
An Adaptive FEC Code Control Algorithm for Mobile
Wireless Sensor Networks

Jong-Suk Ahn
Computer Engineering Dept.

DongGuk University
Jung-Gu Pil-Dong 3-Ga 26

Seoul, Korea
(+82)-02-2260-3811

jahn@dongguk.edu

Seung-Wook Hong
Computer Engineering Dept.

DongGuk University
Jung-Gu Pil-Dong 3-Ga 26

Seoul, Korea
(+82)-02-2260-3811

swhong@dongguk.edu

John Heidemann
USC Information Sciences Institute

4676 Admiralty Way #1001
Marina del Rey, CA 90292

(+01)-310-448-8708

johnh@isi.edu

ABSTRACT
For better performance over a noisy channel, mobile wireless
networks transmit packets with FEC (Forward Error Correction)
code to recover corrupt bits without retransmission. The static
determination of the FEC code size, however, degrades their
performance since the evaluation of the underlying channel state
is hardly accurate and even widely varied. Our measurements
over a wireless sensor network, for example, show that the
average BER (Bit Error Rate) per second or per minute
continuously changes from 0 up to 10-3. Under this environment,
wireless networks waste their bandwidth since they can’t
deterministically select the appropriate size of FEC code
matching to the fluctuating channel BER.

This paper proposes an adaptive FEC technique called AFECCC
(Adaptive FEC Code Control), which dynamically tunes the
amount of FEC code per packet based on the arrival of
acknowledgement packets without any specific information such
as SNR (Signal to Noise Ratio) or BER from receivers. Our
simulation experiments indicate that AFECCC performs better
than any static FEC algorithm and some conventional dynamic
hybrid FEC/ARQ algorithms when wireless channels are modeled
with two-state Markov chain, chaotic map, and traces collected
from real sensor networks. Finally, AFECCC implemented in
sensor motes achieves better performance than any static FEC
algorithm.

Keywords
Adaptive FEC algorithm, Wireless Mobile Sensor Networks

1. INTRODUCTION
Recently, wireless networks have become widely popular due to
the convenience of their inherent mobility and the improvement
of their transmission speed. Their transmission efficiency,
however, is far lower than that of wired networks due to their
frequent propagation errors, namely high BER (Bit Error Rate).
Their average BER is known to be in the range from 10-6 to 10-3,
implying that most packets would be corrupted and thus dropped
over wireless channels without some appropriate error prevention
or recovery mechanisms. In our sensor networks under some
external interference [1], for example, around 90% of all
transmitted packets are observed to be thrown due to the
propagation error for a long period. Their BER is also estimated
to be widely fluctuated by the slight movement of a transmitter,
its receiver, and obstacles.

To resist against this high and widely fluctuated error rate,
wireless networks redundantly employ both prevention and
correction techniques in their physical and data link layers. For
prevention, for instance, the physical layer chooses an error-
resistant but low-speed modulation method while for recovery the
link layer equips an FEC technique on top of ARQ (Automatic
ReQuest) to reduce the number of retransmissions.

For improving the performance, especially most wireless
networks tend to include an FEC algorithm to avoid
retransmissions since consecutive packets are likely to be infected
with bursty errors. The deterministic selection of the appropriate
FEC code size, however, degrades the performance by
mismatching the FEC strength to the underlying channel BER.
When the channel BER widely varies, wireless networks should
dynamically adapt the amount of FEC codes for further
performance improvement.

The measurements over our sensor network show that ABERPS
(Average BER Per Second) or ABERPM (Average BER Per
Minute) continues to fluctuate from 0 up to 10-3 even though
ABERRPS changes more abruptly than ABERRPM. In this
sensor network, a transmitter keeps sending three 100-byte
packets per second to its receiver. The traffic analysis also
indicates that the ABERPM at a given time differs from the next
ABERPM only by 30% in maximum. These two observations
imply that once a dynamic FEC algorithm dynamically chooses
the appropriate FEC code size matching to the slowly varying
channel status, it can significantly improve the performance over
these smoothly undulating wireless channels.

We propose AFECCC (Adaptive FEC Code Control) algorithm
that adjusts the FEC code size based on the channel status
implicitly indicated by acknowledgment packets’ arrival. It
ascends to the higher FEC level at a packet loss while otherwise
descending to the lower FEC level in an MIAD (Multiplicative
Increase Additive Decrease) way. According to the channel state,
it selects one among some discrete number of FEC levels each of
which is pre-assigned a FEC code size to employ. The stay time
on each level before dropping to the lower one is dynamically
decided in proportional to its previous success rate. The more
frequently AFECCC adopts a level, the longer it stays at this level.

Our simulation experiments confirm that AFECCC performs
better than any static FEC algorithms and two previous dynamic
hybrid ARQ/FEC algorithms called LA-IR (Link Adaptation
Incremental Redundancy) II and retrace recursive LA-IR [2] when
wireless channels are modeled by two-state Markov chain, CM

(Chaotic Map) model, and packet traces collected from real
sensor networks. The experiments over real sensor networks
finally show that AFECCC outperforms static FEC algorithms.

This paper is organized as follows. Section 2 lists some related
work and Section 3 examines the adaptive algorithm's
applicability over wireless sensor networks. Section 4 describes
AFECCC algorithm and Section 5 examines the performance of
four transition schemes applicable for AFECCC. Section 6
elaborates various channel models to simulate bit-level details in
packet simulators for evaluating FEC algorithms’ throughput.
Section 7 reveals AFECCC behaviors under wireless channel
models and in real sensor networks respectively. Finally Section 8
summarizes experiment results and presents our future research
list.

2. Related Work
FEC algorithms are frequently adopted in application or data link
layer for recovering damaged or lost packets. The former restores
packets dropped during congestion while the latter corrects
packets contaminated by propagation errors. Even if both have the
same goal of restoration, the latter’s efficiency is more difficult to
achieve due to the restriction of packet size and rapid BER
fluctuation in wireless networks. The packet corruption
probability increases in proportional to the packet size and the
wireless channel BER tends to vary more quickly by a few order-
of-magnitudes than the Internet congestion.

FEC techniques are classified into hybrid Type-I and Type-II
FEC/ARQ according to what is retransmitted in case of packet
loss. Type-I retransmits the same data with stronger FEC code
while Type-II resends only stronger FEC code or some
incremental FEC code when the sender adopts convolutional
codes [3]. The convolutional code has a property of generating a
complete stronger code by reassembling more incremental FEC
codes. Note that AFECCC works with either Type-I or Type-II
since it aims at determining the strength of FEC code or the
amount of FEC code to send at the next time.

Type-I performs poorer since it wastes the bandwidth by
repeatedly resending the same data while Type-II
becomes inefficient when either the data packet or some of
previous incremental FEC packets can’t reach the receiver. Note
that the convolutional code adds all previously transmitted
incremental FEC codes to generate a complete stronger FEC code.
Due to this characteristic, Type-II scheme is hard to be applied to
some heavily nosy wireless networks like our sensor networks
where receivers can’t even recognize packet arrivals due to their
preamble corruption. When they seldom receive tainted packets
so that they don’t feed back any acknowledgment, the sender
can’t decide whether to retransmit the previous packet or send a
new packet containing a new incremental FEC code.

Type-II is also hardly applied to datagram networks like ad-hoc
networks since it requires receivers to store a corrupted packet
and its next consecutive incremental FEC codes for each sender
until the damaged packet is recovered. In datagram networks,
receivers are not guaranteed to receive packets in sequence from
the same sender due to the routing path change and intervened
packets from other senders. Nodes in datagram networks,
however, are supposed not to maintain any state for outstanding
connections.

Some techniques [2][4] for dynamically adjusting the amount of
Type-II FEC incremental codes based on previous channel state
have been proposed. Their basic algorithms consists of two parts,
one for the predictor determining the starting FEC code level for
each new packet to adopt and another for additively increasing the
strength of FEC code by transmitting more incremental codes
until the damaged packet is recovered. They vary in the way of
using the previous packet arrival history to evaluate the current
wireless channel state for deciding the starting FEC level. For
example, LA-IR II sets the starting FEC level Fs as Fl – 1 where
Fl is the level with which the previous packet is successfully
transmitted. Retrace recursive LA-IR sets Fs as Fl – 1 where Fl
is the most successful level among some number of previous
successful levels. We will compare these two algorithms’
performance with that of AFECCC in below.

AFECCC differs from them in two aspects. One is the way to set
the starting FEC level. In AFECCC, each FEC level memorizes
how long it would be adopted as a starting FEC level if there is no
packet loss while the LA-IR algorithms use the history of
previous FEC levels with which packets were successfully
forwarded. The number of previous levels to look back is called
window. LA-IR II and retrace recursive LA-IR, for example,
statically set this window size to 1 and some number greater than
1 respectively regardless of whether the channel state changes
rapidly or smoothly. The static window size, however, is
inappropriate to trace down the channel state behavior. The large
window size hardly adapts to the fast-changing BER while the
small one can’t detect the smoothly changing channel behavior.

In contrast, AFECCC immediately sets the current starting level
to the last successful FEC one if the packet fails to recover with
the previous starting level. While it continues to successfully
transmit packets with a given FEC level, it tends to adopt this
FEC level for a period called stay time. For determining this stay
time on a FEC level, it computes two metrics of each level; the
success rate and the elapsed time after the last time when each
level was adopted. The success rate of a level means how many
packets are successfully restored with that level for a given period
without retransmission.

Another is that AFECCC investigates several various ways for
increasing the amount of incremental FEC codes when the
recovery fails while the previous schemes [2][4] only assume
addictive increase. To efficiently operate in wireless networks
where BER changes widely, AFECCC increases the FEC code
level multiplicatively rather than additively while decreasing
additively to test whether the channel becomes noiseless.

In addition to increasing FEC code strength appropriately to
measured channel state, many researchers [5][6][7] actively have
proposed various algorithms adjusting different transmission-
related parameters. Some algorithms accommodate MTU
(Maximum Transmission Unit) size, modulation schemes, and
transmission speed depending on the average packet loss rate or
SNR (Signal to Noise Ratio). Holland [7], for instance, proposed
a dynamic algorithm which chose a slow but robust modulation
scheme at low SNR and switches to a fast but weak one at high
SNR. Differently than these techniques, AFECCC tunes the FEC
code size without any explicit information such as SNR and the
average packet loss rate.

3. WIRELESS SENSOR CHANNEL ERROR
CHARACTERISTICS
This section examines the characteristics of bit errors in sensor
networks to determine whether their BER varies smoothly enough
to be traced down by an adaptive algorithm. When wireless
channel is modeled as a state machine and a state is specified as
BER, AFECCC adaptability is determined by the average
duration of a state and the BER difference between two adjacent
states. If BER varies more rapidly than the adaptation delay taken
for detecting BER variation and calculating the suitable FEC level,
it hardly accomplishes any improvement. If the channel BER is
constant, furthermore, it may be useless.

Figure 1 shows NCBPP (the Number of Corrupted Bytes Per
Packet) standard deviation distribution of 10 traces at each TR
distance (standing for the distance between the transmitter and
receiver) by incrementing 1m from 6m to 13m. Each trace
represents 4-hour traffic from a sensor network where a Mica
Mote sender continues to transmit 100-byte packets to its receiver
at the maximum speed of 3.2Kbps by FSK (Frequency Shift
Keying) modulation with 915 MHz carrier signal and 90mW
transmission power.

Figure 1 indicates that the average NCBPP gradually increases
from 2-byte within close distances less than 11m to 11-byte as TR
distance approaches 13m, the threshold distance for distinguishing
signal. The standard deviation range also widens from 2-byte up
to 10-byte as TR distance gets larger. The growth of the average
NCBPP as a function of TR distance is explained by LSF (Large
Scale Fading) effect that the signal power fades in proportion to
TR distance. The expansion of the standard deviation span is due
to that SSF (Small Scale Fading) effect mainly caused by multi-
path interferences gets stronger as the signal power becomes
weaker.

Based on Figure 1, we can say that AFECCC is indispensable to
accommodate the wide BER distribution when receivers move
around or even when they are statically located apart further than
10m from their sender. When a receiver roams around within 13m
radius from its sender, for instance, the sender needs to add 36-
byte RS (Reed-Solomon)[8] code to correct the worst 18 damaged
bytes at 13m TR distance. Note that RS code requires 2-byte
correction code for 1-byte error. This static FEC algorithm,
however, leads to 24-byte waste at TR distance less than 11m
where the maximum number of erroneous bytes is less than 6.

Figure 1. NCBPP Distribution As A Function of TR-Distance

Figure 2 shows how fast the channel BER changes by plotting
Allan deviation [9]. For Allan deviation, we divide a packet trace
into time slots, compute NCBPP average of each time slot, and
finally calculate Allan deviation, namely the variance of two
neighbor time slots’ NCBPP. Allan deviation represents the
smoothness of BER changes.

Figure 2 displays five Allan deviation graphs for five different TR
distances as the time slot width for averaging NCBPP expands. In
Figure 2, the Allan deviation of 13m trace is 4-byte at 1s (second)
time span while it rapidly decreases up to 1-byte at 60s interval.
This Allan deviation plots again verify that NCBPP slowly
changes at close TR distances while it abruptly varies at distant
ones. This observation also illustrates the appropriate FEC code
size difference between two adjacent FEC levels depends on the
time scale to track down. When AFECCC aims at tracing 1s BER
variations, for example, its levels should be apart further than 4-
byte at least. On the other hand, when it tries to follow long-term
variations, the difference between two neighbor levels should be
more than 4-byte.

Figure 2. Allan Deviation Of NCBPP

Figure 3-(1) and 3-(2) show some visual evidence of AFECCC
adaptability over sensor channels by depicting two average
NCBPP variations of an 11m trace when the average time span

sets to 1s and 10s respectively. These two figures perceptibly
prove the existence of some low-frequency variations for
AFECCC to faithfully trace down, especially like a wide deep
valley between 700s and 1200s even though numerous spikes are
dispersed over entire observation interval.

(1) Average NCBPP Per Second Variations

(2) Average NCBPP Per 10-Second Variations

Figure 4 computes the ratio of theoretical waste time to the total
observation interval when four static FEC algorithms are applied
to the collected packet traces. Note that a static FEC algorithm
wastes the bandwidth by transmission of its excessive FEC codes
and packet losses due to its deficient FEC code strength. Four
static FEC algorithms, FEC1, FEC2, FEC3, and FEC4 in Figure
4 are assumed to add 6, 10, 20, and 40-byte RS code respectively
to recover 3, 5, 10, and 20 erroneous bytes. The code size of each
FEC algorithm is decided based on the measured error
distributions where damaged bytes of 90% corrupt packets range
from 2 to 20-byte.

In Figure 4, at first IEEE 802.11 without any FEC algorithm
spends more than 70% of transmission time due to heavy packet

losses. FEC4 and FEC1 consume almost 37% and 4% of the total
time for unnecessary extra FEC code transmission while wasting
0.2% and 8% for packet loss at 6m TR distance. On the other
hand, at 13m these two algorithms spend 25% and 2% for FEC
code overhead while 10% and 78% for packet drops. To minimize
the bandwidth waste depicted in from Figure 4, wireless networks
need to dynamically select FEC2 in [6m, 10m], FEC3 in [10m,
12m], and finally FEC4 around 13m.

Figure 4. Bandwidth Waste Ratio Of Four Static FEC

Algorithms

4. AFECCC ALGORITHM
This section introduces AFECCC algorithm that gradually
approximates a suitable FEC level among some available FEC
levels matching to the underlying wireless channel BER only by
the assistance of acknowledgment packet arrivals. It descends to
the lower FEC level some time called drop timeout after
consecutive acknowledgements successfully arrive while
immediately ascending to the higher one at a packet loss. It
continues to adopt the previous starting FEC level until the drop
timeout expires differently than the traditional hybrid Type-II
dynamic algorithms [2][4].

AFECCC incrementally infers the appropriate FEC level or the
number of FEC code bytes for the next packet to use since
receivers seldom estimate the exact number of corrupted bytes
once the number of error bytes is beyond the correction capability
of the attached FEC code. Senders also are hard to deduce this
number from SNR that are often measurable and fed back by their
receivers.

Figure 3. NCBPP Variation Over Two Different Time Scales

AFECCC joins at the higher FEC level at the detection of a
packet loss. Since the overhead of transmitting additional extra
FEC code is much smaller than that of an entire packet
retransmission, adding more FEC codes is much better for
improving the performance than taking a risk of dropping another
packet. The accumulation of unnecessary FEC code transmissions
during a long error-free period, however, unacceptably
deteriorates the throughput.

To determine the appropriate drop time to the lower level,
AFECCC maintains a DT (Drop Timer) for each level whose
timeout is adjusted by a binary exponential back-off algorithm.
Whenever it joins a new FEC level, it exponentially increases DT
of this newly adopted level up to Tmax by multiplying with a

multiplication factor α(>1). The more frequently it visits a FEC
level, the larger its drop timeout grows to be stable at this level.
Notice that α and Tmax decides the polling frequency to check the
channel status improvement, leading to the polling overhead of
AFECCC. The smaller α , for example, the more frequently
AFECCC evaluates the channel behavior by weakening the FEC
code.

AFECCC, furthermore, retains a global polling timer to decay
DTs of the other levels except the currently adopted level.
Whenever this global timer is expired every Tp, it shrinks the DT
timeout value of the other levels up to Tmin by multiplying with a
decay factor, β(<1). This decay operation has an effect of
incrementally forgetting the old channel status as time goes by. In
summary, Figure 5 illustrates these transitions among some
predetermined levels of AFECCC.

Figure 5. State Transition Diagram of AFECCC

The AFECCC four tunable variables, α, Tmax , Tmin, and β
determine the frequency of channel examinations. The smaller
these four variables, the more aggressively AFECCC reduces the
FEC code size at the expense of retransmission. Heuristically, we
approximately set Tp, Tmin, Tmax to RTT (Round Trip Time), h *
RTT, h * Tmin respectively when the code size gap between two
neighbor levels is 1/h of the packet size. Precisely, AFECCC
adjusts DT of other levels except the current on whenever one
RTT for successfully sending a packet elapses. It also sets the
earliest drop timeout Tmin, to h * RTT taken for h packets to be
sent. Note that h * RTT is the duration for the total accumulated
overhead of extra FEC code transmissions 1/h * (h * RTT) to be
equal to the waste time due to a packet loss. With this value,
AFECCC can test the channel before the FEC overhead becomes
greater than the retransmission overhead.

5. AFECCC ALGORITHM ANALYSIS
This section tries to determine an appropriate transition
combination by theoretically analyzing the performance of four
possible level change schemes, AI (Additively Increase), MI
(Multiplicatively Increase), AD (Additively Decrease), and MD
(Multiplicatively Decrease) ways.

5.1 Two Upward Transition Method
Figure 6 pictorially depicts the behavior of two upward transition
techniques when the channel BER jumps up to what n-th FEC
level deals with as the dotted line depicts in Figure 6.

(1) Additive-Increase

(2) Multiplicative-Increase

Figure 6. Two Upward Transition Schemes

Equation 1 shows the AI upward overhead, namely the time taken
to ascend to n-th FEC level by repeating n-time retransmissions.
Note that the worst k-th average retransmission time is the sum of
backoff delay 2k-1 * Ts and RTT where Ts is the minimum delay for
avoiding collision and Ts is set to 50ms in our sensor network.
RTT is the time to finish transmissions of RTS, CTS, DATA, and
ACK packets when IEEE 802.11 networks employ the virtual
channel sensing. Otherwise, RTT is the time to finish
transmissions of DATA and ACK packets

∑
=

−+=
n

k
s

k
overhead TnRTTU

1

1 *2* (1)

In contrast to AI technique, MI needs n2log2 retransmissions to
reach above n-th level shown in Figure 6-(2). The first and second
terms in Equation 2 represents the overhead of these
retransmissions. Note that the ceiling-bar of n2log is an operator
rounding up a float number. When n is not the exponent of 2, the
third term denotes the wasted time for sending extra FEC codes
before descending to n-th level in AD way. Note that the k-th (>n)
level attaches C * (k – n) excessive bytes at each packet during
DT duration under the assumption that each FEC level is evenly
spaced by C-byte FEC code and the underlying wireless
channel’ s bandwidth is BW. The total overhead of extra FEC
code is the multiplication of C * (k - n)/BW, the transmission time

of a packet’ s extra code at the k-th level and DT/RTT, the number
of packets sent before DT expires.

∑

∑

=

=

−

−

++=

n

k

n

k
s

k
overhead

n RTT
DTBWnkC

TnRTTU

2log

2

2

log

1

1
2

)/)((

2log
 (2)

5.2 Two Downward Transition Method
Figure 7 graphically depicts the behavior of two downward
transition techniques when the current BER jumps down from
(m+n)-th level to m-th one where m is an arbitrary number.

(1) Additive-Increase

(2) Multiplicative-Decrease

Equation 3 computes the AD overhead, in which the first term
indicates the transmission time for additional FEC codes before
going down to (m-1)-th level and the second term amounts to a
packet retransmission time caused for going up from (m-1)-th level
to m-th one under the assumption that AFECCC transits in AI way.

RTT
RTT
DTBWknCD

n

k
overhead +−= ∑

=0
)/)(((3)

Equation 4 calculates the MD overhead, in which the first term
explains the overhead of additive FEC codes before exponentially
descending to (m + (n- n2log2))-th level when n is not the exponent
of 2. The second and third terms indicates the upward overhead of
AI going up from (m + (n- n2log2))-th to m-th under the assumption
that AFECCC goes up in AI way.

∑

∑
−

=

−

=

+−

+−=

n

k
s

kn

n

k

k
overhead

n

TRTTn

RTT
DTBWnCD

2log

2

2

2

0

log

1log

0

2)2(

)/)2((
 (4)

As calculated in the above four equations, the performance of these
four transition techniques depends on several parameters such as
channel propagation error characteristics, FEC code size, RTT, DT
timeout, and etc. Even though we hardly quantitatively compare
the four equations due to various parameters, we can roughly say
that the packet loss overhead term in AI and MD is more dominant
than in MI and AD respectively. So like in 802.11 networks where
a packet retransmission takes more time than the transmission of
FEC code, generally AFECCC is safe to employ a pair of AI and
MD to dynamically adjust the amount of FEC code.

6. THEORETICAL MODELS FOR
WIRELESS CHANNEL
This section introduces two approaches to model bit-level
propagation errors in packet-level network simulators [10][11].
First, analytical channel models specify physical wireless signal
propagation phenomena known as LSF (Large-Scale Fading) and
SSF (Small-Scale Fading) effects. ns-2[11], for example, includes
three LSF models (free space model, two-ray ground reflection
model, and shadowing model) and one SSF model (Ricean
distribution) [12]. These physical models allow ns-2 to compute
the average signal power of every packet arrived at a receiver and
based on the comparison of the perceived signal power to the
receiving threshold, determine packet drops.

Since this approach assumes the same signal power sustained all
the way during a packet’s transmission duration, however, it can’t
accurately predict that the error probability grows in proportional
to the packet size. To overcome this problem, Holland [7]
calculates a packet’s signal power several times whenever the
theoretical SSF duration expires if the packet transmission lasts
longer than the SSF interval. Still this approach can’t provide fine
granularity for the number of corrupt bits and their locations
needed for evaluating FEC algorithms.

Differently from imitating physical phenomena, the second one
statistically defines observed wireless behaviors with some
mathematical equations. This category, for example, contains GE
(Gilbert Elliot)[13] model also known as two-state Markov chain
and CM (Chaotic Map)[14] which many researchers [5][15] have
adopted in studying link-level ARQ and FEC performance. They
are popularly employed in packet simulators since they faithfully
represent the typical wireless bit-error burstiness by assuming two
states each of which represents short-term heavy BER and long-
term light BER respectively.

Figure 7. Two Downward Transition Schemes

Especially, CM model strictly expresses burstier error
characteristics of 802.11 LAN than what GE model represents. It
transits between the good state with no error and the bad state
with error by Equation 5 which computes Xt+1 at each bit
transmission. When the Xt+1 is greater than 1, it assumes no error.
Otherwise it generates one error bit. Three variables z, u, and e in
Equation 5 determine transition frequency between two states, the
probability of staying in the current status, and the maximum
number of bit strings in a given state respectively.

NtXXX z
ttt ∈++=+ ,*1 εμ (5)

When error bit distributions can’ t be accurately summarized as
some mathematical equations, the second approach uses table-
driven or trace-driven methods [16] storing every details of real
traffic. The table-driven one builds a histogram which records the
probability values for each error bit strings from collected traces.
The trace-driven way exactly replays error byte counts collected
from real traces or channel simulators [17][18]. Even though the
last one limits the number of packets to simulate by trace size, it
has an advantage to precisely model a specific channel.
This paper adopts three channel models, GE, CM, and real sensor
traces for evaluating AFECCC performance.

7. EVALUATION
This section evaluates the performance of four adaptation methods
(AIAD, AIMD, MIAD, MIMD), compares AFECCC throughput
with that of static and conventional dynamic FEC algorithms, and
finally measures AFECCC performance over real sensor networks.
Note that the performance only counts the number of packets that
are received successfully or recovered with their FEC code. The
successful recovery is determined by the attached error detection
code such as CRC (Cyclic Redundancy Code).

7.1 The Performance Analysis of Four
Transition Schemes
Figure 8 shows the ratio of four transition methods’
performance measured over noisy channels to the best
performance over an error-free channel when a sender constantly
transmit 100-byte packets over 512Kbps channel of an IEEE
802.11 network. Its three axes z, y, x represent the performance
ratio, the duration of a given BER state as an unit of second, and
BER when the noisy channel is modeled by two-state Markov
chains. Namely the good state and bad state are defined as (x, y)
and (0, y). Five parameters of AFECCC, α, β, Tmax, Tmin, Tp are
set to 2, 0.8, 1000ms, 60ms, 6ms where 6ms is one RTT of this
802.11b network. Finally we assume that AFECCC maintains 11
FEC levels each of which corrects 2, 5, 8, 12, 16, 21, 26, 33, 40,
and 45 contaminated bytes.

Figure 8 indicates that the performance of the four algorithms is
strongly affected with the channel BER duration as BER increases.
In detail, they achieve almost the same throughput with low BER
from 0 up to 0.02 regardless of BER duration while as BER
becomes larger and the channel state changes rapidly, MIAD
performs better nearly by 50% than the other three schemes. It is
due to that it minimizes the packet loss by adapting quickly to the
bad state but slowly to the good state.

Figure 8. Performance Of Four Transition Algorithms

7.2 The Performance Comparison of
AFECCC to Static and Two Previous Dynamic
FEC Algorithms
Figure 9 compares the performance of AFECCC to that of four
FEC algorithms, RS(106, 100), RS(112, 100) RS(118,100),
RS(126,100) [8] and two dynamic ones named LA-IR II and
retrace recursive LA-IR [2] when two states of Markov chain are
set to (0, 20ms) and (x, 20ms) in the same network as the one for
Figure 8. Note that RS(u, w) means w data symbols and (u-w)
correction RS symbols where (u-w) correction symbols restore (u-
w)/2 corrupt symbols.
For Figure 9, we set a symbol to one byte and configure AFECCC
to dynamically choose one among these four static codes RS(106,
100), RS(112, 100), RS(118, 100) and RS(126, 100). For
computing the starting level in retrace recursive LA-IR, we pick
the most successful level among ten previous successful levels.
Each graph of Figure 9 plots the ratio of one algorithm’ s
performance to the maximum achievable throughput over the
error-free channel and each dot on a graph averages five
simulation results.
Figure 9 shows that ARQ performance quickly falls off to zero as
the bad state’ s BER approximates to 10-3, where every 100-byte
packet is likely to be inflicted with one-bit error. The four static
FEC codes maintain constant throughput with 20% maximum
difference among them before x becomes 10-2 where each
performance sharply drops. Especially the performance of RS(126,
100) is less by 20% than any static codes but runs constant all the
way before 10-1 where the others’ performance reaches almost
zero.
Figure 9 illustrates that AFECCC orderly traces the behavior of
802.11, RS(106, 100), RS(112, 100), RS(118, 100), and RS(126,
100) during [0, 0.03], [0.03, 0.06], [0.06, 0.09], [0.09, 0.13], and
[0.13, 0.15] interval of x-axis. AFECCC, however, performs less
by 5% than the best static algorithm in each interval due to its
adaptation overhead. It adapts to the BER changes similarly as the
two dynamic LA-IR algorithms even though it performs 10%
better after BER grows greater than 10-4. Note that the two
performance graphs of two LA-IR schemes are almost indistinctly
overlapped. Furthermore, the two algorithms’ performance rapidly

drops to almost 10% while AFECCC maintains 50% performance
ratio as BER approaches 10-1. The reason of AFECCC’s
superiority in this heavy BER range is mainly due to the
multiplicative increase rate which can rapidly adapt to wide BER
fluctuations.

Figure 9. AFECCC Performance In Markov Chain

Figure 10 also evidences the performance of the eight algorithms
under the same environment as Figure 9 except that CM model is
adopted for wireless channels. As like Figure 9, Figure 10 predicts
that each static code maintains constant throughput before its
threshold BER at which almost every packet is damaged too
heavily to be corrected.
In contrast to Figure 9, however, their performance smoothly
degrades at its BER threshold since CM model is burstier than
two-state Markov chain. Namely under the same average BER,
CM model produces the same amount of error bits for the shorter
duration than two-state Markov chain. Due to the high degree of
burstiness, they successfully transport more packets under the
same BER than in Figure 9.
AFECCC achieves better in CM model by 3% than in two-state
Markov chain and even accomplishes better by 5% than any other
static algorithms at around 2*10-2 BER. It is due to that in CM
model the good state sustains longer so that AFECCC suffers less
packet loss than in two-state Markov chain whenever it switches to
the lower FEC level. It also achieves better performance than two
LA-IR algorithms as BER becomes greater than around 2*10-3 due
to the reason explained in Figure 9.
Figure 11 evaluates the performance of eight FEC algorithms over
real traces collected from a real sensor network where a sender
transmits 100-byte packets to its receiver while increasing TR
distance from 1m to 13m. For emulating the receiver’ s movement,
we appropriately mix 10-minute packet traffic from different traces
measured at different locations for a given average BER depicted
at x-axis.

Figure 10. AFECCC Performance In Chaotic Map

In contrast to Figure 10, Figure 11 indicates that the performance
of the eight algorithms falls earlier before their predicted threshold
since propagation errors in these artificially interleaved traces are
more randomly and uniformly distributed. Figure 11 also shows
that the performance of AFECCC is located in the middle of
RS(118, 100) and RS(126, 100) in [10-3, 1.3*10-2] BER range and
follows that of RS(126, 100) as x approaches 10-1. At 4.6*10-2
BER, AFECCC’ s performance drops sharply even though it is
still better than RS(118, 100) by 5%. The reason of AFECCC’ s
deep fall at this BER comparing to the next 5.2*10-2 BER would
be that more packets in this trace file are tainted than in 5.2*10-2
trace by 8% even though 5.2*10-2 trace file’ s BER is higher than
4.6*10-2 BER. The packet BER of 4.6*10-2 trace file is also
somewhat randomly fluctuated between what RS(118, 100) and
RS(126, 100) can recover so that AFECCC is hard to be stable at
RS(126, 100). Finally, AFECCC performs better than the two LA-
IR algorithms over the entire BER interval. It is also due to that
LA-IR fails to predict the right starting FEC level and swiftly
adapt to the wide BER change by additively increasing the FEC
level rather than multiplicatively.

Figure 11. AFECCC Performance In Real Trace

Table 1 shows the average number of retransmitted bytes plus FEC
bytes sent by the eight algorithms to successfully forward a packet
at five BERs used in the experiment for Figure 11. The top row and
the leftmost column of Table 1 list five BERs at which each
algorithm’ s overhead is evaluated and the type of FEC algorithms
respectively. Table 11 indicates that the overhead of AFECCC
approximates to the second least among those of the static FEC
algorithms in each low BER column and at least takes a few tens of
bytes fewer than the other static and the two dynamic LA-IR
algorithms. Based on the total transmission overhead over the entire
BER range, we believe that AFECCC is energy-efficient more than
the static FEC and LA-IR algorithms even though it executes
around some tens of instructions per packet. Note that the
transmission of one byte tends to consume more energy than the
execution of a few instructions as T-R distance gets larger.

Table 1. The Number of Retransmitted Bytes and FEC Bytes
Per Packet At Each BER

 0.001 0.012 0.052 0.079 0.097

802.11 MAC 21.5 290.8 526.6 980.2 4852.8

RS(104,100) 7.1 81.1 228.7 478.7 1255.0

RS(108,100) 11.2 15.5 77.9 192.0 339.4

RS(120,100) 25.2 25.2 60.8 101.5 134.7

RS(140,100) 52.2 52.2 70.0 86.0 96.3

LA-IR Type II 19.7 104.9 152.3 187.7 218.9
Retrace Recursive
LA-IR 19.8 126.1 225.0 294.0 340.2

AFECCC 16.9 29.2 62.7 87.6 102.6

7.3 AFECCC Implementation and
Performance Analysis
Figure 12 illustrates AFECCC implementation [19] in SMAC
(Sensor-MAC) [20] that is quite similar to 802.11 except that for
power saving receivers sleep whenever they have no data to
receive. As shown in Figure 12, AFECCC integrates four event
handlers for processing DT timeout, PT timeout, packet drop
detection timeout, and successful acknowledgement arrival at
SMAC layer while it puts RS FEC encode and decode functions at
its physical layer.

Figure 12. AFECCC Implementation At SMAC

Figure 13 also lists four extended headers of RTS, CTS, ACK, and
Data frames to carry FEC code for AFECCC. Since the three
control packets RTS, CTS, and ACK are relatively short, we
assume that their FEC code is of fixed size while data frames
reserve two fields to store FEC code size in their header and the
corresponding FEC code at their trail.

Figure 13. Four Extended Packet Formats For AFECCC

Figure 14 draws the ratio of four static FEC codes performance to
that of AFECCC when a Mica Mote transmits 80-byte packets for
2-hour by varying TR distance from 1m to 11m. For the fair
comparison of the five algorithms, we compute each static FEC
performance when the four static FEC algorithms are assumed to
work over the same packet traffic experienced by AFECCC.
Namely, we calculate the waste time of packet losses and extra
code transmission when the same degree of corruption occurs to
the four static algorithms. It is due to that since the sensor channel
widely varies, we hardly produce the same live networks for fair
comparison.
Each point of four graphs in Figure 14 represents the average over
three AFECCC traces. Figure 14 shows that the performance graph
of weak RS(84, 8) crosses those of three strong codes, RS(92, 80),
RS(92, 80), and RS(100, 80) as TR distance increases as predicted
in the above simulation experiments. It also proves that AFECCC
performs better in all TR distances even though RS(92, 80) and
RS(88, 80) achieve almost the same performance as AFECCC as
TR distance approaches 11m.

Figure 14. Performance Ratio Of Four Static FEC Codes To

AFECCC

8. CONCLUSION
This paper provides some evidences that low-power sensor
channels’ BER tends to smoothly vary to dynamically adjust the
FEC code size for improving the sensor network performance. It
also proposes an adaptive FEC code control algorithm called
AFECCC and evaluates its performance under various channel
models and over real sensor networks. AFECCC dynamically
matches the FEC code size to the low-frequency wireless channel
BER, which is evaluated by acknowledgement packet arrivals.
According to the simulations with various theoretical channel
models and live experiments over sensor networks, AFECCC
performs better than any static FEC algorithms and some
conventional dynamic FEC algorithms.
We will try to devise a technique to automatically determine the
tunable variables of AFECCC based on its applied network
environments. Finally, we also plan to accurately quantify the
energy saved by AFECCC under simulations and real mobile
sensor networks.

9. REFERENCES
[1] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D.

Estrin, and D. Ganesan. “Building Efficient Wireless Sensor
Networks with Low-Level Naming”, SOSP01 vol. 35 no 5,
pp 146-159, October 2001,

[2] A. Levisianou, C. Assimakopoulos, F-N. Pavlidou, A.
Polydoros, “A Recursive IR Protocol for Multicarrier
Communications”, 6th International OFDM-Workshop, pp.
22-1-22-4, September. 2001, Hamburg, Czech Republic

[3] J. Hagenauer, “Rate Compatible Punctured Convolutional
Codes (RCPC Codes) and Their Applications”, IEEE Trans.
Communications, vol. 36, no 4, pp. 389-400, April 1988

[4] L. Zhao, J. W. Mark, and Y. C. Yoon, “A Combined Link
Adaptation and Incremental Redundancy Protocol for
Enhanced Data Transmission”, Proc. of GlobeCom 2001, pp.
25-29 Nov. 2001, San Antonio, Texas

[5] P. Lettieri and M. B. Srivastava. “Adaptive Frame Length
Control for Improving Wireless Link Throughput, Range,
and Energy Efficiency”, Proceedings of Infocom'98, pp.564-
571, April 1998

[6] G. Wu, C-W. Chu, K Wine, J. Evans, and R. Frenkiel.
“WINMAC: A Novel Transmission Protocol for
Infostations”, 49thIEEE Vehicular Conference Proceeding,
pp.1340-1344, May 1999

[7] G. Holland, N. Vaidya, and P. Bahl, “A Rate-Adaptive
MAC Protocol for Multi-Hop Wireless Networks”, ACM
SigMobile, pp236-250, July 2001

[8] W. Peterson and E. Weldon, Jr., Error-Correcting Codes, 2nd
Edition, The Massachusetts Institute of Technology

[9] D.W.Allan. “Time and Frequency (time domain)
Characterization, Estimation and Prediction of Precision
Clocks and Oscillators”, In IEEE Trans. UFFC, vol. 34, no. 6,
November 1987

[10] M. Takai, R. Bagrodia, A. Lee, M. Gerla, “Impact of
Channel Models on Simulation of Large Scale Wireless
Networks”, Proceedings of MSWiM'99, pp.7-14, August
1999

[11] Network Simulator NS-2, http://www.isi.edu/nsnam/ns
[12] R. J. Punnoose, P. V. Nikitin, and D. D. Stancil, “Efficient

Simulation of Ricean Fading”, a Packet Simulator
Proceedings of VTC'00, pp.764-767, September 2000

[13] E. N. Gilbert, “Capacity of a Burst-Noise Channel”, Bell
Syst. Tech. J., vol. 39, pp 1253-1266, Sept. 1960

[14] Andreas Kpke, Andreas Willig, Holger Karl, “Chaotic Maps
as Parsimonious Bit Error Models of Wireless Channels”,
Proceedings of the IEEE Infocom, vol.22, no. 1, pp.513-523,
March 2003

[15] M. Zorzi. “Performance of FEC and ARQ Error Control in
Bursty Channels under Delay Constraints”, Proceedings of
VTC'98, pp.1390-1394, May 1998

[16] A. Kumar and R. Gupta, “Capacity Evaluation of Frequency
Hopping Based Ad-hoc Systems”, Proceedings of
SigMetrics01, pp.133-142, June 2001

[17] C. M. Keller, Generic Channel Simulator, MIT Lincoln
Laboratory Project Report AST-46, August 1997

[18] Rappaport, T. S., S. Y. Seidel, and K. Takamizawa.,
“Statistical Channel Impulse Response Models for Factory
and Open Plan Building Radio Communication System
Design”, IEEE Transactions on Communications, vol. COM-
39 No. 5, pp794-806, May 1991

[19] http://network.dongguk.ac.kr/publication/AFECCC/AFECC
C.html

[20] Wei Ye, John Heidemann, and Deborah Estrin. “An Energy-
Efficient MAC protocol for Wireless Sensor Networks”. In
Proceedings of the IEEE Infocom, pp.1567-1576. New York,
NY, USA, USC/Information Sciences Institute, IEEE. June,
2002

http://www.isi.edu/nsnam/ns
http://network.dongguk.ac.kr/publication/AFECCC/AFECCC.html
http://network.dongguk.ac.kr/publication/AFECCC/AFECCC.html

	1. INTRODUCTION
	2. Related Work
	3. WIRELESS SENSOR CHANNEL ERROR CHARACTERISTICS
	4. AFECCC ALGORITHM
	5. AFECCC ALGORITHM ANALYSIS
	5.1 Two Upward Transition Method
	5.2 Two Downward Transition Method
	6. THEORETICAL MODELS FOR WIRELESS CHANNEL
	7. EVALUATION
	7.1 The Performance Analysis of Four Transition Schemes
	7.2 The Performance Comparison of AFECCC to Static and Two Previous Dynamic FEC Algorithms
	7.3 AFECCC Implementation and Performance Analysis

	8. CONCLUSION
	9. REFERENCES

