
Enabling DNSSEC in Open Source Applications
Wes Hardaker, Suresh Krishnaswamy

{hardaker,suresh}@sparta.com
SPARTA, Inc.

Abstract—The Domain Name System (DNS) [1] [2] has been
recently improved by the addition of DNS security extensions
(DNSSEC) [3] [4] [5]. These improvements secure DNS against
information forgery, modification and other attacks [6]. The DNS
infrastructure needs to be upgraded to take advantage of the
benefits offered by DNSSEC. Servers will need to serve DNSSEC
enabled records and applications will need to look for and process
these new security records. This paper discusses the advantages
of supporting DNSSEC directly within end-system applications
and the intricacies involved in retrofitting existing applications
with DNSSEC support. The experiences and benefits achieved
when upgrading two open-source packages is described.

I. INTRODUCTION

The Domain Name System (DNS) [1] [2] is a critical
Internet infrastructure protocol that translates human-friendly
domain names (like “www.example.com”) to numeric Internet
Protocol (IP) addresses (like “192.0.2.1”). The DNS has been
part of the Internet infrastructure for over 20 years. However, it
was not originally designed with security in mind and was left
vulnerable to message modification and data forgery attacks.
The DNS Security Extensions (DNSSEC) [3] [4] [5] fix the
security flaws in the original DNS protocol.

The DNS Security Extensions provides origin
authentication, data integrity, and authenticated denial
of existence (the ability to reliably detect through a proof
of non-existence, if a name or type in the DNS data is
intentionally missing). Consumers of DNS information can
check cryptographic signatures present on data to gain
assurance that the data was created by an authorized entity
and that it was not modified in any way from the time that
the authorized entity created it. DNSSEC is just beginning
to achieve wide-spread deployment. In order for deployment
to be considered complete, all DNS data producers need to
add DNSSEC security records to their zone data and all DNS
data consumers must request DNSSEC responses and must
be able to validate those responses in order to ensure that the
returned records have not been tampered with or forged.

There are multiple ways that DNSSEC deployment can be
achieved near the DNS data consuming clients. Validation of
responses can either be done through a trusted security-aware
recursive name server [3] near the client or by client
applications themselves. This paper focuses on the details and
benefits of implementing DNSSEC validation directly within
DNS client applications.

This paper is organized as follows: Section II describes
the motivation behind making DNS applications perform
validation themselves. Section III discusses the existing
DNS API and the changes required to it in order to

support DNSSEC. It focuses on the new DNSSEC-enabled
API provided by the DNSSEC-Tools software package [7].
Section IV briefly discusses modern applications’ use of
DNS within their architectures and discusses the types of
modifications that are needed in applications to support
the new DNSSEC-specific API. It also provides details on
instrumenting two example applications: Firefox [8] and
OpenSSH [9] with DNSSEC capability. Section V discusses
lessons learned from this work, section VI discusses future
work and section VII discusses conclusions reached.

23 January 2011

II. MOTIVATION FOR DNSSEC INSTRUMENTED
APPLICATIONS

There are two ways of doing DNSSEC validation near
the DNS data-consuming end. One method is to deploy
a security-aware recursive name server within the network
closest to the end-systems that are requesting answers to DNS
queries. This recursive name server would then perform all
the work on behalf of the client and check the result before
returning a response to the client. The other possibility is
to have the end-systems themselves request and process all
DNS security information. Each method has its advantages
and disadvantages.

The benefits to deploying DNSSEC validation on a
recursive name server center on the fact that it simplifies
the configuration and maintenance of DNSSEC-related
information. When trust anchors need to be added, removed or
modified they can be changed entirely within the few hosts that
offer recursive name service support to the clients. End-system
libraries, applications and configuration require no changes
to take advantage of a security-aware recursive name server
that is protecting it from DNS information modification. In
contrast, all validating end-devices must be configured with
a list of trust anchors and policy definitions if DNSSEC is
performed within end-systems.

A downside of centralization, though, is that the network
between the validating recursive name server and the
end-system needs to be trusted. Although DNS data is
protected between the distributing source and the validating
name server, there is no protection provided between the
validating resolver and the end-system. There are multiple
ways to protect the network infrastructure using IPsec, DNS
TSIG [10], physical security and other protection mechanisms
but these add back in end-system configuration complexity,
which defeats one of the primary objectives of centralized
validation.

Another benefit to performing validation on a recursive
name server is that the caching aspect of the resolver reduces
network load since each client does not need to request the
larger DNSSEC related resource records. However, this is
not a significant problem even when validation is performed
on end-systems. Validating clients can still use caching
resolvers when requesting DNSSEC data so the increase in
traffic required by validating end-systems can be completely
localized to the infrastructure between the end-systems and
the caching resolver where bandwidth is typically plentiful.

An issue with performing validation on a caching resolver
is that the only errors that the normal DNS protocol can
return to the client are those associated with a successful
validation condition or a generic error. This doesn’t enable
the client to determine the reason for the look-up failure (e.g.
a regular DNS look-up failure v.s. a DNSSEC specific error).
Only direct validation on the end-system application can take
advantage of additional details associated with the validation
process. As will be discussed later in this paper (Section
IV), these additional error indications can be very helpful in
communicating problem events to the end user through the
use of better graphical status icons, color codings or error
messages.

Finally, performing validation on a recursive name server
provides no local control on the end-system, which may
have differing policy requirements. If an end-system had a
greater trust requirement for some component of the Internet
it would have no way of ensuring the validating recursive
name server was appropriately checking the results from that
Internet segment. When validation is done within end-systems,
each application can have its own required security policies
that could differ from other applications on the same system.
Although this scenario is less frequently needed, it is still
important to support.

While there are trade-offs associated with performing
in-application validation, the authors believe that the benefits
associated with application-level validation, particularly with
respect to enabling fine-grained local control and providing
better error messages to the end-user, far outweigh any of its
administrative burdens.

III. DNSSEC API DESCRIPTION

DNSSEC presents a number of new status codes for
application consumption. Certain status codes indicate the
aggregated validity of the complete DNS message returned
in response to a DNS query. Since a DNS response can be
comprised of multiple resource record sets, certain validation
status codes also indicate the validity of individual resource
record sets in the response. Finally, the validation status
code for each resource record set is determined through
the validation sub-states for the individual elements in the
DNSSEC authentication chain for that resource record set.

While some applications may wish to use the full set of
individual DNSSEC validator status values to communicate
detailed results of validation processing to the end-user, one
can be reasonably certain that not all applications will want to

use more than the single aggregated status value. For example,
an application that uses existing DNS resolver functions may
benefit from having a smaller number of DNSSEC validation
states to deal with, since this is arguably easier to retrofit into
its existing code base.

DNS lookups are finely ingrained into Internet applications
available today. Some of these applications have been rarely
modified over the years. In order for DNSSEC to be easily
retrofitted into such applications it is important that any
change introduced by DNSSEC to the resolver API be
well-defined and have a small code footprint, in order to
minimize the likelihood of introducing new vulnerabilities
through programming errors related to implementing these
changes. In this light, it is useful to examine some of the
widely-used DNS resolver functions and consider the possible
ways in which they may be modified in order to support
DNSSEC.

The subsequent sub-sections define a DNSSEC-enabled API
set that is suitable as a replacement API for the traditional
DNS API. The API is designed to be generic such that
multiple validation libraries could use the API to expose
DNSSEC support to their users. The validation library in the
DNSSEC-Tools software package [7] implements this API and
acts as both a solution for application developers and as a
reference release for validation library developers.

A. DNSSEC Enabling Historical DNS Functions

The getaddrinfo() function [11] is a replacement function
for the obsoleted name to address function, gethostbyname().
Its prototype is provided below.

int getaddrinfo(const char *hostname,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res);

The getaddrinfo() function returns a linked list of addrinfo
structures for a given host name and service name, where each
element in the linked list corresponds to a returned socket
address. It returns 0 on success and an error code on failure.
An application that calls getaddrinfo() checks the return value
for error conditions and either, as a rare case, propagates these
errors up or, more typically, returns a generic error to some
higher level module for further processing. An application
must invoke the freeaddrinfo() function to release the memory
allocated for the addrinfo linked list after use.

There are a couple of choices for retrofitting DNSSEC
capabilities into getaddrinfo(). The first alternative is that of
adding a new validation status element to the existing addrinfo
structure. To see why this is beneficial, one would need to
consider how the addrinfo elements are constructed from the
DNS responses. The addrinfo linked list contains a number of
socket address structures corresponding to the addresses that
match the query name in the DNS. Depending on the options
passed to getaddrinfo, these may be a combination of IPv4
and IPv6 addresses which are represented by distinct resource
record types in the DNS. Any canonical names in the addrinfo

linked list are also returned in separate resource record sets.
As noted earlier, each resource record set can be associated
with its own validation status; thus, a new validation status
element added to the addrinfo structure enables an application
to determine the validity of individual resource record sets in
the returned response and therefore selectively use only those
components that validate successfully.

The disadvantage with adding a new member to the
addrinfo structure is that it increases the number of places
in the application code that needs to be modified in order
to add DNSSEC support. Many applications eventually end
up passing the addrinfo linked list returned by getaddrinfo()
to a number of additional functions before they finally
call the freeaddrinfo() function. In order to add DNSSEC
support to such applications, every function that uses the
addrinfo structure would need to recognize the modified
addrinfo structure and handle the error condition arising
from encountering elements in the list that do not validate
successfully. The freeaddrinfo() function and all the parts of
the code that use this function would also need to be modified
in order to handle the modified addrinfo structure.

An alternative to modifying the addrinfo structure is that of
having an additional status code returned as an argument to the
getaddrinfo() function. In this approach the application loses
the ability to check the DNSSEC validity status of individual
answers in the addrinfo linked list; however, application
changes are kept to a minimum. From the perspective of
having a replacement function that can be easily integrated into
existing applications, the second approach is more desirable.
It can also be argued that applications that need to obtain
detailed validation status information for each resource record
set can always use one of the new DNSSEC-capable functions
discussed in Section III-B. Thus, for a DNSSEC-capable
version of getaddrinfo() the DNSSEC validator library in the
DNSSEC-Tools software package adopts the second approach.

The prototype for such a modified getaddrinfo() function is
provided below.

int val_getaddrinfo(val_context_t *ctx,
const char *hostname,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res,
val_status_t *val_status);

In the spirit of keeping the application code change
to a minimum, the set of possible return values from
val getaddrinfo() is kept identical to that of getaddrinfo().
The DNSSEC validation status is returned in the
val status argument. This value represents the consolidated
DNSSEC validation status for all answers returned by the
val getaddrinfo() function. Applications can use this status
code to decide if the set of answers corresponds to a validated
answer, a locally trusted answer (through local policy rules),
an invalid answer, or either a provable or locally trusted
non-existent DNS name or type code.

Local policy plays an important role in deciding the
validation outcome for a DNS query. The ctx element in the
val getaddrinfo() function is a handle to the validator context
which references the particular validator policy in use. This
value may simply be set to NULL for those applications that
wish to just use the default system-wide DNSSEC validation
policy. Section III-C describes the DNSSEC validator policy
considerations in greater detail.

The above template for a DNSSEC-capable getaddrinfo()
replacement can be easily extended to other historical DNS
API functions. Prototypes for getnameinfo() and res query()
replacements are provided below.

int val_getnameinfo(val_context_t *ctx,
const struct sockaddr *sa,
socklen_t salen,
char *host,
size_t hostlen,
char *serv,
size_t servlen,
int flags,
val_status_t *val_status);

int val_res_query(val_context_t *ctx,
const char *domain_name,
int class,
int type,
u_char *answer,
int anslen,
val_status_t *val_status);

While the getaddrinfo() and getnameinfo() functions
supercede older gethostbyname() and gethostbyaddr()
functions, it should be noted that a large number
of applications still use these obsoleted functions.
DNSSEC-capable versions of gethostbyname() and
gethostbyaddr() can also be defined in a similar manner.

B. New DNSSEC-specific APIs

It is expected that the average application will more likely
wish to use the simple resolving APIs previously discussed
in combination with additional DNSSEC-specific validation
result checking APIs. This combination provides a minimal
upgrade path from being a DNSSEC-agnostic application
to a DNSSEC-aware application. A more sophisticated and
powerful DNSSEC-enabled resolving API is also provided
by the DNSSEC-Tools library. These additional fine-grained
functions provide applications the ability to access the
entire chain of data and the validity results of each DNS
request/response pair. Some applications may wish to make
use of these more detailed API routines in order to provide
sufficient debugging and troubleshooting utilities for end-users
or administrators.

1) Validation Result Checking APIs: The DNSSEC-Tools
API offers a number of convenience functions for testing
the validity of returned responses, regardless of whether they
are aggregated validation status of the functions described in

III-A or the individual results returned from the fine-grained
resolving APIs. The prototypes for these validation-checking
functions are provided below. A return value greater than
0 indicates a true condition; other values indicate a false
condition.

int val_isvalidated(val_status_t status);

int val_istrusted(val_status_t status);

int val_does_not_exist(
val_status_t status);

An application can use the val isvalidated() function to test
if the returned validation status code represents a value that is
indicative of a completely validated DNSSEC authentication
chain. Since a DNSSEC validator can be configured to trust
certain answers even when they have not been confirmed
to have a completely valid DNSSEC authentication chain,
an application can also use the val istrusted() function to
determine if a validation status satisfies this lower bound of
trust. The val does not exist() function is used to determine if
the status code corresponds to one of the non-existence states.

2) Fine-Grained DNSSEC-enabled resolving APIs: The
val get rrset() function allows an application to inspect the
DNSSEC validation status of each resource record set returned
in response to a query for a given name, class and type.
The results are returned in a linked list of val answer chain
structures. Each element contains a pointer to a rr rec
structure, which encapsulates a sequence of resource record
length and value tuples. Since the different resource records
returned in response to a query for a given name, class and type
may also have different names (if name aliases were followed)
or types (if the query type code was ”any”), these fields are
duplicated in the val answer chain structure to reflect the
exact values returned in the resource record set. The flags
argument to the val get rrset() function is provided for future
use and is normally set to 0. The val free answer chain()
function can be used by the application to release the memory
allocated to the val answer chain linked list after use. The
function prototypes and relevant structure definitions are
provided below.

int val_get_rrset(val_context_t *ctx,
const char *name,
int class,
int type,
u_int32_t flags,
struct val_answer_chain **ans);

void val_free_answer_chain(
struct val_answer_chain *ans);

struct val_answer_chain {
val_status_t val_ans_status;
char *val_ans_name;
int val_ans_class;

int val_ans_type;
struct rr_rec *val_ans;
struct val_answer_chain *val_ans_next;

};

struct rr_rec {
size_t rr_length;
u_char *rr_data;
struct rr_rec *rr_next;

};

The val resolve and check() function enables applications
to view the DNSSEC status information at an additional level
of detail. It provides DNSSEC authentication chain details for
each resource record set (or proof of non-existence) returned
in response to a query for a given name, class and type.
In addition, information for each record set (such as the
time to live counter, the section from where the response
was received, the server that returned it, and the individual
resource records and their digital signatures) are also returned.
The function prototypes and relevant structure definitions are
provided below.

int val_resolve_and_check(
val_context_t *ctx,
char *domain_name,
int class,
int type,
u_int32_t flags,
struct val_result_chain **res);

void val_free_result_chain(
struct val_result_chain *res);

struct val_result_chain {
val_status_t val_rc_status;
char *val_rc_alias;
struct val_rrset_rec *val_rc_rrset;
struct val_authentication_chain *

val_rc_answer;
int val_rc_proof_count;
struct val_authentication_chain *

val_rc_proofs[MAX_PROOFS];
struct val_result_chain *val_rc_next;

};

struct val_authentication_chain {
val_astatus_t val_ac_status;
struct val_rrset_rec *val_ac_rrset;
struct val_authentication_chain *

val_ac_trust;
};

struct val_rrset_rec {
int val_rrset_rcode;
char *val_rrset_name;
int val_rrset_class;

int val_rrset_type;
long val_rrset_ttl;
int val_rrset_section;
struct sockaddr *val_rrset_server;
struct val_rr_rec *val_rrset_data;
struct val_rr_rec *val_rrset_sig;

};

struct val_rr_rec {
size_t rr_rdata_length;
u_char *rr_rdata;
struct val_rr_rec *rr_next;
val_astatus_t rr_status;

};

The val resolve and check() function returns its results
in a linked list of val result chain structures. The
val authentication chain structure contains the DNSSEC
authentication chain details, the val rrset rec structure
provides the detailed resource record set information,
and the val rr rec structure points to a sequence of
tuples containing resource record and signature data. The
val free result chain() function can be used by the application
to release the memory allocated to the val result chain linked
list after use.

Validation status values are available for each resource
record set, for each element in the authentication chain for a
given resource record set, for each signature that is processed
to determine validity of data in a resource record set, and
for each key or key hash data that is used for constructing
a DNSSEC authentication chain. Applications can use the
p val status() and p ac status() functions to convert these
validation status values to equivalent string representations for
user consumption.

const char *p_val_status(
val_status_t status);

const char *p_ac_status(
val_astatus_t status);

The val get rrset() and val resolve and check() functions
return 0 on success and an error code on failure. Applications
can use the p val err() function to convert these error codes
to equivalent string representations for user consumption.

const char *p_val_err(int err);

It is useful to note that a validator library that
defines these functions may implement the val get rrset()
function by invoking the val resolve and check() function
internally. If the VAL QUERY NO AC DETAIL flag is
set in val resolve and check(), authentication details for
answers and proofs of non-existence are not returned
in the val result chain structure. val get rrset() and
val resolve and check() are, then, functionally equivalent
with the only exception being that val get rrset() will not
return auxillary resource record sets associated with the

response (for e.g. intermediate records in an alias chain).

C. DNSSEC Validator Policy

In the DNSSEC-Tools package, DNSSEC validator policy is
stored in local system configuration (e.g. /etc/dnsval.conf). As
noted earlier, the particular DNSSEC validator policy in use
by a validator impacts the validation results that it returns.
Different environments may require different policy settings.
The most basic of validator policy settings is the list of
DNSSEC trust anchors, which typically, is simply the public
key for the DNS Root zone but could also include a list
of enterprise-specific internal trust anchors. Since absolute
time plays an important role in DNSSEC whereas it did
not for plain DNS, another useful policy setting to work
around transient errors in system time or signature validity
periods is the acceptable clock-skew that a validator could use
while evaluating inception and expiration times on DNSSEC
signatures.

The validation library in the DNSSEC-Tools software
package also defines a policy setting for explicitly stating
the security expectation for particular domains. This setting
is useful in cases where a user wishes to selectively ignore
DNSSEC processing for certain domains when it is known
that no DNSSEC secure entry points for those domains exist,
or to mark particular domains as untrusted. An application
is then able to differentiate between a locally trusted (but not
validated) status code and other resolution or validation failure
codes, and can thus make a better decision on how to use a
particular answer.

The term ”provably-insecure” [3] in DNSSEC is an
unfortunate misnomer. While it does refer to the condition
where DNSSEC is not enabled for a particular zone, it does
not imply by any means that the zone data is insecure or
unfit for use by an application. A provably-insecure state is
usually reached through an assertion made by the parent zone
that can be independently validated by DNSSEC. However,
this condition is functionally equal to the case where a zone
operator has set the DNSSEC security expectation for a zone
to ’ignore’ and has thus instructed the validator not to verify
the data. The validation library in the DNSSEC-Tools software
package defines a policy setting that allows a validator operator
to make a choice on whether the provably-insecure state should
be considered as trusted or not. It should be noted that the
val isvalidated() function will still return a false condition
for provably insecure results that are configured to be trusted
through local policy settings.

While most applications on a system would use a consistent
system-wide DNSSEC validator policy, it can also be
envisioned that certain applications on that system may want
to use their own customized DNSSEC validator policy settings
for evaluating DNSSEC results. The validator context is the
application’s handle to the validator policy. An application can
create a new validator context using the val create context()
function, using the scope argument to guide the validator in
deciding the particular policy settings to associate with that
handle. The manner in which the scope argument is used

within the system configuration to identify specific validator
policy settings is implementation-specific. Applications can
use the val free context() function to release the memory
allocated by the val create context(). The prototypes for these
functions are provided below.

int val_create_context(const char *scope,
val_context_t **ctx);

void val_free_context(val_context_t *ctx);

The validation library in the DNSSEC-Tools software
package defines a hierarchical representation of policy labels
for the scope parameter and a mechanism for cumulatively
applying the policies identified by the labels within that
hierarchy.

An application that is appropriately instrumented to call the
val create context() function can supply its own validation
scope to the validator library. In cases where the the
application code base does not call val create context(),
the validator library provides two additional alternatives for
enabling the user to select different validator policies for
different applications.

In the first option the validator library automatically
attempts to construct a label from the application name
and looks for a policy identified by that label in the
configuration system. In the second option, the validator
operator sets the value of an environment variable, which
is used to communicate the desired policy scope value
to the validator library. These options can be selectively
enabled, thus providing for deployment scenarios ranging
from a locked-down set of systems with a uniform DNSSEC
validation policy to a scenario where individual users are given
the flexibility to customize DNSSEC validation policy settings
for their own systems or applications.

IV. API USAGE WITHIN APPLICATIONS

Internet applications that make use of the Domain Name
System have been developing for over twenty years. The DNS
protocol has received very little updates during this period.
Thus, many application developers have taken significant
liberties when processing DNS error conditions based on the
invalid assumption that no further changes would occur to
the DNS. The result is that some applications have error
handling loops that do not have proper fallback cases to
default “unknown error” handling code. This situation poses
problems for retrofitting DNSSEC capability into existing
applications. Most importantly, it makes it very difficult for
libraries offering DNS resolution support to upgrade their API
to support DNSSEC because it is often unclear how many
clients would break when new error codes are returned.

When DNSSEC validation fails there are at least three
choices of errors that can be shown to the user. For applications
that choose not to expose the details of validation failures to
the user a simple “service unavailable” message is typical. This
message would be indistinguishable from other unavailability
events (like a network being down). Another option is to

actually explain that answers were returned but they were not
valid by using a “DNSSEC Validation Failure” error message.
This provides more information to the end-user and their
network administrator.

This section describes the work done to incorporate
the DNSSEC-compliant API into two popular open-source
applications: Firefox and OpenSSH. Both the difficulties in
their upgrade process as well as the realized benefits are
discussed.

A. DNSSEC-enabled Firefox

Mozilla’s Firefox [8] is a very popular open-source
web-browser. It’s source code contains an immense and
complex interaction of both C and Javascript. Fortunately all
DNS processing within the Firefox code is funneled through
one utility library. This utility library, called libnspr , was
written to act as a buffer between operating system specific
DNS libraries and the rest of the firefox code. Because it
acts as a portable DNS resolving library it has also been
used by other applications striving for cross-platform support.
These other applications include popular applications such as
OpenOffice, Thunderbird, and Evolution.

Internally to libnspr many of the common system-level DNS
routines are called and their results are returned to the caller.
Much of the wrapping code merely ensures that libnspr API
can be used consistently across multiple platforms and that the
functions can always be called in a thread-safe manner even if
the underlying OS does not support thread-safe DNS lookups.

The good news with the libnspr implementation is that
very little looked to be needed to replace the existing
code with the DNSSEC-Tools’ DNSSEC compliant libval
API. Unfortunately, within the rest of the Firefox and other
dependent code, developers making use of the libnspr API
made the assumption that no new error codes would be
returned in the future. The result is that if the libnspr code
started returning new error messages then the web browser’s
code would continue into the success portion of the error
checking code rather than indicating a DNS lookup failure.
Multiple other portions of code within the Firefox package
had to be modified in order to account for these poorly coded
error handling routines.

Because other applications, as discussed above, make use
of the libnspr API and because there are significant numbers
of third-parties extensions for Firefox it is deemed unsafe
to return new error codes from the existing API without
a mechanism of ensuring that the caller is aware of the
extended DNSSEC validation result codes. Thus a new API
was introduced into libnspr with functions that had identical
arguments to the original functions but were renamed to
include Extended at the end of the function names. In this
way callers could use the Extended suffixed functions when
they wished to handle DNSSEC enabled return codes. The
original functions still performed DNSSEC validation but
would simply return an older “Host Not Found” style error
code when validation failed instead of one of the extended
return codes.

This solution provided both DNSSEC validation for
applications using the libnspr API regardless of whether they
were DNSSEC-aware or not while still providing detailed error
status for applications that wish to migrate to becoming more
DNSSEC-aware.

a) Extended Error Benefits: Once the primary Firefox
code was updated to reflect new DNSSEC error conditions
the error screens shown to the user were updated. Details of
exactly how DNSSEC validation might have failed are not
shown to the user as this is perceived as detrimental by the
Mozilla team that develops Firefox. The Mozilla team has
recently taken the approach to only explain to the user that a
connection has failed without providing intricate details that
will only confuse their average user. Figure 1 is a screen-shot
of Firefox’s new DNSSEC validation error screen.

Fig. 1. Firefox DNSSEC Validation Error

The DNSSEC-Tools package also contains a Firefox
extension that shows the DNSSEC validation results for all
the DNS lookups that were required to load a particular web
page. It shows counters for the number of validated results,
the number of trusted results (i.e. DNS lookups that were
trusted because no validation trust anchors were available)
and DNSSEC validation errors. It frequently takes many DNS
requests to fully load a given web page because web pages are
frequently filled with references to other sources of data, such
as images, javascript source code and external cascading style
sheets definitions. Figure 2 is a screen-shot of this extension
in operation showing multiple look-ups when browsing the
http://www.DNSSEC-Tools.org/ web site..

Fig. 2. Firefox DNSSEC Display Extension

Another benefit to DNSSEC validation is actually the
improved handling for when domain names do not exist.
Without DNSSEC validation, if a user enters an invalid name
into Firefox then the resulting error screen that firefox displays
is full of potentially useful questions that help users determine
what’s wrong: “Did you make a mistake when typing the
domain?”, “Are you certain this domain address exists?”,
and (summarized) “Is your network connection functioning?”.
DNSSEC provides applications with positive proof that a
domain does not exist. Because of this, the second two possible

questions can be safely removed from the screen shown to
the user when DNSSEC validation has proven that a domain
doesn’t exist. The second question can be replaced with a
definitive statement: “The domain you entered does not exist”.
This greatly improves the simplicity of the error messages
shown to the user.

B. DNSSEC-enabled OpenSSH

The OpenSSH [9] software suite is a very popular software
suite that provides a free, open-source implementation of the
Secure Shell protocol [12]. OpenSSH performs a number of
DNS related activities including look-up of the hostname to
connect to as well as searching for SSH Key fingerprints stored
in the DNS [13].

Replacing the older DNS API used within OpenSSH with
the newer DNSSEC supporting API was not a difficult task.
The error handling code within OpenSSH was neither as
complex as the Firefox code nor was the lookup code used
in third party applications like Firefox’s libnspr component.

A new feature not previously available to the OpenSSH
implementation was also quickly added. In particular,
unknown SSH keys from a remote server that can be verified
through the use of the DNS key fingerprint record (SSHFP)
can now be automatically trusted as authenticated. The original
OpenSSH code could check the SSHFP record but could
only provide guidance to the user about accepting it since
the lookup of the SSHFP record itself was insecure. With
a DNSSEC signed SSHFP record, however, the lookup can
be completely trusted when validation succeeds and the patch
provides support for auto-accepting validated SSH keys. All
of this work, including adding the configuration file tokens
for making auto-acceptance optional, took significantly less
time than the Firefox implementation because the code base
was both simpler and had a better architecture for future DNS
return-code expansion.

V. LESSONS LEARNED

A number of important discoveries were made in the process
of instrumenting existing applications with a DNSSEC enabled
resolution API.

Unfortunately many applications are designed with the
notion that the DNS will never change and require significantly
more work than simply replacing the older API with a
newer one. Each application has to be analyzed to determine
where DNS errors are propagating to and each point
checked to ensure proper processing of newer API return
codes. Some applications updated by the developers working
on DNSSEC-Tools, though, were fairly trivial to update
because their internal architectures were well defined and
forward-thinking. These applications weren’t discussed here
but include wget, lftp, sendmail, postfix, libspf and others. The
full list of applications that were made DNSSEC-capable by
the DNSSEC-Tools project can be found at [14].

A positive benefit of instrumenting applications with
DNSSEC is that it often reduces the vagueness of the error
messages they return to definitive statements when domain

names do not exist. This unexpected benefit to DNSSEC’s
proof of non-existence can be a great boon to helping
end-users understand their usage mistakes.

Some applications that rely on DNS resource records for
distributing information, such as OpenSSH, can significantly
improve the security of the application when updated to use a
DNSSEC enabled API.

VI. FUTURE WORK

The DNSSEC-Tools project modified only a small number
of the existing open-source applications that make use of the
DNS. There are many other applications that could benefit
from similar changes to those performed by the project team.

The DNSSEC-Tools libval library is packaged with a few
operating systems already, such as Fedora and Debian, but
providing even wider distribution would help application
writers make easy use of the DNSSEC API.

The patches that have been developed for the instrumented
applications need be propagated up to the base distributions so
others can more easily take advantage of the improvements.
Right now, end-users would have to manually apply the
patches and rebuild the components themselves.

The project team has recently begun to explore providing
a system-wide “shim” library that automatically extends
DNSSEC protection to all applications by replacing the normal
system API with a newer one. The applications wouldn’t be
able to take advantage of the extended error codes but would
at least be protected on a system-wide basis and be able to
use a feature-rich validator policy, either on a per-application
or on a system-wide basis. Additional information could still
be returned to the user via a system-tray pop-up dialog box if
user notification is needed for events that can’t be effectively
communicated through the application due to the limited error
code handling available.

VII. CONCLUSIONS

Although sometimes significant work is needed to update
an application so that it becomes DNSSEC aware, there
is significant added benefit once the work is completed.
Applications not only offer additional security features but can
also offer more decisive messages to return to the end-user.

The authors believe that the benefits to in-application
DNSSEC validation, particularly with respect to enabling
fine-grained local control and providing better error messages
to the end-user, far outweigh the costs. The distribution and
management complexity of such a system is certainly higher.
However, the benefit of a completely secure deployment
regardless of location and the added security and usability
benefits provided to the application significantly outweigh the
required complexity increase.

REFERENCES

[1] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034
(Standard), Nov. 1987, updated by RFCs 1101, 1183, 1348, 1876,
1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592.
[Online]. Available: http://www.ietf.org/rfc/rfc1034.txt

[2] ——, “Domain names - implementation and specification,” RFC
1035 (Standard), Nov. 1987, updated by RFCs 1101, 1183, 1348,
1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,
2845, 3425, 3658, 4033, 4034, 4035, 4343. [Online]. Available:
http://www.ietf.org/rfc/rfc1035.txt

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” RFC 4033 (Proposed
Standard), Mar. 2005. [Online]. Available: http://www.ietf.org/rfc/
rfc4033.txt

[4] ——, “Resource Records for the DNS Security Extensions,” RFC
4034 (Proposed Standard), Mar. 2005, updated by RFC 4470. [Online].
Available: http://www.ietf.org/rfc/rfc4034.txt

[5] ——, “Protocol Modifications for the DNS Security Extensions,” RFC
4035 (Proposed Standard), Mar. 2005, updated by RFC 4470. [Online].
Available: http://www.ietf.org/rfc/rfc4035.txt

[6] D. Atkins and R. Austein, “Threat Analysis of the Domain Name
System (DNS),” RFC 3833 (Informational), Aug. 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3833.txt

[7] S. Inc., “Dnssec-tools: Dnssec software libraries and tools,” http://www.
dnssec-tools.org/. [Online]. Available: http://www.dnssec-tools.org/

[8] M. Corporation, “Firefox: An open-source web browser,” http:
//www.mozilla.com/firefox. [Online]. Available: http://www.mozilla.
com/firefox/

[9] C. Effort, “Openssh: a free version of the ssh connectivity tools,”
http://www.openssh.org/. [Online]. Available: http://www.openssh.org/

[10] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington, “Secret
Key Transaction Authentication for DNS (TSIG),” RFC 2845 (Proposed
Standard), May 2000, updated by RFC 3645. [Online]. Available:
http://www.ietf.org/rfc/rfc2845.txt

[11] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, “Basic
Socket Interface Extensions for IPv6,” RFC 3493 (Informational), Feb.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3493.txt

[12] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture,” RFC 4251 (Proposed Standard), Jan. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4251.txt

[13] J. Schlyter and W. Griffin, “Using DNS to Securely Publish Secure
Shell (SSH) Key Fingerprints,” RFC 4255 (Proposed Standard), Jan.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4255.txt

[14] S. Inc., “Dnssec-tools instrumented application list,” http://
www.dnssec-tools.org/wiki/index.php/DNSSEC Applications. [Online].
Available: http://www.dnssec-tools.org/wiki/index.php/DNSSEC
Applications

