
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2013-09

Efficient strategies for active interface-level network

topology discovery

Baltra, Guillermo P.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/37583

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

EFFICIENT STRATEGIES FOR ACTIVE
INTERFACE-LEVEL NETWORK TOPOLOGY

DISCOVERY

by

Guillermo P. Baltra

September 2013

Thesis Advisors: Preetha Thulasiraman
Robert Beverly

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

18–9–2013 Master’s Thesis 2011-09-26—2013-09-27

EFFICIENT STRATEGIES FOR ACTIVE INTERFACE-LEVEL NETWORK
TOPOLOGY DISCOVERY

Guillermo P. Baltra

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.IRB Protocol Number: XXXX

As a piece of critical infrastructure, the Internet brings both benefits and security concerns. Recent cyber-security episodes such as
route hijacks and Denial-of-Service attacks might have been mitigated and prevented with better knowledge of the network’s logical
topology; i.e., router nodes and links. Current production public active mapping systems; e.g., Ark, Rocketfuel, and iPlane, produce
valuable inferences of the Internet’s topology, as well as facilitating longitudinal analysis. We examine the extent to which the
techniques utilized by these existing systems can be improved, in particular by attempting to reduce their high probing load. Our
methodology divides the discovery process into three steps: destination selection, monitor assignment, and stop criterion. We
implement and evaluate alternative designs for each step. The complete system runs in real-time on a production system to probe 500
randomly selected Internet subnetworks and gather real-world network maps. As compared to datasets from existing measurement
platforms, we find that our method is able to generate 80% of the amount of data with 69% less load.

Internet Topology, Network Topology, Adaptive Probing

Unclassified Unclassified Unclassified UU 99

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

EFFICIENT STRATEGIES FOR ACTIVE INTERFACE-LEVEL NETWORK
TOPOLOGY DISCOVERY

Guillermo P. Baltra
Lieutenant, Chile Navy

B.S., Academia Politécnica Naval, Viña del Mar, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Guillermo P. Baltra

Approved by: Dr. Preetha Thulasiraman
Thesis Advisor

Dr. Robert Beverly
Thesis Advisor

Dr. Clark Robertson
Chair, Department of Electrical and Computer Engineering

Dr. Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

As a piece of critical infrastructure, the Internet brings both benefits and security concerns.
Recent cyber-security episodes such as route hijacks and Denial-of-Service attacks might have
been mitigated and prevented with better knowledge of the network’s logical topology; i.e.,
router nodes and links. Current production public active mapping systems; e.g., Ark, Rocket-
fuel, and iPlane, produce valuable inferences of the Internet’s topology, as well as facilitating
longitudinal analysis. We examine the extent to which the techniques utilized by these existing
systems can be improved, in particular by attempting to reduce their high probing load. Our
methodology divides the discovery process into three steps: destination selection, monitor as-
signment, and stop criterion. We implement and evaluate alternative designs for each step. The
complete system runs in real-time on a production system to probe 500 randomly selected In-
ternet subnetworks and gather real-world network maps. As compared to datasets from existing
measurement platforms, we find that our method is able to generate 80% of the amount of data
with 69% less load.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Topology Mapping Challenges . 3

1.3 Goals and Objectives . 4

1.4 Thesis Contributions . 4

1.5 Thesis Organization . 5

2 Background 7
2.1 Routing protocols . 7

2.2 Internet Topology . 9

2.3 Regional Internet Registries . 14

3 Topology Mapping 17
3.1 Production Topology Measurement Systems 17

3.2 Current Internet Mapping Efforts . 18

3.3 Subnet Centric Probing . 20

4 Theory and Design 27
4.1 Restructuring SCP . 27

4.2 Stopping Criterion . 28

4.3 Monitor Assignment Techniques . 30

5 Implementation and Results 37
5.1 Design Considerations . 37

5.2 Implementation . 38

vii

5.3 Methodology . 44

5.4 Results . 46

6 Conclusions and Recommendations 51

Appendix: Program Files 55

Reference List 73

Initial Distribution List 77

viii

List of Figures

Figure 2.1 Different levels of granularity of the Internet topology. 9

Figure 2.2 Traceroute sending ICMP echo request, error and receiving echo reply
messages. 12

Figure 2.3 Influence of load balancing over traceroute. 13

Figure 2.4 Packet header fields used modified by the different probing techniques. 14

Figure 2.5 Regional Internet Registries map. 15

Figure 3.1 Subnetting in advertised prefixes. 21

Figure 3.2 LCP divides the parent prefix into two subnets. 22

Figure 3.3 Implementing LCP deeper into the parent prefix. 22

Figure 3.4 Two traces starting from the same source towards the same subnet. . . 23

Figure 3.5 Pairwise probing towards parent prefix 16.0.0.0/8. 25

Figure 3.6 Pairwise probing towards sub-network 16.0.0.0/9. 25

Figure 4.1 SCP block structure. 28

Figure 4.2 NID parent traces. 29

Figure 4.3 NID sub-network probing. 29

Figure 4.4 Cumulative distribution function of the number of probes sent per prefix. 31

Figure 4.5 Intuition behind the maximum coverage monitor assignment technique. 32

Figure 4.6 Maximum coverage algorithm. 33

ix

Figure 4.7 Intuition behind the IPS algorithm. 33

Figure 4.8 IPS building a rank ordered list (initial step). 35

Figure 4.9 IPS expanding coverage for full Vantage Points (VPs) usage. 36

Figure 5.1 SCP system overview. 39

Figure 5.2 SCP compared to Ark data using NID algorithm. 45

Figure 5.3 10 cycles of SCP compared to Ark data. 46

Figure 5.4 Results comparison between different methods. 48

Figure 5.5 Average number of vertices and edges discovered per probe sent. . . . 48

Figure 5.6 Fraction of vertices corresponding to ingress routers and hops inside tar-
get AS. 49

x

List of Tables

Table 5.1 Pseudo-code describing NID algorithm. 41

Table 5.2 Pseudo-code describing MAX algorithm. 42

Table 5.3 Pseudo-code describing IPS algorithm. 43

Table 5.4 List of the 54 Ark monitors used in algorithm evaluations. 44

Table 5.5 Results comparison for different probing strategies. 45

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

AfriNIC African Network Information Centre

API Application Programming Interface

APNIC Asia-Pacific Network Information Centre

ARIN American Registry for Internet Numbers

Ark Archipelago

AS Autonomous System

ASN Autonomous System Number

BGP Border Gateway Protocol

CAIDA Cooperative Association for Internet Data Analysis

CERT Computer Emergency Response Team

CIDR Classless Inter-Domain Routing

DGSSM Delay-Guiding Source Selection Method

DIMES Distributed Internet MEasurements and Simulations

DoD Department of Defense

DoS Denial-of-Service

DNS Domain Name System

ERP Exterior Router Protocol

IANA Internet Assigned Numbers Authority

ICANN Internet Corporation for Assigned Names and Numbers

ICMP Internet Control Message Protocol

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IPS Ingress Point Spreading

xiii

IRP Interior Router Protocol

ISC Interface Set Cover

ISP Internet Service Provider

LACNIC Latin America and Caribbean Network Information Centre

LCP Least Common Prefix

LD Levenshtein Distance

MAX Maximum Coverage

NAT Network Address Translation

NID New Interface Discovery

NRO Number Resource Organization

OSI Open Systems Interconnection

RIPE NCC Réseaux IP Européens Network Coordination Centre

RIR Regional Internet Registry

RIS Routing Information Service

SCP Subnet Centric Probing

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TTL Time-To-Live

UDP User Datagram Protocol

SDIS Logic Distance

VoIP Voice over Internet Protocol

VP Vantage Point

VPS Vantage Point Spreading

xiv

Executive Summary

Since the mid-1990s, the Internet has had a revolutionary impact on culture, commerce and
day-to-day activities. As a piece of critical infrastructure, the Internet brings both benefits
and security concerns. Recent cyber-security episodes such as route hijacks and Denial-of-
Service attacks might have been better mitigated and prevented with better knowledge of the
network’s logical topology, i.e., constituent routers and router links. Current production public
active mapping systems, e.g., Ark, Rocketfuel, and iPlane, produce valuable inferences of the
Internet’s topology, as well as facilitating longitudinal analysis. We examine the extent to which
the techniques utilized by these existing systems can be improved, in particular by attempting
to reduce their high probing load. Reducing probing load has many practical benefits and can
potentially lead to improved network maps and a better ability to capture transient network
dynamics.

This thesis builds on a recently proposed technique in the academic literature, Subnet Centric
Probing (SCP). SCP is an active probing strategy that seeks to send enough probes to capture
the internal structure of a target subnetwork while avoiding probes that contribute no additional
mapping value. SCP thus attempts to decrease probing load while producing reliable network
topology maps. Although SCP has been shown to work well in simulation over real-data from
CAIDA’s Archipelago platform, SCP has not previously been implemented or tested in produc-
tion.

The first contribution of this thesis is the implementation and comprehensive testing of SCP to
perform real, production, Internet mapping. We find that, as originally proposed, SCP has a
critical flaw stemming load-balancing in the Internet, which is now common practice. In par-
ticular, SCP’s use of the Levenshtein Distance (LD) metric as a stopping criterion is disrupted
by load balancing, thereby causing the SCP algorithm to probe every address within the target
subnetwork, defeating the intent of SCP.

Our second contribution is a series of improvements to address our real-world experience in
implementing and deploying SCP. We propose to divide the discovery process into three steps:
destination selection, monitor assignment, and stop criterion. This layered structure allows us
to analyze each step of the process independently.

We take globally visible Border Gateway Protocol (BGP) network prefixes as the input to our
probing. These prefixes are derived from the public Routeviews looking-glass server. To select

xv

destinations to probe within each prefix, we make use of the Least Common Prefix (LCP) algo-
rithm, taken from the original SCP algorithm. LCP divides prefix ranges into maximally distant
sub-networks, where the results of probing each portion of the parent prefix drive subsequent
probing steps.

Next, we contribute and analyze a new stopping criterion, New Interface Discovery (NID), to
replace LD. In NID, rather than comparing complete paths, only interface hops that are ob-
served during probing that belong to the destination Autonomous System (AS) are considered.
Further, while SCP’s use of LD was pair-wise and memoryless, NID compares traces to the set
of previously discovered interfaces within the destination AS. Pair-wise independence allows
prefixes to be probed from various monitors with an unrestricted number of traces.

Previous work has examined differences between basic monitor assignment strategies, including
random with and without replacement. We introduce two new monitor assignment techniques:
Maximum Coverage (MAX) and Ingress Point Spreading (IPS). Both these techniques analyze
previous rounds of probing to more intelligently assign monitors to the set of destination ad-
dresses SCP probes. The high-level purpose of these techniques is to discover as many diverse
paths into the destination network, thereby avoiding early termination by SCP. In particular,
MAX’s objective is to find as many nodes and links outside the destination AS as possible and,
thus, obtain a richer global topology map; discovering ingress points to destination prefixes is
a side effect. MAX uses /8 prefixes as “logical landmarks” since they are typically physically
bounded by the region to which each Regional Internet Registry (RIR) is assigned. Monitors
are rank ordered based on hop distance and path diversity to the landmark. MAX thus attempts
to maximize the coverage of each trace from source to destination given prior knowledge.

In contrast to MAX, IPS explicitly aims to discover ingress routers to target networks, which in
turn leads to path diversity. By again screening traces obtained from previous rounds of probing,
IPS finds ingress routers to the trace’s destination address /8 prefix. By targeting known ingress
routers, IPS attempts to increase the chances of subsequent probes following similar routes
and traversing different ingress points. Finally, we examine a variation on IPS that explores the
inherent trade off between probing load and coverage. IPS++ sends one probe per ingress router
to the original prefix in order to encourage traversal of all known possible ingresses.

As shown in Figure 1, the random method, Vantage Point Spreading (VPS), MAX and IPS each
discover over 57% of the number of vertices as compared to the existing Ark system with less
than 20% of the probing load. The best performance is given by IPS with 58% of vertices and

xvi

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Unique Edges Unique Vertices

Fr
a
ct

io
n
 o

f
A

rk
 D

a
ta

Rand
VPS
MAX

IPS
IPS++

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Sent Probes

Fr
a
ct

io
n
 o

f
A

rk
 D

a
ta

Random
VPS
MAX

IPS
IPS++

Figure 1. Results comparison between different methods.

over 69% of edges. Further, IPS sent more probes before finishing, which we observe to be
directly correlated to the method’s general performance and, thus, suggests that rank ordering
the list of vantage points avoids early termination. By increasing the load to just 31%, IPS++
results in 80% of the number of vertices discovered by Ark and more edges than discovered
by Ark. These empirical results suggest that there is practical utility in the topology mapping
algorithms we developed.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

Acknowledgements

Foremost, I would like to express my sincere gratitude to both my advisors. To Prof. Beverly
for continuous encouragement and advice during my research. His guidance helped me in all
the time of research and writing of this thesis. To Prof. Thulasiraman for her patience and
enthusiasm for my ideas and for promptly helping me when needed.

Besides my advisors, I would like to thank Prof. Xie and Prof. Ralucca for being actively
involved in my thesis research and for their comments and suggestions.

Last, but not least, I would like to thank my wife, Gabriela, for accompanying me during these
two years full of new challenges and sacrifices and for giving me one of my greatest joys in life,
Antonia.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
Introduction

The telegraph, the Atlantic cable, the telephone, the cellular phone, and more recently the Inter-
net; every single one of these communication technologies changed the world in its time. All of
them made their way into people’s daily lives, making it hard to imagine how life went on before
their introduction. Since the mid-1990s, the Internet has had a revolutionary impact on culture
and commerce, starting with the rise of electronic mail whichi, is expected to have 3.8 billion
user accounts by 2014 [1]. The growth of instant messaging and social networking accounts
are predicted to be over 3.5 and 3.7 billion, respectively, by 2014. The growing influence of
the Internet has moved many researchers towards understanding how it operates. As with past
communication technologies, the Internet not only brings benefits but also many concerns. In
particular, both governments and private organizations must balance the benefits of the Internet
with its security issues. Recent cyber-security episodes such as route hijacks and Denial-of-
Service (DoS) attacks could have been mitigated by better knowledge of the network’s logical
topology. We can reasonably ask ourselves: what is the topology of the Internet? Sometimes
referred to as a network of networks, the Internet is a highly complex and distributed intercon-
nection of computing systems that continuously evolves. This cyberspace network is difficult to
observe because its original design does not facilitate taking adequate measurements of network
performance. In addition, organizations actively hide information from public access, further
complicating researchers’ undertakings. Thus, the Internet remains poorly understood.

1.1 Motivation
The purpose of this thesis is to analyze the Internet, in particular its topology at an interface-
level, using active measurement strategies. Network topology is a field of networking that has
received increasing interest from the research community. Researchers have devoted consider-
able effort to comprehend its nature, but there is still space for growth. Each small step taken
towards its understanding might have an impact not only inside the research community but to
Internet consumers at large. In relation to research, it is important for proper network modeling
to have a known topology to work with. The validation of improvements to current protocols
and new architectures must be accomplished through a known topology. Rigorous testing is
needed in order to verify backwards compatibility with currently deployed standards and also
to make sure that there are no disruptions that might cause the whole network to collapse during

1

the implementation. By comparing corresponding Internet topologies in different time peri-
ods, we can understand the network’s growth and even make predictions about its evolutionary
direction.

From the security point of view, knowledge and comprehension of network topology provides
several benefits to organizations such as Internet Watch Centers and Computer Emergency Re-
sponse Teams (CERTs) for anomaly detection due to malicious attacks, misconfigurations, or
faults, and network troubleshooting and diagnosis. In this regard, network robustness is a main
concern, specifically in terms of how the network deals with failures and attacks and how the
network recovers from them. Similarly, knowledge of an opponent’s network topology grants
an opportunity for mounting varied kinds of attacks, including DoS, link-removal, and route
hijack.

Current topology discovery tools do not satisfy the need of having fast data gathering, which
leads to missing events of interest that might happen during the whole mapping process. For
example, the Cooperative Association for Internet Data Analysis (CAIDA) runs a project that
implements an active measurement infrastructure called Archipelago (Ark) [2]. To complete
a full cycle of information gathering on the Internet, which amounts to 9.5 million probes,
takes approximately three days. As said earlier, many events of interest that can occur on the
Internet are small in nature. For example, just one Border Gateway Protocol (BGP) update is
enough for a route hijack. On February 24, 2008, the Pakistani Telecom, in an attempt to block
YouTube access within their country, took down YouTube entirely from the whole Internet.On
April 8, 2010, China Telecom originated 37,000 prefixes not belonging to them in 15 minutes,
causing massive outage of services globally. There are other similar projects at Ark that are
dedicated to Internet topology research, including Dolphin [3], iPlane [4], Distributed Internet
MEasurements and Simulations (DIMES) [5] and Rocketfuel [6]. These arefurther analyzed in
Chapter 3.

As mentioned before, having knowledge of the topology of a network allows the discovery
of vulnerabilities and bottlenecks. Reconnaissance is a term used in networking to describe
the gathering of information by an unauthorized agent in order to get the mapping of systems,
services, or vulnerabilities. It usually precedes in most cases an actual access to the system
or a DoS attack. A DoS attack is the prevention of authorized users from using a specific
service by exhausting the system’s resources. Several examples can be recalled. Some of the
most notorious attacks happened during the year 2000 on very well known victims such as

2

eBay, Amazon, Buy.com and Yahoo. DoS attacks and, specifically, its distributed form are an
unsolved issue.

1.2 Topology Mapping Challenges
A very distinctive characteristic of the Internet is its distributed structure with no centralized
administration. This very important feature adds to the scalability of the Internet and allows it
to grow organically. The Internet, as it was originally conceived, has no measurement imple-
mentations techniques. In addition, it has a dynamic topology making no two Internet graphs
obtained during different periods of time equivalent.

Due to the lack of a ground truth, current topology inference techniques are fragile, leaving large
amounts of space for assumptions. In that sense, the Internet can still be even more elusive to
researchers trying to map it, since it naturally hides information for scaling considerations, such
as in BGP and for economic reasons by commercial Internet Service Providers (ISPs).

Anonymous routers appear very often while probing the global network. They are commonly
used because anonymous routers are less likely to be targeted by malicious counterparts and
also because these routers allow ISPs to keep their topologies opaque. As was found in [7],
of the 18 million traces sent, nine million anonymous routers were found. These results show
that if anonymous routers are not properly dealt with, they might introduce significant errors in
connectivity, accuracy and resolution in the inferred topology.

There are other issues that present themselves as obstacles during active probing that are worth
mentioning and where current inference techniques lack efficient solutions, such as link failures
between Autonomous Systems (ASes) or within an AS, and application-level failures produced
by server crashes. Also, Network Address Translations (NATs) and firewalls introduce the
middle-box problem. Active probing, which is discussed in Chapter 3, has serious difficulties
identifying routers protected by NATs or firewalls. Finally, due to the fact that the Internet is a
dynamic network, temporal links, which are links that only operate under certain circumstances,
are rarely discovered and only when those conditions get triggered.

Related academic research has proposed diverse schemes for decreasing the time required for
active mapping while producing reliable topology graphs. In [8] the authors propose an algo-
rithm to benefit from the tree-like structure of traces from one source towards different desti-
nations. Cheleby [9] is a probing system that reduces network burden by finding a full trace
towards a destination inside an AS and then modifying the Time-To-Live (TTL) value to start

3

probing from the ingress router which is the last hop that does not belong to the AS. In [10]
the authors introduce a new metric oriented to monitor assignment that uses the underlying link
delay between the source and a small number of landmarks.

1.3 Goals and Objectives
The broad objective of this thesis is to provide accurate network graphs at an interface gran-
ularity even at a very large scale such as the Internet. This is done by following the research
started in [11], continuing with its improvement, addressing its weaknesses and taking the step
of implementing it on the Internet. This study focuses on combining the tools presented in the
mentioned research and comparing results with what an equivalent production measurement
system would generate. This means that all the information presented is gathered from the
Internet, and every experiment is conducted on that same global network.

By the use of primitives, it was shown in [11] that in comparison with current production tools,
such as Ark, it is possible to increase the frequency at which mapping of the network is executed
and at the same time, to decrease the load on the network generated by the probing itself. The
three proposed primitives are called Subnet Centric Probing (SCP), Interface Set Cover (ISC)
and Vantage Point Spreading (VPS). All three have shown to be effective in providing the
desired results on their own, but still there is work to be done in terms of an algorithm that
allows the primitives to work as a combined effort.

The main question that this work addresses is how SCP and VPS can be integrated so that it
is possible to decrease the size of a set of destinations while using as many distinct Vantage
Points (VPs) as possible to probe within a given BGP prefix. The latter is validated following
an iterative methodology over a previously defined ground truth. Behind the research effort lies
the intention of obtaining network topologies an order of magnitude faster than existing systems
in order to capture transient dynamics, including malicious or misconfiguration events.

1.4 Thesis Contributions
In this thesis, an effective strategy for extracting ASes internal structures is designed. The main
goal is to implement the algorithm on the Internet through a productive measurement tool. The
strategy extracts available AS-level topology, which it uses to direct its probing to obtain the
AS internal structure at an interface-level topology.

So far a similar strategy, the one from which this thesis inherits concepts and terminology, has

4

been successfully simulated over a previously probed data set [11]. The main contribution of
this work is to be able to implement that probing strategy in real-time on the Internet.

New methodologies for efficient VP assignments are evaluated. The first one, named the Max-
imum Coverage (MAX) method, examines the plausibility of monitor selection according to
their logical location on the network. By calculating the relative distance of VPs in relation to
a network and the feasible paths followed by probes toward that same network, it is possible to
maximize node and link discovery by sent probes.

The second monitor-assignment technique, called Ingress Point Spreading (IPS), aims at find-
ing ingress routers to selected destination networks. By discovering new entrances into the
networks, we can capture more thoroughly networks’ internal structure.

1.5 Thesis Organization
Some background for understanding the nature of statements and contributions made in this
thesis, with a description of Internet routing policies, topology, administrative structure and
available information sources for topology discovery, is provided in Chapter 2. Related work
regarding state of the art mapping techniques, the network-structure oriented SCP algorithm,
and their respective limitations are described in Chapter 3. The designs of the proposed solu-
tions and further improvements, as well as the implementations details, are explained in Chapter
4. The objectives delineated by the thesis and analyzes the results provided by the proposed so-
lutions, are discussed in Chapter 5. The results and contributions granted by the thesis and gives
further guidelines about future research are given in Chapter 6. The code used to implement the
methods described in this thesis are shown in the Appendix.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Background

An introduction to some Internet elements involved in network mapping, such as its basic ter-
minology, relevant routing protocols, and the different topology levels and their characteristics
is provided in this chapter. Additionally, we also present some of the available tools currently
employed in network topology discovery.

To start the discussion on topology mapping of a complex network such as the Internet, it is
convenient to begin by understanding one of its main components, the AS. An AS is defined
as a group of networks that use their own independent routing protocol and is managed by
a single organization. The Internet is composed of tens of thousands of loosely connected
ASes. Each AS is identified by a unique 32 bit number called the Autonomous System Number
(ASN). ASNs are assigned in blocks by the Internet Assigned Numbers Authority (IANA) to
the corresponding Regional Internet Registry (RIR). The RIR then assigns ASNs to entities
within its designated area of responsibility from the assigned number range by IANA. More
about RIRs is discussed in Section 2.3.

There have been several attempts to measure the Internet topology graph at a variety of gran-
ularities. It is possible to distinguish two different measurement methodologies for topology
discovery employed by researchers: the active approach and the passive approach. Active
methods rely on the injection of measurement probes such as pings and traceroutes, and the
projects that have implemented this approach are thoroughly discussed in Section 3.2. Passive
methods execute a non-intrusive observation of the network by analyzing BGP route announce-
ments. In the research literature, most work on passive BGP analysis has focused on publicly
available default-free BGP vantage points, including Routeviews [12] and Routing Information
Service (RIS) of Réseaux IP Européens Network Coordination Centre (RIPE NCC) [13]).

2.1 Routing protocols
A routing protocol is a protocol related to the network layer and allows routers to exchange
information with each other in order to permit the correct routing of packets to the proper
destination. The use of these type of protocols for the construction of the dynamic routing
tables is necessary when the number of interconnected subnetworks is high, as it is the case of
the Internet.

7

Given the large number networks attached to the Internet, when it comes to routing it is conve-
nient to see the network as a set of ASes, each of which handles independently and uniformly
its internal routing. The protocols vary depending on whether the involved routers connect to
each other within the same AS, called an Interior Router Protocol (IRP), or interconnect differ-
ent ASes, called an Exterior Router Protocol (ERP). The independence between IRP and ERP
gives flexibility for tailor made protocols on the inside of each AS.

2.1.1 The Internet Protocol
Internet Protocol (IP) is the network protocol part of the IP suite (Transmission Control Protocol
(TCP)/IP) on which the operation of the Internet is based. It belongs to layer three of the Open
Systems Interconnection (OSI) model and was created to interconnect heterogeneous networks
in terms of technology, performance and management. It is implemented over other protocols at
the link layer such as the Ethernet protocol. It is a connectionless protocol of the best effort type,
which means it does not guarantee any form of communication reliability in relation to error
control, flow control and congestion control. Therefore, the latter has to be compensated for at
the transport layer with protocols such as TCP. The currently used version of IP is also known
as Internet Protocol version 4 (IPv4) to distinguish it from the most recent Internet Protocol
version 6 (IPv6). IPv6 was developed because of the need to satisfy the increasing demand of
IP addresses due to the large number of computers connecting to the Internet. Particularly, IPv4
addresses were standardized as a 32-bit number in 1980 by the Department of Defense (DoD)
[14], and the pool of available numbers has been depleted at a rate not anticipated in its original
design and is now near to the address space exhaustion. While this thesis explores only IPv4
topology mapping, the techniques herein may also be useful to IPv6 in future work.

2.1.2 IP address prefixes
A subnetwork, or subnet, is a logical subdivision of an IP network and typically corresponds to
an underlying local network. The action of subnetting refers to the division of a network into
two or more parts. A subnet mask is used to distinguish the part of the network’s address range
used for routing and for hosts’ address assignments.

A network’s routing prefix corresponds to the most significant bits of an IP address. It precedes
the part of the address used as the host’s identifier. The routing prefixes are expressed in the
Classless Inter-Domain Routing (CIDR) notation, which uses the first address of a network
followed by the number of bits used by the prefix, separated by the slash character ‘/’. For
example, if 192.168.1.0/24 is the network’s prefix, it means that the indicated IPv4 address is

8

the starting address, and that 24 bits are allocated for the network’s number. The eight bits left
indicate the number of available host addresses. In other words, there are 254 available host
addresses without considering the network and broadcasting addresses.

2.1.3 Border Gateway Protocol
The protocol used to make core routing decisions on the Internet by exchanging reachability
information among ASes is known as BGP [15]. This is a protocol that allows the Internet
to be fully decentralized and version four is the one in use since 1994. BGP routing supports
CIDR and uses route aggregation to decrease the number of prefixes appearing in the global
routing table. BGP network information exchange is done by establishing a communication
session between edge routers in autonomous ASes based on TCP. This session stays connected
and allows periodical exchanges of information and route updates between both ends of the
communication.

2.2 Internet Topology

AS1

AS2

AS3

Autonomous System

Router

Interface

Link

Figure 2.1. Different levels of granularity of the Internet topology.

In terms of Internet topology, even though there are other levels of granularity considered by re-
searchers, there are three that are the most commonly used: AS-level, router-level and interface-
level. From these three levels, the first and last are discussed, since they are directly related to

9

the subject at hand, in particular the interface-level topology. In a router-level topology, nodes
represent routers and links indicate one-hop connectivity between routers. In Figure 2.1 the
different levels of granularity of the Internet topology can be seen, where the large white ar-
eas represent the AS-level topology, the small blue areas represent each router and, therefore,
router-level topology, and finally, the black dots represent the interface-level topology.

2.2.1 AS-level Topology
The entire Internet is usually considered as an AS-level topology graph where each AS is a
node, and the BGP peering between two ASes is an edge. For some time the AS-level topology
has been gathering interest from political, economic and academic players due to its relevance in
day-to-day Internet operations and research, which include activities such as AS-level topology
inference and AS relationships [16] [17] [18] and network topology generators [19] [20] [21].
Researchers have made several attempts on mapping the Internet at this level of topology using
passive and active methodologies. Active methods are very similar to those used at the interface
level topology and are covered in Chapter 3. On the other hand, common sources of information
used in passive strategies are the Routeviews project, RIS of RIPE NCC and the CIDR-report.

Routeviews [12] is a project managed by the University of Oregon and consists of providing
real-time information about the global routing system from different perspectives and locations.
Currently, it has distributed around the globe 16 routers with over 500 peering sessions in total.
Basically, what Routeviews does is to collect, without providing transit services, BGP updates
coming from these peers. Routeviews databases have been used to infer AS peering relation-
ships [22], to map AS-level topology [18], to detect routing anomalies in a network [23] and to
visualize BGP routing changes [24], among others.

RIS [13] is a RIPE NCC project oriented to the collection and storage of Internet routing data
from several locations around the globe through the use of routing beacons. RIS offers tools
such as notifications on rogue BGP announcements, knowledge of whether an ASN is in use
and statistical data about its neighbors and knowledge of when a prefix was last seen on the
Internet.

The CIDR-report [25] was originally established to quantify and track the growth rate of global
routing states. Its methodology consists of analyzing the BGP table within AS2.0 and generat-
ing an aggregation report for each individual AS. The report provides for each AS a list of its
adjacent ASes and its announced prefix. The CIDR-report has been used as a topology graphing

10

tool in projects such as [26].

2.2.2 Interface-level Topology
The interface-level topology is the most detailed level of the Internet Topology. This level
describes the interfaces of routers and end hosts. In a topology-graph, an interface is represented
by a node, and each edge illustrates the link-layer connection between nodes. To know which
interfaces belong to the same router, or in other words, to cross from an interface-level to a
router-level topology, a technique called alias resolution can be performed. Since this technique
is out of the scope of this study, more information about it can be found in [27].

In [28] the authors try to determine topology mapping algorithms to discover both intra-domain
and Internet backbone topology. The requirements established for each algorithm are efficiency,
speed, completeness and accuracy. With those requirements in mind, four different strategies
were specified: Simple Network Management Protocol (SNMP), Domain Name System (DNS)
zone transfer with broadcast ping, DNS zone transfer with traceroute and probing with tracer-
oute. The first three algorithms are less applicable due to the lack of reliability since they need
specific features that are less probable to be enabled for security reasons. On the other hand, the
benefits of using traceroute as a topology discovery tool are significant, the first of them being
that it provides the complete paths followed by probes.

2.2.3 Traceroute
Traceroute is a hop-limited probing tool that attempts to discover the path data packets follow.
Initially deployed as an experimental tool for network diagnosis, now traceroute is widely used
across the globe for diverse purposes. This tool sends TCP, User Datagram Protocol (UDP)
or Internet Control Message Protocol (ICMP) packets to the destination address, dynamically
increasing their TTL values. The TTL value is the hop limit count before the packet gets dis-
carded by a router. This means that every time the packet passes through an intermediate router
the TTL value is decremented by one until it reaches zero and is discarded. The router that
discards the packet sends an ICMP error message time exceeded. This error message provides
the IP address from an interface in the router that discarded the packet and, therefore, the ad-
dress of an intermediate node. Although theoretically the router could respond from any of its
addresses, in practice, the response is often routed back through the same interface [27].

The way traceroute works, as it can be seen in Figure 2.2, is by gradually increasing the TTL
value of sent packets and starting with a value equal to one until reaching the destination which

11

ends the procedure by sending ICMP messages echo reply when an ICMP packet was initially
sent and port unreachable for UDP and TCP packets.

ICMP echo request

ICMP echo request

ICMP echo request

TTL=1

TTL=2

TTL=3

SOURCE DESTINATION

ICMP Error Message

ICMP Error Message

ICMP Echo Reply

Figure 2.2. Traceroute sending ICMP echo request, error and receiving echo reply messages.

Unfortunately, the latter case is the ideal situation. When implementing this tool on the Internet,
load balancing routers cause it to not work as expected. In [29] the authors explored three dif-
ferent types of load balancing policies used by routers: per-packet, per-flow and per-destination

load balancing. In terms of measurement, per-destination load balancing resembles classic rout-
ing. Per-packet load balancing focuses on evenly distributing data traffic across the available
paths. In per-flow load balancing, the router forwards all packets belonging to the same flow
through the same interface. A flow is determined by analyzing packet headers. A five-tuple
composed of source IP address, destination IP address, protocol, and both TCP or UDP source
and destination ports is used as the flow identifier.

Figure 2.3 (a) is an example of what a network with a load balancer router might look like. In
Figure 2.3 (b) through (e) are illustrations of how traceroute performs in this kind of environ-
ment. Every time a new packet is sent, the TTL value is increased by one, but since the load
balancer distributes the loads into different interfaces, packets end up following different paths.
One possible resulting path by traceroute can be seen in Figure 2.3 (f), where a false link distorts
the inferred topology.

Load balancing is very frequently present on the Internet. In an experiment conducted in [30]
to measure the occurrences of load-balancing, 91% of the studied traces were affected by some

12

(a)

(b)

(c)

TTL = 1

TTL = 2

Load balancer

(d)

(e)

(f)

TTL = 3

TTL = 4

Figure 2.3. Influence of load balancing over traceroute.

kind of load balancing. Out of the same data set, 72% showed per-destination load balancing,
39% showed per-flow load balancing, and only 2% showed per packet load balancing.

As explained in [29] traceroute’s own algorithm causes unwanted behavior where there is per-
flow load balancing. Figure 2.4 is an illustration of the different types of headers and the fields
that get changed by traceroute. As a product of this change, the five-tuple varies and per-flow
load balancing routers forward packets to different interfaces even when they belong to the same
flow. That is why the authors of the research in [29] introduced a new kind of tool which they
named paris-traceroute. The main idea behind paris-traceroute is to keep state in those fields
required to stay in the same flow. This is done by manipulating the packet’s load to vary the
Checksum field in UDP packets or by changing the identifier to keep the Checksum constant
in ICMP packets. As for TCP packets, the only manipulation needed is to vary the Sequence
Number field.

Traceroute provides raw paths which may contain irregularities due to factors such as non-
responsive hops [7], loops, cycles and diamonds [29]. A non-responsive hop appears in a path
when the router discarding the traceroute packet does not generate an error message, resulting
in a gap between two known IP addresses. The gap is usually represented by an asterisk “*”.
The research in [7] analyzes different strategies to accomplish unresponsive router resolution.
A loop is generated when the same address repeats itself in the same path. This can be possibly
caused by load-balancing, routing changes, misconfigured routers that forward packets with
TTL equal to zero and address rewriting by gateway routers such as NAT boxes. The resulting
topologies depend on how these anomalies are handled.

13

Figure 2.4. Packet header fields used modified by the different probing techniques [29].

When probing the Internet, traceroute probes might produce incomplete paths. This happens
when the last hops in the path come in the form of a Request timed out error message. There are
several reasons why probes do not complete a trace. Firewalls filtering certain ports or interfaces
hiding behind NAT boxes might be blocking traceroutes. The return route might differ from the
forward route, which might present a problem. There also may be a connection problem at that
particular router or with the following one.

2.3 Regional Internet Registries
As was specified during its standardization in 1980 by the DoD [14], IPv4 addresses are de-
signed as a 32-bit number. Naturally, the address space being fixed, this limits the total number
of available addresses for assignment. Therefore, it was necessary for some organizations to be
in charge of allocating this limited budget of addresses in predetermined areas of responsibility;
thus, the RIRs were created. An RIR is the organization in charge the allocation and registration
of IP addresses and AS numbers. Each RIR has been assigned IPv4 addresses in terms of /8
prefixes; this allocation is controlled by the IANA, whose guidelines can be verified in [31].

Initially, three RIRs were formed: American Registry for Internet Numbers (ARIN), RIPE NCC
and Asia-Pacific Network Information Centre (APNIC). In 2001, the Internet Corporation
for Assigned Names and Numbers (ICANN) published the basis for the establishment of new
RIRs [32]; thus, two new RIRs were formed: the Latin America and Caribbean Network In-

14

formation Centre (LACNIC) in 2002 and African Network Information Centre (AfriNIC) in
2005. Currently, the RIRs’ areas of responsibilities are distributed as illustrated in Figure 2.5.
All five RIRs are merged together in what is called the Number Resource Organization (NRO),
an unincorporated organization that takes care of joint activities such as joint technical projects
and policy co-ordination.

Figure 2.5. Regional Internet Registries map [33].

The knowledge of RIRs covering a physical region and the predetermined address ranges that
have been assigned to each of them gives the opportunity to use them as broad landmarks. This
concept is used for a monitor assignment technique discussed in Section 4.3.1.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

CHAPTER 3:
Topology Mapping

Internet topology mapping is an active field of study which helps researchers to understand
the network’s internal structure, backbone dynamics, management and security risks. Because
of the sheer size, complexity, and distributed nature of the Internet, combined with a lack of
ground-truth, a complete map of the Internet remains elusive. However, by employing a variety
of new techniques, researchers are making continuing progress toward better and more complete
snapshots of the Internet topology [34]. But even when most of these techniques consider
probing reduction to decrease the load on the network as well as augment mapping speed, the
time needed to gather full Internet-size topology maps is still too long to catch small transient
dynamics that might reveal properties of interest.

In this chapter, we discuss the work that has been done in the field of Internet topology map-
ping and active probing. We begin by mentioning measurement platforms available to perform
mapping and then analyze the state-of-the-art research in topology discovery. Finally, we end
the chapter by explaining SCP, the probing primitive that motivates this thesis.

3.1 Production Topology Measurement Systems
Several research groups have implemented their own independent probing platforms. At an
interface-level topology, these production measurement tools rely on the use of active probing
in order to gather data. In particular, they utilize the traceroute tool or one of its derivatives
such as paris-traceroute. An important distinguishing characteristic between these systems is
the network location from which active probes are issued, as the inferred topologies are highly
dependent on vantage point. For example, probing from a stable set of fixed vantage points
requires deployment of dedicated measurement infrastructures which is costly and may impose
a heavy burden on the network. In this section, several current topology projects are reviewed.

Archipelago (Ark) [2] is CAIDA’s active measurement platform which replaced Skitter [35].
Ark employs over 65 monitors distributed around the globe divided into three groups to perform
team probing, where each team probes independently. As a probing tool it uses Scamper [36],
an open-source packet prober designed to support large-scale Internet measurements, which
includes implementations of traceroute, ping and alias resolution techniques. The traceroute
included in scamper is feature rich, supporting paris-traceroute among its main features. Ark

17

supports both IPv4 and IPv6. Ark’s topology discovery strategy consists in dividing prefixes
advertised in the global BGP tables into /24s from which only one randomly selected address
is probed. Ark dynamically separates the measuring workload among team members. This
parallelization helps to decrease the time taken to probe the /24 address space to about three
days.

DIMES [5] is a distributed measurement infrastructure that operates with the help of thousands
of lightweight measurement agents deployed around the world. These agents are installed in
volunteers’ systems and contribute to the research. DIMES data collection methodology relies
on traceroute and ping.

iPlane [4] is a scalable service that attempts to predict Internet path performance for overlay
services. This topology measuring tool has been applied over services such as content distri-
bution, peer-to-peer filesharing and Voice over Internet Protocol (VoIP), where its predictions
have lead to improved overlay performance. iPlane is implemented over the Planetlab [37]
infrastructure, and measurements are performed on a daily basis using traceroute. It operates
by extracting BGP snapshots from Routeviews servers which cluster paths into groups of pre-
fixes with similar routes. It then builds a structured topology, finding interfaces in the same
AS that are geographically collocated. With a compact topology due to the clusters, iPlane can
determine diverse link attributes used for overlay performance prediction.

Rocketfuel [6] focuses on measuring router-level ISP topologies. As an infrastructure, Rocket-
fuel uses the public available traceroute servers at http://www.traceroute.org distributed
around the world. Rocketfuel extracts Routeviews’ BGP routing tables to identify AS-paths
that will transit through the target ISP network. This process is called directed probing and also
helps to skip unnecessary traceroute probes. With a method called path reduction, Rocketfuel
identifies probes that are likely to have identical paths inside the ISP. Then, it uses an alias
resolution technique to determine interfaces that refer to the same router. Finally, it determines
which ISP the routers belong to by relying on DNS. Although, Rocketfuel has been influential
in current topology tools, it is no longer active.

3.2 Current Internet Mapping Efforts
Although in the previous section, we discussed several topology tools; these perform poorly.
According to the results obtained by the authors of [38], iPlane and DIMES were able to dis-
cover 73% and 11%, respectively, from Ark. Even when Ark appears to have the best perfor-

18

mance of the three evaluated tools, when compared to an ISP ground truth, Ark fails to capture
27% of the routers. In this section, we analyze recent research efforts on Internet topology
mapping that seek to mitigate above mentioned shortcomings.

DoubleTree [8] is a topology probing algorithm that was initially implemented over Skitter,
Ark’s predecessor. For destination selection it uses the same methodology as Ark, which ran-
domly picks one address per /24 prefix. Doubletree’s probing strategy benefits from the tree-like
structures of routes on the Internet such as when a single monitor queries a group of destina-
tions. The concept behind this algorithm is to save probes by tracking its progress through the
tree, from the leaves towards the root, so that it can keep probing until it encounters a node
known to the tree. This strategy uses both monitor and destination as the roots, and its stopping
rule is set according to which direction the probing is being performed.

In [9] the authors introduce Cheleby, their active topology measurement tool. Cheleby is an in-
tegrated mapping system that performs topology sampling, construction and analysis. It is im-
plemented over the Planetlab network and uses paris-traceroute as its probing mechanism. The
process starts by extracting active BGP announcements from http://www.cidr-report.org.
For each /24 prefix within an active AS, the first allocated IP address is selected as a destination.
All targets that belong to the same AS form one destination block. Planetlab nodes are grouped
into seven teams based on their geographic locations. Only one monitor per team probes a spe-
cific destination block. Each destination block gets probed by each team; therefore, only seven
monitors probe each destination block, one at a time. Cheleby has a querying strategy used to
decrease the probing overhead. The method starts by sending probes to some destination IP
addresses until a complete path from source to destination returns. Then Cheleby modifies the
TTL value to start probing from the ingress router, which is the last hop that does not belong
to the AS. The other overhead reduction technique is to select one monitor per team to query
a particular AS. As mentioned earlier, teams are formed according to geographical location of
each monitor; thus, the method assumes that traces follow a similar path towards the destination
AS.

One of the first published attempts to map China’s Internet topology was presented in [39]. The
authors used as a destination selection methodology the extraction of public BGP announce-
ments from servers such as Routeviews and RIPE NCC RIS. To the obtained prefixes, they
applied what they called the nested IP block partitioning. This finds BGP prefixes residing
in another prefix from a different entry and subdivides the larger address space into the min-

19

imal number of prefixes while preserving the nested structure. The intuition behind this idea
is that the small nested prefixes suggest different subnets. For each possible subnet, the first
allocated address is selected as the destination for that particular prefix. The probing reduction
is performed by having two different sets of nodes. The first one, called the reach_set, holds
all the addresses a VP has observed during its previous probes, while the second one, called
the source_set, keeps all the addresses seen in traces sent towards a particular destination block
by any VP. Before a monitor probes a block, it verifies whether its reach_set and the prefix’s
source_set have an overlap. If the two sets coincide in some elements, it means that a path can
be drawn between source and destination and, therefore, that prefix would not be monitored by
that VP.

Delay-Guiding Source Selection Method (DGSSM) [10] aimed exclusively at monitor assign-
ment, and its particular contribution is to use as a metric the underlying link delay between the
source and a small number of landmarks. It starts by selecting a number of landmarks from a
predetermined set defined according to researches such as in [40]. For each monitor, DGSSM
calculates the average delay towards every selected landmark. Then, all the monitors are sorted
starting with the largest average delay.

In [41] the authors introduce a new metric which they call the Logic Distance (SDIS). Their
objective is to lessen the probing load by selecting N sources out of the M available that produce
the most efficient output in terms of data learned. SDIS between two sources and a particular
destination is calculated dividing the number of hops not shared by paths from either sources
towards the destination by the sum of each path’s number of hops. The SDIS that is really used
is the sum of all individual SDISs for a predefined set of destinations. The basic intuition behind
this theory is that if this number is large, the probability to detect more nodes and links is high.
Then, by combining SDISs for a set of sources as shown in [41], it is possible to obtain what
the authors call the dissimilarity function. As it is explained in [41], the probability of detecting
more nodes and links increases when the dissimilarity between the sources grows.

3.3 Subnet Centric Probing
Each of the strategies reviewed in the previous section introduce different point of views on
how to perform an efficient Internet map. All of them present innovative ideas of how to avoid
bringing a heavy burden generated by active probing into the network, but this still is not a
solved issue. For instance, Ark sends a probe to each /24 prefix, which gives in total about 9.5
million addresses to query to cover the whole Internet. This is intuitively a very large spectrum

20

number and, on average, it takes about three days.

It is shown in [11] that it is possible to generate an initially small set of target addresses which
can be dynamically incremented according to the feedback received by sent probes, reducing the
time to cover the whole Internet without damaging severely the quality of gathered information.
The technique deployed is called SCP, and its fundamental idea is to focus in extracting the
internal structure of ASes. From results obtained in [11], it is possible to recover 90% of
vertices and edges with only 60% of the load; therefore, by adapting the number of probes to
the degree of subnetting, it is possible to avoid wasting them.

3.3.1 Least Common Prefix
SCP as the proposed probing strategy starts by introducing a new concept, the Least Common
Prefix (LCP). LCP is the main mechanism by which SCP selects its destinations within the ad-
vertised BGP prefix. It works by taking benefit of knowledge of how networks are provisioned
and subnetted. As shown in Figure 3.1, given an advertised prefix 16.0.0.0/8, it is easier to
believe that A and B belong to different sub-networks than A’ and B’.

16.0.0.0/8

Easier to believe A and B in
different subnets

Than A’ and B’ in different
subnets.

A’

B’

A

B

16.0.0.0/8

Figure 3.1. Subnetting in advertised prefixes.

LCP divides the advertised prefix, also called parent prefix, into two segments. Taking the
abstracted network addresses of Figure 3.1 and applying LCP, LCP produces what is illustrated
in Figure 3.2 where the parent prefix is separated into two subnets: 16.0.0.0/9 and 16.128.0.0/9.
Next, LCP proceeds to select the IP address in the middle of the prefix range as the target
address for each subnet.

The partitioning of the parent prefix is always done in powers of two. For example, the corre-

21

16.255.255.255

16.0.0.0

16.128.0.0

/9

/9

16.191.255.254

16.63.255.254

Figure 3.2. LCP divides the parent prefix into two subnets.

sponding output, obtained by continually dividing the original prefix, would be as depicted in
Figure 3.3. The destination addresses are once again the center IP addresses.

16.192.0.0/10

/10

/10

/9

16.191.255.254

16.63.255.254

16.223.255.254

16.159.255.254 16.128.0.0/10

16.255.255.255

16.0.0.0

Figure 3.3. Implementing LCP deeper into the parent prefix.

3.3.2 Levenshtein Distance
The Levenshtein Distance (LD) is used in [11] as the stopping criterion to terminate probing a
certain branch of a parent prefix. In other words, the LD is the metric that, when compared to a
previously determined threshold, tells the SCP that there is not enough benefit in further probing
that subnet. What this particular metric does is to compare two traces by counting the number
of insertions, deletions and substitutions performed in one trace to change it into the other trace.
For example, given the two traces shown in Figure 3.4, two edit operations are needed to change
trace two into trace 1: 188.1.50.9 needs to be added and 80.291.253.186 needs to be substituted

22

by 80.239.128.181. Now, if the stop criterion specifies that the result of the LD needs to be
greater or equal to two, the probing algorithm stops probing for that particular subnet given
these two traces. Also note that for this metric to be properly implemented, it is necessary that
both traces have the same source.

Figure 3.4. Two traces starting from the same source towards the same subnet.

3.3.3 Random Vantage Point Selection
To assign monitors to destinations the simplest approach is to make random assignments using
a uniform distribution. The problem with this is that not all monitors are necessarily used before
a repetition in assignment occurs. If we consider that the path followed by two probes from the
same monitor towards the same prefix might be similar, then already known nodes and links are
revisited, and the opportunity to gain new knowledge is lost. The probability that k /24’s are
probed by a unique monitor is given by

P =
k−1

∏
i=0

N− i
N

(3.1)

where P is the probability, N is the number of VPs, and k is the number of destinations. Given
a /21 prefix and 23 monitors, the probability P that the 8 /24’s are assigned a unique VP is 0.25.

3.3.4 Vantage Point Spreading
In contrast to random vantage point selection, [11] proposes and evaluates VPS. The primary
benefit of VPS is that it improves the already good results of SCP without extra processing
effort. The intuition behind VPS is to use all the available monitors before repeating any so
that the paths followed by probes towards certain prefix are as distinct as possible. What VPS
does is to assign new destinations to VPs not yet used for probing each parent prefix. In case
there are more destinations than monitors for a particular prefix, once VPs are exhausted, the
following assignments are performed randomly with a uniform distribution. Basically, the latter
can be characterized as a list formed by all the available monitors in random order, where each
time a new destination is received, monitors are assigned in a round robin fashion.

23

3.3.5 Implementation Issues
In [11] it was successfully demonstrated that when using as ground truth data gathered by Ark
and with the same data running the SCP algorithm with LD as the stopping criterion, it is
possible to obtain 90% percent of vertices and edges while using only 60% of the load. The
problem with LD as the metric is seen when implementing SCP in real-time over the Internet
due to the existence of load balancing routers. Even when using the paris-traceroute algorithm
as explained in Section 2.2.3, the traces are distorted because while using LCP every new route
has a different destination address and, thus, the tuples differ one from the other. The result
is that the SCP stopping criterion is never reached provided that the load balancing routers
change every single time the paths for trace pairs. An example of how pairwise probing works
is shown in Figure 3.5. Considering a parent prefix of 16.0.0.0/8 as in the previous examples,
the destinations are determined according to LCP and both of them are assigned to the same
monitor. When encountering a load-balancing router, their paths diverge and increase the LD.
In this example, the LD is equal to four, but since the SCP threshold has been set to two, the
algorithm divides the prefix and continues probing.

The destination addresses are selected from the sub-network 16.0.0.0/9 according to LCP. In
Figure 3.6, we illustrate the second group of probes sent towards the destination. We use the
same monitor for the two groups of probes to avoid more complex diagrams. In a real im-
plementation, the monitor would change for each pairwise probing according to the random
strategy or VPS as explained in Section 3.3.4. This model stays true due to the large amount
of load-balancing routers on the Internet [30]. As shown in Figure 3.6, once again the LD is
distorted by load-balancing routers; thus, it continues probing even when the information gain
is not significant. This distortion forces the algorithm into an endless probing loop.

Finally, [11] evaluates SCP and VPS in isolation without considering their interaction. With-
out modification, SCP and VPS cannot be combined due to SCPs reliance on pair-wise path
comparison between traces that originate from a common VP.

24

Monitor

Hop

Destination

Legend:

/8

Load-balancer

5

6

4

3

1

2

16.0.0.0

16.255.255.255

Threshold = 2
Levenshtein Distance = 4

Trace Nr. 1

Trace Nr. 2

Pairwise probing:

/9

Monitor

Hop

Destination

Legend:

/9

Load-balancer

1

2

16.0.0.0

16.255.255.255

Threshold = 2
Levenshtein Distance = 3

3

4

5

6

Trace Nr. 1

Trace Nr. 2

Pairwise probing:

Figure 3.5. Pairwise probing towards par-
ent prefix 16.0.0.0/8.

Figure 3.6. Pairwise probing towards sub-
network 16.0.0.0/9.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 4:
Theory and Design

In the preliminary work of [11], it was shown that in terms of probing budget there is benefit
in intelligently selecting the set of vantage points using a strategy such as VPS and determining
the destinations with an algorithm like LCP. However, the practical existence of load-balancing
routers on the Internet prevents the algorithm from being implemented directly. The primary
limitation of LCP is its use of LD as a metric since it gets distorted. This distortion can lead
to an infinite probing loop, which performs even worse than randomly choosing the set of
destinations.

The objective of this chapter is to address issues introduced by load-balancers by developing
alternative solutions that permit an online implementation of SCP. The main strategy that is
introduced is called New Interface Discovery (NID), which measures the information made
available by each new probe. In addition, two new methodologies are studied that try to solve
VPS deficiencies.

4.1 Restructuring SCP
In this section, we start by identifying a three-step process which helps us think of SCP as
a block structure with different layers. A layered structure allows different methods without
affecting contiguous layers, thus, making it easier to analyze each step of the process by itself
permitting different combinations of diverse strategies. As shown in Figure 4.1, the three blocks
structure used in this thesis’ SCP implementation are destination selection, monitor assignment
and stopping criterion.

Destination selection so far has been successfully implemented through the LCP algorithm and
remains the same during the course of the present work. Although the strategy presented in
Section 3.2 called nested IP block partitioning is fully integrable with LCP and might present
some benefits to SCP, the analysis and evaluation of integration between the two is left for
future work.

Since LD presents issues mentioned in Section 3.3.5, such as dependence on pairwise probing
and distortions by load balancing, which currently do not allow SCP an online implementation,
we begin by analyzing possible solutions to this problem.

27

Stopping
Criterion

Monitor
Assignment

Destination
Selection

Figure 4.1. SCP block structure.

4.2 Stopping Criterion
The LD has several deficiencies in addition to the non-stopping issue outlined in Section 3.3.5
that hinder SCP’s full potential. For instance, pairwise probing is agnostic of previous probes by
throwing away information gathered earlier and not counting it as part of the metric. Pairwise-
probing also forces the use of the same router, which is necessary to properly calculate LD,
wasting the opportunity of using different monitors per probe and maximizing the benefit ob-
tained from each trace.

4.2.1 New Interface Discovery (NID)
We present NID as an alternative solution to LD, conceptually it is very simple but very powerful
in relation to what it allows SCP to do. This new metric focuses on discovering the internal
structure of the destination prefix. To do that, the method remembers all the interfaces seen
inside the destination AS by each probe sent toward the parent prefix. For each new trace, only
the trace’s hops inside the destination AS are counted and compared with the remembered set of
interfaces. To determine which hop is inside the destination AS, each hop’s ASN is contrasted
with the corresponding destinations address ASN. The ASNs are obtained from the Routeviews
servers. The number of new hops found in a trace is compared with a predefined threshold

28

Newly discovered interfaces

Hops outside parent prefix

Legend:

VPs

/8

1
3 5

Parent trace

2 Parent trace

4

B

C

D

A

6

7

8

Parent prefix
VPs

9 10
11

/9

3
1

5

4 12
/9

Parent trace

2

B

C

D

A

2 6

7

8
Parent trace

Newly discovered interfaces

Hops outside parent prefix

Buffered discovered interfaces

Legend:

Figure 4.2. NID parent traces. Figure 4.3. NID sub-network probing.

to determine whether the algorithm should continue dividing the prefix into subnetworks. The
traces that describe paths followed by probes sent towards the parent prefix are called parent
traces.

To provide intuition and explain NID, in Figure 4.2 we have illustrated two parent traces sent
towards the parent prefix represented by the shaded yellow area whose mask is a /8. In the
figure, the circles with letters in them represent available monitors for use as sources. Numbered
blue circles indicate hops inside the destination AS. Circles 1 and 2 represent the selected
destinations by LCP. As mentioned in Section 3.3.1, LCP selects the address in the middle of
the address space of the smaller subnet, in this case the /9 prefix. Orange and yellow circles
indicate hops outside the destination AS.

The first benefit from using NID is that the number of probes sent at any particular time to a
prefix does not need to be two, as we no longer make use of LD. Instead, NID can send, and
compare, any number of probes. Although the figure only shows two traces for clarity, varying
the number of probes sent per prefix is possible because the metric compares the number of
newly discovered interfaces with the buffered total and not to a particular trace. In the example,
four new interfaces have been discovered by each probe, and if a threshold of two is considered,
the SCP algorithm divides the parent prefix into two /9 sub-networks and continues probing
them independently.

Continuing with the same example, in Figure 4.3 we depict how two probes are sent towards
destinations in the /9 sub-network as selected according to LCP. The dark green trace has

29

discovered three new hops. This is greater than the threshold; therefore, SCP continues probing
that prefix. On the other hand, the light green trace found only one new hop, which is below the
threshold. Thus, that prefix is not probed any further.

4.2.2 New Capabilities
The most defining characteristic of NID is that it focuses on the AS’s internal structures, which
basically goes hand in hand with SCP’s primary intention. While NID is concerned with count-
ing the number of new interfaces discovered, it overcomes any problem generated by load-
balancing and actually ends up benefiting NID by revealing previously unseen vertices and
edges. NID allows source distribution by focusing on a target AS as opposed to pairwise prob-
ing. Recall that NID permits the comparison of traces originating from different VPs. Em-
ploying multiple VPs as part of SCP naturally is valuable because doing so helps discover AS
ingress points. In contrast, when all probes to a destination originate from the same VP, all
probes enter the AS via a single ingress. As was mentioned earlier, the number of probes no
longer needs to be two since it admits sending as many probes as needed. That number de-
pends on the probing strategy used and the results of the traces. NID maintains state by taking
into account previously sent probes. Finally, NID leaves room for future improvements such as
including edges as part of the metric.

4.3 Monitor Assignment Techniques
As explained in Section 3.3.4, VPS is a strategy for monitor assignment for SCP. VPS can be
thought of as providing a pool of potential monitors to SCP now that NID has decoupled the
selection of VP from its stopping criterion. Without an extra cost VPS, can outperform the more
simplistic random assignment technique. Nevertheless, VPS still has some deficiencies that
leave space for improvement. This monitor spreading strategy commits every single available
monitor before repeating one into the same prefix but it does not specify the order in which those
monitors have to be used. Intuitively, by starting with specific monitors towards a determined
network, SCP will be more successful in discovering ingress routers. Therefore, probes will be
able to find more new interfaces inside the destination AS and also avoid an early termination of
that particular probing branch. Additionally, some monitors will be relatively farther in terms
of hops from the destination AS, and the number of vertices and edges learned will be greater.

In order to determine whether the first few probes sent into a parent prefix are important, we
conducted a simple experiment. The objective of the experiment was to find the number of
probes sent per prefix out of a set of 1500 ASes extracted from Routeviews. The total number

30

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n
 o

f
p

re
fi
x
e
s

Probes per prefix

Figure 4.4. Cumulative distribution function of the number of probes sent per prefix.

of monitors available for use was 60, and the assignment technique employed was the random
method as explained in Section 3.3.3. In Figure 4.4 the resulting cumulative distribution func-
tion is shown, where about 90% percent of the prefixes send only 50 probes before SCP finishes
probing it. The figure has been zoomed-in to make it easier to focus on the important part.
Considering that 60 monitors were used, more than 90% of the prefixes did not get to use all the
available monitors even if no monitor was assigned twice from a single AS. This result shows
that it is important to choose the order of selection of the monitors wisely, otherwise it might
mean an early termination for probing that particular prefix when there is still information to
extract.

4.3.1 Maximum Coverage method (MAX)
The MAX method is a rank ordering strategy whose aim is to carefully decide the precedence
in which monitors are selected by enforcing the maximum predicted path diversity. As input,
MAX takes previously collected probes, e.g., from a prior round of probing. This technique’s
purpose is to enhance the amount of new information learned by each individual trace. It can
be seen in Figure 4.5 (a), when choosing monitors 1 and 2, both probes in this example follow a
similar path with shared hops toward the same prefix. Also, the monitors are located too close in
term of hops, potentially wasting the opportunity to find new vertices and edges before reaching
the destination AS. On the other hand, as shown in Figure 4.5 (b), both paths are maximized
by hop distance, from monitor to prefix and from monitor to monitor, thereby discovering more
vertices and edges. Finding different ingress points into the destination AS is a side beneficial

31

Dst. Prefix
/8

Monitor 3 Monitor 4

hops

Dst. Prefix
/8

Monitor 1

Monitor 2

hops

(a) (b)

Figure 4.5. Intuition behind the maximum coverage monitor assignment technique.

effect in MAX.

Rank ordered lists are formed by MAX using input trace data that might have been gathered
by doing a pre-probing round on the Internet or by using previously probed data. Therefore,
a database of traces is needed before implementing this kind of process, which is performed
offline as a precomputation step. The MAX algorithm basically forms lists which SCP can
potentially exploit.

Given that the intuition behind MAX is to order monitors according to their distance in IP hops
from the destination prefix as well as from each other, it is necessary to establish a criteria to
determine the appropriate relative values. For MAX, we explore whether logical landmarks can
help to successfully classify monitors according to their hop distance to specific prefixes. As
explained in Section 2.3, RIRs allocate IP addresses in specific regions around the world. In
particular, we know that RIRs get addresses assigned in blocks of /8, making that prefix range
a natural logical landmark selection to explore. Since addresses in the /8 prefix are likely to
be located in the same physical region, it is possible to calculate the hop distance from every
available monitor with the same IP address selected from that prefix range and then proceed to
order them according to the MAX algorithm. This is explained next.

32

254/8

255 /8

1 /8

2 /8

3 /8

5 /8

4 /8

RANK ORDER:

Destinations

A

B

C

D

E

F

VPs

A F C E B D

1
1

1

1

1

1 1

2
2

2

2

2

3
3

3

3

4

4

4

5

6

Dst.
Prefix

/16

/8

First hop inside
/8 prefix

Ingress router to
destination prefix

trace

monitor

Figure 4.6. Maximum coverage algorithm. Figure 4.7. Intuition behind the IPS algo-
rithm.

By probing one single address per /8 prefix with every available monitor, it is possible to build
a rough approximation of the macro Internet map. That approximation allows us to form a
rank order list for each /8, starting by finding the farthest monitor. All the hops that belong
to the farthest node’s path are marked down as used by that first monitor as seen in Figure 4.6
and are not counted again. The second monitor in the list is selected from available VPs whose
shortest path to the destination has the most unseen hops. The next monitor on the list is selected
following the same procedure. In the example shown in Figure 4.6, monitor A is the farthest
in terms of hops from the destination, then follows monitor F, C, and so on. The hop distance
comes from the shortest path as calculated by the Dijkstra algorithm. In the case of two paths
with an equal number of hops, a simple heuristic is used. This is an iterative process individually
performed for each /8 prefix.

4.3.2 Ingress Point Spreading (IPS)
MAX’s objective is oriented to finding as many nodes and links outside the destination AS
as possible; thus, obtain a richer global topology map. Finding ingress points to destination
prefixes is a side effect. On the other hand, IPS solves the problem the other way around. This
monitor assignment strategy aims at finding ingress routers to target networks, which in turn
leads to path diversity and variety of vertices and edges. IPS is the natural complement to SCP
and NID as it is focused in finding specific characteristics about target networks’ structures. The
basic intuition behind IPS is to increase the probabilities of finding ingress routers to a network
by using paths already known to probes gathered in past cycles. Specifically, we use IPS to

33

explicitly attempt to utilize all known ingresses points into the logical landmark.

An easy way to order monitors according to their chances of using a specific ingress router is by
analyzing pre-probed databases from where to find paths from available monitors to destination
prefixes. Then, it is possible to form a group of monitors that are found to use a specific ingress
router to the destination network. All the monitors in the group should not have, in any of its
analyzed traces, any of the ingress routers considered by other monitors in the group, trying
to secure that specific path. In case a second monitor is found to access the network using an
already considered ingress router, this monitor is left out of the main group since the algorithm
forces it to use all the known ingress routers first before repeating. The monitors part of the
group are assigned first in order to have higher chances of entering the prefix through different
gateways.

Ideally, IPS determines, for each BGP prefix, a rank-ordered set of VPs to ensure that all known
ingresses into the prefix are utilized. However, in this thesis, we approximate this full IPS
functionality by finding ingress points into the logical /8 landmarks. IPS, instead of keeping
track of ingresses to all possible subnetworks, searches in the pre-probed data for gateways
to the /8 prefix of the destinations address. As shown in Figure 4.7, using this approach it is
possible for us to know what path has a greater chance to be followed by a probe sent from
a specific monitor to a particular AS. Focusing on the ingresses to the /8 prefix decreases the
algorithm’s overhead. The process of forming the group is followed the same way as described
in the ideal case.

Since IPS is a rank ordered list, it is built from a pre-probed dataset. From the pre-probing
round, from each trace a tuple of three elements is extracted: source, ingress router, destination.
By ingress router we mean the last hop before starting with nodes inside the /8 prefix to which
the destination belongs. Then, the algorithm simply scans over the tuples, finding which desti-
nations belong to the selected destination prefixes and associating a monitor, an ingress router
and a target prefix.

In Figure 4.8 can be seen the results of analyzing traces from an example pre-probing round that
utilized six VPs to trace to seven destinations. The numbered dots represent VPs, the blue dots
refer to all the various hops and the red dots the destinations addresses. The light purple area
traces out a /16 prefix, which in this example is the destination prefix, and the blue area marks
out its corresponding /8 prefix. A /8 prefix does not necessarily have all the interfaces attached
together. For the given data, only three out of the six available monitors have paths directed

34

1

2

3

4

5

6

RANK ORDER:

Destinations VPs

/8

/16 /8

1 2 3

Figure 4.8. IPS building a rank ordered list (initial step).

toward the prefix under scrutiny. VP1 has its own ingress router into the /8 prefix, indicated by
a bullseye dot, but VPs 2 and 3 share the same ingress router. Since we are looking for unique
ingress routers, a simple heuristic decides which one would have a higher priority in the list. In
the example, VPs 1 and 2 go at the beginning of the rank order, leaving VP3 to the end.

Note that, in this example, only three of the VPs in our known set of pre-probed paths elicit
responses from router interfaces within the target destination prefix. However, the SCP algo-
rithm may require more than three traces to cover the prefix. Therefore, we wish to ensure that
the IPS algorithm provides a rank-order over the complete set of possible VPs. Next, we show
how to expand the scope of the destination prefix in question to iteratively create a “virtual
prefix,” where ingresses into this virtual prefix drive the remainder of how IPS populates the
rank-ordered list of VPs.

As was explained in Section 3.3.4, the hypothesis behind VPS is that the more variety of VPs
used, the more efficiency of sent probes and quality of gathered information. In that sense, a
potentially useful way to include those monitors which the pre-probed data does not consider
with paths into the target prefix is to increase the destination network’s address space by de-
creasing the prefix’s mask. As illustrated in Figure 4.9, the prefix is decreased by one, from
/16 to /15, and if monitors that are not part of a tuple yet are found to have a path toward the
/15 prefix, their tuple gets registered. The monitors get added to the rank order list following
the same criteria as before, sending the repeated monitors to the back of the list. The process
continues with the /14 prefix and so on, until all the monitors form part of the list.

35

1

2

3

4

5

6

RANK ORDER:

Destinations VPs

/8

/8 /15

1 2 4 3 5

1

2

3

4

5

6

RANK ORDER:

Destinations VPs

/8

/8 /14

1 2 4 6 3 5

Figure 4.9. IPS expanding coverage for full VPs usage.

36

CHAPTER 5:
Implementation and Results

This thesis’ core ideas, which are conducive to addressing the objectives presented in Sec-
tion 1.3, were presented in Chapter 4. In this chapter, we discuss the specific methodology
and implementations employed as well as comparative performance results observed among
the different strategies we implement. We mention the design considerations taken during the
implementation phase and also describe the algorithms themselves. The chapter ends with an
analysis of the results obtained when implementing the proposed probing strategies.

5.1 Design Considerations
There are several design considerations that must be taken into account to deal with all the dif-
ficulties presented during algorithm run-time. The main consideration, previously described in
Section 4.1, is the flexibility needed to evaluate different concepts and strategies when deter-
mining monitor assignment and destination selection.

Given the various topology tools for active and passive measurements available to accomplish
the execution of SCP over the Internet, we had to make several decisions on how we chose to
implement and test our proposed new strategies. For instance, it was necessary for us to define
the servers from where to obtain prefixes announced by ASes and what network analysis project
to use as an active probing platform.

5.1.1 AS Observation
AS-level data is the first element needed by SCP, since this data allows us to properly select
destination addresses that target particular network aggregates. SCP is able to adapt to subnets’
different sizes by extracting their internal structure and driving future probes depending on
feedback received from previous results; therefore, SCP does not have strong reliance on the
BGP vantage point.

As mentioned in Section 2.2, there exist diverse projects from which to obtain BGP prefix
announcements. Data from each project varies depending on its point of view and how paths
are aggregated. In terms of what is needed to feed SCP with proper information, all these
strategies are adequate. Therefore, for practical reasons, BGP prefixes are obtained from the

37

Routeviews servers, leaving the comparison of results of LCP using other prefix sources for
future work.

5.1.2 Probing Platform Selection
The selection of Ark as our active probing platform over those other methods explained in
Section 3.1, such as DIMES and iPlane, is based in two factors. First, results presented in [38]
favor Ark over other methods. Second, Ark has a very convenient Application Programming
Interface (API) for easy primitive implementation.

Ark’s API facilitates easy development and rapid prototyping – important attributes as the char-
acteristics of our primitives evolve. The API allows a high-level of abstraction, which in turn
leads to rapid prototyping. This application interface is programmed using Ruby, an open-
source programming language with convenient characteristics for API programming. Ark pro-
vides tailored libraries for controlling Scamper’s tools to perform parallelized traceroute and
ping measurements; thus, allowing researchers to evaluate and implement complex probing
strategies easily.

The Ark server offers a service called topo-on-demand which lets clients connect to a single
point instead of needing to login into each monitor independently. A client can perform multiple
parallel queries to monitors through Ark server, which in turn returns measurements results
asynchronously. Each Ark monitor is running Scamper and, thus, performs paris-traceroute to
every routed prefix. The maximum number of probes an Ark monitor handles concurrently is
75.

5.2 Implementation
From a system’s point of view, the heart of the model lies at the SCP server as is shown in
Figure 5.1. The three step process starts by obtaining destinations to probe by querying the
Routeviews servers for available prefixes to set as targets. With randomly selected destina-
tion prefixes, LCP generates addresses to probe within those prefixes following a deterministic
process. Next, each destination is assigned to one of the available monitors following the pro-
cedure explained in Chapter 4. SCP evaluates probing feedback to determine when the stopping
criterion is met.

38

Figure 5.1. SCP system overview.

5.2.1 Destination Selection
In our testing, SCP randomly selects chosen BGP prefixes from the Routeviews servers. We
use a random subset to facilitate the initial experiments in this thesis. In future work, SCP
may operate over all advertised BGP prefixes. For prefix ranges that are found to reside inside
other prefixes, the one with the most path aggregations is chosen. Related works reviewed in
Section 3.2 take more in-depth approaches to destination selection than LCP, such as nested IP
blocks, from which LCP might benefit in the future.

5.2.2 Probing Strategy
Attributes given by using NID as the stop criterion allow several elements to be tuned which,
in turn, permits the evaluation of different probing strategies. For instance, the first attribute
easily modified is the stopping threshold. The smallest possible threshold in NID is one. This
means that so long as a single new interface is discovered by a trace, the method continues
to probe that particular prefix. Parent traces are treated as an exception to this rule. Since
traces arrive asynchronously, the first one to arrive is favored as the discoverer of new hops,
thus, leaving following traces that return with these already known hops without possibility
continuing probing its range of the prefix. So as not to just discard a section of the prefix only
because its probe arrived later, exclusively for the parent probes, NID counts all the interfaces

39

inside the target AS as new.

Destination addresses, when reached, are not counted as part of the NID metric but are saved as
known hops for comparison with future hops.

Another characteristic of SCP that may be tuned is the number of probes sent to prefixes. When
using LD as stopping criterion, SCP was forced to use two probes per prefix in order to permit
pairwise edit distance comparison. In contrast, NID allows number of probes to be sent to
prefixes. In some of the experiments that are discussed in Section 5.4, we have sent different
numbers of parent traces depending on the implemented strategy. For easy prefix division, the
number of probes sent has been conveniently approximated to the following integer power of
two. We have provided the pseudo code that implements NID in Table 5.1.

5.2.3 Monitor Assignment
To implement any of the monitor assignment techniques, we have to determine the current set
of available monitors. We execute this procedure by sending 10 probes from each listed monitor
in the Ark registry to 10 randomly chosen addresses, and those monitors that are returned ten
traces are selected as part of the set of available monitors. In this section we go over the specific
details of how MAX and IPS perform their rank list ordering.

MAX as an algorithm does not actively probe the Internet. Instead, it runs over pre-probed
data in order to build rank ordered lists of monitors with respect the predetermined /8 prefix as
logical landmark. If not all monitors have complete traces to the specified address within the
landmark, paths are filled by finding the shortest path. The algorithm is presented in Table 5.2.

The IPS monitor assignment strategy similarly uses prior rounds of traces but attempts to utilize
diversity as measured by ingress routers to the /8 prefix virtual landmark. Ingress routers in
this context correspond to the last hop before starting interfaces within the /8 prefix. It is not
necessary for the /8 prefix to correspond to a single network since the intuition behind IPS is
that discerning which routes have followed probes in the past might indicate paths that will be
followed in the future, maximizing information learning. In Table 5.3 we show the pseudo-code
that describes the execution of the IPS algorithm.

5.2.4 Implementation Issues
Some of the issues that we had to deal with when conducting measurements were sent probes
that did not return because of measuring tool exceptions, incomplete traces due to NATs and

40

Table 5.1. Pseudo-code describing NID algorithm.

Input: p/m: destination prefix / mask
M: set of monitors
τ: threshold of new interfaces

Output: T : set of path traces; initially empty

Algorithm 1: NID(p/m,M,τ)
1: I = empty set // global variable
2: T = empty set // global variable
3: SCP(p/m,M,τ)

Algorithm 2: SCP(p/m,M,τ)
1: A = ASN(p/m)
2: (d1,d2) = determine_targets(p/m) // LCP algorithm
3: (m1,m2) = assign_monitors(M, p/m) // Random, VPS, IPS, MAX.
4: t1 = trace(m1,d1)
5: t2 = trace(m2,d2)
6: T = T ∪ (t1∪ t2)
7: t ′1 = inter f ace i in t1 | ASN(i) = A
8: t ′2 = inter f ace i in t2 | ASN(i) = A
9: for j = 1 to 2 do
10: if t ′j is parent_trace then
11: if length(t ′j)> 0 then
12: I = I∪ t ′j
13: SCP(p/(m+1),M,τ)
14: else
15: if |t ′j− I| ≥ τ then
16: I = I∪ t ′j
17: SCP(p/(m+1),M,τ)

firewalls causing probing to end prematurely and unresponsive routers that contribute to topol-
ogy inference errors.

Handling non-returning probes was initially approached using a method called “hovering.” This
method sends probes to the nearest adjacent addresses still not selected for probing every time
a specified waiting time for probes to return with results expired. This method is implemented

41

Table 5.2. Pseudo-code describing MAX algorithm.

Input: G: graph built by pre-probed traces
M: set of monitors
P: set of each /8 prefix

Output: R: set of ranked monitor lists per /8 prefix

Algorithm: MAX(G,M,P)
1: for each pre f ix in P do
2: Y = /0 // Set of shortest paths from monitors to selected destination
3: destpre f ix = select one destination in P from G
4: for each monitor in M do
5: t = shortest_path(monitor,destpre f ix,G)
6: Y = Y ∪ t
7: for each monitor in M do
8: m = max(Y)
9: append(m) to rpre f ix
10: delete all hops in m from all traces in Y
11: R = R∪ rpre f ix

d′ = i(−1)i +d i = 0,1,2... (5.1)

where d is the current address targeted by non-returning probe, d′ is the nearest unused address,
and i is the index of sent probes due to current non-returning probes.

Fortunately, the non-returning probes exception due to an Ark misconfiguration has been over-
come by CAIDA administrators, and hovering has not been needed to obtain the results pre-
sented in this thesis.

Based on our empirical evidence, probes not completing the path all the way to the destination
address amount to 82% of the total number of traces. Incomplete traces can occur if there
is NAT or firewall filtering as well as inappropriate destination selection. The former has no
solution for current discovery techniques, and the latter is left for future work. Traces that do
not provide any information about the target AS might produce an early termination. Trace
incompleteness particularly affects NID results when it refers to parent traces.

42

Table 5.3. Pseudo-code describing IPS algorithm.

Input: T : set of pre-probed traces
M: set of monitors
p/m: set of prefixes / masks

Output: R: set of ranked monitor lists per prefix / mask

Algorithm: IPS(T,M, p/m)

1: I = /0 // set of tuples formed by {monitor, first hop in destinations /8 prefix,
and destination} from each trace

2: J = /0 // set of tuples formed by {monitor, first hop in /8 prefix from traces
with destination inside p/m and mask

3: for each trace in T do
4: (src,dst) = source and destination of trace
5: D =/8 prefix of dst

6: hop = find first hop in trace inside D

7: I = I∪ (src,hop,dst)

8: for each pre f ix in p/m do
9: rpre f ix = /0 // array of tuples containing monitor and first hop
10: for each monitor in M do
11: f lag = False

12: for mask = m to 8 in steps =−1 do
13: if f lag then
14: break // continue with next monitor
15: for each tuple in I that contains monitor do
16: D =/mask_prefix of dst in tuple
17: P =/mask_prefix of p

18: if D == P then
19: append (src,hop,mask) to rpre f ix

20: f lag = True

21: delete tuples from rpre f ix with repeated monitors and first hops
22: sort(rpre f ix) // by mask from higher to lower
23: J = J∪ rpre f ix

43

Anonymous or unresponsive routers, usually characterized by the symbol ‘*’, are not considered
for any of the evaluations. In this thesis, anonymous routers do not count as vertices, edges or
ingress routers. If an unresponsive router is found just before the first target AS hop, then that
probe does not add to the count of ingress routers.

5.3 Methodology
To determine whether the proposed strategies are effective, we need to execute appropriate tests
and evaluations that can be used later to compare datasets gathered with different techniques.
Our first test consists in evaluating the feasibility of effectively implementing NID on the Inter-
net which was left pending in [11]. The test consists of probing 500 randomly selected prefixes
between /16 and /20. We have chosen these prefix ranges since we believe that they are large
enough for the specific characteristics of our techniques described in Chapter 4 for proper test-
ing and evaluation. The chosen monitor assignment technique for this test is random assignment
to assimilate to Ark’s probing strategy. The monitors that we are use for this and all subsequent
evaluations are shown in Table 5.4. These monitors have been picked because of the reliability
they have shown in previous probing cycles. In general, due to the maximum of 75 probes
that an Ark monitor can control, we have kept our number of traces in flight to 2700; that is,
depending on the monitor assignment method, about 50 probes sent per monitor at the same
time.

Table 5.4. List of the 54 Ark monitors used in algorithm evaluations.

bcn-es pry-za bjl-gm mty-mx sea-us zrh2-ch

wbu-us snn-ie cmn-ma sin-sg jfk-us san-us

ams-nl vie-at per-au sao-br dub-ie sao2-br

rno-us sql-us fnl-us yto-ca fmo-de rek-is

bma-se she-cn mel-au lej-de tpe-tw pna-es

laf-us sjc2-us scl-cl bwi-us ams2-nl nap-it

osl-no hkg-cn nrt-jp yyz-ca cdg-fr mry-us

cbg-uk eug-us iad-us cjj-kr zrh-ch amw-us

cgk-id pek-cn syd-au ord-us hnl-us her-gr

The results given after implementing random monitor assignment, with a threshold equal to one

44

and two parent probes can be seen in Table 5.5 and Figure 5.2. Ark data corresponds to the data
gathered by monitors shown in Table 5.4 during one day of probing using Ark’s methodology.
Only those vertices and edges that belong to traces sent to the same set of prefixes are counted.
For both sets of data, Ark’s and SCP’s non-responsive routers, as explained in Chapter 2.2.3,
are not considered as vertices or edges. These two parsing methodologies stay the same for
every test performed in this thesis. The NID threshold is set to one, which is the lowest possible
threshold. The total number of unique vertices discovered by SCP using NID as its stopping
condition represents 59% of Ark’s data.

Table 5.5. Results comparison for different probing strategies.

Ark Rand VPS MAX IPS IPS++
Probes sent 105,501 19,746 20,140 19,780 20,452 39,758
Unique vertices 49,331 27,793 28,114 28,040 28,650 32,870
Unique edges 114,025 76,435 77,853 76,957 79,176 118,441
Ingress Routers 8,916 1,765 1,794 1,798 1,870 3,433
Hops within AS 12,835 3,747 3,930 4,050 3,925 7,246

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Sent Probes Unique Edges Unique Vertices

Fr
a
ct

io
n
 o

f
A

rk
 D

a
ta

Figure 5.2. SCP compared to Ark data using NID algorithm.

Before deciding the benefit of introducing the overhead that rank ordering provides to our prob-
ing strategy, it is necessary to evaluate if there is space for improvement to the VPS monitor
assignment method. We consider VPS instead of random assignment, since in [11] VPS was
shown to perform better.

45

To determine whether the opportunity exist to perform better than the results achieved via VPS
monitor assignment, we examine the same 500 prefixes evaluated earlier in ten different contin-
uous probing cycles. We seek to understand the influence of VPS’s randomness on the number
of vertices learned in different cycles. By establishing upper and lower limits on the number of
vertices discovered, we approximate the possible gains of more intelligent monitor assignment.
Even further, if we could determine theoretical upper and lower bounds, it would be possible for
us to compare every monitor ordering algorithm that we develop against a theoretical maximum
and to know how well it is performing. However, obtaining these theoretical values is beyond
the scope of this thesis.

As shown in Figure 5.3, there is a difference of over 1% between the obtained maximum and
minimum number of vertices found across the ten cycles simply due to the randomness inherent
in VPS. If we consider that one day worth of Ark data for 50,000 randomly chosen prefixes,
that is, approximately 10% of all announced BGP prefixes on the Internet, can have over one
million unique vertices according to our analysis, that variance of 1% amounts to over 10,000
interfaces that are not mapped. Thus, we find that intelligent monitor selection is an important
task.

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0.58

Unique Vertices

Fr
a
ct

io
n
 o

f
A

rk
 D

a
ta

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9

Cycle 10

Figure 5.3. 10 cycles of SCP compared to Ark data.

5.4 Results
In this section we proceed to analyze the results obtained across the different monitor assign-
ments methods. To maintain dataset comparison as accurately as possible, we have continuously

46

produced all probing rounds during the same day, targeting the same 500 destination prefixes
previously used and with the NID threshold set to one. The results of the VPS cycles probed
earlier have been averaged for comparison purposes.

As shown in Figure 5.4, the random method, VPS, MAX and IPS discover, in terms of number
of vertices, over 57% of the Ark data with less than 20% of the load. The best performance
is given by IPS with 58% of vertices and over 69% of edges. IPS was also able to send more
probes before finishing the process, which is associated with the method’s general performance
and proves that rank ordering the monitor list avoids early termination. From the figure we can
also see that there is some relation between the number of probes sent and the number of unique
vertices and edges found.

MAX’s under-performance compared to VPS might be due to the large /8 prefix range as logical
landmark. Different addresses within the landmark might provide different sensitivities as dif-
ferent prefix sizes. It is also important to mention that MAX’s built-in randomness produced by
asynchronous probe arrival induces different results for every cycle. Since networks that belong
to an equal /8 prefix use the same rank order list, their varying probes’ arrival times might differ
from the assigned monitor from cycle to cycle.

IPS has a lower degree of a random component, which is also due to asynchronous probe ar-
rivals, but since monitor lists are specifically designed for each advertised prefix, randomness
appears to have less impact on IPS.

We wanted to determine what improvement there is in the results if we increase the load of sent
probes in SCP. We experimented with slightly modifying IPS’s algorithm by incrementing the
number of parent traces sent. In Chapter 4, we mentioned that IPS’s strategy begins by finding
ingress routers to the /8 prefix of traces directed to the target network. Then, the process follows
by expanding the address range in order to find paths to the destination AS from every available
monitor. We have taken the number of ingress routers before commencing the expansion pro-
cedure and approximated it to the smallest following integer power of two. That number might
vary for every prefix, and two is the minimum number of parent traces sent. We have called this
boosted version of IPS, IPS++. The results of this method can be seen in Figure 5.4, where just
by increasing the load to 31%, we have incremented the vertices found to 80% and discovered
4% more edges than what Ark’s methodology did. These results show that in the current stage
of development of SCP, incrementing the probing load intelligently can even influence results
more than monitor assignment techniques.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Unique Edges Unique Vertices

Fr
a
ct

io
n
 o

f
A

rk
 D

a
ta

Rand
VPS
MAX

IPS
IPS++

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Sent Probes

Fr
a
ct

io
n
 o

f
A

rk
 D

a
ta

Random
VPS
MAX

IPS
IPS++

Figure 5.4. Results comparison between different methods.

In Figure 5.5 we depict the average number of vertices and edges found by each method. This
metric helps to analyze the effectiveness of algorithms in terms of sent probes versus informa-
tion learned. IPS++ has given a lower result compared to other intelligent monitor assigning
methods, which was expected due to the probing load increment, but the method has learned
over one vertex per sent probe.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Edges Vertices

A
v
g

e
ra

g
e
 n

u
m

b
e
r

d
is

co
v
e
re

d
 p

e
r

p
ro

b
e

Rand
VPS
MAX

IPS
IPS++

Ark

Figure 5.5. Average number of vertices and edges discovered per probe sent.

SCP is a topology discovery strategy that focuses on extracting networks’ internal structures.
We have illustrated in Figure 5.6 the fraction of discovered ingress routers and vertices inside
the destination AS for all studied methods. Without considering IPS++, IPS is, as expected, the
algorithm that captures the most ingress routers and inside target AS hops with a 6% and 14%
over the total number of vertices found, respectively.

48

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

Ingress Routers Hops in target AS

Fr
a
ct

io
n
 o

f
v
e
rt

ic
e
s

Rand
VPS
MAX

IPS
IPS++

Ark

Figure 5.6. Fraction of vertices corresponding to ingress routers and hops inside target AS.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

CHAPTER 6:
Conclusions and Recommendations

In this thesis we designed and implemented promising probing strategies for network topol-
ogy mapping. The primary objective has been achieved: successfully enabling SCP to conduct
topology discovery over a subsection of the Internet and overcoming the challenges of imple-
menting SCP amid Internet load-balancing. Additionally, SCP and VPS have been merged into
one single algorithm, and we have developed new techniques that benefit SCP’s performance.

A significant contribution toward SCP is the development of NID as a stopping criterion. NID
has been shown to more effectively operate on the Internet, where load-balancing is prevalent,
as compared to LD. This simple technique, besides focusing directly on the target networks’
internal structure, has given SCP new capabilities, such as pair-wise probing independence.
SCP can now assign disparate monitors to source each probe, even to the same target network,
thereby increasing the opportunity to gather new interfaces, decrease the possibility of early
termination and further remove the requirement to send two probes per prefix or sub-prefix.

After decoupling monitor assignment from SCP, the performance of various assignment meth-
ods were assessed. The results show that intelligently selecting monitors has benefit in com-
parison to existing random methods. We follow a strategy of analyzing prior rounds of probing
in order to predict future probe behavior and better assign monitors. Among methods to use
pre-probing data, we find that IPS produces the best results. By integrating IPS with SCP and
utilizing known ingress routers, SCP is able to exploit path diversity. Further, by selecting mon-
itors intelligently, SCP avoids early termination by ensuring that all known disjoint ingresses
into the target network are traversed. The resulting performance is shown to increase the number
of discovered vertices and edges as compared to random monitor selection.

While our results are promising, there is significant opportunity for further experiments, devel-
opment and analysis. For example, additional study is warranted to assess whether the perfor-
mance we achieve holds true in general. We leave larger-scale and Internet-scale studies for
future work. Similarly, the results we present are macro, and do not examine how well we map
particular networks. A per-network or per-prefix analysis could determine whether techniques
perform better when mapping particular prefixes sizes, e.g., the performance of SCP when map-
ping small versus large prefixes. A per-prefix analysis of our results is left pending for future
work.

51

Every comparison we have presented in this work has been done in terms of numbers of ver-
tices and edges. A more thorough comparison of our methods and Ark’s strategy, focusing in
determining which specific interfaces are found by each method, is left for future work. For
example, we wish to ascertain whether we find the same set of nodes as Ark and explore what
the set difference reveals.

While SCP shows promise, its application to some known networks has revealed weaknesses.
We have implemented our strategies over a university network announcing three /16 prefixes
where we know much of the university’s ground-truth. Unfortunately, our method does not cap-
ture any of this university’s internal network structure as a result of premature termination. SCP
sent two parent traces per prefix, yet none returned any hops inside the destination university
ASes. However, manual inspection and manual traces to known web-servers of the university
revealed routers and infrastructure that SCP missed. The root cause for the discrepancy lies
with LCP where the chosen destination addresses result in probes without any hops inside the
destination AS. Such behavior is rare, and our supposition is that the non-responsive hops are
due to a particular firewall or policy configuration. Therefore, these results show that LCP has
certain weak points that need to be studied. Because of our modular design, future work can
test other destination selection methods, such as the nested IP block technique.

In this thesis, we have focused on topological coverage and probing savings rather than exam-
ining time savings. We expect time savings and the ability to reduce the probing cycle time to
be correlated with the number of probes issued. Our probing restricted the maximum number
of probes in flight; future work should examine the practical speed benefit of our algorithms.
Considering that IPS++ sent only 30% of the probes as compared to Ark, we expect a significant
time savings.

Longer term, SCP could run continuously to facilitate longitudinal analysis of the Internet topol-
ogy. Difficulties arise in full-time probing when a monitor goes off-line, in particular for rank
order lists where it is not as simple as just choosing the next monitor in the list. For instance, in
IPS if two monitors, A and B, use the same ingress router towards a specific prefix, depending
on the selected heuristic, one of them (in this example, B) has to go to the end of the list. Then,
if monitor A goes off-line, B should replace it rather than the monitor following A in the list.
Replacing off-line monitors can get even more complex when using MAX because of its path
diversity algorithm. Therefore, several impediments to deploying SCP in production remain
and must be properly analyzed in future work.

52

Several ideas have appeared during the discussions presented in this thesis, allowing us to go
even deeper in our understanding of the proposed techniques. Further validation of this work
could be performed by evaluating its results over ground truth. Diverse sources of data yield
substantially different views of the Internet. Therefore, an analysis of the resulting differences
between the extraction of prefixes from RIS of RIPE NCC is convenient. So far NID has been
tested by counting new interfaces discovered. Different results might be found by including
newly discovered edges in the metric. Evaluating MAX’s sensitivity to different landmark sizes
and different addresses within the landmarks might help to better understand MAX’s behavior
and potential. As we found also, IPS++ provided a substantial gain of information by intelli-
gently increasing the probing load. Further work could test and compare the results of using
different number of parent traces or adapting the number of sent probes, depending on feedback.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

Appendix: Program Files

SCP has been written using Python 2.7 programming language and implemented on the BSD
operating system. SCP consists of four files: scp.py, arkmonitor.py, prefix.py and tod.py. The
program is run by executing scp.py with the following command:

python scp.py -o [output] -f [traces_in_flight] -m [VP_assignment_method]

scp.py
1 import getopt
2 import sys
3 import time
4 import os
5 from random import shuffle
6
7 import arkmonitor
8 import bgpquery
9 import tod

10 from prefix import *
11
12 # Function that count new hops found in trace.
13 def cntNewInt(prefixhops , traceASNhops , parent = False):
14 new_hops = [x for x in traceASNhops if x not in prefixhops]
15
16 if parent: #for parent trace , all hops within AS are counted
17 dist = len(traceASNhops)
18 else:
19 dist = len(new_hops)
20 print "Number of new Interfaces found:", dist
21 return dist , new_hops #dist is the number of new hops.
22 #new_hops is added to universe of
23 #known nodes inside dest AS.
24
25 def load_monitors(monfile):
26 monitors = {}
27 fl1 = open(monfile , ’r’)
28 for line in fl1:
29 if len(line) > 2:
30 line = line [:-1]
31 ln = line.split(’: ’)
32 list1 = ln[1]. split(’,’)
33 monitors[ln[0]] = list1

55

34 return monitors
35
36 def seedPrefixes(prefixes , count =10):
37 # Initial method to grab a set of BGP seed prefixes
38 b = bgpquery.BGPquery("localhost", 2002)
39 b.connect ()
40 prefix_dict = {}
41
42 #Builds Set of available /8 prefixes in MAX lists.
43 maxfile = open(’monitor_clas_max ’,’r’)
44 max_set = set()
45 for line in maxfile:
46 if len(line) < 2:
47 continue
48 ln = line.split(’: ’)
49 max_set.add(ln[0])
50
51 while len(prefix_dict) < count:
52 nets = []
53 (ip, mask , asn) = b.rand()
54
55 #Verifies available /8 prefixes MAX Set , so that it is
56 #possible to compare final results with different methods.
57 slash8 = arkmonitor.ArkMonitor (). NetworkAddress(ip , 8)
58 if slash8 not in max_set:
59 continue
60
61 if int(mask) > 15 and int(mask) < 21:
62 net_list = []
63 for i in range(16,int(mask)+1):
64 net = arkmonitor.ArkMonitor.NetworkAddress(ip,i)
65 net_list.append(net)
66 nets = [x for x in net_list if x in prefix_dict]
67 if len(nets) > 1 and int(mask) >= 16 and
68 int(mask) < int(prefix_dict[nets [0]]):
69 p = Prefix(ip, prefix_dict[nets [0]], ip)
70 elif int(mask) >= 16:
71 prefix_dict[ip] = mask
72 for prefix in prefix_dict:
73 p = Prefix(prefix , prefix_dict[prefix], prefix)
74 p.parentmask = prefix_dict[prefix]
75 p.parentprefix = True
76 prefixes.append(p)
77 del b
78

56

79 def writePrefixes(prefixes , outfile):
80 try:
81 file = open(outfile , "w")
82 except IOError , err:
83 print err
84 sys.exit (0)
85 for prefix in prefixes:
86 file.write(prefix.id + "\n")
87
88 def submit(x):
89 print "Starting:", x
90
91 def finish(trace):
92 global file
93 global dst_to_prefix
94 global mon
95 global monitor_index
96 global ingress_routers
97 global identifier
98 EDthresh = 1
99

100 # have data to read. fetch it and write it.
101 destASNhops , ingress = trace.hopASN ()
102 prefix = dst_to_prefix[trace.dst]
103 prefix.probes -= 1
104
105 if ingress != ’’:
106 #assumes first hop as ingress router
107 ingress_routers[ingress] = prefix.parent
108
109 print "Got trace result for:"
110 prefix.dump()
111 status = trace.completeStatus(prefix)
112 print "Status:", status
113 print "Hops in AS: ", len(destASNhops), "Dest: ", trace.dst
114
115 if prefix.parent not in prefix_hops:
116 prefix_hops[prefix.parent] = []
117
118 if len(destASNhops)>0:
119 #in case destination decreased TTL before replying ,
120 #therefore dest hop is included
121 if trace.dst == destASNhops [-1]:
122 #in trace , which is not used by the metric.
123 destASNhops = destASNhops [:-1]

57

124 trace.reply = ’R’
125
126 # Calculates the number of new interfaces;
127 # does not include destination IPs into count.
128 pre = prefix_hops[prefix.parent]
129 if prefix.parentprefix:
130 dist , new_hops = cntNewInt(pre , destASNhops , True)
131 else:
132 dist , new_hops = cntNewInt(pre , destASNhops)
133
134 if trace.reply == ’R’: # checks whether destination replied
135 prefix_hops[prefix.parent] += [trace.dst]
136 prefix_hops[prefix.parent] += new_hops
137
138 if prefix.mask+1 == 33:
139 #Avoids dividing prefix into a /33 (invalid in IPv4)
140 pass
141 elif dist >= EDthresh:
142 # each prefix.toTargets creates two new targets
143 # (at .25 and .75)
144 print "Splitting."
145 (p1, p2) = Prefix.split(prefix)
146 t = trace.dst
147 p = prefix.mask + 1
148 i = identifier
149 mi = monitor_index
150 net = arkmonitor.ArkMonitor.NetworkAddress(t,p)
151 if mon:
152 if net == p1.ip:
153 identifier = p1.toTargets(targets ,i,dst_to_prefix ,mi)
154 else:
155 identifier = p2.toTargets(targets ,i,dst_to_prefix ,mi)
156 el:
157 if net == p1.ip:
158 identifier = p1.toTargets(targets ,i,dst_to_prefix ,mon)
159 else:
160 identifier = p2.toTargets(targets ,i,dst_to_prefix ,mon)
161
162
163 ##
164
165 try:
166 opts , args = getopt.getopt(sys.argv [1:], "hf:o:t:m:",
167 ["help", "out=", "flight=", "thresh=", "monitors="])
168 except getopt.GetoptError , err:

58

169 print str(err)
170 sys.exit (2)
171
172 traces_in_flight = 2
173 mon = False # Default value
174 extended = False # Default value
175 for o, a in opts:
176 if o in ("-f", "--flight"):
177 traces_in_flight = int(a)
178 elif o in ("-t", "--thresh"):
179 EDthresh = int(a)
180 elif o in ("-o", "--out"):
181 outfile = a
182 elif o in ("-h", "--help"):
183 print sys.argv[0],"[-o][-f traces in flight][-t EDthresh]"
184 sys.exit()
185 elif o in ("-m", "--monitors"):
186 if a!=’random ’ and a!=’ips’ and a!=’max’ and a!=’vps’:
187 print ’options are random , ips , max or vps only’
188 sys.exit()
189 else:
190 if a == ’random ’:
191 mon = False
192 elif a == ’max’ or a == ’ips’ or a == ’vps’:
193 mon = a
194 elif o in ("-e", "--extended"):
195 extended = True
196 else:
197 assert False , "unhandled option"
198
199 # Open ToD output
200 try:
201 file = open(outfile , "w")
202 except NameError or IOError , err:
203 print err , ": Must specify output file."
204 sys.exit (0)
205
206 prefixes = []
207 # Gather seed prefixes
208 if 0:
209 seedPrefixes(prefixes , count =500)
210 writePrefixes(prefixes , "seed_prefixes")
211 elif 1:
212 seed = open(’seed_prefixes ’, ’r’)
213 for line in seed:

59

214 if len(line) > 1:
215 line = line [:-1]. split(’,’)
216 p = Prefix(line[0], line[1], line [0])
217 p.parentmask = line [1]
218 p.parentprefix = True
219 prefixes.append(p)
220
221 else:
222 d5 = (’128.210.0.0 ’, 16)
223 d6 = (’128.211.0.0 ’, 16)
224 d7 = (’128.10.0.0 ’, 16)
225 pref = [d5, d6, d7]
226 for pf in pref:
227 p = Prefix(pf[0], pf[1], pf[0])
228 p.parentmask = pf[1]
229 p.parentprefix = True
230 prefixes.append(p)
231
232 # Generate initial set of targets = (monitor , dst)
233 debug_lst = []
234 targets = []
235 dst_to_prefix = {}
236 identifier = 1
237
238 if mon == ’ips’:
239 monitor_index = {}
240 monitors = load_monitors(’monitor_clas_ips ’)
241 extended = True
242 i = 1
243 for pre in prefixes:
244 print i,
245 pre.dump()
246 net = arkmonitor.ArkMonitor.NetworkAddress(pre.ip, 8)
247 monitor_index[pre.ip] = 0
248 lista = monitors[’/’.join([pre.ip,str(pre.mask)])]
249 indegree = lista.pop(0)
250 pre.mon_order = lista
251 #checks whether ips++ has been chosen or not.
252 if not(extended):
253 indegree = 0
254 iden = identifier
255 mi = monitor_index
256 ind = int(indegree)
257 identifier=pre.toTargets(targets ,iden ,dst_to_prefix ,mi,ind)
258 i += 1

60

259
260 elif mon == ’max’:
261 monitor_index = {}
262 monitor_index[’max’] = 0
263 monitors = load_monitors(’monitor_clas_max ’)
264 i = 1
265 for pre in prefixes:
266 print i,
267 pre.dump()
268 ip = pre.ip
269 # MAX establishes its /8 prefix as its parent prefix for
270 # monitor assignment
271 pre.parent=arkmonitor.ArkMonitor (). NetworkAddress(ip ,8)
272 monitor_index[pre.parent] = 0
273 pre.mon_order = monitors[pre.parent]
274
275 if extended:
276 indegree = 4 #set as default
277 else:
278 indegree = False
279
280 iden = identifier
281 mi = monitor_index
282 ind = int(indegree)
283 identifier=pre.toTargets(targets ,iden ,dst_to_prefix ,mi,ind)
284 i += 1
285
286 #In VPS , each prefix has its own list.
287 #each list is randomly shuffled for monitor diversity.
288 elif mon == ’vps’:
289 monitor_index = {}
290 monitors_list = arkmonitor.ArkMonitor (). monitor_list
291 i = 1
292 for pre in prefixes:
293 print i,
294 pre.dump()
295 monitor_index[pre.ip] = 0
296 shuffle(monitors_list)
297 pre.mon_order = monitors_list
298
299 iden = identifier
300 mi = monitor_index
301 identifier=pre.toTargets(targets ,iden ,dst_to_prefix ,mi)
302 i += 1
303

61

304 else:
305 monitor_index = False
306 i = 1
307 for pre in prefixes:
308 #if pre.ip != ’79.170.190.0 ’:
309 # continue
310 if extended:
311 indegree = 10
312 else:
313 indegree = False
314 print i,
315 i += 1
316 pre.dump()
317
318 iden = identifier
319 mi = monitor_index
320 ind = int(indegree)
321 identifier=pre.toTargets(targets ,iden ,dst_to_prefix ,mi,ind)
322
323 prefix_hops = {}
324 ingress_routers = {}
325 start = time.strftime(’%X %x %Z’)
326
327 arkmonitor.ArkMonitor.probe(submit ,finish ,targets ,
328 file ,traces_in_flight)
329 print "Start:", start
330 print "End:", time.strftime(’%X %x %Z’)
331 print "Total number of prefixes:", len(prefixes)
332 print "Threshold used:"
333 print "Traces in flight:", traces_in_flight
334 print "Ingress routers:", len(ingress_routers)

arkmonitor.py
1 import struct
2 import socket
3 import random
4 import subprocess
5 import select
6 import datetime
7
8 import tod
9

10 class ArkMonitor:
11 def __init__(self , useBad=False):

62

12 #monitors.txt contains monitors names and IPs
13 f = open(’monitors.txt’, "r")
14 self.monitors = {}
15 for line in f:
16 if len(line) < 2:
17 continue
18 lst = line.split(’: ’)
19 lst[1] = lst [1][: -1]
20 self.monitors[lst [0]] = lst[1]
21
22 self.down_monitors = []
23 #===
24
25 if useBad == False:
26 for down in self.down_monitors:
27 del self.monitors[down]
28 moni = self.monitors
29 self.monitors_by_ip=dict((v,k) for k,v in moni.iteritems ())
30 self.monitor_list = self.monitors.keys()
31 self.last_monitor = len(self.monitor_list) - 1
32
33 def getMonitors(self):
34 return self.monitor_list
35
36 def getRandMonitor(self):
37 monitor_index = random.randint(0,len(self.monitor_list)-1)
38 return self.monitor_list[monitor_index]
39
40 def get(self , rand=False):
41 if rand:
42 return self.getRandMonitor ()
43 else:
44 return self.getNextMonitor ()
45
46 @staticmethod
47 def dottedQuadToNum(ip):
48 "convert decimal dotted quad string to long integer"
49 return struct.unpack(’!I’,socket.inet_aton(ip))[0]
50
51 @staticmethod
52 def numToDottedQuad(n):
53 "convert long int to dotted quad string"
54 return socket.inet_ntoa(struct.pack(’!I’,n))
55
56 @staticmethod

63

57 def NetworkAddress(ip, bits):
58 ipaddr = ArkMonitor.dottedQuadToNum(ip)
59 mask = (0 xffffffff << (32 - int(bits))) & 0xffffffff
60 n = ipaddr & mask
61 netaddr = ArkMonitor.numToDottedQuad(n)
62 return netaddr
63
64 # Talk to Ark
65 @staticmethod
66 def probe(submit_hook ,finish_hook ,targets ,file ,traces_in_flight =2):
67 # popen() Ark ToD service
68 print "Interacting with Ark ToD , will maintain",
69 traces_in_flight , "traces in flight."
70 proc = subprocess.Popen([’./tod -client ’,’--session -id=cmand’],
71 shell=False ,
72 stdin=subprocess.PIPE ,
73 stdout=subprocess.PIPE ,)
74
75 time_control = datetime.datetime.now()
76 non_responsive = 0 # counts non -responsive traces
77 expired = 0 # expired traces
78 sent_probes = {}
79 rcvd_probes = {}
80 traces_active = {}
81 delay = 30 # minutes
82 fails = open(’non_responsive ’,’w’)
83 while len(targets) > 0 or len(traces_active) > 0:
84 print "Traces active:", len(traces_active),
85 "Targets remaining:", len(targets)
86
87 ###
88 # spawn a new ToD trace if too few are in flight and
89 # there are more to add
90 while (len(traces_active) < traces_in_flight) and
91 (len(targets) > 0):
92 tgt = targets.pop(0)
93 tgtx = tgt.split(’ ’)
94 traces_active[tgtx [0]]=[datetime.datetime.now(),
95 tgtx[1],tgtx [3]]
96 proc.stdin.write(tgt)
97 proc.stdin.write("\n")
98 sent_probes[tgtx [0]] = (tgtx[1],tgtx [3])
99 submit_hook(tgt)

100
101 ##

64

102 diff = datetime.datetime.now() - time_control
103 if diff = datetime.timedelta(minutes =(delay -1)):
104 time_control = datetime.datetime.now()
105
106 #Searches for traces that have gone over the delay ,
107 #in cycles equal to the delay (to reduce overhead).
108 for trace in traces_active.keys ():
109 ta = traces_active[trace][0]
110 timedelta = datetime.datetime.now() - ta
111 if timedelta >= datetime.timedelta(minutes=delay):
112 del traces_active[trace]
113 expired += 1
114
115 ##
116 # wait for data from tod -bulk -probe
117 fdready = select.select ([proc.stdout], [], [], 10)
118
119 # Repeats the cycle if no probe has been received
120 if len(fdready [0]) == 0:
121 continue
122
123 # have data to read. fetch it and process
124 out = proc.stdout.readline ()
125
126 trc = tod.ToD(out)
127 rcvd_probes[trc.id]=(ArkMonitor (). monitors_by_ip[trc.src],trc.dst)
128 trc.writeout(file)
129
130 finish_hook(trc)
131 if trc.id in traces_active:
132 del traces_active[trc.id]
133 else:
134 expired -=1
135 for trace_id in sent_probes:
136 if trace_id not in rcvd_probes:
137 line=str(trace_id)+’,’.join(sent_probes[trace_id])+’\n’
138 fails.write(line)
139 non_responsive += 1
140
141 print "Number of expired traces",expired
142 print ’Number of probes sent:’,len(sent_probes)
143 print ’Number of probes received:’,len(rcvd_probes)
144 print ’Number of non_responsive probes:’,non_responsive

65

prefix.py
1 import math
2
3 from arkmonitor import *
4
5 class Prefix:
6 def __init__(self , _ip , _mask , _parent = False):
7 self.ip = _ip # prefix ’s ip address
8 self.mask = int(_mask)
9 self.id = ",".join([self.ip, str(self.mask)])

10 self.parent = _parent # prefix of its parent prefix
11 self.parentmask = 0
12 self.parentprefix = False
13 self.probes = 0
14 self.hops = []
15 self.mon_order = [] # holds monitor rank order list.
16
17 def dump(self):
18 print "Prefix:", self.ip, "/", self.mask
19
20 def contains(self , ip):
21 ip1 = ArkMonitor.dottedQuadToNum(self.ip)
22 ip2 = ArkMonitor.dottedQuadToNum(ip)
23 ones = 0xffffffff
24 mask = ones & (ones <<int(self.mask))
25 if (ip1 & mask) == (ip2 & mask):
26 return True
27 return False
28
29 # take a prefix and turn into two targets for Ark.
30 def toTargets(self , targets , identifier , dst_to_prefix ,
31 monitor_index = False , indegree = False):
32 if indegree == False or indegree < 3:
33 indegree = 2
34 indegree_pow2 = indegree
35 power = 1
36 else:
37 ceil1 = math.log(indegree ,2)
38 power = math.ceil(ceil1)
39 indegree_pow2 = 2** power
40 if indegree_pow2 > len(self.mon_order) and
41 len(self.mon_order) > 0:
42 while indegree_pow2 > len(self.mon_order):
43 indegree -= 1

66

44 power = math.ceil(math.log(indegree ,2))
45 indegree_pow2 = 2** power
46
47 base = ArkMonitor.dottedQuadToNum(self.ip)
48 size = 2**(32 - int(self.mask))
49
50 for i in range(int(indegree_pow2)):
51 if self.parentprefix:
52 newsize = 2**(32 - int(self.mask)-power)
53 middle = base + i*newsize
54 new_net = ArkMonitor.numToDottedQuad(middle)
55 pref = Prefix(new_net , self.mask + power - 1, self.parent)
56 pref.parentprefix = True
57 else:
58 pref = Prefix(self.ip, self.mask , self.parent)
59 t=int(base+size *(1.0/(2* indegree_pow2)+1.0*i/indegree_pow2)-2)
60 dst = ArkMonitor.numToDottedQuad(t)
61
62 if not monitor_index:
63 mon = ArkMonitor ().get(rand=True)
64 else:
65 index = monitor_index[self.parent] % len(self.mon_order)
66 monitor_index[self.parent] += 1
67
68 mon = self.mon_order[index]
69 pref.mon_order = self.mon_order
70 pref.parentmask = self.parentmask
71
72 pref.probes = indegree_pow2
73 targets.append(str(identifier)+" "+mon+" trace "+dst)
74 identifier += 1
75 dst_to_prefix[dst] = pref
76 return identifier
77
78 def addHops(self , hops):
79 for i in range(len(hops)):
80 hop = hops[i]
81 if len(self.hops) <= i:
82 self.hops.append ({})
83 self.hops[i][hop] = 1
84 num = len(self.hops[i])
85 print num , "Interfaces seen at hop:", i + 1
86 for j in self.hops[i]:
87 print "\t", j
88

67

89 @staticmethod
90 def split(prefix):
91 mask = prefix.mask + 1
92 m = Prefix.middle(prefix)
93 p1 = Prefix(prefix.ip, mask , prefix.parent)
94 p1.mon_order = prefix.mon_order
95 p1.parentmask = prefix.parentmask
96 p2 = Prefix(m, mask , prefix.parent)
97 p2.mon_order = prefix.mon_order
98 p2.parentmask = prefix.parentmask
99 return (p1, p2)

100
101 @staticmethod
102 def middle(prefix):
103 base = ArkMonitor.dottedQuadToNum(prefix.ip)
104 halfsize = 2**(32 - int(prefix.mask)-1)
105 middle = base + halfsize
106 return ArkMonitor.numToDottedQuad(middle)
107
108 def index(string , list_length):
109 suma = 0
110 for n in range(0, len(string)):
111 suma += 2**n
112 suma += int(string , 2) - 1
113 return suma % list_length

tod.py
1 import bgpquery
2
3 class ToD:
4 def __init__(self , line):
5 self.line = line
6 self.range = [0,0]
7 self.used = False
8 self.reached_prefix = False
9 fields = line.rstrip (). split("\t")

10 self.id = fields [0]. split(’ ’)[0]
11 (self.src , self.dst) = fields [1:3]
12 (self.cycle , self.ts) = fields [4:6]
13 (self.reply , self.rtt) = fields [6:8]
14 (self.ttl , self.rttl) = fields [8:10]
15 (self.stat , self.halt) = fields [10:12]
16 self.comp = fields [12]
17 self.ASN = 0

68

18 self.ASNhops = []
19 self.destASNhops = [] #Gathers interfaces that belong to
20 #the destination ASN.
21 self.hops = []
22 for hop in fields [13:]:
23 if hop[0] == ’q’:
24 self.hops.append(’0.0.0.0 ’)
25 continue
26 if hop.find(";") > -1:
27 hop = hop.split(";")[0]
28 (ip, ttl , tries) = hop.split(",")
29 self.hops.append(ip)
30
31 def printSummary(self):
32 print "Trace:", self.src , "->", self.dst , "[",
33 self.range[0], ":", self.range[1], "]"
34
35 def coversize(self):
36 if self.range [0] == 0 and self.range [1] == 0:
37 return 0
38 return self.range [1] - self.range [0] + 1
39
40 def addcoverhop(self , hop_num):
41 if self.range [0] == 0:
42 self.range [0] = hop_num
43 self.range [1] = hop_num
44
45 def reset(self):
46 self.range = [0,0]
47
48 def writeout(self , file):
49 file.write(self.line)
50
51 def show(self , start=1, end =9999):
52 print "Trace:", self.src , "->", self.dst ,
53 "ASN:", self.ASN ,
54 if start != 1 or end != 9999:
55 print "range:", start , "->", end ,
56 if end > len(self.hops):
57 end = len(self.hops)
58 print
59 for i in range(start , end + 1):
60 print "\t", i, "Hop:", self.hops[i-1]
61
62 def store(self , start=1, end =9999):

69

63 text = "Trace:"+str(self.src)+"->"+str(self.dst)+\
64 "ASN:"+str(self.ASN)+"\n"
65 if start != 1 or end != 9999:
66 text = text+"range:"+str(start)+"->"+str(end)+"\n"
67 if end > len(self.hops):
68 end = len(self.hops)
69 for i in range(start , end + 1):
70 text = text+"\t"+str(i)+"Hop:"+str(self.hops[i-1])
71 return text
72
73 def getDst(self):
74 return self.dst
75
76 def add(self , interface_dict):
77 for hop in self.hops:
78 if interface_dict.has_key(hop):
79 interface_dict[hop]+=1
80 else:
81 interface_dict[hop]=1
82
83 def differAt(self , trace):
84 s = self.hops
85 t = trace.hops
86 diff = []
87 l = len(s)
88 if (len(t) < l):
89 l = len(t)
90 for i in range(l):
91 if s[i] == ’0.0.0.0 ’ or t[i] == ’0.0.0.0 ’:
92 continue
93 if s[i] != t[i]:
94 diff.append(i)
95 return diff
96
97 def completeStatus(self , prefix):
98 for hop in self.hops:
99 if prefix.contains(hop):

100 self.reached_prefix = True
101 return True
102 return False
103
104 def hopASN(self):
105 min_asn_hops = 0
106 dASNhops = []
107 last_hop = ’’

70

108 ingress = ’’
109 b = bgpquery.BGPquery("localhost", 2002)
110 b.connect ()
111 (ip, mask , asn) = b.lookup(self.dst)
112 self.ASN = asn
113 for hop in self.hops:
114 (ip, mask , asn) = b.lookup(hop)
115 self.ASNhops.append(asn)
116 # checks whether ip belongs to destination ASN
117 if asn == self.ASN:
118 dASNhops.append(hop)
119 if ingress == ’’ and ’*’ not in last_hop:
120 ingress = last_hop
121 last_hop = hop # holds last hop outside the dest. AS.
122 l = len(dASNhops)
123 if l < min_asn_hops: # at least 1 hop in dASNhops
124 xhops = self.hops[-(min_asn_hops +1)-l:-l-1]
125 dASNhops = xhops + dASNhops
126 del b
127 return dASNhops , ingress

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

REFERENCES

[1] S. Radicati and Q. Hoang. (2011, Nov.) Email statistics report, 2011-2015. Executive
Summary. The Radicati Group. [Online]. Available:
http://www.radicati.com/wp/wp-content/uploads/2011/05/
Email-Statistics-Report-2011-2015-Executive-Summary.pdf

[2] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet mapping: from
art to science,” in IEEE Conference For Homeland Security, Cybersecurity Applications
& Technology, pp. 205–211, 2009.

[3] X. Lang, G. Zhou, C. Gong, and W. Han, “Dolphin: The measurement system for the
next generation Internet,” in 4th International Conference on Communications, Internet
and Information Technology, pp. 1–12, 2005.

[4] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane: An information plane for distributed services,” in 7th
Symposium on Operating Systems Design and Implementation, pp. 367–380, 2006.

[5] Y. Shavitt and E. Shir, “DIMES: Let the Internet measure itself,” in ACM SIGCOMM
Computer Communication Review, vol. 35, no. 5, pp. 71–74, 2005.

[6] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rocketfuel,” in
ACM SIGCOMM Computer Communication Review, vol. 32, no. 4, pp. 133–145, 2002.

[7] M. H. Gunes and K. Sarac, “Resolving anonymous routers in Internet topology
measurement studies,” in 27th Conference on Computer Communications. IEEE, pp.
1076–1084, 2008.

[8] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algorithms for large-scale
topology discovery,” in ACM SIGMETRICS Performance Evaluation Review, vol. 33,
no. 1, pp. 327–338, 2005.

[9] H. Kardes, M. Gunes, and T. Oz, “Cheleby: A subnet-level Internet topology mapping
system,” in IEEE 4th International Conference on Communication Systems and Networks
(COMSNETS), pp. 1–10, 2012.

[10] M. Chen, M. Xu, and K. Xu, “A delay-guiding source selection method in network
topology discovery,” in IEEE International Conference on Communications, pp. 1–6,
2011.

[11] R. Beverly, A. Berger, and G. G. Xie, “Primitives for active Internet topology mapping:
Toward high-frequency characterization,” in 10th ACM SIGCOMM Conference on
Internet Measurement, pp. 165–171, 2010.

[12] D. Meyer. (2013, Jul.) Routeviews project. [Online]. Available:
http://www.routeviews.org

73

[13] RIPE NCC. (2013, Jul.) Routing information service. [Online]. Available:
http://www.ripe.net/data-tools/stats/ris/routing-information-service

[14] J. Postel, “RFC 760: DoD standard Internet protocol,” in Obsoleted by RFC0791,
RFC0777 [27, 26], Obsoletes IEN123 [32], 1980.

[15] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” in RFC 1771, Internet
Engineering Task Force, 1995.

[16] U. Weinsberg, Y. Shavitt, and E. Shir, “Near-deterministic inference of AS relationships,”
in INFOCOM Workshops. IEEE, pp. 1–2, 2009.

[17] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, A. Vahdat et al., “The
internet as-level topology: three data sources and one definitive metric,” in ACM
SIGCOMM Computer Communication Review, vol. 36, no. 1, pp. 17–26, 2006.

[18] B. Zhang, R. Liu, D. Massey, and L. Zhang, “Collecting the Internet AS-level topology,”
in ACM SIGCOMM Computer Communication Review, vol. 35, no. 1, pp. 53–61, 2005.

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach to universal
topology generation,” in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE, pp. 346–353, 2001.

[20] J. Tomasik and M.-A. Weisser, “Internet topology on AS-level: model, generation
methods and tool,” in IEEE 29th International Performance Computing and
Communications Conference (IPCCC), pp. 263–270, 2010.

[21] M.-A. Weisser and J. Tomasik, “Automatic induction of inter-domain hierarchy in
randomly generated network topologies,” in Proceedings of the Spring Simulation
Multiconference, vol. 1, pp. 77–84, 2007.

[22] H. Chang, S. Jamin, and W. Willinger, “To peer or not to peer: Modeling the evolution of
the Internet’s AS-level topology,” in IEEE International Conference on Computer
Communications, pp. 1–12, 2006.

[23] Y.-J. Chi, R. Oliveira, and L. Zhang, “Cyclops: the AS-level connectivity observatory,” in
ACM SIGCOMM Computer Communication Review, vol. 38, no. 5, pp. 5–16, 2008.

[24] M. Lad, L. Zhang, and D. Massey, “Link-rank: A graphical tool for capturing bgp routing
dynamics,” in Network Operations and Management Symposium, vol. 1. IEEE, pp.
627–640, 2004.

[25] T. Bates, P. Smith, and G. Huston. (2013, Jul.) The CIDR report. [Online]. Available:
http://www.cidr-report.org/as2.0

[26] X. Xu, Z. M. Mao, and J. A. Halderman, “Internet censorship in China: Where does the
filtering occur?” in Passive and Active Measurement, pp. 133–142, 2011.

[27] K. Keys, “Internet-scale IP alias resolution techniques,” vol. 40, no. 1, 2010, pp. 50–55.

74

[28] R. Siamwalla, R. Sharma, and S. Keshav, “Discovering Internet topology,” in
Unpublished Manuscript, 1998.

[29] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Magnien,
and R. Teixeira, “Avoiding traceroute anomalies with paris traceroute,” in Proceedings of
the 6th ACM SIGCOMM Conference on Internet Measurement, pp. 153–158, 2006.

[30] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced paths in the
Internet,” in Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, pp. 149–160, 2007.

[31] J. Postel, M. Kosters, D. Karrenberg, and D. Conrad. (2013, Jul.) RFC2050: Internet
registry IP allocation guidelines. IANA. [Online]. Available:
http://tools.ietf.org/html/rfc2050

[32] (2013, Jul.) ICP-2: Criteria for establishment of new regional Internet registries.
[Online]. Available:
http://www.icann.org/en/resources/policy/global-addressing/new-rirs-criteria.2013

[33] ARIN. (1997, Dec.) Regional Internet Registries. [Online]. Available:
http://www.arin.net/knowledge/rirs.html

[34] M. Fomenkov, E. Katz-Bassett, R. Beverly, B. A. Cox, M. Luckie et al., “The workshop
on active Internet measurements (AIMS) report,” in ACM SIGCOMM Computer
Communication Review, vol. 39, no. 5, pp. 32–36, 2009.

[35] B. Huffaker, D. Plummer, D. Moore, and K. Claffy, “Topology discovery by active
probing,” in Symposium on Applications and the Internet (SAINT) Workshops. IEEE,
pp. 90–96, 2002.

[36] M. Luckie, “Scamper: A scalable and extensible packet prober for active measurement of
the Internet,” in 10th ACM SIGCOMM Conference on Internet Measurement, 2010, pp.
239–245.

[37] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman,
“Planetlab: An overlay testbed for broad-coverage services,” in ACM SIGCOMM
Computer Communication Review, vol. 33, no. 3, pp. 3–12, 2003.

[38] B. Huffaker, M. Fomenkov, and k. claffy, “Internet topology data comparison,” in
Cooperative Association for Internet Data Analysis (CAIDA), 2012.

[39] Y. Tian, R. Dey, Y. Liu, and K. W. Ross, “China’s Internet: Topology mapping and
geolocating,” in INFOCOM. IEEE, 2012, pp. 2531–2535.

[40] T. E. Ng and H. Zhang, “Predicting Internet network distance with coordinates-based
approaches,” in IEEE INFOCOM, vol. 1, pp. 170–179, 2002.

[41] X. Zou, Z. Qiao, G. Zhou, and K. Xu, “A logic distance-based method for deploying
probing sources in the topology discovery,” in IEEE Global Telecommunications
Conference, pp. 1–6, 2009.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

77

