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ABSTRACT 
For better performance over a noisy channel, mobile wireless 
networks transmit packets with FEC (Forward Error Correction) 
code to recover corrupt bits without retransmission. The static 
determination of the FEC code size, however, degrades their 
performance since the evaluation of the underlying channel state 
is hardly accurate and even widely varied. Our measurements 
over a wireless sensor network, for example, show that the 
average BER (Bit Error Rate) per second or per minute 
continuously changes from 0 up to 10-3. Under this environment, 
wireless networks waste their bandwidth since they can’t 
deterministically select the appropriate size of FEC code 
matching to the fluctuating channel BER.  

This paper proposes an adaptive FEC technique called AFECCC 
(Adaptive FEC Code Control), which dynamically tunes the 
amount of FEC code per packet based on the arrival of 
acknowledgement packets without any specific information such 
as SNR (Signal to Noise Ratio) or BER from receivers. Our 
simulation experiments indicate that AFECCC performs better 
than any static FEC algorithm and some conventional dynamic 
hybrid FEC/ARQ algorithms when wireless channels are modeled 
with two-state Markov chain, chaotic map, and traces collected 
from real sensor networks. Finally, AFECCC implemented in 
sensor motes achieves better performance than any static FEC 
algorithm. 
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1. INTRODUCTION 
Recently, wireless networks have become widely popular due to 
the convenience of their inherent mobility and the improvement 
of their transmission speed. Their transmission efficiency, 
however, is far lower than that of wired networks due to their 
frequent propagation errors, namely high BER (Bit Error Rate). 
Their average BER is known to be in the range from 10-6 to 10-3, 
implying that most packets would be corrupted and thus dropped 
over wireless channels without some appropriate error prevention 
or recovery mechanisms. In our sensor networks under some 
external interference [1], for example, around 90% of all 
transmitted packets are observed to be thrown due to the 
propagation error for a long period. Their BER is also estimated 
to be widely fluctuated by the slight movement of a transmitter, 
its receiver, and obstacles.  

To resist against this high and widely fluctuated error rate, 
wireless networks redundantly employ both prevention and 
correction techniques in their physical and data link layers. For 
prevention, for instance, the physical layer chooses an error-
resistant but low-speed modulation method while for recovery the 
link layer equips an FEC technique on top of ARQ (Automatic 
ReQuest) to reduce the number of retransmissions.  

For improving the performance, especially most wireless 
networks tend to include an FEC algorithm to avoid 
retransmissions since consecutive packets are likely to be infected 
with bursty errors. The deterministic selection of the appropriate 
FEC code size, however, degrades the performance by 
mismatching the FEC strength to the underlying channel BER. 
When the channel BER widely varies, wireless networks should 
dynamically adapt the amount of FEC codes for further 
performance improvement. 

The measurements over our sensor network show that ABERPS 
(Average BER Per Second) or ABERPM (Average BER Per 
Minute) continues to fluctuate from 0 up to 10-3 even though 
ABERRPS changes more abruptly than ABERRPM. In this 
sensor network, a transmitter keeps sending three 100-byte 
packets per second to its receiver. The traffic analysis also 
indicates that the ABERPM at a given time differs from the next 
ABERPM only by 30% in maximum. These two observations 
imply that once a dynamic FEC algorithm dynamically chooses 
the appropriate FEC code size matching to the slowly varying 
channel status, it can significantly improve the performance over 
these smoothly undulating wireless channels.   

We propose AFECCC (Adaptive FEC Code Control) algorithm 
that adjusts the FEC code size based on the channel status 
implicitly indicated by acknowledgment packets’ arrival. It 
ascends to the higher FEC level at a packet loss while otherwise 
descending to the lower FEC level in an MIAD (Multiplicative 
Increase Additive Decrease) way. According to the channel state, 
it selects one among some discrete number of FEC levels each of 
which is pre-assigned a FEC code size to employ. The stay time 
on each level before dropping to the lower one is dynamically 
decided in proportional to its previous success rate. The more 
frequently AFECCC adopts a level, the longer it stays at this level.  

Our simulation experiments confirm that AFECCC performs 
better than any static FEC algorithms and two previous dynamic 
hybrid ARQ/FEC algorithms called LA-IR (Link Adaptation 
Incremental Redundancy) II and retrace recursive LA-IR [2] when 
wireless channels are modeled by two-state Markov chain, CM 



(Chaotic Map) model, and packet traces collected from real 
sensor networks. The experiments over real sensor networks 
finally show that AFECCC outperforms static FEC algorithms.  

This paper is organized as follows. Section 2 lists some related 
work and Section 3 examines the adaptive algorithm's 
applicability over wireless sensor networks. Section 4 describes 
AFECCC algorithm and Section 5 examines the performance of 
four transition schemes applicable for AFECCC. Section 6 
elaborates various channel models to simulate bit-level details in 
packet simulators for evaluating FEC algorithms’ throughput. 
Section 7 reveals AFECCC behaviors under wireless channel 
models and in real sensor networks respectively. Finally Section 8 
summarizes experiment results and presents our future research 
list. 

2. Related Work 
FEC algorithms are frequently adopted in application or data link 
layer for recovering damaged or lost packets. The former restores 
packets dropped during congestion while the latter corrects 
packets contaminated by propagation errors. Even if both have the 
same goal of restoration, the latter’s efficiency is more difficult to 
achieve due to the restriction of packet size and rapid BER 
fluctuation in wireless networks. The packet corruption 
probability increases in proportional to the packet size and the 
wireless channel BER tends to vary more quickly by a few order-
of-magnitudes than the Internet congestion.  

FEC techniques are classified into hybrid Type-I and Type-II 
FEC/ARQ according to what is retransmitted in case of packet 
loss. Type-I retransmits the same data with stronger FEC code 
while Type-II resends only stronger FEC code or some 
incremental FEC code when the sender adopts convolutional 
codes [3]. The convolutional code has a property of generating a 
complete stronger code by reassembling more incremental FEC 
codes. Note that AFECCC works with either Type-I or Type-II 
since it aims at determining the strength of FEC code or the 
amount of FEC code to send at the next time.  

Type-I performs poorer since it wastes the bandwidth by 
repeatedly resending the same data while Type-II 
becomes inefficient when either the data packet or some of 
previous incremental FEC packets can’t reach the receiver. Note 
that the convolutional code adds all previously transmitted 
incremental FEC codes to generate a complete stronger FEC code. 
Due to this characteristic, Type-II scheme is hard to be applied to 
some heavily nosy wireless networks like our sensor networks 
where receivers can’t even recognize packet arrivals due to their 
preamble corruption. When they seldom receive tainted packets 
so that they don’t feed back any acknowledgment, the sender 
can’t decide whether to retransmit the previous packet or send a 
new packet containing a new incremental FEC code. 

Type-II is also hardly applied to datagram networks like ad-hoc 
networks since it requires receivers to store a corrupted packet 
and its next consecutive incremental FEC codes for each sender 
until the damaged packet is recovered. In datagram networks, 
receivers are not guaranteed to receive packets in sequence from 
the same sender due to the routing path change and intervened 
packets from other senders. Nodes in datagram networks, 
however, are supposed not to maintain any state for outstanding 
connections.  

Some techniques [2][4] for dynamically adjusting the amount of 
Type-II FEC incremental codes based on previous channel state 
have been proposed. Their basic algorithms consists of two parts, 
one for the predictor determining the starting FEC code level for 
each new packet to adopt and another for additively increasing the 
strength of FEC code by transmitting more incremental codes 
until the damaged packet is recovered. They vary in the way of 
using the previous packet arrival history to evaluate the current 
wireless channel state for deciding the starting FEC level. For 
example, LA-IR II sets the starting FEC level Fs as Fl –  1 where 
Fl is the level with which the previous packet is successfully 
transmitted.  Retrace recursive LA-IR sets Fs as Fl –  1 where Fl 
is the most successful level among some number of previous 
successful levels. We will compare these two algorithms’  
performance with that of AFECCC in below. 

AFECCC differs from them in two aspects. One is the way to set 
the starting FEC level. In AFECCC, each FEC level memorizes 
how long it would be adopted as a starting FEC level if there is no 
packet loss while the LA-IR algorithms use the history of 
previous FEC levels with which packets were successfully 
forwarded. The number of previous levels to look back is called 
window. LA-IR II and retrace recursive LA-IR, for example, 
statically set this window size to 1 and some number greater than 
1 respectively regardless of whether the channel state changes 
rapidly or smoothly. The static window size, however, is 
inappropriate to trace down the channel state behavior. The large 
window size hardly adapts to the fast-changing BER while the 
small one can’t detect the smoothly changing channel behavior.  

In contrast, AFECCC immediately sets the current starting level 
to the last successful FEC one if the packet fails to recover with 
the previous starting level. While it continues to successfully 
transmit packets with a given FEC level, it tends to adopt this 
FEC level for a period called stay time. For determining this stay 
time on a FEC level, it computes two metrics of each level; the 
success rate and the elapsed time after the last time when each 
level was adopted. The success rate of a level means how many 
packets are successfully restored with that level for a given period 
without retransmission.  

Another is that AFECCC investigates several various ways for 
increasing the amount of incremental FEC codes when the 
recovery fails while the previous schemes [2][4] only assume 
addictive increase. To efficiently operate in wireless networks 
where BER changes widely, AFECCC increases the FEC code 
level multiplicatively rather than additively while decreasing 
additively to test whether the channel becomes noiseless. 

In addition to increasing FEC code strength appropriately to 
measured channel state, many researchers [5][6][7] actively have 
proposed various algorithms adjusting different transmission-
related parameters. Some algorithms accommodate MTU 
(Maximum Transmission Unit) size, modulation schemes, and 
transmission speed depending on the average packet loss rate or 
SNR (Signal to Noise Ratio). Holland [7], for instance, proposed 
a dynamic algorithm which chose a slow but robust modulation 
scheme at low SNR and switches to a fast but weak one at high 
SNR. Differently than these techniques, AFECCC tunes the FEC 
code size without any explicit information such as SNR and the 
average packet loss rate. 



3. WIRELESS SENSOR CHANNEL ERROR 
CHARACTERISTICS 
This section examines the characteristics of bit errors in sensor 
networks to determine whether their BER varies smoothly enough 
to be traced down by an adaptive algorithm. When wireless 
channel is modeled as a state machine and a state is specified as 
BER, AFECCC adaptability is determined by the average 
duration of a state and the BER difference between two adjacent 
states. If BER varies more rapidly than the adaptation delay taken 
for detecting BER variation and calculating the suitable FEC level, 
it hardly accomplishes any improvement. If the channel BER is 
constant, furthermore, it may be useless.  

Figure 1 shows NCBPP (the Number of Corrupted Bytes Per 
Packet) standard deviation distribution of 10 traces at each TR 
distance (standing for the distance between the transmitter and 
receiver) by incrementing 1m from 6m to 13m. Each trace 
represents 4-hour traffic from a sensor network where a Mica 
Mote sender continues to transmit 100-byte packets to its receiver 
at the maximum speed of 3.2Kbps by FSK (Frequency Shift 
Keying) modulation with 915 MHz carrier signal and 90mW 
transmission power. 

Figure 1 indicates that the average NCBPP gradually increases 
from 2-byte within close distances less than 11m to 11-byte as TR 
distance approaches 13m, the threshold distance for distinguishing 
signal. The standard deviation range also widens from 2-byte up 
to 10-byte as TR distance gets larger. The growth of the average 
NCBPP as a function of TR distance is explained by LSF (Large 
Scale Fading) effect that the signal power fades in proportion to 
TR distance. The expansion of the standard deviation span is due 
to that SSF (Small Scale Fading) effect mainly caused by multi-
path interferences gets stronger as the signal power becomes 
weaker. 

Based on Figure 1, we can say that AFECCC is indispensable to 
accommodate the wide BER distribution when receivers move 
around or even when they are statically located apart further than 
10m from their sender. When a receiver roams around within 13m 
radius from its sender, for instance, the sender needs to add 36-
byte RS (Reed-Solomon)[8] code to correct the worst 18 damaged 
bytes at 13m TR distance. Note that RS code requires 2-byte 
correction code for 1-byte error. This static FEC algorithm, 
however, leads to 24-byte waste at TR distance less than 11m 
where the maximum number of erroneous bytes is less than 6.  

 
Figure 1. NCBPP Distribution As A Function of TR-Distance 

Figure 2 shows how fast the channel BER changes by plotting 
Allan deviation [9]. For Allan deviation, we divide a packet trace 
into time slots, compute NCBPP average of each time slot, and 
finally calculate Allan deviation, namely the variance of two 
neighbor time slots’  NCBPP. Allan deviation represents the 
smoothness of BER changes. 

Figure 2 displays five Allan deviation graphs for five different TR 
distances as the time slot width for averaging NCBPP expands. In 
Figure 2, the Allan deviation of 13m trace is 4-byte at 1s (second) 
time span while it rapidly decreases up to 1-byte at 60s interval. 
This Allan deviation plots again verify that NCBPP slowly 
changes at close TR distances while it abruptly varies at distant 
ones. This observation also illustrates the appropriate FEC code 
size difference between two adjacent FEC levels depends on the 
time scale to track down. When AFECCC aims at tracing 1s BER 
variations, for example, its levels should be apart further than 4-
byte at least. On the other hand, when it tries to follow long-term 
variations, the difference between two neighbor levels should be 
more than 4-byte. 

 
Figure 2. Allan Deviation Of NCBPP 

Figure 3-(1) and 3-(2) show some visual evidence of AFECCC 
adaptability over sensor channels by depicting two average 
NCBPP variations of an 11m trace when the average time span 



sets to 1s and 10s respectively. These two figures perceptibly 
prove the existence of some low-frequency variations for 
AFECCC to faithfully trace down, especially like a wide deep 
valley between 700s and 1200s even though numerous spikes are 
dispersed over entire observation interval.  

 
(1) Average NCBPP Per Second Variations 

 
(2) Average NCBPP Per 10-Second Variations 

Figure 4 computes the ratio of theoretical waste time to the total 
observation interval when four static FEC algorithms are applied 
to the collected packet traces. Note that a static FEC algorithm 
wastes the bandwidth by transmission of its excessive FEC codes 
and packet losses due to its deficient FEC code strength. Four 
static FEC algorithms, FEC1, FEC2, FEC3, and FEC4 in Figure 
4 are assumed to add 6, 10, 20, and 40-byte RS code respectively 
to recover 3, 5, 10, and 20 erroneous bytes. The code size of each 
FEC algorithm is decided based on the measured error 
distributions where damaged bytes of 90% corrupt packets range 
from 2 to 20-byte. 

In Figure 4, at first IEEE 802.11 without any FEC algorithm 
spends more than 70% of transmission time due to heavy packet 

losses. FEC4 and FEC1 consume almost 37% and 4% of the total 
time for unnecessary extra FEC code transmission while wasting 
0.2% and 8% for packet loss at 6m TR distance. On the other 
hand, at 13m these two algorithms spend 25% and 2% for FEC 
code overhead while 10% and 78% for packet drops. To minimize 
the bandwidth waste depicted in from Figure 4, wireless networks 
need to dynamically select FEC2 in [6m, 10m], FEC3 in [10m, 
12m], and finally FEC4 around 13m. 

 
Figure 4. Bandwidth Waste Ratio Of Four Static FEC 

Algorithms 

4. AFECCC ALGORITHM 
This section introduces AFECCC algorithm that gradually 
approximates a suitable FEC level among some available FEC 
levels matching to the underlying wireless channel BER only by 
the assistance of acknowledgment packet arrivals. It descends to 
the lower FEC level some time called drop timeout after 
consecutive acknowledgements successfully arrive while 
immediately ascending to the higher one at a packet loss.  It 
continues to adopt the previous starting FEC level until the drop 
timeout expires differently than the traditional hybrid Type-II 
dynamic algorithms [2][4].   

AFECCC incrementally infers the appropriate FEC level or the 
number of FEC code bytes for the next packet to use since 
receivers seldom estimate the exact number of corrupted bytes 
once the number of error bytes is beyond the correction capability 
of the attached FEC code. Senders also are hard to deduce this 
number from SNR that are often measurable and fed back by their 
receivers. 

Figure 3. NCBPP Variation Over Two Different Time Scales 

AFECCC joins at the higher FEC level at the detection of a 
packet loss. Since the overhead of transmitting additional extra 
FEC code is much smaller than that of an entire packet 
retransmission, adding more FEC codes is much better for 
improving the performance than taking a risk of dropping another 
packet. The accumulation of unnecessary FEC code transmissions 
during a long error-free period, however, unacceptably 
deteriorates the throughput. 

To determine the appropriate drop time to the lower level, 
AFECCC maintains a DT (Drop Timer) for each level whose 
timeout is adjusted by a binary exponential back-off algorithm. 
Whenever it joins a new FEC level, it exponentially increases DT 
of this newly adopted level up to Tmax by multiplying with a 



multiplication factor α(>1). The more frequently it visits a FEC 
level, the larger its drop timeout grows to be stable at this level. 
Notice that α and Tmax decides the polling frequency to check the 
channel status improvement, leading to the polling overhead of 
AFECCC. The smaller α , for example, the more frequently 
AFECCC evaluates the channel behavior by weakening the FEC 
code. 

AFECCC, furthermore, retains a global polling timer to decay 
DTs of the other levels except the currently adopted level. 
Whenever this global timer is expired every Tp, it shrinks the DT 
timeout value of the other levels up to Tmin by multiplying with a 
decay factor, β(<1). This decay operation has an effect of 
incrementally forgetting the old channel status as time goes by. In 
summary, Figure 5 illustrates these transitions among some 
predetermined levels of AFECCC. 

 
Figure 5. State Transition Diagram of AFECCC 

The AFECCC four tunable variables, α, Tmax , Tmin, and β 
determine the frequency of channel examinations. The smaller 
these four variables, the more aggressively AFECCC reduces the 
FEC code size at the expense of retransmission. Heuristically, we 
approximately set Tp, Tmin, Tmax to RTT (Round Trip Time), h * 
RTT, h * Tmin respectively when the code size gap between two 
neighbor levels is 1/h of the packet size. Precisely, AFECCC 
adjusts DT of other levels except the current on whenever one 
RTT for successfully sending a packet elapses. It also sets the 
earliest drop timeout Tmin, to h * RTT taken for h packets to be 
sent. Note that h * RTT is the duration for the total accumulated 
overhead of extra FEC code transmissions 1/h * (h * RTT) to be 
equal to the waste time due to a packet loss. With this value, 
AFECCC can test the channel before the FEC overhead becomes 
greater than the retransmission overhead.   

5. AFECCC ALGORITHM ANALYSIS 
This section tries to determine an appropriate transition 
combination by theoretically analyzing the performance of four 
possible level change schemes, AI (Additively Increase), MI 
(Multiplicatively Increase), AD (Additively Decrease), and MD 
(Multiplicatively Decrease) ways. 

5.1 Two Upward Transition Method 
Figure 6 pictorially depicts the behavior of two upward transition 
techniques when the channel BER jumps up to what n-th FEC 
level deals with as the dotted line depicts in Figure 6.  

 
(1) Additive-Increase 

 
(2) Multiplicative-Increase 

Figure 6. Two Upward Transition Schemes 

Equation 1 shows the AI upward overhead, namely the time taken 
to ascend to n-th FEC level by repeating n-time retransmissions. 
Note that the worst k-th average retransmission time is the sum of 
backoff delay 2k-1 * Ts and RTT where Ts is the minimum delay for 
avoiding collision and Ts is set to 50ms in our sensor network. 
RTT is the time to finish transmissions of RTS, CTS, DATA, and 
ACK packets when IEEE 802.11 networks employ the virtual 
channel sensing. Otherwise, RTT is the time to finish 
transmissions of DATA and ACK packets 
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In contrast to AI technique, MI needs n2log2  retransmissions to 
reach above n-th level shown in Figure 6-(2). The first and second 
terms in Equation 2 represents the overhead of these 
retransmissions. Note that the ceiling-bar of n2log  is an operator 
rounding up a float number. When n is not the exponent of 2, the 
third term denotes the wasted time for sending extra FEC codes 
before descending to n-th level in AD way. Note that the k-th (>n) 
level attaches C * (k –  n) excessive bytes at each packet during 
DT duration under the assumption that each FEC level is evenly 
spaced by C-byte FEC code and the underlying wireless 
channel’ s bandwidth is BW. The total overhead of extra FEC 
code is the multiplication of C * (k - n)/BW, the transmission time 



of a packet’ s extra code at the k-th level and DT/RTT, the number 
of packets sent before DT expires.  
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5.2 Two Downward Transition Method 
Figure 7 graphically depicts the behavior of two downward 
transition techniques when the current BER jumps down from 
(m+n)-th level to m-th one where m is an arbitrary number. 

 
(1) Additive-Increase 

 
(2) Multiplicative-Decrease 

Equation 3 computes the AD overhead, in which the first term 
indicates the transmission time for additional FEC codes before 
going down to (m-1)-th level and the second term amounts to a 
packet retransmission time caused for going up from (m-1)-th level 
to m-th one under the assumption that AFECCC transits in AI way. 
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Equation 4 calculates the MD overhead, in which the first term 
explains the overhead of additive FEC codes before exponentially 
descending to (m + (n- n2log2 ))-th level when n is not the exponent 
of 2. The second and third terms indicates the upward overhead of 
AI going up from (m + (n- n2log2 ))-th to m-th under the assumption 
that AFECCC goes up in AI way. 
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As calculated in the above four equations, the performance of these 
four transition techniques depends on several parameters such as 
channel propagation error characteristics, FEC code size, RTT, DT 
timeout, and etc. Even though we hardly quantitatively compare 
the four equations due to various parameters, we can roughly say 
that the packet loss overhead term in AI and MD is more dominant 
than in MI and AD respectively. So like in 802.11 networks where 
a packet retransmission takes more time than the transmission of 
FEC code, generally AFECCC is safe to employ a pair of AI and 
MD to dynamically adjust the amount of FEC code.  

6. THEORETICAL MODELS FOR 
WIRELESS CHANNEL 
This section introduces two approaches to model bit-level 
propagation errors in packet-level network simulators [10][11]. 
First, analytical channel models specify physical wireless signal 
propagation phenomena known as LSF (Large-Scale Fading) and 
SSF (Small-Scale Fading) effects. ns-2[11], for example, includes 
three LSF models (free space model, two-ray ground reflection 
model, and shadowing model) and one SSF model (Ricean 
distribution) [12]. These physical models allow ns-2 to compute 
the average signal power of every packet arrived at a receiver and 
based on the comparison of the perceived signal power to the 
receiving threshold, determine packet drops.  

Since this approach assumes the same signal power sustained all 
the way during a packet’s transmission duration, however, it can’t 
accurately predict that the error probability grows in proportional 
to the packet size. To overcome this problem, Holland [7] 
calculates a packet’s signal power several times whenever the 
theoretical SSF duration expires if the packet transmission lasts 
longer than the SSF interval. Still this approach can’t provide fine 
granularity for the number of corrupt bits and their locations 
needed for evaluating FEC algorithms.  

Differently from imitating physical phenomena, the second one 
statistically defines observed wireless behaviors with some 
mathematical equations. This category, for example, contains GE 
(Gilbert Elliot)[13] model also known as two-state Markov chain 
and CM (Chaotic Map)[14] which many researchers [5][15] have 
adopted in studying link-level ARQ and FEC performance. They 
are popularly employed in packet simulators since they faithfully 
represent the typical wireless bit-error burstiness by assuming two 
states each of which represents short-term heavy BER and long-
term light BER respectively.   

Figure 7. Two Downward Transition Schemes 

Especially, CM model strictly expresses burstier error 
characteristics of 802.11 LAN than what GE model represents. It 
transits between the good state with no error and the bad state 
with error by Equation 5 which computes Xt+1 at each bit 
transmission. When the Xt+1 is greater than 1, it assumes no error. 
Otherwise it generates one error bit. Three variables z, u, and e in 
Equation 5 determine transition frequency between two states, the 
probability of staying in the current status, and the maximum 
number of bit strings in a given state respectively. 
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When error bit distributions can’ t be accurately summarized as 
some mathematical equations, the second approach uses table-
driven or trace-driven methods [16] storing every details of real 
traffic. The table-driven one builds a histogram which records the 
probability values for each error bit strings from collected traces. 
The trace-driven way exactly replays error byte counts collected 
from real traces or channel simulators [17][18]. Even though the 
last one limits the number of packets to simulate by trace size, it 
has an advantage to precisely model a specific channel. 
This paper adopts three channel models, GE, CM, and real sensor 
traces for evaluating AFECCC performance. 

7. EVALUATION 
This section evaluates the performance of four adaptation methods 
(AIAD, AIMD, MIAD, MIMD), compares AFECCC throughput 
with that of static and conventional dynamic FEC algorithms, and 
finally measures AFECCC performance over real sensor networks. 
Note that the performance only counts the number of packets that 
are received successfully or recovered with their FEC code. The 
successful recovery is determined by the attached error detection 
code such as CRC (Cyclic Redundancy Code).  

7.1 The Performance Analysis of Four 
Transition Schemes 
Figure 8 shows the ratio of four transition methods’  
performance measured over noisy channels to the best 
performance over an error-free channel when a sender constantly 
transmit 100-byte packets over 512Kbps channel of an IEEE 
802.11 network. Its three axes z, y, x represent the performance 
ratio, the duration of a given BER state as an unit of second, and 
BER when the noisy channel is modeled by two-state Markov 
chains. Namely the good state and bad state are defined as (x, y) 
and (0, y). Five parameters of AFECCC, α, β, Tmax, Tmin, Tp are 
set to 2, 0.8, 1000ms, 60ms, 6ms where 6ms is one RTT of this 
802.11b network. Finally we assume that AFECCC maintains 11 
FEC levels each of which corrects 2, 5, 8, 12, 16, 21, 26, 33, 40, 
and 45 contaminated bytes. 

Figure 8 indicates that the performance of the four algorithms is 
strongly affected with the channel BER duration as BER increases. 
In detail, they achieve almost the same throughput with low BER 
from 0 up to 0.02 regardless of BER duration while as BER 
becomes larger and the channel state changes rapidly, MIAD 
performs better nearly by 50% than the other three schemes. It is 
due to that it minimizes the packet loss by adapting quickly to the 
bad state but slowly to the good state. 

 

 
Figure 8. Performance Of Four Transition Algorithms 

7.2 The Performance Comparison of 
AFECCC to Static and Two Previous Dynamic 
FEC Algorithms 
Figure 9 compares the performance of AFECCC to that of four 
FEC algorithms, RS(106, 100), RS(112, 100) RS(118,100), 
RS(126,100) [8] and two dynamic ones named LA-IR II and  
retrace recursive LA-IR [2] when two states of  Markov chain are 
set to (0, 20ms) and (x, 20ms) in the same network as the one for 
Figure 8. Note that RS(u, w) means w data symbols and (u-w) 
correction RS symbols where  (u-w) correction symbols restore (u-
w)/2 corrupt symbols.  
For Figure 9, we set a symbol to one byte and configure AFECCC 
to dynamically choose one among these four static codes RS(106, 
100), RS(112, 100), RS(118, 100) and RS(126, 100). For 
computing the starting level in retrace recursive LA-IR, we pick 
the most successful level among ten previous successful levels. 
Each graph of Figure 9 plots the ratio of one algorithm’ s 
performance to the maximum achievable throughput over the 
error-free channel and each dot on a graph averages five 
simulation results.  
Figure 9 shows that ARQ performance quickly falls off to zero as 
the bad state’ s BER approximates to 10-3, where every 100-byte 
packet is likely to be inflicted with one-bit error. The four static 
FEC codes maintain constant throughput with 20% maximum 
difference among them before x becomes 10-2 where each 
performance sharply drops. Especially the performance of RS(126, 
100) is less by 20% than any static codes but runs constant all the 
way before 10-1 where the others’  performance reaches almost 
zero. 
Figure 9 illustrates that AFECCC orderly traces the behavior of 
802.11, RS(106, 100), RS(112, 100), RS(118, 100), and RS(126, 
100) during [0, 0.03], [0.03, 0.06], [0.06, 0.09], [0.09, 0.13], and 
[0.13, 0.15] interval of x-axis. AFECCC, however, performs less 
by 5% than the best static algorithm in each interval due to its 
adaptation overhead. It adapts to the BER changes similarly as the 
two dynamic LA-IR algorithms even though it performs 10% 
better after BER grows greater than 10-4. Note that the two 
performance graphs of two LA-IR schemes are almost indistinctly 
overlapped. Furthermore, the two algorithms’ performance rapidly 



drops to almost 10% while AFECCC maintains 50% performance 
ratio as BER approaches 10-1. The reason of AFECCC’s 
superiority in this heavy BER range is mainly due to the 
multiplicative increase rate which can rapidly adapt to wide BER 
fluctuations.  

  
Figure 9. AFECCC Performance In Markov Chain 

Figure 10 also evidences the performance of the eight algorithms 
under the same environment as Figure 9 except that CM model is 
adopted for wireless channels. As like Figure 9, Figure 10 predicts 
that each static code maintains constant throughput before its 
threshold BER at which almost every packet is damaged too 
heavily to be corrected. 
In contrast to Figure 9, however, their performance smoothly 
degrades at its BER threshold since CM model is burstier than 
two-state Markov chain. Namely under the same average BER, 
CM model produces the same amount of error bits for the shorter 
duration than two-state Markov chain. Due to the high degree of 
burstiness, they successfully transport more packets under the 
same BER than in Figure 9.  
AFECCC achieves better in CM model by 3% than in two-state 
Markov chain and even accomplishes better by 5% than any other 
static algorithms at around 2*10-2 BER. It is due to that in CM 
model the good state sustains longer so that AFECCC suffers less 
packet loss than in two-state Markov chain whenever it switches to 
the lower FEC level. It also achieves better performance than two 
LA-IR algorithms as BER becomes greater than around 2*10-3 due 
to the reason explained in Figure 9. 
Figure 11 evaluates the performance of eight FEC algorithms over 
real traces collected from a real sensor network where a sender 
transmits 100-byte packets to its receiver while increasing TR 
distance from 1m to 13m. For emulating the receiver’ s movement, 
we appropriately mix 10-minute packet traffic from different traces 
measured at different locations for a given average BER depicted 
at x-axis. 
 

 
Figure 10. AFECCC Performance In Chaotic Map 

In contrast to Figure 10, Figure 11 indicates that the performance 
of the eight algorithms falls earlier before their predicted threshold 
since propagation errors in these artificially interleaved traces are 
more randomly and uniformly distributed. Figure 11 also shows 
that the performance of AFECCC is located in the middle of 
RS(118, 100) and RS(126, 100) in [10-3, 1.3*10-2] BER range and 
follows that of RS(126, 100) as x approaches 10-1. At 4.6*10-2 
BER, AFECCC’ s performance drops sharply even though it is 
still better than RS(118, 100) by 5%. The reason of AFECCC’ s 
deep fall at this BER comparing to the next 5.2*10-2 BER would 
be that more packets in this trace file are tainted than in 5.2*10-2 
trace by 8% even though 5.2*10-2 trace file’ s BER is higher than 
4.6*10-2 BER. The packet BER of 4.6*10-2 trace file is also 
somewhat randomly fluctuated between what RS(118, 100) and 
RS(126, 100) can recover so that AFECCC is hard to be stable at 
RS(126, 100). Finally, AFECCC performs better than the two LA-
IR algorithms over the entire BER interval. It is also due to that 
LA-IR fails to predict the right starting FEC level and swiftly 
adapt to the wide BER change by additively increasing the FEC 
level rather than multiplicatively. 

 
Figure 11. AFECCC Performance In Real Trace 



Table 1 shows the average number of retransmitted bytes plus FEC 
bytes sent by the eight algorithms to successfully forward a packet 
at five BERs used in the experiment for Figure 11. The top row and 
the leftmost column of Table 1 list five BERs at which each 
algorithm’ s overhead is evaluated and the type of FEC algorithms  
respectively. Table 11 indicates that the overhead of AFECCC 
approximates to the second least among those of the static FEC 
algorithms in each low BER column and at least takes a few tens of 
bytes fewer than the other static and the two dynamic LA-IR 
algorithms. Based on the total transmission overhead over the entire 
BER range, we believe that AFECCC is energy-efficient more than 
the static FEC and LA-IR algorithms even though it executes 
around some tens of instructions per packet. Note that the 
transmission of one byte tends to consume more energy than the 
execution of a few instructions as T-R distance gets larger. 

Table 1. The Number of Retransmitted Bytes and FEC Bytes 
Per Packet At Each BER  

 0.001 0.012 0.052 0.079 0.097 

802.11 MAC 21.5  290.8  526.6  980.2 4852.8 

RS(104,100) 7.1  81.1  228.7  478.7 1255.0 

RS(108,100) 11.2  15.5  77.9  192.0 339.4 

RS(120,100) 25.2  25.2  60.8  101.5 134.7 

RS(140,100) 52.2  52.2  70.0  86.0 96.3  

LA-IR Type II 19.7  104.9  152.3  187.7 218.9 
Retrace Recursive 
LA-IR 19.8  126.1  225.0  294.0 340.2 

AFECCC 16.9  29.2  62.7  87.6 102.6 

7.3 AFECCC Implementation and 
Performance Analysis 
Figure 12 illustrates AFECCC implementation [19] in SMAC 
(Sensor-MAC) [20] that is quite similar to 802.11 except that for 
power saving receivers sleep whenever they have no data to 
receive. As shown in Figure 12, AFECCC integrates four event 
handlers for processing DT timeout, PT timeout, packet drop 
detection timeout, and successful acknowledgement arrival at 
SMAC layer while it puts RS FEC encode and decode functions at 
its physical layer. 

 
Figure 12. AFECCC Implementation At SMAC 

Figure 13 also lists four extended headers of RTS, CTS, ACK, and 
Data frames to carry FEC code for AFECCC.  Since the three 
control packets RTS, CTS, and ACK are relatively short, we 
assume that their FEC code is of fixed size while data frames 
reserve two fields to store FEC code size in their header and the 
corresponding FEC code at their trail. 

 
Figure 13. Four Extended Packet Formats For AFECCC 

Figure 14 draws the ratio of four static FEC codes performance to 
that of AFECCC when a Mica Mote transmits 80-byte packets for 
2-hour by varying TR distance from 1m to 11m. For the fair 
comparison of the five algorithms, we compute each static FEC 
performance when the four static FEC algorithms are assumed to 
work over the same packet traffic experienced by AFECCC. 
Namely, we calculate the waste time of packet losses and extra 
code transmission when the same degree of corruption occurs to 
the four static algorithms. It is due to that since the sensor channel 
widely varies, we hardly produce the same live networks for fair 
comparison.  
Each point of four graphs in Figure 14 represents the average over 
three AFECCC traces. Figure 14 shows that the performance graph 
of weak RS(84, 8) crosses those of three strong codes, RS(92, 80), 
RS(92, 80), and RS(100, 80) as TR distance increases as predicted 
in the above simulation experiments. It also proves that AFECCC 
performs better in all TR distances even though RS(92, 80) and 
RS(88, 80) achieve almost the same performance as AFECCC as 
TR distance approaches 11m.  

 
Figure 14. Performance Ratio Of Four Static FEC Codes To 

AFECCC 



8. CONCLUSION 
This paper provides some evidences that low-power sensor 
channels’  BER tends to smoothly vary to dynamically adjust the 
FEC code size for improving the sensor network performance. It 
also proposes an adaptive FEC code control algorithm called 
AFECCC and evaluates its performance under various channel 
models and over real sensor networks. AFECCC dynamically 
matches the FEC code size to the low-frequency wireless channel 
BER, which is evaluated by acknowledgement packet arrivals. 
According to the simulations with various theoretical channel 
models and live experiments over sensor networks, AFECCC 
performs better than any static FEC algorithms and some 
conventional dynamic FEC algorithms.  
We will try to devise a technique to automatically determine the 
tunable variables of AFECCC based on its applied network 
environments. Finally, we also plan to accurately quantify the 
energy saved by AFECCC under simulations and real mobile 
sensor networks. 
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