Presenting our Distributed HSM and DNS-Tools

Javier Bustos-Jiménez & Hugo Salgado
jbustos@niclabs.cl, hsalgado@nic.cl
DNS and Internet Naming Research Directions (DINR) 2020
Comments for author

Thanks for the abstract, it sounds interesting.

Not all the audience will be security experts, so if you present, I encourage you to take some time to provide background, like defining HSM (!), and explaining why distributed HSM is important for DNSSEC. (I'm not sure how many DNSSEC deployments today use k of n signatures, or how many would if they could.)
What is an HSM?

A hardware security module (HSM) is a physical computing device that safeguards and manages digital keys, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions.

These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.

A hardware security module contains one or more secure cryptoprocessor chips.

Source: https://en.wikipedia.org/wiki/Hardware_security_module

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020

Javier Bustos-Jiménez & Hugo Salgado.
What is an HSM?

A hardware security module (HSM) is a physical computing device that safeguards and manages digital keys, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions.

These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.

A hardware security module contains one or more secure cryptoprocessor chips.

Source: https://en.wikipedia.org/wiki/Hardware_security_module

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
What is an HSM?

A hardware security module (HSM) is a physical computing device that safeguards and manages digital keys, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions.

These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.

A hardware security module contains one or more secure cryptoprocessor chips.

Source: https://en.wikipedia.org/wiki/Hardware_security_module

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
HSM Communication: PKCS#11

The **PKCS #11** standard defines a platform-independent API to cryptographic tokens, such as hardware security modules (HSM) and smart cards. "PKCS #11" is often used to refer to the API as well as the standard that defines it.

The API defines most commonly used cryptographic object types (**RSA keys**, X.509 Certificates, DES/Triple DES keys, etc.) and all the functions needed to use, create/generate, modify and delete those objects.

HSM Communication: PKCS#11

The **PKCS #11** standard defines a platform-independent API to cryptographic tokens, such as hardware security modules (HSM) and smart cards, "PKCS #11" is often used to refer to the API as well as the standard that defines it.

The API defines most commonly used cryptographic object types (RSA keys, X.509 Certificates, DES/Triple DES keys, etc.) and all the functions needed to use, create/generate, modify and delete those objects.

But, how expensive is an HSM?

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
Solution: SoftHSM

A “Hardware” Security Module, but in Software.

Implements PKCS#11.

Stores data in encrypted databases.
Solution: SoftHSM

A “Hardware” Security Module, but in Software.

Implements PKCS#11.

Stores data in encrypted databases.

But:

- Single point of failure (as an HSM)
- No security guarantees (hackable)
- Stores SoftHSM encryption keys at same machine.
What if?

We could cut the key in pieces?

… and distributed the pieces?

But:

- Single point of failure (as an HSM)
- No security guarantees (hackable)
- Stores SoftHSM encryption keys at same machine.

Presenting our Distributed HSM and DNS-Tool. **DNS and Internet Naming Research Directions (DINR) 2020**

Javier Bustos-Jiménez & Hugo Salgado.
What if?

We could cut the key in pieces?

… and distributed the pieces?

But:

- Single point of failure (as an HSM)
- No security guarantees (hackable)
- Stores SoftHSM encryption keys at same machine.
What if?

We could cut the key in pieces?

… and distributed the pieces?

… and make a valid signature only if \(k > n/2 \) pieces are valid? (achieving fault tolerance)

E.g.: 3 signature pieces, needing only 2 to produce a valid signature

… and using commodity hardware?

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

https://niclabs.cl/tchsm/

TCHSM Node

TCHSM Node

TCHSM Node

TCHSM Node

ZeroMQ - TCP

TCHSM LIB

DNSSEC Server

https://niclabs.cl/tchsm/

https://github.com/niclabs/dtc

https://github.com/niclabs/dtcnode

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020

Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020

Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

https://niclabs.cl/tchsm/

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020

Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020

Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

https://niclabs.cl/tchsm/

Developed first in C, then C++, now GoLang
Implements PKCS#11.
Implements RSA and ECDSA signatures.

Commodity hardware can be used: around 75 signatures per minute on an Intel® Core™ i5-2400 CPU @ 3.10GHz × 4.

Slower on this -->

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
Our solution: Threshold-Cryptography Distributed HSM

Q: Why this could be important for the DNS Research Testbed?

A: Root zone signature:

- Centralized key creation and “slicing”
- Distribute the slices using a secure protocol

Or

- Distributed key-slices (parts) protocol

Then:

- Distributed root zone signature

Open Question: Quorum? n/2 + 1? 3n/4? 4n/5?

Presenting our Distributed HSM and DNS-Tool. DNS and Internet Naming Research Directions (DINR) 2020
Javier Bustos-Jiménez & Hugo Salgado.
Presenting our Distributed HSM and DNS-Tool. **DNS and Internet Naming Research Directions (DINR) 2020**

Javier Bustos-Jiménez & Hugo Salgado.
Thanks

Questions?

Javier Bustos-Jiménez & Hugo Salgado
jbustos@niclabs.cl, hsalgado@nic.cl
DNS and Internet Naming Research Directions (DINR) 2020