce conflicting observations between VPs. Our
definition of outages in §3.1 suggests majority voting defines
truth, but can we reduce the billions of theoretical observers
to just a few VPs?

We evaluate this question by comparing six voting strate-
gies: any-up, 1/3-up, 1/2-up, 2/3-up, all-but-one up, and all-up.
Any-up uses the intuition that if any VP can reach a target,
it is up. Any-up produces false positives when the target
block and the single vantage point observing it as active are
both behind the failed router. For example, a VP inside a
university in Athens would force that university’s blocks
up, even if their connection to the Internet was down. Other
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strategies are less strict. Since networks are usually up, we
break ties in favor of “up-ness”.
Table 1(b) shows up and down fractions with 6 VPs for

each voting strategy, for 3 months (A28 in 2017q2). (Because
sites sometimes fail over the quarter, voting occasionally
uses fewer than six sites.) The any-up policy has the lowest
fraction of down time, and less strict policies result in lower
rates of outages. The all-up policy is overly strict, since an
outage local to any VP will break the vote and suggest that
the target block is down. The other policies are all similar,
although all-{1} shows some sensitivity failures at two VPs.

We conclude that majority voting (1/2-up) is a good choice,
even with only 6 VPs.

4.2 Full Block Scanning Reduces Noise?
Wenext examine Full Block Scanning accuracy (§3.2) through
studies of one block and then a country.

4.2.1 Case Study of One Block. Figure 1 shows one block
with outage analysis as a case study. This block is in Centu-
ryLink (AS209, a U.S. ISP).

This block is initially inactive (before 2017-10-24; the left
20% of the plot), then becomes sparsely used and relatively
densely used (around 2017-11-01), but back to sparsely used
(at 2017-12-23). It shows a partial outage on 2017-11-16.

Trinocular results ((b), the middle graph) show frequent
unknown states that result in false outages, particularly
when block usage is sparse in October and late December.

By contrast, Full Block Scanning ((a), the top graph), re-
solves this uncertainty. FBS’ more information confirms the
block is usually up, while recognizing the partial outage.

4.2.2 True Positives: Is Full Block Scanning Successful at
Removing Noise? From this single block example, we next
consider a country’s Internet. Our goal is to see if FBS re-
duces noise by examining “true positives” (blocks correctly
recovered by FBS because they were observation noise).
We study series of known outages that affected Iraq in

February 2017. That country had 7 government-mandated
Internet outages (the local mornings on February 2, and also
the 4th through 9th) with the goal of preventing cheating
during academic placement exams [4]. We identified 1176
Iraqi blocks using Maxmind’s city-level database [7], and
examined outages from 2017q1 Trinocular (dataset A27 [14]).

Figure 3 shows the number of Iraqi blocks that are detected
as out during 2017q1, grouped into in 4096s timebins. We
show outages without Full Block Scanning (the darker blue,
top line) and with it (the lighter green line). The Iraqi exam
week is highlighted in gray on the left, and we plot that week
with a larger scale on the right.

In each of the 7 large peaks during exam week, most Iraqi
blocks (nearly 1000) are out—our true outages. We also see
that few blocks (5 to 15) are often down, likely false outages.
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Figure 3: Down events in Iraqi blocks during 2017q1.
Dataset A27.
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We see that FBS reduces the number of down blocks by
5–10 per observation interval, cutting the background noise
of outages by about 36%. We confirm this reduction was due
to noise by examining blocks marked down by Trinocular
and up with FBS in 10 randomly-selected time periods. Of
the 34 total down events, 33 (97%) were in sparse blocks that
resemble Figure 1; the other block was diurnal. This study
confirms that FBS recovers false outages due to sparseness.

4.2.3 False Positives: Does FBS Remove Legitimate Out-
ages? We next look at how Full Block Scanning interacts
with known outage events. Its goal is to remove noise and
false outages, but if it is too aggressive it may accidentally
remove legitimate outages (a “false positive” detection).

We look for false positives in the 2017q1 Iraqi exam dataset
(Figure 4 in §4.2.2), using the 7 nationwide outages as ground
truth and comparing Trinocular with and without FBS.
The 7 peaks in Figure 3 show known Iraqi outages, and

we see little visual difference. When we examine the peaks
of outages, FBS removes about 12 of the 880 blocks (about a
1.5% drop in outages). We believe these results represent an
acceptable tradeoff in light of consistent reduction of noise
during regular operation (Figure 4).

To confirm which outage events are filtered by FBS during
the Iraqi outages, we identified all outage events during the
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7 periods of Iraqi outages (from times 8am to 10am (local
Iraqi time) on days 2017-02-02 and -10. Each outage event
represents one block that was down for about 2 hours. We
evaluate the Â3FR

s value and the duration of the outage event
in Full Rounds, and show that scatter plot in Figure 4.

FBS filters outage events of sparse blocks (Â3FR < 0.2) that
last one Full Round (highlighted by the red box in the lower,
left corner). We see that most outage events (93%) fall outside
this region, either because they last longer or are in blocks
that are more full. Outage events within the region represent
a 7% of the total events in the figure. This analysis confirms
why FBS successfully passes through the Iraqi outages with
little change, but still is able to filter noise.

4.2.4 Random Sampling of Outage Events. Finally, we con-
firm our results with a random sample of events.

We draw 50 random blocks that show outages in Trinocu-
lar without FBS. We examine each block and their 5200 down
events to determine best-effort ground truth. Of the 5200
down events, we see 4133 True Positives (79% of outages in
sparse blocks are fixed by FBS), 621 false negatives (12% are
not fixed), and 446 true negatives (9% true outages are not
changed). The result is a True Positive Rate of 0.86 (621 false
positives of 4752 true cases), so it is reasonably successful
at removing noise. Many of the false negatives are due to
moderate sparse blocks (0.2 < A(E(b)) < 0.4).

4.3 Does ISP Availability Sensing Handle
Address Reallocation?

We next examine how well ISP Availability Sensing (IAS,
§3.3) handles maintenance activity by network providers.

4.3.1 True Positives: Does IAS Detect Maintenance? We
evaluate if IAS detects maintenance activity in 2017q4 with
CenturyLink (AS209), a large U.S. ISP and transit provider.
They have public maintenance windows (early morning Sun-
day, Tuesday and Thursday) [1], and report specific events [2].
Since we know of no public, inside-ISP data (like [11]), we use
this natural experiment to test IAS. We identify CenturyLink
blocks from 18 peers in Routeviews [8].
Figure 5 shows one quarter of data (2017q4). The bottom

shows ∆t , changes in active addresses, from the L.A. Trinocu-
lar instance. The top shows down events from 6-site merged
results after FBS, but without IAS. We find 23 events in this
merged data, each involving 35 or more blocks. Of the 23
events, more than half (13, indicated with capital letters) are
in CenturyLink’s published maintenance window. Five of
these (indicated with *) correspond to events in the service
log on their website. IAS identifies all these events as main-
tenance, except for event (o). These events are true positives.
Event (o) on 2017-11-16 (in red) is very large, and IAS

passes it through as an actual outage when observed from
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Figure 5: Down events (top) from six observers (top)
and ∆t (bottom) from Los Angeles. CenturyLink
AS209. Dataset: A30, 2017q4.

this VP. This event is unusual, in that it was much larger (af-
fecting 20,211 blocks, more than half) and longer (8.5 hours)
at this VP in Los Angeles than from other sites (where it was
348 blocks and 2 hours). We believe this event was a local
problem affecting Los Angeles. It shows that the IAS will
correctly pass through large outages (a true negative).

4.3.2 False Positives: Does IAS Remove Legitimate Out-
ages? Beyond the partial outage just described (a true nega-
tive), we next look for false positives in IAS.

We again use the Iraqi exam outages (§4.2.2). We apply IAS
to the largest Iraqi ISP, AS50710, EarthLink Ltd. Communica-
tions & Internet Service. (This ISP is different from AS3703,
earthlink.net, the large U.S. ISP purchased by Windstream
Communications in March 2017.)
Of the seven exam outages, IAS passes the first four un-

changed (a true negative). However, it removes some blocks
from the three events, losing 19% of down events overall.
We believe these false positives are because closely spaced
true outages distort ∆t ; ongoing work considers adaptive
thresholding that may lose fewer events.

5 RELATEDWORK
Several groups have different methods to detect outages at
the Internet’s edge: ThunderPing first used active measure-
ments to track weather-related outages on the Internet [12].
Dainotti et al. use passive observations at network telescope
to detect disasters and government censorship [3], providing
the first view into firewalled networks. Trinocular uses active
probes to study about 4M, /24-block level outages [9], the
largest active coverage. Disco observes connectivity from
devices at home [13], providing strong ground truth, but
limited coverage. Finally, Richter et al. detect outages with
CDN-traffic, confirming with software at the edge [11]. They
define disruptions, showing renumbering and frequent dis-
agreements in a few blocks are false positives in prior work.
Our work builds on prior active probing systems and the
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Trinocular data and algorithms, and addresses problems iden-
tified by Richter while using only external information.

In addition to Richter et al.’s definition of disruptions and
non-outage events [11], the early Hubble work defined par-
tial outages and estimated about two-thirds of reachability
problems are partial [5]. While prior work has had opera-
tional definitions of outages and disruption, we provide a
theoretical outage definition that we believe applies gener-
ally.

6 CONCLUSIONS
This paper makes three contributions: an outage definition
that helps identify the required number of observers, the FBS
algorithm to reduce noise from active measurement of sparse
blocks, and the IAS algorithm to detect ISP maintenance with
only external observations. We showed these algorithms
work well using multiple datasets and natural experiments;
they can improve existing and future outage datasets.
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