
 

Abstract-- Wireless mobile networks tend to drop a 

large portion of packets due to propagation errors.  To 

improve reliability over noisy wireless channels, wireless 

networks can employ forward error correction (FEC) 

techniques. Static FEC algorithms, however, can degrade the 

performance by poorly matching their overhead to the 

degree of the underlying channel error, especially when the 

channel path loss rate fluctuates widely. This paper 

investigates the benefits of an adaptable FEC mechanism for 

wireless networks with severe packet loss. We show that 

our adaptive FEC technique improves the performance by 

dynamically tuning FEC strength to the current amount of 

wireless channel loss. We quantify these benefits through a 

hybrid simulation integrating packet-level simulation with 

bit-level details and validate the simulation model through 

experimentation.  

 
Index terms— Adaptive FEC, Wireless Mobile Networks 

 

I. INTRODUCTION 

 

In spite of the recent wide deployment of wireless 

mobile networks, wireless networks suffer the poor 

performance comparing to wired networks due to the 

heavy propagation error. Their average bit error rate 

(BER) is known to vary from 10-6 to 10-1, implying that 

in the worst case, most packets in a wireless network 

tend to be corrupted. At short time-scale (less than 

100ms), the instant BER also fluctuates widely and 

rapidly, making it difficult for a fixed FEC algorithm to 

match the wireless network’s needs. This problem is 

particularly acute in sensor networks with their 

low-power radios. Recent live experiments over 

sensor networks [1] reported that the absence of 

proper preparations against this severe and variable 

propagation error incurred an enormous packet loss 

rate more than 50% due to corruption.  

 

The cause of wireless error typically is explained 

by two effects, large-scale and small-scale fading 

effects each of which roughly corresponds to long-time 
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and short-time scales effects in terms of time [2]. The 

large-scale fading model predicts that the average 

signal strength attenuates as a function of the distance 

between a transmitter and its receiver (T-R) powered 

by an exponent ranging between 2 and 6. Note that 

BER is inversely proportional to the signal-to noise 

ratio (SNR).  While this model forecasts the average 

signal power at a certain T-R distance, the small-scale 

fading describes wide deviations of the signal power 

from the average value by a slight change of T-R 

distance.  

 

The short-term fading effect is mainly attributed 

to two main physical phenomena such as multipath 

interference and Doppler Effect. The multipath 

interference indicates that signal waves arrive in phase 

or out of phase at the receiver due to their different 

travel distances even though they radiate at the same 

time. Doppler Effect means that the frequency of signal 

waves changes at the receiver differently from that at 

the transmitter due to either the mobility of the 

transmitter or the receiver. The slight change on the 

communication environments differently superimposes 

signal waves, leading to a large difference on the 

received signal power. Together, these two models 

explain why the signal power will widely fluctuate from 

time to time while the average smoothly degrades as 

T-R distance increases. 

 

Medium access control (MAC) protocols use 

techniques to either avoid or correct propagation 

errors. For avoidance, the physical layer adopts 

modulation and multiplexing techniques while the link 

layer employs interleaving schemes. Modulation 

enhances the error resistance by separating physical 

signal representations mapped to each logical symbol 

as apart as possible. Two multiplexing techniques, 

direct sequence spread spectrum (DS-SS) and 

frequency hopping spread spectrums (FH-SS) prevent 

long-lasting bursty noise signals from tainting a whole 

bit or a entire frame by broadening the signal’s 

frequency spectrum or switching the carrier frequency 

in a random sequence. Interleaving also keeps multiple 

consecutive bit-errors from incurably concentrating at 

a single frame by alternatively transmitting segments 

split from different frames. For error correction, the 

link layer uses Automatic ReQuest (ARQ) and FEC to 

Jong-Suk Ahn† and John Heidmann‡ 

An Adaptive FEC Algorithm for Mobile Wireless Networks  

†Computer Engineering Dep. DongGuk University Jung-Gu Pil-Dong 3-Ga 26 Seoul, Korea 

‡USC/ISI 4676 Admiralty Way Marina del Rey, CA 90292, USA   
USC/ISI-TR-555 3/25/02 



remedy bit-errors in a reactive and proactive way 

respectively.    

      

Most wireless networks use a combination of these 

techniques at different level of the protocol stack. For 

channels with heavy losses, FEC is often employed 

even though its redundant coding reduces efficiency. 

To allow trade-off between efficiency and reliability, 

they furnish a fixed set of FEC levels to choose from 

depending on the underlying channel quality and 

various applications’ demands. GSM [3], for example, 

provides four channel codes each of which occupies 0, 

25%, 33% and 50% of the total frame with their parity 

check bits respectively.  

 

To improve the static FEC performance over 

constantly changing wireless channel status, this paper 

proposes an FEC-level Adaptation (FECA) mechanism 

which can adjust the amount of parity check bits based 

on the channel status. FECA takes type-I hybrid ARQ 

approach [4] which retransmits data with check bits 

rather than type-II hybrid ARQ approach which 

incrementally resends only check-bits. Type-II hybrid 

ARQ assumes that the previous data packet is 

successfully buffered at the receiver. The evaluation of 

our wireless networks with low-power radios shows 

that receivers, however, can’t frequently receive even 

tainted packets due to the corruption of their preamble. 

 

FECA adapts to the channel BER fluctuations 

without explicit feedback information from the 

receivers. To properly adjust the FEC strength to the 

channel state transitions, FECA expedites upward and 

downward transitions to the higher and lower level of 

FEC strength. Each transition is activated by either a 

packet loss or the timeout of an exponential tunable 

back-off timer. The live measurements over our 

wireless networks exhibit enough long-lasting positive 

correlation of BER for FECA to be stabilized even by 

this incremental adaptation. Through a hybrid 

simulation integrating the packet level abstraction with 

bit-level details, finally we confirm that FECA performs 

better than static FEC algorithms over wireless mobile 

channels with full of relative short-term variations. 

The contribution of this paper is to show the benefits 

of an adaptable FEC algorithm and verify the model 

through experimentation. 

  

This paper is organized as follows. Section 2 lists 

some related works and Section 3 examines the 

adaptive algorithm’s applicability over wireless mobile 

networks. Section 4 describes the design issues of 

FECA. Section 5 elaborates two possible approaches 

integrating bit-level details with a packet simulator to 

evaluate FECA throughput. Section 6 reveals FECA 

behaviors under various error distributions by hybrid 

simulation. Finally Section 7 summarizes experiment 

results and presents our future research list. 

 

II. RELATED WORK 

 

FECA combines two techniques: FEC and adaptive 

link-layer algorithms. We review these areas next.  

 

FEC algorithms are employed over either the link 

layer of wireless networks or the application layer of 

the Internet to resist against packet losses due to 

congestion and bit corruption respectively. The 

real-time applications tend to employ packet-level 

FEC algorithms which attach some of previously sent 

data at the current packet to compensate previously 

lost packets. Recently Bolot[5] evolves the FEC 

adaptation dynamically by coupling FEC with a rate 

control algorithm.  He tries to appropriately determine 

the amount of redundancy based on the average loss 

rate measured at the receiver. 

 

Bit-level FEC algorithms for the link layer are also 

extensively investigated to overcome the heavy 

propagation error. Based on what is retransmitted, the 

link-level FEC is grouped into two: type-I and type-II 

hybrid ARQ [4]. While type-II retransmits only the 

parity-check bits incrementally until the corrupted data 

packet is corrected, type-I resends FEC code along 

with the data. Type-II becomes more efficient under 

the low channel error rate since type-II only 

retransmits the check bits under the assumption that 

the receiver holds the previous data packet even if it is 

corrupted. When wireless networks are heavily lossy 

so that packets can’t be recognized due to the 

corrupted preamble, type-I hybrid ARQ tends to be 

effective. It is because the type-II hybrid ARQ 

algorithms can’t recover the contaminated packet if any 

of all the retransmitted parity packets including the 

data packet is missed. Furthermore, the implementation 

of type-II algorithms would be more complex than 

type-I.   

 

In contrast to the application-level FEC, link-level 

dynamic FEC algorithms need to deal with two 

additional problems; packet size and the duration of 

wireless channel status. The packet size significantly 

affects the corruption rate while it rarely influences the 

packet loss rate due to congestion. The link-level FEC 

should not increase the packet size when strengthening 

the resistance to the propagation error. Further, the 

wireless channel behavior changes rapidly comparing 

to the long lasting congestion over the Internet like few 

hours. To quickly adapt to the fast changing channel, 



the link-level FEC needs to quickly adapt to the 

currently measured channel status rather than some 

average value computed over a long time interval. 

 

For dynamic adaptability, several researchers 

[6][7][8]propose to dynamically change the link-level 

algorithm’s parameters such as transmission speed of 

ARQ, Maximum Transmission Unit (MTU), and 

modulation schemes based on the average measured 

packet loss rate or SNR evaluated at the receiver side. 

In detail, Holland [8] proposes that senders select a 

suitable modulation method among the four possible 

ones according to SNR reported from the receiver side 

by acknowledgement packets. He also evaluated the 

channel’s dynamicity, namely correlation behaviors by 

analytically computing how long a given measured 

status of the wireless channel will persist.    

 

FECA is a dynamic type-I hybrid ARQ algorithm 

appropriately adapting the FEC strength to the 

constantly changing wireless channel status. Differently 

from the above dynamic related works, FECA works 

without explicit channel information and hardware 

support. Holland needs the SNR feedback and the 

various modulations supported from the transmission 

hardware while the other two schemes need to 

measure the average packet loss rate. FECA, finally, is 

cooperative with the above all algorithms in that it can 

be employed together with the others. For example, 

wireless node changes the modulation scheme while 

adopting the different strength of FEC. Note that 

wireless networks already have redundantly spread 

several error correction and avoidance algorithms over 

their protocol stacks. Based on the layer that they are 

located at and their techniques, they altogether try to 

recover different time-scale errors and different 

degree of errors without much interference among 

them. 

 

III.  ADAPTATION APPLICABILITY OVER WIRELESS 

MOBILE NETWORKS  

 

The design of a link-level adaptive algorithm like 

FECA depends on the underlying BER distribution, 

precisely its amplitude and duration statistics of BER 

fluctuations over wireless mobile networks. If the BER 

distribution rarely exhibits a positive correlation, it 

would be difficult to deploy adaptive algorithms. 

Otherwise, one must evaluate the time scale of 

correlations to determine how to adapt the algorithm’s 

tunable parameters appropriately. This section 

estimates the time scale of correlations by both 

theoretical analysis and live experiments over wireless 

networks. 

 

A. Theoretical Analysis 
 

In this section, we approximate theoretically how 

fast BER changes as a function of T-R distance due to 

either the large-scale fading or the small-scale fading. 

For the BER change due to the large-scale fading, we 

need to consider two theoretical relations which relate 

two metrics such as (BER, SNR) and (SNR, T-R 

distance) respectively. At first, according to the 

analytical equation [9], the probability of BER is 

inversely proportional to a parameter called a ratio of 

signal energy per bit to noise power density per Hertz 

(Eb/No) which is basically SNR divided by the date rate. 

When the signal power becomes weaker by 10 times, 

the BER with no line-of-sight (LOS) path roughly 

increases approximately by 10 times while the BER of 

LOS grows about 10 times faster than the BER with no 

LOS path.  

 

Figure 1 shows the relation between the average 

signal power and T-R distance based on the 

log-normal shadowing model, one of the most popular 

large-scale fading models. For Figure 1, we assume 

914 Mhz Lucent LAN environments with the 1-meter  

close-in reference distance, 0.2818 Watt transmitting 

power and 1.559 * 10– 11 Watt receiving threshold, 

which are represented by two horizontal lines in Figure 

1. The receiving threshold is a threshold to tell the 

signal from the noise. Radio transceivers [10] can 

determine this threshold appropriately according to the 

communication environment before operation. The 

reference distance is the distance before which 

transmitting power degrades as predicted in the free 

space propagation model, meaning that the power 

decays as the square of the T-R distance. 

 

In Figure 1, the four lines with exponents from 3 to 

6 represent wireless networks with no LOS path such 

as office environments with a lot of obstacles whereas 

the other one represents indoor wireless 

communications with LOS path or free space. The four 

lines steeply attenuate around 10 times over 10-meter 

movement while the other line with exponent 2 depicts 

slower slope degrading the same degree of SNR 

changes over 100 meters.  

 



 

Figure 1 Average Power Degradation Due to 

Large-Scale Fading 

Based on these two analytical analyses, we can 

summarize that SNR attenuates more rapidly in 

environments with no LOS path than those with LOS 

while BER deteriorates more quickly in environments 

with LOS path than those with no LOS path. From these 

two observations, we roughly say that the average BER 

rarely changes within a few seconds in most wireless 

environments such as office and free space. For 

example, when a receiver walks away at the speed of 

less than 0.5 m/s (meter per second) in office with a lot 

of obstacles, the signal power degrades 10 times every 

10 meters and accordingly the BER increases 10 times. 

Considering that the average BER varies 10 times 

during 20 seconds and the packet propagation delay is 

quite short (a few milliseconds), we argue that an 

adaptive FEC algorithm can adjust its strength to the 

optimal value over many round trip times (RTT).  

 

 To see the BER variation by the small-scale 

fading, we plot the average small-scale Rayleigh fading 

duration in Figure 2 when a receiver node moves away 

at two different speeds, 0.1 and 10 m/s at three 

different locations, 5, 10, and 20 meters apart from the 

transmitter in the wireless LAN described for Figure 1. 

For the maximum power of the six lines from which the 

signal power falls, we compute the average power by 

adopting the log-normal shadowing model with the 

exponent 3. The horizontal and vertical lines of Figure 

2 correspond to the receiving threshold and 1 ms RTT 

of wireless LANs that we exemplify as an applicable 

network. 

 

Figure 2 indicates that the spectrum of the 

average duration spans from a few microseconds to a 

few seconds depending on the speed and the distance 

from the sender. The comparison of the six lines shows 

that as a receiver becomes apart from the transmitter, 

the duration of heavy BER lasts longer. Finally the 

comparison also indicates that the average duration 

decreases in proportion to the mobility speed.  

 

When considering feedback delays for monitoring 

the channel status and the correlation duration shown 

in Figure 2, the usefulness of FECA would be limited in 

that it may not adapt to a whole range of short-term 

fluctuations by the small-scale fading. For the wireless 

LAN with 1 ms RTT, the shortest fading duration that 

FECA would adapt to would be a few tens of 

milliseconds. In summary, from these theoretical 

analyses we believe that FECA improves the 

performance in most wireless networks by tracking the 

average BER behaviors while it accomplishes better in 

some networks whose average short-term fluctuation’s 

width would be at least larger than a few tens of 

milliseconds.  

 

 

Figure 2 Average Fading Duration Due to 

Small-Scale Fading 

One example wireless network for FECA would be 

one in which mobile nodes move slowly among a lot of 

obstacles, causing the short-term BER fluctuation 

ranging from tens or hundred milliseconds. In detail, it 

would be the remote area exploration in which several 

robots moves slowly like less than 1 

meter-per-second while constantly communicating 

through various geographical obstacles such as rocks, 

valleys, and etc. Another applicable network of FECA 

would be the one at the other extreme in which mobile 

nodes moves very fast like 100 km/h in which FECA 

will follow the large-scale fading continuing longer 

than a few minutes. In this case, the small-scale fading 

would cause microsecond variances contained in a 

single frame so that the large-scale fading would be 

the only one changing BER over a stream of frames. 

Finally when the average duration of BER is in the 

middle between a few hundred microseconds and a few 



milliseconds, FECA only suffers the overhead of 

adaptation since it can’t monitor the channel status fast 

enough to follow this degree of fluctuations. 

 

B. Measurements of wireless channel behaviors in 
a sensor network 

 

Section III.A suggested that FECA would be 

appropriate for some wireless networks based on 

analysis of common propagation models. However, 

these models are quite general and built for relatively 

high-power radios such as cell phones and 802.11 data 

networks. Since we are interested in designing an 

adaptive FEC algorithm for wireless sensor networks 

with very low-power radios, this section presents 

experimental measurements that evaluate radio 

interference over Motes, 8-bit sensor nodes with 

low-power radios operating at around 900 MHz[1].  

 

To see the adaptability of FECA to the sensor 

network, we measured two metrics: the degree of 

correlation variation and the corruption rate change as 

the packet size. The correlation implies the likelihood 

that when a packet is corrupted, a certain number of 

following packets are consecutively contaminated at 

the same degree as that packet. The corruption rate 

means the ratio of the number of corrupted bytes to the 

number of correctible bytes by the added check-byte. 

These two metrics indicate how long the channel state 

measured at a given time persists and whether the 

addition of check bytes is worth since the increase of 

packet size also incurs more corruption.  

 

Figure 3 plots the correlation function based on 

packet traces collected over a real sensor network 

where one Mote constantly transmits 35-byte (4-byte 

header and 31-byte payload) packets to a receiver at 

the speed of 5.6kps without any acknowledgement. We 

made these measurements in the hallway of ISI where 

during the working hours more than 90% of received 

packets are severely corrupted due to the profound 

interference by its cordless phone system sharing the 

same 850-950MHz ISM (Industrial, Scientific and 

Medical) band and people’s movements. Also more than 

10% packets are not recognized due to the corrupted 

preamble. For three lines on the graph, we collected 

data at three different T-R distances which are 1, 3, 

and 5 meters approximately and each point on each line 

averages three 1-hour measurements conducted over 

different days. 

 

For each number n at x-axis of Figure 3, we 

divide the sequence of m packets into n-consecutive 

groups where m is the total number of packets we 

collected in the experiment. The total number of 

n-consecutive packet groups out of m packets is m –  n 

+ 1. Figure 3 plots the ratio of the number of 

n-consecutive packet groups belonging to the same 

FEC level to m –  n + 1. To see how fast FEC changes 

for curing all the corrupted packets, we mapped the 

number of contaminated bytes in each packet to a 

certain FEC level. For this translation, we assume five 

FEC levels each of which corrects 5, 10, 15, 20, and 25 

corrupted bytes based on the observation that the 

maximum number of corrupted bytes in this experiment 

is up to 25 bytes. The reason for counting corrupted 

bytes rather than computing BER is that in most FEC 

algorithms [11], the basic data unit to recover is a 

symbol whose size is appropriately determined based 

on the channel characteristics. Note that when the 

symbol size is x, the maximum size of packets that we 

can correct with attached check words is 2x. In this 

experiment, we assume the symbol size as 8-bit and 

fix the packet size to 35-byte.  

 

Figure 3 confirms a strong positive correlation of 

BER among back-to-back packets. Figure 3, for 

example, predicts that the next packet suffers the 

same degree of corruption with probability 0.6 at the 1 

meter T-R distance. These experimental data in Figure 

3 agree with the Holland’s observation [8] that the 

transmitter achieves better performance by selecting 

the appropriate modulation method for the next packet 

based on the explicit feedback about the previous 

packet’s degree of corruption.  

 

The comparison of the three lines, however, 

indicates that the correlation becomes weaker as the 

T-R separation grows. It is because that as the T-R 

separation becomes larger, the start-of-packet symbol 

becomes more corrupted so that the receiver receives 

fewer packets. In other words, at the larger T-R 

distance, the next arrived packet at the receiver is not 

likely to be the next packet sent at the transmitter. The 

measured average inter-packet gap is 134ms, 200ms, 

and 462ms in the increasing order of T-R distance. 

Based on the probability distribution of Figure 3 and 

these inter-packet gaps, the average correlation 

duration times of the three locations are 902ms, 950ms, 

and 1,573ms respectively. This observation matches 

with that of Figure 2 in that the duration of the same 

contamination becomes larger as a function of T-R 

distance. In our wireless sensor network, when a 

packet is corrupted, the same degree of corruption 

lasts longer than 900ms in terms of time. 

 



 

Figure 3 Correlation Function over Sensor 

Wireless Network in ISI 

FECA can’t follow very rapid changes in time scale, 

so in Figure 4, we analyze measured data to see how 

effective FECA will if it adapts only relatively slowly. 

In detail, we want to confirm whether FECA has a 

chance to match to the channel status by not 

responding to every monitored BER change. As a way 

to find the existence of the relatively low-frequency 

behavior of wireless channels, we ignore one different 

FEC level between two same FEC levels when we 

count the number of n-consecutive packet groups 

belonging to the same FEC level. For example, when 

the sequence of computed FEC levels is 2, 2, 3, 2, 1, 1, 

the smoothed probability of observing four consecutive 

packets with FEC level 2 is 1/3 by ignoring 1 between 

two 2’s. 

 

Figure 4 says that the wireless channel in ISI 

exhibits the strong positive correlation characteristics 

in this relative long-term time scale up to a few 

seconds. The probability that five consecutive packets 

suffer the same degree of propagation errors is higher 

than 50%. The average correlation time expands from a 

few hundred milliseconds to a few ten seconds like 2.1 

seconds, 2.0 seconds and 4.4 seconds at these three 

places. This observation strongly suggests that we can 

still improve the performance even by slowly following 

these low-frequency fluctuations even though we don’t 
adapt to every BER change due to the delay of 

feedback and the lack of the detailed information about 

the wireless channel.  

 

 

Figure 4 Smoothed Correlation Function over 

Sensor Wireless Network in ISI 

Figure 5, finally evaluate whether the addition of 

the check-byte is worth in this wireless network since 

the addition also increases the number of corrupted 

bytes due to the increased packet size. Figure 5 plots 

the number of corrupted bytes increased due to the 

added check-byte when the T-R distance is 3-meter. 

The number of added check-byte is the number n at 

x-axis of Figure 5 minus with 20-byte data at the 

origin. The three lower lines in Figure 5 represent 

three different days’ measurements and each point on 

the three lines averages around one-hour trace. And 

the uppermost solid line without any mark indicates the 

number of correctible bytes as a function of added 

check bytes. The steepest slope of the three lower 

lines in Figure 5 indicates that the addition of 10-byte 

incurs 3-byte of corruption in the worst case. Since  

the addition of two check bytes cures one corrupted 

byte in our FEC algorithm that we plan to implement in 

Motes, FECA can still correct two-byte more than the 

number of bytes corrupted due to the addition of FEC 

code.  

 

Figure 5 The Number of Corrupted Bytes as a 

Function of Packet Size 



IV.  FECA ALGORITHM 

 

In this section, we design FECA algorithm that can 

gradually adapt up to the average BER fluctuations and 

even short-term fluctuations whose average duration 

lasts at least longer than a few tens of RTTs. This 

adaptation problem would be a search problem to pick 

a suitable FEC level from a number of available FEC 

levels with the implicit feedback such as timeout about 

each corrupted packet loss.  

 

The search algorithm closely depends on the 

feedback type such as explicit and implicit. When a 

transmitter gets the previous BER information like 

Holland [8], the selection of FEC level is easily 

decided for the next transmitting packet even though 

this scheme requires existing protocols to be modified 

for acknowledgement packets to carry the BER 

information on their header.  

 

When the positive acknowledgement for the packet 

arrival is only available, the search problem would be 

equivalent to the one that the receiver-driven layered 

multicast (RLM) [12] tried to solve. RLM looks for the 

optimal number of multicast groups whose combined 

sending rate matches to each receiver’s dynamically 

available bandwidth. The transmission rate summing 

different combinations of multicast groups would be 

analogous to the strength of each FEC level. 

 

These two problems, however, differ in the time 

scale of fluctuations that the two algorithms endeavor 

to trace down. RLM tries to follow relatively slowly 

varying fluctuations while FECA needs to deal with 

relatively short-term but wide oscillations by using fast 

link-by-link feedback. RLM is also more complicated 

since it needs to tell other nodes’ adjustment from its 

own one. The learning of other nodes’ behavior, the 

late feedback and the uncertainties due to statistical 

multiplexing only allow RLM to follow low-frequency 

variations based on the average packet loss. RLM, for 

example, adopts three time windows (100 sec, 10 sec, 

1 sec) for evaluating the degree of the average 

network congestion to decide the layer drop. In 

contrast, FECA quickly tracks down variances whose 

duration is longer than the fast feedback without much 

uncertainty on the effect by its behavior.  

 

Based on these differences, FECA rapidly joins at 

the next higher FEC level at each packet loss. Most 

flow control algorithms adopt a weighted average to 

filter out high-frequency changes. Since FECA tries to 

catch up with the short-term variance longer than ten 

times of RTT, it is equivalent to that FECA sets the 

smoothing factor with 1 for rapid response. This 

prompt reaction to each packet loss can cause spurious 

predictions for short-term changes lasting less than 

one RTT, leading to heavier check bits. To minimize 

the effect of false predictions, FECA needs to quickly 

drop from the newly joined level to the lower level 

when packet loss is no longer reported. 

 

To determine the appropriate drop time, FECA has 

a drop timer in each FEC level whose timeout value is 

adjusted by an exponential back-off algorithm. 

Whenever FECA joins the higher FEC level due to the 

packet loss, it increases the drop timer of this new FEC 

level up to Tmax by multiplying with the multiplication 

factor, α  greater than 1. This increase operation 

implies that the more FECA visits a FEC level, the 

larger its drop timeout becomes so that FECA stays at 

this FEC level for longer time. Notice that α and Tmax 

determines the polling frequency to see whether the 

channel status is enough improved to lower the FEC 

level, thus affecting the stabilization overhead of FECA. 

The smaller α,  for example, the more often FECA 

would aggressively poll the channel status by 

frequently going down to the lower FEC level.  

 

FECA, furthermore, retains a global polling timer 

to decay the drop timers of other FEC levels except 

the drop timer of the current FEC level. In contrast to 

learning the current channel status, FECA also needs to 

forget the old status by gradually resetting the drop 

timer’s value. Whenever the global polling timer is 

expired every Tp, FEC shrinks drop timeouts of the all 

other levels up to Tmin by multiplying with a decay 

factor, β  less than 1.  The longer FECA has not 

dropped any packet by adopting a certain level of FEC, 

the shorter it will stay at the other levels of FEC when 

it adopts one of the other levels next time. 

 

Figure 6 depicts an FECA’s representative 

behavior adjusting the current level of FEC, Lcnt to the 

channel BER fluctuations. At first FECA grows Lcnt from 

0 to 3 as it suffers three consecutive packet losses 

during the beginning 3 * Tr where Tr is a timeout taken 

before resending the packet by the link layer. On the 

successful delivery, FECA keeps Lcnt to level 3 until its 

drop timeout expires. On the drop timer’s expiration at 

time S3, FECA lowers Lcnt to level 2 to see if the 

channel is improved. When FECA experiences another 

packet loss, FECA restores Lcnt to level 3 and 

lengthens its drop timeout S3 by multiplying with α. In 

parallel with this adjustment of Lcnt, the global polling 

timer constantly shortens the drop timeout of all other 

levels by β whenever polling timeout, Tp. is expired. 
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       Figure 6 FECA Behavior Example 

V. SIMULATION METHODOLOGY FOR PATH LOSS IN 

WIRELESS CHANNELS 

 

Recently, as wireless networks are integrated into 

the Internet, the impact of bursty error in wireless 

channels has begun to be investigated. Packet-level 

network simulators [13][14] now model both wired 

and wireless networks. Since one analytical model 

seldom represents all various wireless channels, 

simulators tend to include several models to select 

based on the simulation purpose.  

 

The current ns-2, version 2.1b8a[14], for example, 

has implemented three large-scale fading models (free 

space model, two-ray ground reflection model, and 

shadowing model) and one small-scale fading model 

(Ricean distribution) [15]. These models allow ns-2 to 

compute the average signal power of every packet 

perceived at the receiver and based on the remained 

power determine the packet drop either 

probabilistically or deterministically. This approach 

typically assumes a constant signal during the 

transmission duration of each packet, and so doesn’t 
model errors which grow larger in proportional to the 

packet size. To overcome this problem, Holland [8] 

re-computes the signal power whenever the 

small-scale fading duration is expired when the packet 

transmission duration is longer than the current 

computed small-scale fading duration.  

 

Packet simulators can also model wireless 

channels with table-driven approach [16], based on 

detailed channel simulations or experiments over real 

wireless networks. This model has a weakness that the 

channel model only applies to specific networks not 

general ones. By contrast, channel simulators [17][18] 

provide measurements of bit-level errors although at 

considerable computational cost.  

 

Although packet-level error modeling is 

appropriate for many wireless models, it is insufficient 

to study FEC performance which is sensitive to 

bit-level error patterns. (FEC effectiveness depends on 

both the number and location of damaged bits.) We 

therefore added a bit-level error model into ns. We 

model bit-level errors with a simple two-state Markov 

chain, the Gilbert channel model [19]. This approach is 

similar to that used by prior researchers [6][20] in 

studying link-level ARQ and FEC. The two-state 

Markov chain abstracts bursty error distribution with 

one state representing a heavy error rate with a short 

interval, and the other representing a longer interval of 

light error. Intuitively, these two states would 

represent the average behavior of large-scale and 

small-scale fading effects, respectively. Although this 

approach does not model a specific physical 

environment, it can be tuned to approximate levels of 

error. 

 

In ns-2, FEC and errors are models as part of the 

wireless stack. As a packet passes down the stack on 

the sender side, FEC increases the packets size 

according to the number of check bits and the error 

model calculates how many bits are corrupted. At the 

receiver side, the FEC module evaluates if the 

incoming packet is corrected based on the FEC quality 

and the number of corrupted bits. Valid packets are 

passed up to the MAC, while invalid packets are 

dropped.  

 

VI. EVALUATION 

 

We next evaluate FECA performance through 

simulation. First, we seek to evaluate FECA in a stable 

scenario to determine if it finds an appropriate level of 

FEC to match various error conditions. We model error 

with a several levels of light, long-term error but 

occasional bursts of heavy error. This corresponds to a 

two-state model with light-error rates of 0-3% for a 

fixed 1 second interval, and a 5% heavy error rate for 

10 ms. 

  

Figure 7 compares FECA to four state algorithms 

including ARQ and three FEC schemes (1/4 BCH, 1/3 

BCH and 1/2 BCH [21]) while varying the off-state 

BER. Note that BCH (Bose-Chaudhuri-Hocquenghem) 

is a variant of Hamming codes for correcting multiple 

errors. We normalize each algorithm’s throughput over 

erroneous channels to the ideal maximum throughput 

achieved over the error-free channel. We compute 

throughput as the total data bits delivered over a 

simple wireless network in which a transmitter 



continuously transmits 1023-bit packets over a 512 

kbps wireless 802.11b-like MAC channel to the 

receiver. Each point in Figure 7 represents the average 

performance over five simulation runs each of which is 

100 seconds long. Since the variance of these 

measurements is less than 1%, we have not plotted 

their confidence intervals.  

 

For ARQ in Figure 7, we use 802.11b 

retransmission mechanism characterized by a 

stop-and-wait and an exponential back-off algorithm. 

For this experiment, we only corrupt data packets not 

control packets such as RTS, CTS and ACK packets to 

avoid dependence on MAC protocol details. This 

approach would overestimate ARQ performance.  For 

1/4, 1/3, and 1/2 FEC codes, the simulation adopts 

BCH(1023, 768, 26), BCH(1023, 708, 34), and 

BCH(1023, 523, 55) in which three fields in the 

parenthesis indicate the number of total bits, data bits, 

and the maximum number of corrupted bits to be 

recovered. For this experiment, FECA selects one of 

the above three FEC levels with its five tunable 

parameters, α, β, Tmax, Tmin, Tp assigned to 2, 0.9, 1 

seconds, 6ms, and 6ms respectively where 6ms is an 

approximate minimum timeout taken in this 802.11b 

network topology for retransmission. Each packet such 

as data, RTS, and CTS packets takes around 2ms for 

their transmission over this network. 

 

Figure 7 shows that ARQ’s performance quickly 

degrades as the light-error state BER increases. At a 

BER of 0.5% all packets are corrupted and ARQ is 

ineffective.  A 0.1% BER, for example, implies that a 

one-bit error is likely to occur in each 1023-bit frame. 

In contrast, the three FEC codes provide poor 

performance when the light-error state’s BER is less 

than 0.1% due to the overhead of check bits, but their 

throughputs remain constant before their cutoff points, 

1.25% and 2% BER for 1/4 and 1/3 BCH. Finally 1/2 

BCH provides poor but constant performance 

throughout the whole range due to its strong correction 

capability.  

 

Finally, the comparison of FECA performance to 

the other ones in Figure 7 indicates that FECA 

succeeds in adapting its strength to the underlying 

long-term channel state. It achieves nearly the best 

performance among the four other algorithms over the 

whole range of error rates by following ARQ, 1/4 BCH, 

1/3 BCH or 1/2 BCH in each four intervals, [0, 0.5%], 

[0.5% 1.5%], [1.5% 2.275%], [2.275%, 3%] 

respectively even though there is negligible 

performance discrepancy. The performance gap would 

be due to the overhead of FECA’s dynamic adjustments 

such as blind drops from a higher layer driven by drop 

timers’ expiration and rapid increase of FEC 

responding to short-term BER spikes.  

 

 

Figure 7 Five Error Correction Algorithms 

Performance over a Wireless Channel 

We next evaluate FECA behavior, the overhead of 

FECA adaptation as a function of the duration of error 

states when a node moves back and forth between two 

places. We abstract this wireless channel with two 

two-state Markov chains each of which is determined 

as (5% BER, 5 msec), (0.3% BER, tv), and (5% BER, 5 

msec), (3% BER, tv) respectively where tv indicates the 

variable time period varying from 10ms to 1 second 

plotted as x-axis. And each state’s transition 

probability to the next one is set to 0.7 with the stay 

probability to 0.3. We set Tmax to 100ms to enhance the 

responsiveness of FECA for short-term fluctuations.  

 

From Figure 8, we can see that the four static 

algorithms (all but FECA) provide basically the 

constant performance regardless of the fluctuation 

duration.  In detail, the performance of 1/3 and 1/4 

BCH are indistinguishable since they suffer the same 

degree of packet losses in the 3% BER state. On the 

other hand, ARQ performs poorly as the duration of the 

two light states becomes shorter since the MAC layer’s 

timeouts due to packet losses makes ARQ more 

frequently miss the chance to resend packets during 

the next adjacent light error state.   

 

As the variable duration, tv becomes larger, FECA 

begins to perform better than the other algorithms, by 

up to 12% at 1 second comparing to 1/2 BCH. It is 

because that as the variable BER state becomes stable 

over longer times, the adjustment overhead of FECA is 

negligible compared to the performance gain from the 

dynamic adjustment. As the BER oscillates more 

rapidly like when the variable duration, tv is smaller 

than 100ms, the adjustment of FECA achieves less 



improvement than 1/2 BCH even though Figure 8 

shows that FECA still achieves better than the other 

three algorithms, ARQ, 1/3, and 1/4 BCH. Notice that 

100ms is the time taken for sending around 17 packets 

since each packet takes 6ms to arrive at the receiver. 

Finally, we observe that when BER oscillates quickly, it 

is impossible for FECA to stabilize.  

 

 

Figure 8 Five Error Correction Algorithms 

Performance over a Mobile Wireless Channel 

VII. CONCLUSIONS 

 

This paper proposes an adaptive FEC algorithm, 

FECA that dynamically trades-off between reliability 

and efficiency for better performance. We use 

experiments taken from short-range radios to 

characterize the range of bit-level errors, and then 

compare FECA to several alternatives through 

simulation. Simulation experiments show that FECA can 

outperform static FEC or ARQ algorithms over a range 

of error conditions, provided that error rates do not 

oscillate two rapidly. We are currently implementing 

FECA over the UCB Mote hardware [22]. Finally, we 

plan to evaluate FECA performance over a network of 

motes. 
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