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Abstract

Acoustic underwater wireless sensor networks (UWSN) haeently gained at-
tention as a topic of research. Such networks are charageteby increased uncer-
tainty in medium access due not only to when data is sent,|boidae to significantly
different propagation latencies from spatially diversn#mitters—together, we call
thesespace-time uncertaintyVe find that the throughput of slotted ALOHA degrades
to pure ALOHA in such an environment with varying delay. Wertfore propose
handling this spatial uncertainty by adding guard timeslattesd ALOHA, forming
Propagation Delay Tolerant (PDT-)ALOHA. We show that PDIGHA increases
throughput by 17-100% compared to simple slotted ALOHA idemvater settings.
We analyze the protocol’'s performance both mathematieaily via extensive simu-
lations. We find that the throughput capacity decreaseseam#ximum propagation
delay increases, and identify protocol parameter valuss#alize optimal throughput.
Our results suggest that shorter hops improve throughgu#sNs.

Keywords:
Underwater Acoustic Network, ALOHA protocol, Medium AcsegSontrol Protocol,
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1. Introduction

Underwater sensor networking (UWSN) is becoming an impbeeea of research [1,
2, 3]. Medium access control (MAC) in underwater networks di#racted strong atten-
tion due to its potentially large impact to the overall netkvperformance [4, 5, 6, 7].
The most significant change from traditional radio-freqryefiRF) networks to under-
water acoustic networks is the change of thedium acoustic instead of RF electro-
magnetic waves. Latency and bandwidth have significantesften control algorithms
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for MAC protocols. Both of these vary substantially in adiusetworks where prop-
agation latencies are five-orders of magnitude greater Rfarwhile bandwidths are
one-thousandth that of RF.

ALOHA protocols have been the basis of many wireless MACsesiheir inven-
tion in the 1970s [8]. They are the first class of contentiasdd MAC protocols
in a shared wireless medium. Later protocols, such as caiegse multiple access
(CSMA), achieve better performance than ALOHA in RF netvgoidue to their con-
servative mechanism of “listening before transmitting]. [However, carrier sense
becomes very expensive in underwater acoustic networksodihe large propagation
delay. The effect of the propagation delay on ALOHA proteduhs been analyzed by
Kleinrock and Tobagi [9] showing that the protocols are restsitive to the propaga-
tion delay. However, their analysis does not consider thgivg propagation delays
from differentlocations of nodes; thus its results do natptetely hold for underwater
networks.

The goal of this paper is to understand the impact of varyimgpagation latency
on medium access, with ALOHA protocols as a case study. ,Rivst show that
the location-dependent propagation latency has a fundaiempact on the slotted
ALOHA because, intuitively, a packet’s receive time at theaiver depends not only
on its transmit time (time uncertainty) but also on its riglapropagation delay to the
receiver (space uncertainty). We refer to this joint uraiaty asspace-time uncer-
tainty. We show that both dimensions of uncertainty need to be kdnall the same
time. Then, we propose the Propagation Delay Tolerant ALGPBT-ALOHA) pro-
tocol to improve the performance of the slotted ALOHA by amdgguard times. We
explore its performance through mathematical analysisatehsive simulations with
an aim to discover the best operating parameters. We findithtie high latency en-
vironment of UWSN, throughput capacityd. throughput optimized across all loads)
of PDT-ALOHA improves by 17-100% compared to slotted ALOHgpending on
network propagation delay. Our analysis show that the tjinput can be kept within
97% of optimal capacity of PDT-ALOHA with an additional sline that is 69% of
the maximum propagation delay, indicating that even witknavn or variable de-
lay regime a pre-configured value of PDT-ALOHA is a substdrithprovement on
slotted ALOHA. We also find that the throughput capacity dases with increased
propagation delay, reinforcing the benefit of short-ramgelti-hop communication in
underwater networks besides simply energy-efficient comoation.

This paper combines and extends two previous publishetts¢$Q, 11]. The first
of these prior works focused on protocol simulation [10}] #me other on analysis [11];
here we combine these results to both validate each aghmsther in common sce-
narios, and to provide a definitive discussion of the conchss We therefore integrate
related work (Section 2) and align the metrics across theppers for consistent com-
parison of experiments (Section 7). We confirm that both ftrans and analysis are
consistent with each other. Finally in Section 7.4 we preaesirong argument based
on results from ours and concomitant research that mosiatert, multi-hop networks
in an underwater acoustic environment

Our work is meant to explore intrinsic characteristics @& tigh latency acoustic
channel in UWSN. Work on more sophisticated protocols th&f®KBA is already
underway for underwater networks, but we expect the evaluand understanding



we develop here will support the ongoing development of neatgeols.

2. Related Work

Recently there has been significant amount of work on desigand analyzing
underwater MAC protocols [4, 5, 12, 13, 14, 6, 7]. While thimpwork develops new
protocols, here our goal is to understand the fundamentzdtnof space-time uncer-
tainty in acoustic medium access and propose a framewodafayzing the MAC per-
formance. This understanding, however, suggests addeglgime to slotted ALOHA
to improve its throughput underwater.

As for ALOHA protocols in underwater networks, Vieieaal.[14] performed sim-
ple analysis of slotted ALOHA and reached a conclusion sinid one of ours: slotted
ALOHA degrades to pure ALOHA under high latency. Xeal. [6] have compared
the performance of ALOHA and CSMA with RTS/CTS mechanism doderwater
networks. Gibsoret al. [7] have extended this work to analyze the performance of
ALOHA in a linear multi-hop topology. These papers, howedemot attempt to ad-
dress the following questions: why does pure ALOHA's parfance in underwater
remain the same as in RF? why does slotted ALOHA's performalegrade to pure
ALOHA in the presence of varying propagation delay? How d¢ds tegradation be
handled and what are the optimal parameters for it? In thiepae specifically ad-
dress these questions and provide answers.

Theoretical work has begun to explore this direction. \deit al. [14] analyzed
slotted ALOHA and concluded that it degrades to unslotte@AA under high prop-
agation delay. Gibsoet al.[7] have analyzed the performance of ALOHA in a linear
multi-hop topology. However, these works do not consideruke of guard times to
relieve the negative effect of the large propagation delay.

Adding guard time was previously considered in the desigihaifpy slotted ALOHA
(SSA) [15]. But, SSA was designed for satellite networkswaitsingle, centralized re-
ceiver (the satellite). In such networks, they also havesidmmed variable propagation
delay, but it's assumed to be induced by the imperfectiorf'gtmppiness”) of each
node’s implementation, not by the location ofeach nodeat, fnodes are located on
the ground, and so, approximately equidistant to the gatedisulting in similar prop-
agation delay for each link. Our work, on the other hand, $esuwon ad-hoc acoustic
sensor networks where the relative distance to the recearevary greatly from node
to node.

3. Space-time Uncertainty and the ALOHA Protocol

In this section we summarize the concept of space-time taingr with regards
to medium access, first introduced in a prior work [12]. Wentlegplore this con-
ceptin terms of the ALOHA protocol in a high-latency envineant. This exploration
provides us with design guidelines for modifying ALOHA fon anderwater MAC
protocol which we then present in the next section.



{e)

A

\ 4 1«‘\\

k1:::/// \
(a) Same transmission time; ifo) Different transmission time
collision at B but collision at B

Figure 1: lllustration of space-time uncertainty
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Figure 2: Vulnerability intervals for ALOHA and slotted ALKA.

3.1. Space-Time Uncertainty

Channel state in short-range RF networks can be estimaieklyjsince propa-
gation delay is negligible. The large propagation delay afustic media makes it
essential to also consider the locations of a receiver atehfial interferers. Distance
between nodes translates into uncertainty of current gldiEnnel statusspace-time
uncertainty Although prior underwater work implicitly considers thiacertainty [5],
we present a systematic description of this principle amifipact on contention based
medium access. We next give an example of this principleseparately investigate
its impact on ALOHA protocols in detail [10].

Consider Figure 1: the two concurrent transmissions frormé B are received
separately at nodes B and D but will collide at node C. Thissshilnat collision and
reception in slow networks depend on both transmissioe and receivetocation
This space-time uncertainty can also be viewed as a dualigrevsimilar collision
scenarios can be constructed by varying either the trasgmisimes or the locations
of nodes. Although, in principle, this uncertainty occursall communication, it is
only significant where latency is very high.

We now explore the performance of pure and slotted ALOHA iruaderwater,
high-latency networked scenario, in the light of our sptices uncertainty principle.

3.2. Analysis of ALOHA with Time Uncertainty

We first refresh the classical analysis of pure and slotte@KAA protocol [16],
where nodes immediately transmit application packetss @halysis was done by as-
suming collisions with respect to the transmission timenalahus only considering
temporal uncertainty. As collisions matter only at an it receiver, this analysis
has an implied assumption of no propagation delay. If prapag delay is significant
this analysis then requires assuming transmitter eqaitlisb a receiver (as in [9]).
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Figure 3: Throughput of pure and slotted ALOHA protocols effered load (packets/transmission time);
a is a parameter representing varying maximum propagatigm®bmalizing the delay to the transmission
time (more details in Section 5.1). This figure shows thatfoy valuea > 0, slotted ALOHA degrades to
pure ALOHA in underwater networks.

It further assumes an infinite numbers of nodes, with allvargi packets served at a
new node and transmitted immediately into the network. Tdwekets that collide are
buffered, making nodes backlogged. Such backlogged netlesmsmit after an expo-
nential delay. The total offered load to the network is thambination of the Poisson
arrival and backlogged exponential retransmissions. fdsslts in a combined Pois-
son packet arrival process (with meanto the network having normalized throughput
G(n) (expected packet/unit time) wherneepresents the number of backlogged nodes
in the network.

Thevulnerability interval (V1)is defined as théme interval relative to a sender’s
transmission within which another node’s transmissiorseaucollision [9]. Assuming
T as the packet transmission time, Figure 2(a) shows thatitieeéqual to2T. On the
other hand, slotted ALOHA allows transmission only at tretsdf synchronized slots
of lengthT". As Figure 2(b) shows, this synchronization ensures thitioterfering
packets that arrive in slot O will result in a collision. luthreduces the VI fror2T to
T by preventing any cross-slot overlap.

Classical analysis using the concept of vulnerability riveie shows that slotted
ALOHA achieves maximum normalized throughputlgk with X of 1 packet per slot,
while pure ALOHA achieves its maximum @f/2¢ at 0.5 packets/slot [16, 9].

As mentioned above, the classical analysis is carried ait rspect to the trans-
mitter’s time. The assumption of a single receiver equadisto all transmitters results
in a similar vulnerability interval at the receiver—regkask of the propagation delay
(as shown by Klienrock and Tobagi [9]). Strictly speakirtigge assumptions do not
hold for all ad hoc wireless networks, but with short-rangeretworks the variation
in delay is small enough that it has virtually no effect onfpenance (for example,
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10us delay over 25m). In satellite networks delay is long, betehis typically only
one sender or receiver. We next show, through simulationaawadlysis, that the per-
formance of ALOHA can be significantly affected in acousteworks where these
assumptions do not hold.

3.3. ALOHA with Space Uncertainty

In order to understand the impact of location-dependerpamation latency, we
now simulate both simple ALOHA and slotted ALOHA with a evdratsed simulator
developed for underwater MAC research [12]. The simulagetting is presented in
Section 7.1. Our simulation results (Figure 3 and more tetai[10]) showed two
interesting results.

First, throughput of pure ALOHA does not change, under angydeegime (Fig-
ure 3(a)). This result is explained by looking at packetais at thereceiver with and
without propagation delay. With no propagation delay thekpaarrival at receiver
is exactly the same as at transmitter. With propagationydisla arrival time at the
receiver is offset by a constant delay. Because the delagristant for all packets
sent by the transmitter, their arrivals at the receiverilsasPoisson process with the
same parameter as with no latency. Therefore, with the lf@ttthe sum of indepen-
dent Poisson processes is indeed a Poisson process, thghhut remains the same
in either case. We should point out that pure ALOHA does nenapt to reduce time
uncertainty, hence further ignoring space uncertaintynwaisnpact.

The second interesting result is the degradation of sldites@HA throughput to
that of pure ALOHA wheranypropagation latency is considered, shown by Figure 3(b)



(a similar observation was made by Viegtal. [14]). This is explained by looking
at the overlap of globally synchronized slots at a receRefFigure 4). Node As
transmission in slot 1 can collide with any packet transditby node B in slot 1
(queued at B in previous slot @nd any one transmitted in slot 2 (queued during slot
1).

Generalizing the above example, every transmitter hasdltision with the pack-
ets sent in the previous consecutive time slot from the trdtters located farther
from the receiver, in addition to the collision with the patksent in the same time
slot. Also, every transmitter has another collision witle fhackets sent in the next
consecutive time slot from the transmitters located netrahe receiver. Hence,
when transmitters are deployed uniformly at random in tleaaa packet sent from
an arbitrary transmitten; collides with a packet transmitted in the previous time
slot with probabilityp; = (area farther than; from R)/(total area). With proba-
bility p» = (area nearer tham; from R)/(total area, a packet sent from the trans-
mitter collides with a packet transmitted in the next timet.sIThe probability that
there is another transmitter with the same distance ffois zero because its asso-
ciated area is zero. And, we have a collision with probabilivhen more than one
packet is sent in the same time slot. Therefore, the expettearability interval is
E[VI| =Tpy + Tps + T = 2T sincep; + p, = 1. We use the expected VI because
every packet does not collide with every packet sent in th@@idg time slots.

This vulnerability interval is the same as in pure ALOHA, dhds any propagation
latency nullifies the benefit of time synchronization. If tretwork always has a single
receiver, and nodes knew their relative locations, it iscedrable for slotting to be
made relative to the receiver. However this simplificatie®sl not match the ad hoc
network paradigm where any node can be a potential receiver.

Radio networks, although having very small propagaticgriay,doundergo a sim-
ilar performance degradation, as we model any packet qvedacollision. However,
most RF systems can usually tolerate an overlap of up to desbhig(depending on
coding techniques). As a result for high speed RF netwofkd, iate is 10Mb/s (e.g.,
IEEE 802.11b), the maximum propagation delay that slotte@KHA can tolerate is
1ns, or 30m in distance. Thus such systems do not exhibitriheediate performance
degradation that we have shown for any propagation delayh®ather hand, acoustic
systems even with low data rate modems (1Kb/s [17]) candtdesnly 1ms or 1.5m
in distance due to much slower speed of propagation (abdrhf). Thus, the im-
pact of spatial uncertainty for slotted ALOHA will be morei@gent for any acoustic
network than it is for RF networks.

4. PDT-ALOHA: the Protocol

We now postulate that space-time uncertainty can be harléde addition of
extra guard time beyond the transmission time in time sldisese guard times are
added to ensure a single slot overlap at the receiverttheiatingthellarge propaga-
tion delays We refer to this modified version as propagation-delagranit ALOHA
(PDT-ALOHA). As we argue in Section 3.3 while a centralizeztwork can handle
large delays by synchronizing slots at the receiver, a aimsiblution is not feasible for
ad-hoc networks where every node can be a potential receiver



We first describe the modified protocol and the intuition owlguard time adds
tolerance to space-uncertainty. We then describe our rdetbgy to evaluate the pro-
tocol with both rigorous mathematical analysis and protetoulations.

In our modification to slotted ALOHA, nodes still transmitlpiat the start of glob-
ally synchronized slots. Global time synchronization cambhieved using underwater
time sync protocols such as [18, 19]. The slot duration, ewes increased frorii’
to T+ B - Tmaz, Whereg represents the fraction of maximum propagation detay.£)
that nodes wait after finishing their transmission (Figyre-fence 57, is the guard
time, andg can be considered as thermalized guard timeChoosing3 = 1 ensures
that no overlap at the receiver occurs unless packets arentitied in the same slot,
the guarantee that slotted ALOHA was originally designeddbieve when delay is
not important. However this value ¢f results in a long wait time after each packet
that will increase packet transmission latency and banttivoslerhead. With3 < 1
there remains the possibility that some node pairs stileliag vulnerability interval of
two slot durations (as in Figure 4). Therefore, redugingalue lowers the bandwidth
overhead, but increases collision probability. Based enirttuition that the distance
between node pairs is often smaller than the maximum prajpegeelay, we varys3
to evaluate the tradeoff between bandwidth overhead atidioalprobability.

5. Mathematical Analysis of PDT-ALOHA

In this section we analyze the performance of PDT-ALOHA. amtggular, we in-
vestigate key metrics including probability of collisigrssiccess rate, and throughput.

5.1. Assumptions

We make the following assumptions to analyze the performahthe PDT-ALOHA
protocol below, unless stated otherwise.

We consider the one-hop ad-hoc underwater network wheradtveork has one
receiver and multiple transmitters. Because the netwodditioc, the distance be-
tween the receiver and transmitters are not necessarilgistant. Hence, we assume
that the network has one receiver amdransmitters, which are deployed in the two-
dimensional disk area. The receiver is located at the cerfitdre disk area, and the
transmitters are deployed uniformly at random in the are& adsume the 2D area
because we consider the network deployed in the ocean floor.

The propagation speed of communication is a positive firitestant regardless of
the location in the network, so that the maximum propagatioe 7, is the propaga-
tion time from the receiver to the farthest transmitter. Tla@smission rate is constant
for every transmitter. The packet size is constant so thetrdmsmission time for a
packet is constant, which we assume is one (without lossrugrgdity). Only a proper
scaling is needed for some parameters, particutaglyin order to cope with the gen-
eral transmission time. Hence, the normalized maximum auyapon delay: to the
transmission time is = 7,,, / (transmission time= 7,,,.

We assume that the packet arrival per node at a given timéadlows the I.1.D.
Bernoulli distribution. Specifically, a transmitter seralpacket to the receiver with
probabilityp in each time slot. Note that this provides discrete appraxiom to the



Poisson process of the packet arrivals to the network. Ifébeiver receives more than
one packet simultaneously at any time in a time slot, all thekpts involved fail to
get delivered successfully causing a collision. The linksravhich transmissions take
place are lossless. A transmitter always transmits a patkbe start of the time slot
if the transmitter wants to send the packet. All the node ltgobally synchronized
time slots. The transmission time is no less than the maxiprapagation time so that
a<1.

The assumption that < 1 is to make sure that the collision between a time slot
and another is confined to the consecutive time slots. Sh,thig assumption, there is
no possibility that a packet sentirth time slot collides with another iftth time slot,
wherej ¢ {i —1,i,i+ 1}.

5.2. Success Rate

In order to analyze the throughput we first derive the expbttenber of successful
packet receptions in a time slot, which we refer tesascess rateWe use the linear-
ity of expectations and conditional probabilities to cddte the success rate. Let the
indicator variablel; be 1 when the receiver receives the packet frith transmitter
successfully in the time slot, arid otherwise.

Let IV denote the random variable of the number of the successfept®ns in a
time slot. Then)V = )", I;. Hence, the success rate is, by the linearity of expecttion
and conditional probability, as follows;

E[N] = Y E[L] =) Pr{l;=1}
i=1 i=1

n
= Z Pr{no collision| i-th sender sends Pr{i-th sender sends
=1

= n-p-Pr{NC|n;} 1)

whereN C' denotes the event ‘No Collision’ aniC|n; denotes the event that no col-
lision occurs given that-th sender transmits. The last equality of the above egusitio
holds since the collision probability is symmetrical amatighe senders because each
transmiter is assumed to have independent and identidaibdisons for its spatial
location and transmissions, and the probability considérpossible realizations of
locations of transmitters.

Therefore, in order to calculate the success rate, we ndattitout the probability
of no collision for the transmitted packet from théh sender whose location is uniform
at random over the network area.

5.3. Probability of no collision

As we point out in Section 3, the collision depends not onhytlmtemporal un-
certainly, but also on the spacial uncertainty. If more thaa node transmit packets
in the same time slot, the packets collide with each otheaindigss of the locations
of their transmitters (when < 1). But, collisions can occur even if two packets are
transmitted in different time slots, depending on theirdggg’ locations. We call the
former collisionintra-timeslot collision and the latteinter-timeslot collision
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Figure 6: Collision regionsR,, is the region from which packets sent in the previous cortsectime slot
would collide with the interested packe®, is the region for transmitters for the intra-timeslot citin, and
Ry, is the region for transmitters in the next time slot for theirtimeslot collision.

Definition 1. The normalized (propagation) time distance o of senderX from the
receiver is the propagation time from the receivetdadivided by the maximum prop-
agation time in the network.

It turns out that the system can have at most three colliggions for each and
every transmitter; one for the intra-timeslot collisiordawo for the inter-timeslot. In
order to identify the regions, let us suppose an arbitramgsmittern; which has the
normalized time distance af (Definition 1). Then, the first collision region is the
region such that a packet sent frotnwould collide with a packet if it is sent in the
previous consecutive time slot by a node in the region. &iryilthe packet from;
would collide with a packet sent in the same time slot by asotiode in the second
region, and the third region is for the collision with a packethe next consecutive
time slot. We denote the three collision regionBy(«), R.(«), R, («), respectively,
noting that each region depends on the distance of the gtéetéransmitter from the
receiver. Moreover, they also depend on the normalizeddtirae 3, but let us omit it
in the notation because the omission does not incur amiguit

Note that, after calculation, the regions can be expresseéerims of normalized
time distance and guard time. The regi®p(«) is where the normalized time distance
from the receiver is at least+ 3, but no more than. That is,R, (o) = {pla + 8 <
d(p) < 1}, whered(p) denotes the normalized time distance of the ppifitom the
receiver. Similarly, we hav®.(a) = {p|0 < ?(p) < 1}, andR,(a) = {p|0 <
o(p) < o — B}. Figure 6 visually presents the regions.

The probability of no collision given a packet sent by an @éby i-th sendemn,; is
then as follows conditioning on the’s normalized time distance;

1
Pr{NCIn;} = / Pr{NC|n; transmitsdo(p;) = a} - fo(p,)In, (@)dax
0

/1 2aPr{NC|a}da, (2)
0

wherep; is the location ofi;, fyp,)1n, (-) IS the probability density function of the
normalized time distance of; rorﬂ)ﬂ)'le receiver given that; transmits, andvVC'|« is

the abbreviated representation of the event that no amilisccurs givem,; transmits
and its normalized distance from the receiveris

10



The last equation holds because the location of a node ip@mtkent of the packet
transmission and the transmitters are deployed uniforméur assumption.

Meanwhile, the probability of no collision of a specific patkloes depend on the
location of its sender because it defines the three colli®gions,R?,, (o), R.(«), and
R,(«); and the regions’ areas affect the probability. Hencehrrtonditioning on the
numbers of other transmitters in those three collisionaiegjiwe can get the following
equation:

Pr{NC|a} = Z

(z,2):z+2<n—1

Pr{NC|a,N, =x,N, =2, N.=n—1} 3)
XP{N,, =x,N, =z, No. =n — 1|a}

whereN,,, N., andN,, denote the number of other transmitters in the collisiofoms
R, (a), Re(a), and R, («) respectively. Note that (V. = n — 1 because the intra-
timeslot collision regionRk.(«) is the whole area in our assumption; and (ii) there
are(n — 1) other transmitters in total because we focus on one spedfisiitter's
success.

Note also that the event 6f,, = =, N, = z, N. = n — 1|« has the multinomial
distribution with parameterns— 1, p,,(«), andp,, («), wherep;(«), i € {n, p} denotes
the probability that a transmitter lies iR;(«). And each of these probabilities is the
ratio of its area to the entire area of the netwgrkia) = (a—3)?, when0 < a— 3 <
1, andp,(a) = 1 — (a + )2, when0 < a + 3 < 1. The probabilities are all zero
otherwise.

Now we have two cases, each of which has three sub-casese firdhcase A
(0 < B < 0.5), we have three sub-cases; (i)< « < 3, whereR,,(«) = ) so that
pn(a) =05 (i) 5 < a <1-— 4, where all three collision regions can have areas larger
than zero; and (il — 8 < o < 1, whereR,(«) = () so thatp,(«) = 0. In the other
case B (.5 < g < 1), we have another three sub-casesp(k o < 1 — /3, where
Ry (a) = 0; (i) 1 — B < a < B, whereR,(a) = R,(a) = 0; and (i) 8 < a < 1,
whereR, () = 0.

Let us consider Case A.(i) first. In this case, the conditigomabability of no
collision turns out to involve the binomial series as follw

n—1

Pr{NCla} = Z Pr{NC|a,N, = z,N.=n—1,N,, =0} - Pr{N, = z|a}
2=0
n—1 n—1
= 2 ( . )(1 —p) (L =p)" (L= (a+ B ((a+ B
z2=0
= (1=p)" (1 =p+pla+p)?) ! 4
Equation (5) and (6) are the summary after calculating theratases in a similar
way.
In Case A,
1=p)" A =pt+pla+p)?)", f0<a<p
Pr{NCla} =< (1 —=p)" (1 —p+ 4paB)" 1, fB<a<1-p5 (5

(1—p) 1 —pla—p)*)"t, fl-g<a<l

11



In Case B,

(1-p)"t1—p+pla+p)?)t f0<a<1-8
Pr{NCla} =< (1 —p)" 1, fl-g<a<p (6)
(1—p)" (1 —pla—pB)*)"1, f<a<i1

Substituting (5) or (6) into (2) we can obtain the expressmrthe probability of
no collision which can be evaluated easily with the numénwethod.

Note that the expression for probability of no collision do®t involve the maxi-
mum propagation delay,, implying the probability is independent af, so that the
success rate is also independent,gf It turns out from Theorem 1 that the success rate
is independent of,,, even after relaxing the assumption of 2D unit disk of the oekw
and the identical distribution of packet transmission faclenode.

Theorem 1. Suppose a network of nodes with fixed spatial locations oésalfixed
transmission probability; in a time slot for each nodg and a transmission tim#

for a packet. Then, the success rdtes independent of the maximum propagation time
T In the network as long a8 < 7,,, < T'. In other words, it is independent of the
propagation speed,,.

PROOF. Since the spatial locations of nodes are fixed, the spas&rter,, from the
receiver to the farthest node is constant;= 7,,, - v, = const.

The spatial distance, of an arbitraryi-th transmitter is also fixed, and so the nor-
malized propagation time delay; of the node is constant regardless-gf as long as
rm > 00r0 < v, < oo because of the following:

TP = QG Ty Up = QG Ty = aizizconst.
Tm

Let »(R;) denote the spatial region associate with the collisionoredi;. Then,

the spatial region oR,,, R., andR,, are all fixed regardless of,, because

T(Rn) = {T :0<r< (ai - B)vap = (ai - ﬂ)rm}
r(Re) = {r:0<r <1pv, =1}
r(Rp) = {r:(ai+B)rm <r <rm}

andq;, 3, andr,,, are all constants.

Hence, the number of nodes in eachidf, R., and R, is constant regardless of
the speed of propagation, and so the probability of no ¢otlisf thei-th transmitter
is constant. Therefore,

f= Zpi Pr{NC|n;} = const. with respect to,, O

5.4. Throughput for finite number of nodes
In this paper we consider the throughguin packets per transmission time. Be-
cause the size of time slotis+ fa, S can be expressed as follows:

S(n. B.p.a) = T = TP ™
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n—1
lim (1 - 3) = e
n
n—1
lim (1 Ay é(oz + 6)2) = e MAatH)?
oo n n

oA H4ras

n—1
lim (1 — i(oz - 6)2) = e Ma=h)?
n

Table 1: Equalities to use as building blocks to calculagettitoughput in the limiting case

a 0.2464 || p1 | 0.1805(| p | 0.0784 || po | 0.2257
—2.9312 || ¢1 | 0.6543| ¢ | 0.2638 || g2 | 0.6959
—0.9887 || 1 | 0.8898] r | 0.9173 || ro | 0.9049

Table 2: Constants for Approximation Models

, wheref (n, 3, p) is the success rate and we know the probability of no coilifiom
the previous section.

5.5. Throughput for infinite number of nodes

In this section, we investigate the throughput of PDT-ALOldfotocol with an
infinite number of nodes with the traffic loadover the network, i.ep — oo while
p = A/n. Hence, the throughput in this case is given by

S(B, A, a) :n1L1205|p:% =170 nan;OPr{NC|ni} (8)

Because the integrand of (2) converges uniformly duet] (see Appendix), we
can exchange integral and limit operations by Theorem 7£180). Hence, with the
equalities in Table 1, we can achieve the conditional priityabf no collision in this
limiting case as follows:

If 0<pB<0.5;

e—2k+k(a+[3)2’ 0<a<
Pr{NCla} = {e7?MPef g <a <15 (9)
e*)"A(O"ﬁ)z, 1-p<a<l1

If 0.5<p8<1;

672A+A(a+5)2’ 0<a<1-p
Pr{NCla} = { e, 1-B<a<p (10)
e ANt g<a <]

Therefore, substituting (9) or (10) into (2) which can be muically evaluated
easily, we can obtain the expression for the probability@tallision for a packet of
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a transmitter. We shall use numerical evaluations to inyats the properties of the
maximum throughput and obtain a very simple approximatiwritfin Section 6.2.

5.6. Throughput with no guard time

We derive the throughput of PDT-ALOHA for the case where ¢hisrno guard
time (i.e. 5 = 0) and the number of nodes is infinite, using our derivationtfer
general case developed in previous sections. We preserasha sanity check because
we know that, without the guard time, the PDT-ALOHA is eqUevd to the traditional
slotted ALOHA, whose performace degrades to that of the pumslotted) ALOHA
given by (as discussed in Section 3.3)

Thyure = Ae™ 2 (11)

For our derivation, no guard time (= 0) impliesPr{NC|a} = ¢~2* from (9),
which in turn impies from (2)

1
Pr{NC|n;} = / 20~ do = e~ (12)
0

Therefore, the throughput of PDT-ALOHA is given from (8) by
S(B=0,\a)=Xe"2* (13)

This shows our derivation correctly capture the througmpechanism for the no-
gaurd-time case and the phenomenon that the amount of maxpnapagation time
becomes irrelevant to the throughput when there is no girasdfor PDT-ALOHA.

6. Optimization of PDT-ALOHA

In this section we investigate timeaximunsuccess rate and timeaximunthrough-
put of PDT-ALOHA protocol. We also have an interest in thetpool parameters,
particularly the size of guard time and the traffic load, Whiealize the maximum
throughput.

We consider the traffic load per transmission tisneas well as the load per time
slot A because it is useful to compare traffic loads between systémgferent size
of time slot. And, it turns out it gives simpler approximatitor the optimum values.
These two kinds of traffic load have the relationshipias= \/(1 + Sa).

Although we assume in this section the limiting case, whieeentumber of nodes
in the network is infinite, it is fairly straightforward to agt the method we used here
for the finite number of nodes.

6.1. Special Cases

We start with special cases, i.8.= 0, or 8 = 1, which can be analyzed analyti-
cally. Then, we examine general cases given a network sigrims of the maximum
propagation delay in Section 6.2.
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In these special cases, the maximum throughput is assdeidttea given fixeds,
and defined asS* (3, a) = maxcr+ S(5, A, a)

When there is no guard times (= 0) or the guard time is full so that there is
no collision between packets from different time slgts= 1) we have a closed-form
expression for throughput which is simple enough to anaymdytically the maximum
throughput. Wherg = 0, the throughput isSo(\) = S(3 = 0,\,a) = Ae~?* from
(13).

The maximum throughput can be obtained simply using thevalire sinceS is
convex. The maximum is achieved’at= 0.5 (i.e. A\, = 0.5) as follows:

Sg=8"(B=0,a)=e""/2 (14)
Whenp = 1 the throughput isS; (\,a) = S(3 = 1,\,a) = Ali; from (2), (8),
and (10).
BecauseS; is convex regarding at anya € (0, 1], we can obtain its maximum
givena using the partial derivative as follows:

e~ !

1+a

Sila) =S5"(F=1,a) = (15)

where the maximizer is. = 1 while the corresponding traffic load per transmission
timeis\, = 1/(1 + a).

6.2. Maximum Throughput

The maximum throughputin this general case is not conditimn the guard time.
Hence, it is defined asi™ (a) = max(g x)er+ xr+ S(5, A, a).

Because it is very hard to obtain the closed form expresgiothie general case
(if possible), we resort to use the numerical method to amathe optimum behav-
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ior of the system. Based on the result of the numerical aislyge propose simple
approximations for the optimum behavior and its protocoapzeters.

Now we investigate the maximum throughgtit(a) over all possible non-negative
guard times and network load per time slot given the network size in terms of the
maximum propagation delay. Note that it is sufficient to lamto only 8 € [0, 1] and
A € [0,1] becauses' (5, A\, a) < S(1,1,a), V8 > 1, VA > 1 due to Theorem 2 (for a
finite number of nodes), Theorem 3 (for an infinite number afew), and Theorem 4.

Theorem 2. Suppose a network efnumber of nodes is assumed as that of Section 5.4
with p = A/n. Then, the throughpus,, of the PDT-ALOHA protocol witth > 1 for
the network is no higher than when= 1. That s,

)\ Z 1 = Sn(ﬂ,)\,Tm) S S’n(ﬁvlaTm)a \V/ﬂ € [07 1]

PROOF The success ratg, (3, A) can be expressed as follows using (1), (2), (5), and

(6):
fa(B,N) = A/Ol 20 Pr{NC|a}da = A (1 - %)nl /01 gn(B, N)da

whereg,, (8, \) is a proper function after extract|r(g — —)" !
Suppose\ > 1. Sincel < A1 < Xy < n |mpI|eSgn([3,/\1) > gn(B, \2) for all
B eo,1],

falBN) = A(l—%)n_l/olgn(g,wa
A(1—%)711/01911(5,1)doz < (1—%>nl/olgn(ﬁ,1)da = fa(B,1)

where the last inequality holds singél — z/n)"~! < (1 —1/n)"~! forvz > 1 and
Vn > 2.
Therefore,

IN

fa(BA) _ Fa(B1) _

(ﬂa 9 m)_ 1+ﬁ7_m — 1+ﬁ7-m —Sn(ﬂ,l,Tm) D

Theorem 3. Theorem 2 holds for the infinite number of nodes as long ashtioegh-

put limit exists.

PROOE SinceS, (8, A\, 7m) < Sn(5,1,7,,) for YA > 1 andvn > 2 from Theorem 2,
S(ﬂ, Al Tm) = hHm Sn(ﬂa /\va) < 1Lm Sn(ﬂv 1, Tm) = S(ﬂ, 1, Tm)

as long as the limits exist. O

Theorem 4. The throughput' with the normalized guard band size> 1 of an arbi-
trary network is no higher than that ¢f = 1. That s,

B=1 = S(B,p,7m) <SP, Tm)
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PrROOF If 8 > 1, there is no longer collision of packets between differanetslots
andg does not have any effect on packets sent in the same timédglote, the success
rate is same fof > 1 as that of8 = 1. However, increasing makes the size of time
slot increases. Therefore, the claim follows. O

We evaluate the maximum throughdit for 21 values ofr,,, starting from 0.01 to
1 using the numerical method. After examining the behavidi*q we have found out
that the following simple expression can approximg&teguite closely:

S(a)=p+

q
R (16)
wherep, ¢, andr are constants. The curve-fitted values for the constantsrasented
in Table 2.

Figure 7 shows the accuracy of the approximation; The plotSfois the inter-
polation of 21 data points of the maximum throughput oveei&t loads and guard
times found by numerical methods. As can be seen, our appatixin has reasonably
good accuracy. Quantitatively, it does not deviate mora thh8% from the numerical
evaluations of5™*.

The optimum values of protocol parameters which realizefitenum throughput
are also of interest. In particular, we are interested inagpttmum size of the guard
time g* and the optimum traffic load’ per transmission time given the network size
in terms ofa. Through the numerical analysis we have found out that thienager 5*
and\} can be closely approximated with the following models:

q1

bla) = m+ (17)
@) = pat (18)

wherep;, g;, andr;, Vi € {1, 2} are constants; their proper values are given in Table 2
through curve fitting.

Figure 9 pictorially presents optimizefs and A, and their approximations de-
pending on the maximum propagation detaylt also shows the guard timéu nor-
malized to the transmission time, which is one in our papey.cAn be seen, our ap-
proximations are very close to their numerical countemaespectivelys deviates no
more than 2% while\, differs no more than 0.2%. We can also see that the optimum
guard time is less than roughly half of the transmission tiarel it is monotonically
increasing as the maximum propagation delay increases.

6.3. Maximum success rate

In this subsection we consider the maximum success rate.r§¥g@fesent the an-
alytic findings about the properties of the maximum numbesuzfcessful receptions.
The findings are more general than what we assume previod&yfind out through
Theorem 6 that, as long as the maximum propagation delagsstihen the transmis-
sion time of a packet, the maximum success rate is monotgnican-decreasing with
respect to the guard time even when the network area is no longer 2D disk and the
sending probability is not identical for each node.

17



Guard time fraction

-

0.5

o
©
a

=}
~ o
g  ®
o
IS
o
o 9
& ©

o
2
Guard time B a
o
®

o
S o
3 »

o
o
a
o
N

o
3

o

>
o
o
a

0.1

_@*a

o

o

o
o
o
S

Offered load (packets/transmit time)

1
1
'
=
)

=}
o
o
o
o
o

0.2 0.4 0.6 0.8 0 0.2 0.4 0.6

o
©
o
o
N

0.4 0.6 0.8 1

(a) (b) ©

Figure 9: Numerically calculated optimizers and their appnations vs. the normalized maximum propa-
gation delaya (propagation delay / transmission time), (a) for guard tfraetion 3, (b) for traffic load\,
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Lemma 5. Given the arbitrary location distribution af transmitters and the proba-
bility p; thati-th transmitter transmits a packet in a time slot, the suseate f (5, p)
is monotonically non-decreasing as the normalized guare{# increases when the
maximum propagation delay, in the network is less than the transmission tife

In other words,0 < ;1 < B2 <1 = f(B1,0) < f(B2,p), forall p =
(P1y--ypn) SLO0<p; <1, Vie{l,...,n}.

PROOF Becauser,, < T, a transmission can interfere only with the transmission
of immediate previous, current, and/or immediate next taloe. Hence, there are at
most three collision regions given a transmitter as we ityated in Section 5.3. The
three regions for an arbitraryth transmitter which has the normalized propagation
time distance ofy; are in summary as follows in terms of normalized time distanc
Ru(a) = {pl0 < 2(p) < ai — B}, Re(as) = {p0 < 0(p) < 1}, and Ry (a;) =
{pla; + 8 <2(p) <1}

Hence, wherd increasesR,, («;) decreases monotonically upftpmaking the cor-
responding collision probability monotonically non-ieessing;R.(«;) stays constant,
not changing the probability; anf,(«;) decreases monotonically up fo making
the probability monotonically non-increasing. These iiepthat the probability of no
collision for thei-th transmitteiPr{ NC|n, } is monotonically non-decreasing for each
1.

Therefore, the success ratés,p) = >, p; Pr{NC|n;} is monotonically non-
decreasing with respect tb O

Theorem 6. With the same assumptions of Lemma 5, the maximum succoegs (jaf
overp (i.e. f*(8) = maxy f(f,p)) is monotonically non-decreasing with respect to
the normalized guard time size

In otherwords0 < 81 < B2 <1 = f*(B1) < f*(52)
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PrROOF From the definition off* and Lemma 5,

f*(B2) = f(Ba,p) > f(B1,D), VP

Therefore,f*(52) is an upper bound of (31, p) for all p, which implies the fol-
lowing:

f*(52)2mg><f(ﬁ1aﬁ)=f*(51) 0

As in the previous subsection, we use the numerical methesatuatef*. The
black solid line of Figure 8 shows the interpolation of 22alpbints of f* found
numerically.

Although it is hard to obtain the exact expressiorff we know from Theorem 6
that the maximized functiofi* (5) = max, f(5, A) is monotonically non-decreasing.
From this fact and the observation that the log-scale plth@humerically evaluated
1*(B) is approximately of cubic function, we are able to proposddiiowing approx-
imation model forf*(5): i) = Ja(B—1)* (B4b)te (19)
wherea, b, andc are constants and the constraint that —1 makes sure that the
function is monotonically increasing.

The red dashed line of Figure 8 shows this approximation witiper constants
suggested in Table 2, as determined through numerical ¢itting.

7. Analysis and Comparison with Protocol Simulation

We now analyze the results of optimal throughput of PDT-ALOBbbtained in
previous section to observe the effect of guard time and orétaelay regime. Fur-
thermore, for comparison we simulate PDT-ALOHA to verifgtborrectness of our
analysis in a realistic network. We first introduce the paztars of the simulation used
for comparison and then focus on the results. We end thisoselsy drawing some
interesting conclusions from these results.

7.1. Simulation Parameters and Assumptions

We run our simulations using a custom-built, packet-lewriugator designed for
UWSN MAC research [12] Our simulation scenario consists of a single receiver that
does not transmit, with nodes randomly deployed in a circtdgion with a radius
equal to the maximum propagation delay. Nodes, with a sipgtket buffer, trans-
mit based on an offered load to the network modeled as a Romsaess, with mean
ranging from 0 to 3 packets/transmission time, and we onkeole the packets suc-
cessfully received at our designated receiver. We choogegiegeceiver to parallel
our analysis of protocol behavior, but have verified thatesults hold with packets
reception at other nodes in the network. Protocol perfomeas evaluated through

1This simulator is available from the authorshatt p: / / www. i si . edu/ i | ense/ sof tware/ .
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Figure 10: Throughput of PDT-ALOHA as guard time lengtlis varied.

throughput normalized to channel bandwidth. Simulatiamsran with 32 nodes un-
less otherwise noted. We use a packet length of 125 bytestingsin a transmission
time of 1 second (at 1kb/s) to normalize our throughput asislyWe also assume a
constant speed of sound as 1500m/s. We alter the maximure tasgnulate different
delay regimes. Each simulation data point is the averagadtref 25 simulation runs
with error bars showing 95% confidence intervals.

7.2. Effect of Guard Time on Throughput

We now look at the maximum achievable throughput (througltppacity) that
PDT-ALOHA can achieve (at an optimal offered load) as a fiomcbf guard time
length,3 which is a fraction of the maximum propagation delay.

Figure 10(a) shows this function gfas the throughput capacity for a fixed'32
nodes) using numerical methods for maximizing (7) gveWe plot the response for
different delay regimes characterized by different valofes. Figure 10(b) shows the
plot for the exact same parameters. However, here insteasimg analysis we derive
our results from empirical data collected from simulatiois we see results from both
simulation and analysis compliment each other. Both resiiow that throughput ca-
pacity of a network can be increased by using PDT-ALOHA arad the benefit of the
guard time is highly correlated to its size and the delaymegih which the network is
operating. We also observe two trendsjascreases. First, with very small= (e.g.
0.01 in simulation results) we see the throughput incre@ggsoaching the optimum)
as larger guard time is used due to a decreased inter-titeedlision probability. Con-
versely, with large: (e.g. equal to 1 when the propagation delay equals trangmiss
time) the throughput becomes insensitive to the use of girael Furthermore, sim-
ulation results (not shown here for clarity) show that foy &alue ofa beyond 1, the
benefit of choosing additional guard time diminishes. Thh®osing a packet length
that normalizes the propagation delay to an appropriateavialessentially to yield the
benefits of PDT-ALOHA.
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Figure 11: Maximum throughput of PDT-ALOHA as the normatizgopagation delay is varied.

7.3. Effect of Delay Regimes on Throughput

We next varya to observe how the the throughput capacity is affected bpasro
gation delay in PDT-ALOHA. We generate a figure similar toikleck and Tobagi's
(Figure 10 in [9]) that shows the impact of propagation daedaythroughput capac-
ity for different MAC protocols. However, due to their eqisthnt and single receiver
assumption the authors there showed the capacity of siatt€HA not affected by la-
tency, which we have shown to be incorrect for general ad kbwarks in Section 3.3.

Figure 11(a) shows throughput capac#y(s, a) as a function of the normalized
maximum propagation delay when the guard timé is given and fixed. They are
obtained forn = 32 maximizing (7) overp with given 5 anda. For comparison,
we have the same plot generated from simulation resultsgarg€il1(b). We plot the
response using different values/f We also show thg-optimalthroughput capacity
curve S*(a) using the value ofs that maximizes the throughput capacity at a given
value ofa (using similar methods as in Section 6.2 with (7)). It can eersthat a
fixed value of might lead to a suboptimal throughput. When= 0.5, PDT-ALOHA
is closest to thes-optimal curve wher is near 1 but the gap increasesaagoes to
0. Conversely, fop = 1 PDT-ALOHA is closest to the-optimal curve for smaller
values ofa but becomes inefficient asapproaches 1.

Although the throughput decreases monotonically witheasing values of, we
observe very little sensitivity ta with smallers values. This insensitivity is due to
limited collision prevention provided by shorter guard ¢éimAlso the monotonically
decreasing slope increases witlttausing throughput to become more sensitive.to
Figure 11 shows that PDT-ALOHA can achieve about 17% (wlea 1) to 100%
(whena — 0) improvement on throughput over vanilla slotted ALOHA in amder-
water environment.

Figure 11 shows the normalized throughput in terms of theimam propagation
delaya. Next, let us look into how the maximum throughput changeteims of the
guard timeSa. We have found from the numerical analysis that, given adytiare Sa
in [0, 1], the maximum throughput can be obtained with= 1 (hencea = Sa). This
makes the guard time in this case. Hence, the red dotted line representing the cas
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B = 1in Figure 11 also shows the maximum throughput in terms ofgtlnerd time

Ba = a.

7.4. Short Hops are Better

Our analytical and simulation results also show higherughput can be achieved
by using guard time for lower values af For example, assume we use an acoustic
modem that has a communication range of 300m and a speed @$ [KA. If we
use packet length of 250 byteswill be 0.1, and the modified slotted ALOHA can
achieve performance similar to the slotted ALOHA in RF netwo Thus in terms of
how much of throughput can be reclaimed, shorter commuboitéps will provide
higher throughput benefit.

This conclusion is complimentary to the physical layer angat presented by Sto-
janovic that higher throughput in acoustic networks can btioed using smaller
hops [21]. Similar arguments from an information theorpticspective have also been
forwarded for bit level [22] and multi-hop [23] underwateroastic networks. All
these results, along with the results in this paper, reggfohe benefit of short-range
communication in underwater networks, for reasons beyoedgy efficiency.

8. Conclusion

In this paper, we have explored the impact of spatio-termpaertainty on UWSN
MAC protocols. For such networks, we have shown that looatiependent acoustic
propagation delay significantly affects MAC protocols sashslotted ALOHA. Thus
it is necessary to consider both space and time uncertaimidle designing MAC
protocols under varying latency environment of an acou$#SN.

We propose PDT-ALOHA to deal with the spatio-temporal uteiety in slotted
ALOHA by adding guard times each slots. We have investigdifédrent metrics of
its performance — success rate, throughput, and their aptraues— using both
mathematical analysis and protocol simulations. Our teshiow that the throughput
capacity of PDT-ALOHA is 17-100% better than that of simdetted ALOHA in an
underwater environment. We have shown that for the optihralighput capacity the
value of optimalg changes based on operating delay regime. Our results tedica
significant throughput benefit when shorter communicaiittslare used. This argues
for deploying dense, short range, multi-hop networks aseeg to sparse and long
range networks currently used in underwater networks.

Because underwater networks often face limited energyt@nts, it would also
be desirable to explicitly consider the energy-efficiencgésigning a MAC protocol.
However, this work focuses on capturing the impact of lageamt ALOHA-like proto-
cols and understanding the mechanics of underwater medigess. Since ALOHA
itself was never meant to be energy efficient and PDT-ALOHAgoot consider any
optimization for energy, the energy-efficiency of PDT-AL®@kemains an open ques-
tion that should be investigated in future work.
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Appendix

A. Proof of Uniform Convergence

Before proving the theorem, we first state the following $eantd prove the subse-
quent lemmas.

Fact A.1. SupposeX is compact, and
(@) {f.} is a sequence of continuous functions/on
(b) { f} converges pointwise to a continous functjoon K,
©) fn(z) > fosa(z)forallz € K,n=1,2,3,....
Then,f,, — f uniformly onkK.

ReferenceTheorem 7.13 in page 150 of [20].

FactA.2. If {f,} and{g,} converges uniformly on a sét and they are sequences of
bounded functions, thefnf,.g,, } converges uniformly of.

ReferencePage 165 of [20].

Lemma A.1. Suppose

fn(x) = (1_5)7171
fla) = o

Then the sequence of functiof,},n = 2,3,..., converges uniformly om €
[0,1] C Rto f.

Proof: Let X = [0,1] € R. From Fact A.1, what we need to show areftjYz) is
continuous orX for all n, (i) { f,,} converges pointwise to a continuous functjoan
X, (i) fo(z) > fosa1(z) forallz € X,n=2,3,4,....

It is easy to see thaf,(z) and f(x) are continuous onX for all n and that
Jim fu() = f ().

Supposer € {r:r > 2,r € R}. Then,

o =250 = (-0 [ e (- 0)

gn(z) = M +In (1 — %)

n(n — x)

Let

Then, g, (z) = ﬁ Hence,g,, (x) monotonically decreasing 0, 1] for all n,
which implies that, with the fact that,(0) = 0, g, (z) < 0forall = € [0,1] and alln.
Hence,f,,(x) < 0 forall z € X and alln implying that f,, () is monotonically non-
increasing as increases for alk € X. Therefore, it follows thaff,,(z) > fu4+1(x)
forallz € X and alln = 2,3,4, . ...

O
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Theorem A.2. The integrand of Equation (2) converges uniformly[on] if p = %
where0 < )\ < 1.

Proof: From Fact A.2, it is sufficient to show that each of terBr{ N C|a} with
Equations (5) and (6) converges uniformly on its domaimv@nd it is a sequence of
bounded functions od = [0, 1].

First, let us show that the terfl — 2 + 2(a + 8)?)"~!, denoted byh,(a),
converges uniformly o € [0, 3], which is from the case whefe< o < 5 < 0.5.
Because the rangg(\(1— (a+)?)) is a compact set i andh,, («) can be rewritten

as .
AL —(a+ 5)2)>n_

n

hn(a) = (1 -

its uniform convergence follows from Lemma A.1. Affd,(«)| < 1 for all « and alll
n.
In the similar way, it can be proven that other terms satisé/d¢onditions without
difficulty. Therefore, the claim follows.
O
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