
OPTIMIZING DNS FILTERING WHEN UNDER ATTACK
(especially when under pressure)

Wes Hardaker <hardaker@isi.edu>

Rapid response leads to rapid errors

● SECOPS are pressured to react quickly to malicious traffic
– DDoS
– Penetration
– …

● Initial goal: stop as much of it as possible by filtering
– Source addresses
– Destination addresses
– Protocols
– ...

Case Study: A DDoS attack on b.root-servers.net

Dataset is available
on comunda.isi.edu

The dataset’s published analysis

● Attack characteristic: Randomized sources
● Query name: Random
● Response codes: Random
● … more randomness not shown ...
● Packet size: 540 bytes IP packets

Clearly we should filter on this

Packet Size == 540 for the win!

Ensuring we’re right:
calculating our filter’s precision and recall

● Precision = TP
 (TP + FP)

● Recall = TP
 (TP + FN)

You’re only guessing at these

You don’t know these

You can’t evaluate how well you did without Ground Truth!

Let’s analyze further: graph the other lengths too

New analysis shows:
www.example.com

Oh no!!!
what’s that???
?????

(Hint: It’s a FN)

Point 1: You’re not done yet!

● If you created the first filter and stopped:
– You would be missing second order attacks FNs
– You might be filtering things you shouldn’t FPs

Two problems: false positives and false negatives

Before During
IP Size == 540 2844 2960052

Before During
QName =
www.example.com

259 787526

FP

New FP

Some FPs???

Some FPs???

Searching for missed attack traffic revealed:

1
0

Point 2: check both filtered and unfiltered traffic

1
1

Point 2: check both filtered and unfiltered traffic

Downside:

Every fork is 2x more work

Accuracy is an iterative process

● Find FP
● Find FN
● Find FP
● Find FN
● Find FP
● …

Success requires smart, automated tooling

● Compare by eyesight is great, but….

● Look for other packet similarities

● Look for similar waveforms

● Look for similar edge-detection

● Compare against normal traffic loads

– (you are recording these right?)

Normalized size=540 and www.example.com waveforms

http://www.example.com/

Point 3: trust but verify
The truth is: I’ve been lying to you

Because my tools lied to me

This was not www.example.com queries

It was actually ICMP
responses containing
partial DNS packets

From scapy.py: Their bad

My bad

NOT EVEN YOURSELF

http://www.example.com/

Take-Aways

● 1. You’re not done You’re never done
● 2. Check your results Both filtered and unfiltered
● 3. Trust no one Double check everything

● Prioritize your findings: Hurting you vs hurt your clients
● Use multiple search methodologies, automation, ...

– Volume, shape, time, edge cases, similarity analysis, etc

This is where I’m actively working

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

