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ABSTRACT

With vast amount of content online, it is not surprising that un-

scrupulous entities łborrowž from the web to provide content for

advertisements, link farms, and spam. Our insight is that crypto-

graphic hashing and fingerprinting can efficiently identify content

reuse for web-size corpora. We develop two related algorithms, one

to automatically discover previously unknown duplicate content

in the web, and the second to precisely detect copies of discovered

or manually identified content. We show that bad neighborhoods,

clusters of pages where copied content is frequent, help identify

copying in the web. We verify our algorithm and its choices with

controlled experiments over three web datasets: Common Crawl

(2009/10), GeoCities (1990sś2000s), and a phishing corpus (2014).

We show that our use of cryptographic hashing is much more pre-

cise than alternatives such as locality-sensitive hashing, avoiding

the thousands of false-positives that would otherwise occur. We

apply our approach in three systems: discovering and detecting

duplicated content in the web, searching explicitly for copies of

Wikipedia in the web, and detecting phishing sites in a web browser.

We show that general copying in the web is often benign (for exam-

ple, templates), but 6ś11% are commercial or possibly commercial.

Most copies of Wikipedia (86%) are commercialized (link farming

or advertisements). For phishing, we focus on PayPal, detecting

59% of PayPal-phish even without taking on intentional cloaking.

CCS CONCEPTS

· Information systems → Spam detection; Web mining; Ex-

traction, transformation and loading; Data cleaning; · Security and

privacy→ Phishing.
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1 INTRODUCTION

A vast amount of content is online, easily accessible, and widely

utilized today. User-generated content fills many sites, sometimes

non-commercial like Wikipedia, but more often commercial like

Facebook and Yelp, where it supports billions of dollars in adver-

tising. However, sometimes unscrupulous entities repackage this

content, wrapping their commercial content around this previously

published information to make a quick profit.
There are several recent examples of misleading reuse of con-

tent. Content farming involves reposting copies of Wikipedia or
discussion forums to garner revenue from new advertisements, or
to fill out link farms that support search-engine łoptimizationž.
E-book content farming republishes publicly available information
as e-books to attract naive purchasers and spam the e-book mar-
ket. (Tools like Autopilot Kindle Cash can mass-produce dozens of
łbooksž in hours.) Review spamming posts paid reviews that are of-
ten fake and use near-duplicate content to boost business rankings.

The common thread across these examples is that they gather and
republish publicly available information for commercial gain.

Our goal is to develop methods that efficiently find duplication
in large corpora, and to show this approach has multiple appli-
cations. We show that our method (ğ7) efficiently finds instances
of mass-republishing on the Internet: for example, sites that use
Wikipedia content for advertising (ğ8.1). While copying Wikipedia
is explicitly allowed, bulk copying of copyrighted content is not.
Even when allowed, content farming does little to enhance the web,
and review spamming and e-book content farming degrade the
impact of novel reviews and books, much as click fraud degrading
legitimate advertising. Our approach can also detect phishing sites
that use duplicated content to spoof users (ğ8.2).

Our insight is that cryptographic hashing can provide an effective
approach in duplication detection, and scales well to very large
datasets. A hash function takes arbitrary content input and produces
a statistically unique, simple, fixed-length bitstring. We build lists
of hashes of all documents (or łchunksž, subparts of documents) in
web-size corpora, allowing very rapid detection of content reuse.
Although minor changes to content result in different hashes, we
show that copying can often be identified in the web by finding the
same chunks across documents. Economically, spammers seek the
greatest amount of profit with minimal work: we see that current
spammers usually do not bother to obfuscate their copying. (If our
work forces them to hide, we at least increase their effort.) Our
work complements prior work in semantic fingerprints [24, 31,
44] and locality-sensitive hashing [28]. Such approaches provide
approximate matching, reducing false negatives at the cost of some
false positives. While semantic hashing is ideal for applications
as computer forensics, where false positives are manageable, our
approach is relevant to duplicate detection in web-size corpora,
where precise matching without false positives, since even a tiny
rate of false positives overwhelms true positives when applied to
millions of documents on the web (ğ6.5). We also explore blind
(automated) discovery of duplicated content.

We evaluate our approach on several very large, real-world

datasets. We show that blind discovery can automatically find pre-

viously unknown duplicated content in general web-scale corpora

(ğ7), evaluating Common Crawl (2.86×109 files) and GeoCities

(26.7×106 files). While most general duplication is benign (such

as templates), we show that 6ś11% of widespread duplication on

the web is for commercial gain. We also show that expert-labeled

datasets can be usedwith our approach to efficiently searchweb-size

corpora or to quickly search new pages on the web.We demonstrate

bulk searches by looking for copies of Wikipedia on the web (ğ8.1),

finding that most copies of Wikipedia (86%) are commercialized

(link farming or advertisements). We also show that our approach

can detect phishing in web pages (ğ8.2), demonstrating a Chrome

plugin and evaluating it with a targeted dataset that finds that 59%

of PayPal phish, even without taking measures to defeat intentional

cloaking (for example, source-code obfuscation).
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Contributions: The contribution of this paper is to show that

hash-based methods can blindly discover content duplication then

detect this duplication in web-size corpora. The novelty of this

work is not the use of hashing (a long-existing technique), but

design choices in adapting hashing (with chunking and cleaning,

ğ4.4) to scale to discovery (ğ4.2) and detection (ğ4.3) across web-

size datasets, and to operate robustly in the face of minor changes.

In particular, our approach to discovery can be thought of as a

form of semi-supervised machine learning. One important step

is our use of the hierarchical nature of the web to find clusters

of copied content (łbad neighborhoodsž, ğ7.3). We show that this

approach applies not only to discovering general duplication (ğ7)

and identifying bulk copying in the web (ğ8.1), but also to detecting

phishing activity (ğ8.2). We support our work with validation of

the correctness of discovery and detection in our methodology

(ğ6) and evaluation of bad neighborhood detection’s robustness to

random document changes (ğ6.4). Our data and code are available

for research reproducibility (ğ5.3).

2 PROBLEM STATEMENT

Replicating web content is easy. Some individuals bulk copy high-

quality content from Wikipedia or Facebook to overlay advertise-

ments, or to back-fill for link farms. Others reproduce selected

content to impersonate high-value sites for phishing. We seek to

develop new approaches to address two problems. First, we want to

automatically discover content that is widely duplicated, or large-

scale duplication in a few places. Second, given a list of known

duplicated content, we want to detect where such content is dupli-

cated. We next define these two problems more precisely.

Consider a corpus C of files f . Interesting corpora, such as a

crawl of the Internet, are typically far too large to permit manual

examination. We assume the corpus consists of semi-structured

text; we use minimal understanding of the semantics of the text

to break it into chunks cf by choosing basic, structural delimiters

(without attempting to infer the meaning of the content itself). Each

file is identified by URLs; we can exploit the hierarchical structure

in the path portion of the URL, or treat them as flat space identified

only by the sitename portion.

Our first problem is discovery. In discovery, our goal is to discover

a labeled dataset L consisting of content of interest we believe to be

copied. The simplest way to determine L is for an expert to examine

C and manually identify it, thus building an expert-labeled dataset

L from content in C. (The corpus C used to build L can be the same

as or different than the corpus later used in detectionÐfor now we

use the same C in discovery and detection.) Although not possible

in general, semi-automated labeling is suitable for some problems

(ğ8) where one can build L independently from known information.

Alternatively, we show how to discover L through a blind discov-

ery process, without external knowledge. We explore this approach

to discover content that is widely duplicated in the web (ğ7).

The detection process finds targets T in the corpus C that dupli-

cate portions of labeled dataset L. In addition to finding individual

files that show high levels of copying, we also exploit the hierarchi-

cal grouping of documents inC to find bad neighborhoodsN, defined

as clusters of content sharing the same URL hierarchy where many

files appear to be duplicated.

3 RELATED WORK

There is significant prior work in detection of duplicated content

to reduce storage or network use and to find near-duplicate con-

tent for plagiarism detection or information retrieval, and in phish

detection.

Storage & Network Optimization: Content duplication detec-

tion serves many purposes and several fields have revolved around

the idea. Data deduplication can be used to efficiently store similar

or identical pieces of data once [30, 35, 47]. Our work shares some

of the same fundamental ideas through the use of cryptographic

hashing and chunking to effectively find duplicate or similar files.

They have explored, for example, chunking files into both fixed-

and variable-sized blocks and hashing those chunks to find and sup-

press duplicate chunks in other files. In our chunking methods, we

consider variable-sized blocks delimited by HTML tags, leveraging

the structure provided by the markup language. While they target

the application of storage optimization of files, focusing on archival

hardware and systems, our applications target duplicate detection

at both the file- and neighborhood-level for commercial gain.

The same concept can be used in a network to reduce the amount

of data transferred between two nodes [34, 41]. Network operators

can reduce WAN bandwidth use by hashing transmitted packets

(or chunks of packets) in real time and storing this data in a cache.

Network users can then see improved download times when re-

trieving data matched in the cache (for example, when multiple

users download the same file or visit the same webpage). Our work

also uses the idea of hashing to detect duplicates, but with different

applications. While their work looks at suppressing redundant, du-

plicate downloads from the web, our work looks at finding where

duplication exists on the web. Their application forces efficient,

streaming processing and a relatively small corpus (caches are less

than 100GB to minimize overhead), while our web analysis is suit-

able for offline processing with corpora larger than 1 PB.

Plagiarism Detection is a very different class of application.

Storage and network optimization requires exact reproduction of

original contents. Existing approaches to plagiarism detection in

documents emphasize semantic matching, as plagiarism is also

concerned with subtle copying concepts, in addition to exact text

reuse. Plagiarism detection makes use of stylometric features [19,

40], measuring writing structure and styles, in addition to text

statistics (counts of words and parts-of-speech). Our work aims

to answer the question of whether massive duplication exists on

a web-scale using syntactic methods; we do not attempt to infer

semantic equivalence of the content.

Because detecting plagiarism is typically done over small- to

moderate-sized corpora (comparing a essay or homework assign-

ment to ∼1000 others), long runtimes (minutes to sometimes hours

per document [17]), and a relatively large rate of false positives

(precision = 0.75, for example [19]) are tolerable. Manual review

can address false positives, and with a relatively small corpus, the

absolute number of false positives can be manageable even if the

rate is not small. In our applications, our parallelized processing

enables us to maintain good performance, even as the corpus grows

(ğ5.2). Additionally, we require high precision in detecting reuse

since with large corpora (109 documents or more), even a small

false positive rate quickly makes human review impractical (ğ6.5).
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Information Retrieval: Document similarity and detection is

at the heart of the field of information retrieval (IR). Approaches

in IR have explored duplicate detection to improve efficiency and

the precision of answers [11, 24, 31, 42]. Our use of cryptographic

hashing has high precision at the cost of lower recall by missing

mutated files.

Broder et al. [10] develop a technique called łshinglingž (today

known as n-grams) to generate unique contiguous subsequences

of tokens in a document and cluster documents that are łroughly

the samež. They use this technique to find, collapse, and ignore

near-duplicates when searching for information (to avoid showing

users the same content multiple times). In our applications, we

specifically look for content matches and require new approaches

(cryptographic hashes) to avoid overwhelmingly numbers of false

positives from approximate matching (ğ6.5).

SpotSigs [44] and Chiu et al. [12] use n-grams in different appli-

cations to search for similarities and text reuse with approximate

matching. SpotSigs extends the use of n-grams by creating signa-

tures of only semantic (meaningful) text in documents, ignoring

markup language details (like HTML tags). Their system for ap-

proximate matching is quadratic (O(n2)) in its worst-case, but it

can trade-off runtime performance with threshold of similarity.

Our work looks for precise content matches in quasilinear time

(O(n logn)). In one of our applications in phish detection, we lever-

age the details of HTML to enable precise detection of phish.

Chiu et al. build an interface within a web browser to interact

with their back-end, enabling users to query for sentence-level

similarities between their visited page and other pages in a larger

corpus. We use precise matching of paragraph-level chunks, with

applications on detecting widespread duplication across the web.

We distinguish between the discovery and detection sides of the

problem, allowing us to better separate the problems of finding

łwhat content is duplicatedž and finding łwhere the content is being

duplicatedž. In Chiu et al., łdiscoveryž is a manual search query

performed by the user, while in our work we can perform discovery

as an automated process.

Cho et al. [13] use sentence-level hashing of text to search

for duplicated content in order to improve Google’s web crawler

and search engine. By identifying duplicates with hashing, a web

crawler becomes more efficient as it avoids visiting clusters of simi-

lar pages. Because the crawler avoids and suppresses duplicates, the

quality of search results is improved with more diverse sites being

returned in response to a user’s query. Our work complements this

prior work with different chunking strategies and different applica-

tions in measurements and anti-phishing. While Cho et al. extract,

chunk, and hash only textual information (no markup), we look

at paragraph-level chunking of a document’s native format, find-

ing it to be effective in duplicate detection. Rather than avoid and

suppress duplicates, we focus on precisely finding and identifying

clusters of similar pages to measure content reuse on the web (for

commercial gain or otherwise) and detect phishing websites as part

of an anti-phishing strategy.

Zhang et al. [48] build a near-duplicate detection technique by

chunking documents at the sentence-level and matching their sig-

natures across a variety of English and Chinese datasets (1.69ś

50.2×106 documents, 11ś490 GB). We chunk documents at the

paragraph-level, and compare the performance of matching at the

file- and paragraph-level. We focus on applications in detecting

commercialized duplication and web phishing, showing that our

techniques can scale to web-size corpora (ğ5, 2.86×109 documents,

99 TB). Their signature creation also leverages prior work, using

shingles [10], SpotSigs [44], and I-Match (SHA-1) [14], preferring

I-Match and its efficiency. Our work validates SHA-1’s performance,

which we leverage to achieve precise and efficient detection.

Henzinger [24] compares the performance of algorithms that use

shingling and Charikar’s locality sensitive hashing (LSH). While

LSH achieves better precision than shingling, combining the two

provides even higher precision. Exploration of LSH is an interesting

possible complement to our use of cryptographic hashing: although

the objective of our paper is not a survey of algorithms, we briefly

compare LSH and cryptographic hashing in ğ6.5.

Yang and Callan [46] develop a system that implements a clus-

tering algorithm using document metadata as constraints to group

near-duplicates together in EPA and DOT document collections.

They exploit constraints in document metadata; we instead focus

on general datasets that provide no such metadata.

Kim et al. [26] develop an approximate matching algorithm for

overlaps and content reuse detection in blogs and news articles.

A search query is compared to sentence-level signatures for each

document, with returned results being some Euclidean distance
√
d

of each other. Their system, tested on corpus sizes of 1-100×103
documents, balances the trade-off between a higher true positive

rate (recall) with lower precision and their algorithm’s quadratic

runtime (O(n2)). They also optimize part of their processing by

using incremental updates for new content. We focus on precise

matching in quasilinear time (O(n logn)) on larger chunks (at the

paragraph-level) of content reuse. In our applications, we look at

detecting large-scale content reuse on web-scale corpora (≥ 109

documents), requiring high precision to avoid being overwhelmed

with false positives (requiring costly post-processing).

Phish Detection:We summarize prior work here, from our pre-

vious, more detailed review [6]. Machine learning has been used

to detect phish, by converting a website’s content [23] or URL and

domain properties [29] into a set of features to train on. Other

approaches measure the similarity of phish and original sites by

looking at their content and structure: similarities can be com-

puted based on the website’s visual features like textual content,

styles, and layout [27]. Many of these approaches use approximate

matching, which runs the risk of producing false positive detec-

tions, and machine learning techniques have high computational

requirements (that would make them difficult to run on clients). Our

use of precise content matching helps avoid false positives, runs

efficiently in clients, and can provide a first pass that complements

heavier approaches.
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4 METHODOLOGY

We next describe our general approach to detecting content reuse.

Although we have designed the approach for web-like corpora,

it also applies to file systems or other corpora containing textual

content like news sources.

4.1 Overview

Our general approach is to compute a hash for each data item, then

use these hashes to find identical objects. In this section we present

our workflow and address the discovery and detection phases of

our approach.

Collecting the Data:

(0) Crawl the web, or use an existing web crawl, and correct acqui-

sition errors (ğ4.4.1).

(1) For each file f in corpus C, compute a hash of the whole file f :

H (f ) and
(2) Split f into a vector of chunks cf = {cf ,1, . . . , cf ,n } and hash

each chunk H (cf ,i ) to form a chunk hash vector1 H (cf ).
Discovery: (ğ4.2)

(3) Populate the labeled dataset with files Lf or chunks Lc by either:

(a) informed discovery: seeding it with known content a priori

(b) blind discovery: (i) identifying the most frequently occurring

files or chunks in C as suspicious, after (ii) discarding known

common but benign content (stop-chunk removal, ğ4.4.2)

Detection: (ğ4.3)

(4) Simple Object Matching: Given a labeled dataset of hashed

chunks or files L, find all matches ∈ C where its hash is ∈ Lo .

This results in target (suspicious) files and chunks: Tf and Tc .

(5) Partial Matching: To identify files containing partial matches,

we use the chunk hash vectors compute the badness ratio of

target chunks to total file content:

contains(Lc, f ) =
|Lc ∩ H (cf )|

|H (cf )|

If contains(Lc, f ) is greater than a threshold, we consider f to

be a partial target in T.

(6) Bad Neighborhood Detection: Apply stop-chunk removal (ğ4.4.2),

then for each neighborhood N = { fN ,1, . . . , fN ,n } where the
files share a hierarchical relationship, compute the overall bad-

ness ratio of labeled content matches to total content:

badness(N ) =
∑

∀n∈N

contains(Lc ,n))
|N |

If badness(N ) is greater than a threshold, we consider N as a

bad neighborhood in TN .

The thresholds for partial matching and bad neighborhood detec-

tion are configurable; we set the default threshold to one standard

deviation over the mean. We elaborate on our choice and how to

select a threshold in ğ4.2.

1While the vector contains an ordering of hashed chunks, we do not currently use the
order.

4.2 Discovery

Discovery is the process of building a labeled dataset of items we

wish to find in the corpus during detection. We can do this with an

informed or blind process.

With informed discovery (Step 3a), an expert provides labeled

content of interest L, perhaps by exploring C manually, or using

external information. As one example, we know that Wikipedia is

widely copied, and so we seed L with a snapshot of Wikipedia (ğ8.1).

One could also seed L with banking websites to identify phishing

sites that reproduce this content (we seed L with PayPal in ğ8.2).

One can also identify L through a blind discovery process (Step 3b)

that automatically finds widely duplicated content. Blind discovery

is appropriate when an expert is unavailable, or if the source of

copying is unknown. We first populate Lf and Lc with the most

frequently occurring files or chunks in the corpus. We set the dis-

covery threshold depending on the dataset size and the type of

object being identified. For example, one would set the threshold

to be higher when the dataset size is larger. We looked at the ROC

curves (a plot between the true positive rate and false positive rate)

and found a trade-off between false positives (FP) and true posi-

tives (TP). There was no strong knee in the curve, thus we picked

thresholds with a reasonable balance of FP to TP. In the Common

Crawl dataset of 40.5×109 chunks, we set the threshold to 105.

Additionally, in our discovery process we expect to find trivial

content that is duplicated many times as part of the web publishing

process: the empty file, or a chunk consisting of an empty paragraph,

or the reject-all robots.txt file. These will inevitably show up very

often and litter L: while common, they are not very significant

or useful indicators of mass duplication. To make blind discovery

more useful, we remove this very common but benign content using

stop-chunk removal, described in ğ4.4.2.

Given a threshold, all chunks c in the corpus C whose number

of duplicates exceeds the threshold and are not łstop chunksž are

automatically labeled and added to the labeled dataset L:

L := ∀c ∈ C : duplicates(c) > threshold, c < {stop chunks}
We next look at properties of the discovery process.

An important property of discovery is that it is not distributiveÐ

analysis must consider the entire corpus. Parts of discovery are in-

herently parallelizable and allow for distributed processing by divid-

ing the corpus to various workers; we use MapReduce to parallelize

the work (ğ5). However, to maximize detection, the final data join

and thresholding must consider the full corpus. Given an example

threshold of 1000, consider a corpusC = C1∪C2. Consider an object

j = j1 = j2 such that duplicates(j) = duplicates(j1)+ duplicates(j2):
j1 ∈ C1, duplicates(j1) = 1000 and j2 ∈ C2, duplicates(j2) = 100.

Object j only exceeds the threshold in the complete corpus (with

duplicates(j) = 1100), not with consideration of only j1 or j2.

Discovery runtime isO(n logn) and performance on a moderate-

size Hadoop cluster is reasonable (hours). We look at the runtime

performance to understand which part of discovery dominates the

computation time and, if possible, identify areas for improvement.

After we hash all the desired objects (O(n)), we sort and count all

hashes (O(n logn)), and cull objects (O(n)) whose number of dupli-

cates do not exceed the threshold. Discovery’s performance is dom-

inated by sorting, leading to an overall performance of O(n logn).
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4.3 Detection

In the detection phase, we find our targets T at varying levels of

granularity in the corpus C by looking for matches with our labeled

dataset L.

In simple object matching, our targets T are an exact match of a

chunk c or file f in L. Given L, find all chunks or files ∈ C where

its hash is ∈ Lo and add them to the set of targets T. We can then

analyze T to understand if objects in L are being duplicated inC and

how often it is being duplicated. While those statistics are relevant,

we expect that duplication happens often and would like to further

understand the details of where duplication happens.

Algorithmic performance of detection is O(mn logn), wherem
is the size of the labeled data, L, and n the size of the corpus C.

Since |L| << |C | (the corpus is large, with millions or billions of

pages, only fraction of which are labeled as candidates of copy),

performance is dominated byO(n logn) because of sorting.With op-

timized sorting algorithms (such as those in Hadoop), our approach

scales to handle web-sized corpora.

We also consider partial file matching. Rather than look at whole

objects, we can detect target files that partially duplicate content

from elsewhere based on a number of bad chunks. Partial matches

are files that belong in Tp because they contain part of L. Contain-

ment examines the chunk hash vectorH (cf ) of each file to see what
fraction of chunks are in L.

Finally, we use bad neighborhood detection to look beyond iden-

tification of individual files. Examination of łrelatedž files allows

detection of regions where large numbers of related files each have

a duplicated copy. For example, finding a copy of many Wikipedia

pages might lead to a link farm which utilized Wikipedia to boost

its credibility or search engine ranking.

We define a neighborhood based on the hierarchical relationship

of files in the corpus. A neighborhood N is defined by the URL

prefix p, it consists of all files f ∈ C where p(f ) = p(N ).
Many sites have shallow hierarchies, so in the worst case each

site is a neighborhood. For example, while people might easily

create domains and spread content across them, the duplicated

content would be detected as matches and reveal a cluster of neigh-

borhoods (or sites) containing duplicated content. However, for

complex sites with rich user content (e.g., GeoCities), individuals

may create distinct neighborhoods. Each site will have neighbor-

hoods at each level of the hierarchy. For arxiv.org/archive/physics/,

we would consider three neighborhoods: arxiv.org/archive/physics/,

arxiv.org/archive/, and arxiv.org/.

We assess the quality of a neighborhood by applying partial

matching to all chunks in the neighborhoodN using contains(Lc,N )
in Step 5 and add N to the set of targets T if the result is greater

than a threshold. Like chunk hash vector for files, the neighborhood

chunk hash vector will have duplicated components when there

are multiple copies of the same chunk in the neighborhood. Be-

cause neighborhood analysis is done over a larger sample, when we

find regions that exceed our detection threshold, it is less likely to

represent an outlier and instead show a set of files with suspicious

content. We next look at properties of the detection process.

Unlike discovery, the detection process is parallelizable when

processing distinct neighborhoods N (neighborhoods that do not

share the same URL prefix). This parallelizable property allows us

to process many neighborhoods simultaneously without affecting

whether a particular neighborhood is detected as łbadž or not.

Given C1 and C2, we assert that

detected(L,C1 ∪ C2) = detected(L,C1) ∪ detected(L,C2).
This holds true because C1 and C2 share no neighborhoods: given

some neighborhoodN ∈ C1,N < C2. As we showed earlier, runtime

performance isO(n logn) because of the sort during join. However,
since neighborhoods are independent and numerous, we get łeasyž

parallelism. With p processors, we get runtime O(n logn)/p.

4.4 Cleaning the Data

We do two types of cleaning over the data, first we identify recur-

sion errors that result in false duplication from the crawling process,

and then we eliminate common, benign features with stop-chunk re-

moval and whitespace normalization. We evaluate the effectiveness

of these methods in ğ6.1.

4.4.1 Detecting and Handling Recursion Errors. Crawling the real-

world web is a perilous process, with malformed HTML, crawler

traps, and other well understood problems [9, 25]. We detect and

remove crawler artifacts that appear in both Common Crawl and

GeoCities. Our main concern is recursion errors, where a loop in

the web graph duplicates files with multiple URLsÐsuch results

will skew our detection of copied data. We see this problem in

both datasets and use heuristics involving how often a URL path

component is repeated and remove that URL from processing if it

is determined to be a recursion error. We evaluate these heuristics

in ğ6.1, finding that these heuristics have a very low false positive

rate in detecting crawler problems, and are sufficient to avoid false

positives in our duplication detection. Future work may refine these

heuristics to reduce the number of false negatives in recursion-error

removal.

4.4.2 Stop Chunk Removal. We see many common idioms in both

files and chunks. We call these stop chunks, analogous to stop words

in natural language processing (such as łaž, łandž, and łthež). For

chunks, these include the empty paragraph (<p></p>), or a single-

space paragraph (<p>&nbsp;</p>). For files, examples are the empty

file, or a reject-all robots.txt file. These kind of common, benign

idioms risk skewing our results.

We remove stop chunks before applying bad neighborhood de-

tection, and use both manual and automated methods of generating

lists of stop chunks. We find that automated generation, while less

accurate, is sufficient.

We manually generated lists of stop chunks for duplicate detec-

tion in the web (ğ7). In Common Crawl, the list of 226 chunks is

short enough to allow manual comparison: if the list becomes too

large, we can apply Bloom filters [8] to support efficient stop-chunk

removal.

For automated generation, we apply the heuristic of treating all

short chunks as stop chunks. In our evaluation of expert-identified

content (ğ8), we discard chunks shorter than 100 characters. We

also compare manual and automated generation: we previously

labeled manually 226 (45%) of the top 500 chunks in Common

Crawl as benign. By discarding chunks shorter than 100 characters,

we automatically label 316 (63%) as benign: 222 benign and 94

non-benign from our manually labeled list. The non-benign that
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are automatically labeled aren’t necessarily łbadžÐtypically they

are basic layout building blocks used in web templates or editors.

Thus we find the trade-off acceptable: manual generation is more

accurate, but automatic generation is sufficient for applications

using expert-identified content.

4.5 Chunking and Hashing

Chunking text and data into non-overlapping segments has been

done in natural language processing (NLP) [1, 37], in disk dedupli-

cation optimization [35, 47], and in information retrieval [36]. We

chunk all content in our corpora, breaking at the HTML delimiters

<p> (paragraph) and <div> (generic block-level component) tags,

that are used to structure documents. We could also chunk on other

tags for tables, frames, and inline frames, but find that our chosen

delimiters are sufficiently effective.

Hash function: Unlike prior work with hashing from Natural

Language Processing, we use cryptographic hashing to summarize

data. We employ the SHA-1 [18, 32] cryptographic hash function

for its precisionÐidentical input always produces the same output,

and different input yields a different output. Cryptographic hashing

is used in disk deduplication [35], but most prior work considering

duplicate detection uses locality-sensitive [15, 28] and semantic [38]

hashes. We use cryptographic hashing to eliminate the small false

positive rate seen in other schemes: we show in ğ6.5 that even a

tiny rate of false positives is magnified by large corpora.

5 DATASETS AND IMPLEMENTATION

5.1 Datasets and Relevance

This paper uses three web datasets: Common Crawl, GeoCities,

and our own phishing site corpus. We use the Common Crawl

crawl-002 dataset (Ccc ) collected in 2009/2010 and publicly pro-

vided by the Common Crawl Foundation [20] to represent recent

web data. crawl-002 is freely available on Amazon S3 and includes

2.86×109 items (26 TB compressed, 99 TB uncompressed). Most of

its data is HTML or plain text, with some supporting textual mate-

rial (CSS, JavaScript, etc.); it omits images.

As a second dataset, we use the GeoCities archive (Cд ) crawled

by the Archive Team [4] just before the GeoCities service was shut-

tered by Yahoo! in October 2009. The dataset was compiled between

AprilśOctober 2009 and contains around 33×106 files (650GB com-

pressed) including documents, images, MIDI files, etc. in various

languages. Although the content is quite old, having been generated

well before its compilation in 2009, it provides a relatively complete

snapshot of diverse, user-generated content.

We generate the third dataset of phish (Cp ) by extracting the top-

level webpages (HTML) from a stream of 2374 URLs of suspected

phishing sites provided by PhishTank [33], a crowd-sourced anti-

phishing service, over two days (2014-Sep-24 and 2014-Sep-25).

(Our other datasets, Common Crawl and GeoCities, are not suitable

for phish detection since phish lifetimes are often only hours to

days, leaving very little time to crawl phish.) From the collected

URL stream, we automatically crawl the suspect URLs and manually

classify each as phish or otherwise. We ignore phishing sites that

were removed by the time we crawl, discarding about 20% of the

stream.

Dataset Relevance: As the web evolves quickly, its content and

structure also evolves. Most GeoCities content dates from the late

1990s to the early 2000s, Common Crawl is from 2009ś2010, and our

phishing dataset is from 2014. Does evaluation of our techniques

over these older datasets apply to the current web? We strongly

believe it does, for two reasons: our datasets fulfill the requirement

for content classification and we show that our approach easily

adapts to today’s and tomorrow’s web.

First, the key requirement for classification of content in a corpus

is that the corpus be diverse and large enough to approach real-

world size and diversity. Both GeoCities and Common Crawl satisfy

the diversity requirement. While GeoCities is perhaps small relative

to the current web, we believe it is large enough provide diversity.

Our phishing dataset is intentionally small because it addresses

a more focused problem; it shows considerable diversity in that

domain.

Second and more importantly, the web will always be different

tomorrow, and continue to change over the next ten years. The

increasingly dynamic and personalized nature of the web will mod-

ify the edges (like recommended links) but leave the core content

unchanged and still detectable with hashing. We show that our ap-

proach works well over many years of web pages with only modest

changes (for example, adding the use of <div> in addition to <p> to

identify chunks). Our largest change was to shift from static web

content to crawling a browser-parsed DOM in our phishing study

(ğ8.2)Ðwhile conceptually straightforward, its implementation is

quite different. This change allows us to accommodate dynamically-

generated, JavaScript-only web content. We believe that this range

of ages in our datasets strongly suggests that our approach (per-

haps with similar modest changes) will generalize to future web

practices, whatever they may be.

5.2 Implementation

We implement our methods and post-processing on cloud comput-

ing services (Amazon EC2) and a local cluster of 55 commodity PCs

running Apache Hadoop [2]. Processing was done with custom

MapReduce programs [16], Apache Pig [3], and GNU Parallel [43].

Our current cluster can intake data at a rate around 9 TB/hour.

We initially hash files and chunks in Common Crawl (Ccc ) on

EC2 in 11.5×103 compute hours (18 real hours, ∼$650), produc-
ing 2.86×109 file hashes and 40.5×109 chunk hashes along with

backreferences to the original dataset (1.8 TB of metadata).

We use our local cluster to hash GeoCities (Cд ) in 413 compute

hours (1.5 real hours) producing 33×106 file hashes and 184×106
chunk hashes along with backreferences (4.7 GB of metadata).

Overall performance is good as the corpus grows to the size

of a large sample of the web. Although the theoretical bound on

processing is the O(n logn) sort of hashes, in practice performance

is dominated by scanning the data, anO(n) process that parallelizes
well with MapReduce. We see linear runtime on uncompressed

dataset size ranges from 5GB to 5 TB (we omit this graph due to

space). We expect processing 225 TB of uncompressed data (Com-

mon Crawl, Feb. 2019, CC-MAIN-2019-09) on the same EC2 setup

used earlier to take 41 real hours and $1300.
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5.3 Reproducibility

Our research is reproducible, with all code available as open source

(when possible), and all data available from us or provided with

pointers to other public sources (for data generated by others).

Source code and data used for validation, discovering and de-

tecting duplication of web content, and detecting clones of Wiki-

pedia are available at https://ant.isi.edu/mega and https://github.

com/cardi/content-reuse-detection. Source code for our Auntie-

Tuna anti-phishing plugin and data used in our anti-phishing ap-

plication are available at https://ant.isi.edu/software/antiphish and

https://github.com/cardi/auntietuna. Instructions for reproducibil-

ity are included in their respective repositories.

6 VALIDATION

We next validate our design choices, showing the importance of

cleaning and correctness of our methodology.

6.1 Do Our Cleaning Methods Work?

Initial analysis of our raw data is skewed by crawler errors, and

identification of bad neighborhoods can be obscured by common

benign content. We next show that our cleaning methods from ğ4.4

are effective.

We have reviewed our data and taken steps to confirm that

recursion errors do not skew discovery of duplicates. While only

1% of all 913×106 neighborhoods in Common Crawl are the result

of recursion errors, removing the obvious errors is helpful although

not essential. Details of recursion error removal and its validation

are omitted here due to space, but are in our technical report [5].

We next describe validation that our stop-chunk removal process

(ğ4.4.2) is effective. To identify stop chunks, we manually examine

the 500 most frequently occurring chunks in Common Crawl and

identify 226 as benign. These chunks occur very frequently in the

dataset as a whole, accounting for 35% of all chunks that occur

≥ 105 times. To verify that we do not need to consider additional

frequent words, we also examine the next 200 and identify only 43

as benign, showing diminishing returns (these 43 account for only

1% of all chunks that occur ≥ 105 times). We therefore stop with

the benign list of 226 chunks found in the top 500 most frequent as

it is sufficient to avoid false positives due to benign data.

To demonstrate the importance of stop-chunk removal, we com-

pare bad neighborhood detection with and without stop-chunk

removal. Stop chunks dilute some pages and skews the quality of

the badness ratio; if we do not remove stop-chunks in Common

Crawl (913×106 neighborhoods), we would detect 1.88×106 (2.35%)
more łbadž neighborhoods than the 79.9×106 bad neighborhoods

we find after stop-chunk removal. These additional 1.88×106 łbadž
neighborhoods are false positives, mainly consisting of detected

stop chunks, which would dilute the results above the detection

threshold and reduce detection’s precision: (true positives)/(true
positives + false positives).

6.2 Can We Discover Known Files and Chunks?

We next turn to the correctness of our approach. We begin by

validating and verifying that hashing can detect specific content in

spite of the background łnoisež of millions of web pages with the

following experiment.

Duplicated full files: We first consider a spammer that du-

plicates a file many times to provide content for thousands of

parked domains. To emulate this scenario, we take a known website

(blog.archive.org as of 2013-Aug-22) containing roughly 4000 pages

or files and duplicate the entire site from d = 100 to 5000 times. For

each duplication we generate a unique, emulated website, process

that data with steps 0ś2 of our methodology, merging this with our

full processed data.

We then build our labeled dataset via blind discovery. Our blind

discovery process populates the labeled dataset with the most fre-

quently occurring content. In Common Crawl (Ccc ), our blind dis-

covery threshold is 103 (threshold is set using ğ4.2): all files that

have more than 103 duplicates are labeled.

Figure 1 shows the results of this experiment in Ccc file fre-

quency. This frequency-occurrence graph shows the number of

occurrences (y-axis) that a file object has, given the amount of

times it has been duplicated (x-axis). Our discovery threshold is

marked by a red dotted line at x = 103; all the content (indicated by

points) past the threshold are added to the labeled dataset. Dupli-

cating the entire blog moves it from unique, unduplicated content

(a grey dot in the top left) to an outlying point with 4000 pages

occurring 5000 times (as indicated by a labeled black triangle at

(x ,y) = (5000, 4000)). We see that the point passes our threshold

and we have discovered our injected and massively duplicated blog.

This change from top-left to an outlier above and further right on

the graph represents what happens when spammers duplicate parts

of the web.

Spammersmay duplicate files fewer number of times. To consider

this scenario, we change the number of duplications d to values

less than our previous example. The blue circles represents the

injected site had the entire site (4000 files) been duplicated different

amounts of times (at d = 100, 250, 1000). When the injected site has

been duplicated ≤ 103 times (three blue circles on and to the left

of the red threshold line), that site and corresponding files will not

be automatically discovered; all points right of the red threshold

line (the black triangle at x = 5000) will. Note that even with fewer

duplications (blue circles left of the red threshold), the injected

files duplicated fewer times will be visibly obvious outliers on the

graph and may be detected with manual analysis or more sensitive

automation (using additional analysis of the corpus or an iterative

search to determine an optimal threshold as defined in ğ4.2).

Partially duplicated pages: The above experiment shows our

ability to track duplicated files, but spammers almost always add to

the duplicated content to place their own links or advertisements.

We therefore repeat our study of duplicating files by duplicating

an entire website d = 5000 times, but add a different paragraph

to the beginning and end of each duplicated page to represent

unique advertisements attached to each page. Since each page varies

here, file-level analysis will detect nothing unusual, but chunk-level

analysis will show outliers. The size distribution of pages is skewed

and appears heavy tailed (mean: 48 chunks, median: 23, max: 428).

Our discovery threshold is increased from 103 to 105, because the

number of chunks in Ccc is much larger than the number of pages.

Figure 2 shows chunk-level evaluation of this scenario, with each

dot representing a particular chunk. The red dotted line at x = 105

marks our discovery threshold: all 6000 chunks to the right this line

are discovered, added to the labeled dataset, and further analyzed.
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Figure 1: File-level discovery of injected

duplicates (▲) in Ccc , compared to file

frequency (grey dots). j: JavaScript, r:

robots.txt, E: empty file.
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Figure 2: Chunk-level discovery of in-

jected duplicates (▲) in Ccc , compared to

chunk distribution (grey dots).
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discovered 78% when we
duplicate all chunks 5000 times

Figure 3: Percentage of chunks discov-

ered in blog.archive.org given the num-

ber of times it is duplicated.

We now see more evidence of duplicated chunked content, which

is shown by a cluster of black triangles (as opposed to a single

outlying point) corresponding to the 1.2×109 chunks that make

up the duplicated content of blog.archive.org (originally 242×103
chunks). The light grey dots correspond to all the existing chunks

in Ccc .

We see that many of the chunks that make up the pages of

blog.archive.org pass our defined threshold and we discover 78% of

total distinct chunks. Similar to the previous experiment, we can

łcontrolž where the points are distributed by varying the number of

times we duplicate the site. If all the chunks in the site had fallen

below the threshold, we would not have automatically discovered

the site via our blind discovery process.

Hashing a finer-grained object in our discovery process allows

us to discover more content that has been duplicated. File-level

discovery returns a binary result: either we discover the file or not.

Chunk-level discovery allows us to discover varying percentages of

content depending on how many times it was duplicated. Figure 3

shows how many chunks from blog.archive.org are discovered

given the number of times all chunks have been duplicated. When

we duplicate the website d = 5000 times (black triangles in Figure 2

and the point marked by the red dotted line in Figure 3), we discover

78% of the chunks. (Trivially, we discover 100% of the chunks when

we duplicate the site ≥ 105 times.)

Our simple threshold detects some but not all duplicated chunks

that were injected. The duplicated content (black triangles) in Fig-

ure 2 are clear outliers from most of the traditional content (grey

dots), suggesting a role for manual examination. This experiment

shows that chunk-level analysis is effective even though only por-

tions of pages change. We next look at the effects of content muta-

tion more systematically.

6.3 Can We Detect Specific Bad Pages?

Having shown that we can discover known files and chunks, we

next validate our detection mechanism by finding known targets T

and understanding the conditions in which our mechanism fails.

Given our labeled dataset curated by an expert (Lexpert) and one via

blind discovery (Lblind), can we detect bad pages? Furthermore, as

we increasingly mutate each page, at what point can we no longer

detect it?

To evaluate our bad page detection mechanism, we continue our

prior example where we rip and duplicate blog.archive.org; this

set of pages becomes our injected corpus Ci . We mutate Ci in a

consistent manner that can be applied to all pages in Ci to get a

resulting C
′
i . We can categorize each mutation into the following:

+ Add additional content, such as ads or link spam

∆ Modify existing content by rewriting links

− Remove content such as headers, copyright notices, footers, or

the main body of the page

We build both Lexpert and Lblind from Ci (as described in ğ6.2), then

run the detection process to see if pages in C
′
i are detected.

We continue mutating C
′
i (e.g., C′′

i , . . . ,C
′(n)
i ) to understand

the kinds and amount of mutations that the detection process can

handle. While we utilize a copy of blog.archive.org to build L andCi ,

our results for each mutation experiment are consistent with other

L because we mutate each of the 4626 pages. For each experiment,

we have the base site Ci and apply n independent mutations to

each page resulting in C
′(n)
i .

In our first mutation experiment, we continuously add content

to a page such that the page is diluted with non-target content

and we do not detect it (due to the badness ratio not reaching a

particular threshold). Figure 4 shows the performance with both

Lexpert (green) and Lblind (blue). The bottom x-axis details the num-

ber of chunks added per page relative to the average number of

chunks per page in Ci (cpp = 48). The y-axis shows the average
badness ratio per page (averaged over all 4626 pages in Ci ). The

badness threshold is labeled on each graph at 0.144 (we describe

its computation in a later section). We perform 10 runs over Ci at

each x value and take the average. We omit error bars when the

standard error is < 0.01 for clarity (Figure 4 in particular has no

error bars).

This experiment shows that we can tolerate an additional 3.4×
(using Lblind) or 4.5× (using Lexpert) the mean number of chunks per

page (cpp) in each labeled dataset and still detect duplicated content.

These tolerances are visually represented in Figure 4, where the

blue (Lblind) or green (Lexpert) dotted lines meet with the red dotted

line (badness threshold): points to the left of the blue or green lines
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Figure 4: Effects of continuously

adding chunks on pages.
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Figure 5: Effects of continuously deleting

chunks on pages.
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Figure 6: Effects of continuously chang-

ing chunks on pages.

on the x-axis will have an average badness above the detection

threshold on the y-axis. This behavior is not surprising: if we were

to dilute the content with many other unrelated chunks, the average

badness would asymptotically approach 0.

We next continuously delete content randomly; deleting content

will increase the badness ratio but may be overlooked because the

number of total chunks on the page will be smaller. Users of hash-

ing might require a minimum number of chunks per page before

applying the badness ratio. Figure 5 shows the average badness of

a page given the number of chunks we delete per page. Using an

Lexpert (green), we see that the ratio is always 1.0: deleting chunks

does not affect the badness because the entire page is bad regardless.

Next, we initially see an increase in average badness of a page when

using Lblind (blue) and stabilizes until a certain point as we increase

the number of deleted chunks per page. Pages that have a small

number of total chunks have on average a lower badness ratio until

the page is eventually removed from the population, which results

in a higher average badness as pages that have a higher number

of total chunks survive deletion. In this experiment, our detection

mechanism on average handles all 400 deletions (per page).

Similarly, we see a large variance in badness at the tail of the

graph because the population of pages in C
′(n)
i (after mutation)

decreases. As we increase the number of deleted chunks per page,

the average number of chunks per page (orange) fall. Pages also

cease to exist after all the chunks have been deleted; we see in

Figure 5 that the average number of chunks per page increases as

the population of pages decreases. This behavior is expected: as a

trivial example, consider a page with only two chunks only one

of which is in L: the badness of the page is 0.5. If we delete the

bad chunk, the badness falls to 0, but if we delete the other, the

badness increases to 1. Thus, depending on the chunks we delete,

the badness of a page will fluctuate.

In our final experiment, we continuously modify content to the

point where we no longer can detect it (e.g., if every chunk is mod-

ified at least once, our detection algorithm will fail). We consider

a stream of mutations: we randomly pick a chunk to modify and

change one random character in that chunk, with replacement (in

successive mutations, the same chunk can be modified again). Fig-

ure 6 shows the average badness of a page given the number of

random changes with replacement. We see an exponential drop in
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Figure 7: Number of pages detected as bad after continuously

changing chunks on pages in blog.archive.org.

the average badness of the page as we linearly increase the num-

ber of random changes (with replacement) per page. On average,

our bad page detection mechanism handles 1.8 × cpp (Lblind) and

2.0×cpp (Lexpert) changes before the page falls below the threshold.

To show that we can tolerate 3.4× cpp mutations, we look at the

performance of our bad page detection mechanism. Figure 7 shows

how many pages we detect as bad given the number of random

changes per page in Ci . In the perfect case (such as using Lexpert on

an unmodified site), we detect all 4600 pages in Ci as bad. While the

Lexpert performs much better initially (detecting between 300-700

more pages than with Lblind), we see both lines eventually converge.

We can detect known bad pages to a certain degree of muta-

tion. Our validation experiments show that we can handle between

1.8− 4.5× cpp mutations on Ci depending on the type of mutation

and the labeled dataset we utilize. While utilizing the Lexpert slightly

increases the number of mutations we can tolerate (compared to us-

ing the Lblind), the Lexpert contains over 4.8× the number of entries

(|Lexpert | = 21×103, |Lblind | = 4.4×103). We next transition into the

validation of detecting known bad neighborhoods.
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Figure 8: Effects of continuously

adding chunks in a neighborhood.
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Figure 9: Effects of continuously deleting

chunks in a neighborhood.

0 1 2 3 4 5 6 7 8
Relative Number of Random Changes per Page (cpp)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Ba
dn

es
s o

f t
he

 N
eig

hb
or

ho
od

Data Mutation: mutating chunks, blog.archive.org neighborhoods

0 50 100 150 200 250 300 350
Number of Random Changes per Page (absolute)

badness threshold

5
:3
£

, b
lin

d 
L

 (b
lue

)
5:
4
£

, e
xp

er
t L

 (g
re

en
)

Figure 10: Effects of continuously

changing chunks in a neighborhood.

6.4 Can We Detect Known Bad Neighborhoods?

Given our success finding bad pages, we next validate the robustness

of detecting known bad neighborhoods. Recall that a neighborhood

contains a set of pages that share a common URL prefix. As with

pages, we evaluate both expert and blind labeled datasets, and

change a known target to evaluate the sensitivity of our detection

mechanism.

We evaluate our detection mechanism by designing a mutation

experiment with an example neighborhood N . The goal of our

experiment is to understand the degree of change before our detec-

tion process fails. We continue to use the same neighborhood N

(blog.archive.org) and the same approach as in the previous section

(ğ6.3) with the following change: mutate all pages in N in a consis-

tent manner to get a resulting N ′: n mutations results in N ′(n). We

then run the bad neighborhood detection process to see if N ′(n) is
detected.

We see similar results in the performance of bad neighborhood

detection compared to bad page detection. Figures 8 through 10

show the bad neighborhood detection performance using both

Lexpert (green) and Lblind (blue) for add, delete, and modify oper-

ations, respectively. We compare the relative number of mutated

chunks per page in N (cpp) against the resulting badness ratio of

the neighborhood after mutation (N ′(n)). We use a fixed badness

threshold as described in ğ7.3. We again take the average over 10

runs over N at each x value and omit error bars when standard

error is < 0.01.

Our experiments show that we can tolerate between 4.4 − 5.4 ×
cpp mutations, and that bad neighborhood detection is much more

robust than bad page detectionÐon average our process can handle

2.7 ś 3.0× more modifications per page than bad page detection.

Analysis of the neighborhood is much more robust because we

consider the badness across a collection of pages and have a larger

population of content to work with; considering only a page when

calculating badness is much more susceptible to fluctuation and

not as robust to mutation because of its smaller magnitude.

We have now validated our mechanisms that we will use in two

applications: content reuse detection over web content using the

blind process and detection of expert-identified content in the web.

Table 1: Performance of expert-identified detection onphish

corpus using cryptographic and locality-sensitive hashing.

True Nature Hash Alg.

of Page Classified As Crypto LSH

PayPal Phish PayPal Phish (TP) 43 43

Missed PayPal (FN) 42 42

Non-PayPal Misclassfied PP Phish (FP) 0 10

Non-PayPal (TN) 1803 1793

Total 1888 1888

6.5 Cryptographic vs. Locality-Sensitive
Hashes

Our work uses cryptographic hashing functions to minimize the im-

pact of false positives that result from locality-sensitive and seman-

tic hashing. To quantify this trade-off, we next compare bad page

detection with SHA-1 (our approach) to the use of Nilsimsa [15], a

locality-sensitive hashing algorithm focused on anti-spam detec-

tion. We use a corpus Cp of 2374 suspected phish (as described

in ğ5) and build a labeled dataset L from current and recent PayPal

U.S., U.K., and France home pages (Sep. 2014, plus Jan. 2012 to Aug.

2013 from archive.org).

We process the datasets, chunking on <p> and <div> tags, com-

puting hashes of each chunk in Cp and L with both SHA-1 and

Nilsimsa. We then use L to detect PayPal phish in Cp . For detection

with Nilsimsa, we use a matching threshold of 115 (0 being the

fuzziest and 128 an exact match), a relatively conservative value.

Table 1 compares the confusionmatrixwhen using SHA-1 (Crypto)

and Nilsimsa (LSH) independently in detection. Both algorithms de-

tect (TP = 43) and miss (FN = 42) the same number of PayPal phish.

However, Nilsimsa has false positives, misclassifying 10 pages as

PayPal phish, while SHA-1 misclassifies none.

Even very low, non-zero false-positive rates (0<FPR<1%) are

bad when used against web-size corpora, since false positives in

a large corpus will overwhelm true positives. For Common Crawl

with 2.86×109 files, Nilsimsa’s very low 0.55% FPR at threshold 115

could result in 15.7×106 false positives (upper bound)!
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Table 2: Categories of the top 100 distinct chunks in Ccc .

Description |c | Type

Common (benign) 68 Benign

Templates 17 Benign

e-Commerce 8 Benign

Other 9 Benign

Misc. 15 Benign

Total 100

Table 3: Classification of a sample of 100 distinct chunks

with more than 105 occurrences in Ccc .

Description |c | Type

Misc. 4 Benign

JavaScript 2 Benign

escaped 1 Benign

other 1 Benign

Templates 83 Benign

navigation 17 Benign

forms 32 Benign

social 4 Benign

other 30 Benign

Commercial 6

spam 1 Malicious

JavaScript advertising 3 Ambiguous

JavaScript tracking 2 Ambiguous

Possibly Commercial 5 Ambiguous

Total 100

LSH’s design for approximate matching makes some false pos-

itives inevitable. A challenge with any LSH is finding the łrightž

threshold on each particular dataset to minimize the FPR. The num-

ber of false positives can differ greatly from small variations in

threshold. We exhaustively studied the parameter space for Nil-

simsa and our phishing dataset. A threshold of 128 forces exact

matching, causing no false positives, but also makes the algorithm

equivalent to cryptographic hashing. Our initial parameter choice

was 115; all thresholds from 120 down to 115 give a very low but

non-zero false-positive rate from 0.33% to 0.55%. At a threshold

of 114, the false-positive rate doubles (1.11%) and as we continue

to decrease the threshold, the FPR grows rapidly. Matching with

thresholds from 128 to 120 is like exact matching with no false

positives, in which case our analysis is needed to evaluate its per-

formance. Althoughwe find some thresholds with no false positives,

in general, exhaustive search of the parameter space is not possible,

and no one value will be łcorrectž across varying inputs.

The problem of false positives overwhelming rare targets known

as the base rate fallacy and is a recognized barrier to the use of

imprecise detection in security problems [7, 39]. This problem mo-

tivates our use of cryptographic hashing.

7 ANALYSIS OF BLIND DISCOVERY OF WEB
COPYING

We next study the application of blind discovery of duplication of

web content, and use this application to understand our approach.

7.1 Why is File-level Discovery Inadequate?

We first consider file-level discovery on both datasets. File-level

comparisons are overly sensitive to small mutations; we use them

to establish a baseline against which to evaluate chunk-level com-

parisons.

Figure 1 (grey dots) shows the long-tail distribution of the fre-

quency of file-level hashes in Common Crawl (2.86×109 files, Ccc ).
We look at both the top 50 most occurring files and a sample of 40

random files that have more than 103 occurrences and find only

benign content (e.g., JavaScript libraries, robots.txt). We see the

same results with GeoCities (Cд ), where common files include the

GeoCities logo, colored bullets, and similar benign elements.

7.2 How Does Chunking Affect Discovery?

We expect the greater precision of chunk-level analysis to be more

effective. We next consider chunking (ğ4.1) of textual files (HTML,

plaintext, JavaScript) by paragraphs (i.e., the literal <p> tag).

Figure 2 shows frequency-occurrence distribution of the 40.5×109
chunks in Common Crawl (Ccc ). Again, we see a heavy-tailed dis-

tribution: 40% of chunks are unique, but ∼3.7×109 distinct chunks
appear more than 105 times. The most common chunk is the empty

paragraph (<p>).

Chunking’s precision reveals several different kinds of duplica-

tion: affiliate links, JavaScript ads, analytics, and scripts, and benign

content dominating the list. Table 2 classifies the 100 most frequent

chunks. After common web idioms (empty paragraph, etc.), we see

templates from software tools or web pages begin to appear.

Again, we turn to a random sample of the tail of the graph to

understand what makes up duplicated content. We draw a sample of

100 chunks from those with more than 105 occurrences and classify

them in Table 3.

This sample begins to show common web components that sup-

port monetization of websites. JavaScript occurs some (7%) and

used for advertising via Google AdSense (3%), user tracking, and

analytics (2%). We sampled one instance of spam where an article

from The Times (London) was copied and an advertising snippet

was included in the article for travel insurance. Other snippets

were potentially spam-like or linking to a scam (5%), but ambiguous

enough to qualify as a non-malicious (if not poorly designed for

legitimate monetization) site.

We also find instances of potentiallymalicious escaped JavaScript:

decoding it reveals an email address (obfuscated via JavaScript to

throw off spammers). Most content we discovered are elements of

sites that make heavy use of templates (83%) such as navigation

elements, headers, and footers. Given an Lo of the most frequently

occurring content, this is not surprising: thousands of pages con-

taining such template elements would naturally show up at the tail

of the distribution.
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Description |N | %

Ads* 2 5.0

Blog* 19 47.5

Empty 1 2.5

Forms 1 2.5

Forum 1 2.5

łSuspectž 0 0.0

JavaScript 2 5.0

Templated/CMS 17 42.5

Total* 43 100

Table 4: Classification of a sample of 40

bad neighborhoods from Ccc . (*) indi-

cates overlap between categories.

We confirm our results over a second dataset with chunk-level

discovery on Cд (GeoCities) in Figure 11. We see a similar dis-

tribution overall, and find similar templates and JavaScript as in

Ccc .

We discovered and examined the kinds of content duplicated in

Ccc . Chunking identifies frequent duplication, but not bad behavior.

However, we can now use the results to build a labeled dataset of

objects Lo .We next utilize Lo in our detectionmechanism to identify

and detect areas where copying runs rampant.

7.3 Are There Bad Neighborhoods in the Real
World?

Chunking is successful at identifying bad chunks and pages, but

duplication for profit can draw on many related pages to maximize

commercial potential. Detection at the individual page-level can

result in false positives, so we would prefer to detect groups of

related pages that show a significant amount of copied content. We

now shift our focus to detecting bad neighborhoods.

In Common Crawl: To look for bad neighborhoods, we utilize

the top 2121 common distinct chunks from Ccc as our labeled

dataset Lc (from ğ4.2), and identify bad neighborhoods in the full

dataset using the algorithm in ğ4, step 6. Ccc contains 900×106
neighborhoods. Our detection threshold uses themean and standard

deviation across all neighborhoods.

As one would hope, most neighborhoods N ∈ Ccc are not bad

(91%). Figure 12 shows a combined histogram and CDF the bad con-

tent ratio of all neighborhoods. We observe that 79.8×106 prefixes
(9%) out of 900×106 would be classified as a bad neighborhood:

neighborhoods with badness > 0.163 (since µN ,cc = 0.04 and

σN ,cc = 0.123, and the threshold is µN ,cc + σN ,cc ).

To understand the nature of the neighborhoods we identify as

employing common content, we extract a sample of 40 neighbor-

hoods from the 19.6×106 that are above the threshold and classify

them in Table 4. We find 82.5% of the sampled sites to be benign:

mostly blogs, forums, or newspapers that make heavy use of tem-

plates. Only 13% of the content is clearly for profit: either spam, or

search-engine optimization with ads.

Our results show that there is duplication on the web: our ap-

proach discovers it through a blind process and then detects the

broad kinds of copying that exists. Our approach is best at finding

content that uses templates or uniform, repeated structure. Most

content with this structure is benign, but we find a fraction of it is

spam. The prevalence of templates in the sites we detect is a direct

result of obtaining L via our blind process, since the definition of

L is commonly reused content. This observation suggests that a

labeled dataset more focused on malicious content (not just dupli-

cated content) would improve the yield, as we explore in ğ8 with

an expert-provided L.

In GeoCities:We repeat this experiment on GeoCities and ob-

tain similar results. A random sample of 100 of the top 5% of worst

neighborhoods found 40% to be link farms (clusters of ad-centric

pages), while the other 60% were benign (usually templates). These

results confirm what we find in Common Crawl. We believe the

higher rate of copying in link farms reflects the greater susceptibil-

ity of search engines to duplicated content at this earlier time.

8 APPLICATIONS WITH
EXPERT-IDENTIFIED CONTENT

We next look at two systems that use our approach, and use expert-

identified content instead of blind discovery. Expert-identification

is useful when targets locations are known but copied locations are

unknown.

8.1 Detecting Clones of Wikipedia for Profit

We first explore finding copies of Wikipedia on the web. Although

Wikipedia’s license allows duplication [45], and we expect shar-

ing across sibling sites (Wiktionary, Wikiquote, etc.), other copies

are of little benefit for users and often serve mainly to generate

advertisement revenue, support link farms, or dilute spam.

We next consider a copy of Wikipedia (from June 2008 [21],

in English) as our labeled dataset L and use it to understand if

Wikipedia is copied wholesale or just in parts.

Wikipedia becomes a Lc of 75.0×106 distinct chunks of length
more than 100 characters (we treat shorter chunks as stop chunks,

ğ4.4.2) and then search for this content in the Common Crawl

corpus (Ccc , Nov. 2009 to Apr. 2010). Utilizing Lc, we identify bad

neighborhoods in Ccc using the algorithm described in ğ4.
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Table 5: Classification of the top 40 bad neighborhoods in

Ccc , L =Wikipedia.

Description |N | % Type

Wikipedia Clones/Rips 31 78

łWikipedia Ringž 13 Profit

Reference Sites 5 Profit

Ads 10 Profit

Fork 1 Ambig.

Unknown 2 Ambig.

Search Engine Optim. 3 8

e-Commerce 2 Profit

Stock Pumping 1 Profit

Wikipedia/Wikimedia 5 13 Benign

Site using MediaWiki 1 3 Benign

Total 40 100

The length of time between the crawl dates of L and Ccc may

bias our detection’s true positive rate in a particular direction. To

understand Wikipedia’s rate of change, during the 16ś22 months

between L and Ccc , Wikipedia added an additional 1.45ś1.86×106
pages/month (an increase from 9.00×106 to 14.6×106 pages), en-
compassing 2.52ś3.46GB of edits/month [22]. Thus, if sites in Ccc

copy from a more recent version of Wikipedia than L, we would

expect that to bias our detection’s true positive rate to be lower.

Our detection mechanism finds 136×103 target neighborhoods
(almost 2% of 68.9×106 neighborhoods in Ccc ) of path length 1

that include content chunks of length > 100 from Wikipedia. To

understand how and why more than 100×103 sites copy parts of

Wikipedia, we focus our analysis on neighborhoods that duplicate

more than 1000 chunks fromWikipedia. We look at the 40 neighbor-

hoods with the largest number of bad chunks and classify them in

Table 5. We find 5 Wikimedia affiliates, including Wikipedia, Wiki-

books, and Wikisource. More interestingly, we find 34 instances of

duplicate content on third party sites: 31 sites rip Wikipedia whole-

sale, and the remaining 3 utilize content from Wikipedia subtly for

search-engine optimization (SEO).

Almost all of the 31 third-party sites significantly copying Wiki-

pedia are doing so to promote commercial interests. One interesting

example was a łWikipedia Ringž: a group of 13 site rips of Wiki-

pedia, with external links to articles that leads to another site in

the ring. In addition to the intra-ring links, each site had an adver-

tisement placed on each page to generate revenue. Other clones are

similar, sometimes with the addition of other content. Finally, we

also observe Wikipedia content used to augment stock pumping

promotions or to draw visitors to online gambling.

Our study of Wikipedia suggests that our approach is very accu-

rate, at least for bulk copies. All neighborhoods in our sample of

the tail of the distribution were copies of Wikipedia, and only one

site was a false positive (because it uses MediaWiki, an open-source

wiki application). All others were true positives.

We have shown that from a labeled dataset (Wikipedia), our

approach detects dozens of copies across the entire web, and that

most of the bulk copies are for monetization. We next shift from

bulk copying of Wikipedia to targeted copying in phishing sites.

Figure 13: Implementation diagram of the AuntieTuna anti-

phishing plugin.

8.2 Detecting Phishing Sites

Phishing websites attempt to trick users into giving up information

(passwords or banking details) with replicas of legitimate sitesÐ

these sites often duplicate content, making them detectable with

our methods. We adapt our system with an expert-labeled dataset

built from common targets (such as real banking pages). In our

prototype browser extension, AuntieTuna (implementation diagram

in Figure 13, described in our prior work [6]), users first identify

pages they care about (manually or automatically, via Trust on First

Use) to build a custom labeled dataset (Discovery, ğ4.2). AuntieTuna

then checks each page the user visits for potential phish (Detection,

ğ4.3). As an alternative system implementation, phish could be

detected centrally by crawling URLs found in email or website

spam, then testing each as potential phish with our method.

To evaluate our approach to detect phish, we examine PayPal

phishing and build a labeled dataset Lpp with PayPal home pages,

chunking on both <p> and <div>, resulting in 311 distinct chunks

longer than 25 characters. Our corpus Cp is drawn from a stream

of 2374 suspected phish from over 2 days of data (Oct. 2014) from

PhishTank [33], a crowd-sourced anti-phishing site. All operations

are done on the DOM content (as rendered by the browser). We

compare each suspected phish against Lpp using our algorithm

(ğ4), which we’ve shown to be robust to minor changes (ğ6) with a

detection threshold of one or more chunks.

To evaluate ground truth, we manually examine Cp and identify

85 phish using text content from PayPal. Our mechanism detects 50

(58.8%) pages: 43 directly copy from the original (whitespace nor-

malization included), and an additional 7 obfuscate their copies with

JavaScript. Table 6 classifies the type of techniques each phish uses.

Our targeted dataset and precise approach prevents false positives

(specificity is 100%), although we see 40% of phish copy too little

content from the original for us to detect (in this study we ignore

image-based phish). This evaluation shows that our hash-based

detection can be a part of an anti-phishing scheme, complementing

other techniques.
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Table 6: Classification of phish in Cp , Lpp = PayPal.

Description Num. Pages %

Candidates 2374

Unavailable 486

Ripped 1888

Other 1764 TN = 1764

PayPal (image-based, removed) 39

PayPal 85 100.0 FP = 0

Successfully detected 50 58.8 TP = 50

Direct copies 35

Whitespace normalization 8

JavaScript obfuscation 7

Custom-styled with 35 41.2 FN = 35

minor PayPal content

9 CONCLUSION

In this paper, we developed a method to discover previously un-

known duplicated content and to precisely detect that or other con-

tent in a web-size corpus. We also showed how to exploit hierarchy

in the corpus to identify bad neighborhoods, improving robustness

to random document changes. We verified that our approach works

with controlled experiments, then used it to explore duplication in

a recent web crawl with an informed and uninformed discovery

process. Although most duplicated content is benign, we show that

our approach does detect duplication as-is in link farms, webpage

spam, and phishing websites.
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