
DNSql : Processing Massive DNS Collections (abstract)
Stephen Herwig, Dave Levin, Bobby Bhattacharjee, Neil Spring

University of Maryland, College Park
The University of Maryland operates DNS’s D-root

nameserver. For robustness, D-root uses anycast to dis-
tribute its service across 98 replicas throughout the world
[1]. For each hour, each replica collects a sample (the
first 90 seconds or more of each 10 minute period) of
DNS traffic, and stores the sample as a compressed pcap.
Collection started in October 2014; the total size of col-
lected traffic is 78 TB, with data added at a rate of
roughly 140 GB per day.

Our goal is to develop scalable and flexible techniques
to analyze months’ or years’ worth of collected traffic.
While datasets such as RSSAC-002 [4] provide daily ag-
gregate statistics such as traffic volume, aggregate values
are not always useful inputs to algorithms for discovering
traffic behaviors and anomalies. For example, analysis
of catchment stability or suspicious activity often require
features constructed at the packet level, such as measure-
ments of query and source diversity, or client switches
between replicas. Our initial methods to analyze long
time spans used tools similar to dnstop [5] to process
pcaps serially and compute features for downstream ap-
plications. Processing a month’s worth of D-root data in
this fashion took days to complete, and pre-defining the
features limited subsequent modification of the analysis
design. Attempts to import the pcap data to a single Post-
greSQL database, so as to support ad hoc analysis, were
too slow to keep pace with traffic collection.

Several inspiring works processed massive DNS col-
lection by transforming the collected traffic to an inter-
mediate representation (IR). Plonka et. al. [2] developed
data structures for storing IP addresses and query names
to facilitate clustering DNS traffic. van Rijswijk-Deij et.
al. [3] converted active DNS measurements to Apache
Parquet, a columnar storage format suited for Hadoop.
We seek an IR that makes fewer assumptions on the types
of analyses and the analytic framework.

We present our initial design of a scheme for con-
verting the pcaps to database shards, and performing
MapReduce-style queries over the shards. For this
scheme to be beneficial, the MapReduce queries must be
faster than equivalent queries on the hypothetical aggre-
gate database, and conversion of pcaps to shards should
be faster than aggregating the pcaps as a single database.
Also, ideally the shards should be smaller than the pcaps.

For our implementation, we developed a tool,
dnsqlite3c, to convert a compressed pcap to an SQLite3
database, with the conversion being only slightly slower
than a baseline approach of reading the pcap with a
zcat and tcpdump pipeline. As DNS responses echo the
original request, and as TCP represents roughly 1% of
queries, dnsqlite3c currently only parses UDP responses.
The created database contains two tables. The first table

has a row for each DNS response in the pcap, with fields
such as the client’s IP address, the query name (qname),
and the result code (rcode). dnsqlite3c creates standard
SQLite3 B-tree indices over the client’s IP address field
and the qname field, by default. The second table is a pre-
computation of the number of queries-per-second (QPS),
a useful metric for traffic volume.

Due to the exclusion of DNS queries, as well as
many link layer, IP, and UDP header fields, a shard is
roughly 8× smaller than the uncompressed version of the
pcap from which it was created. Shards compress well
(roughly 2.3 compression factor), but since our main pri-
ority is speed rather than storage, we choose to leave the
shards uncompressed.

For our initial analysis of shard creation and query
times, we focused on the traffic for one replica – Col-
lege Park, Maryland (CPMD) – for March 2015. CPMD
is a globally visible replica. CPMD does not sample, but
rather collects traffic for the entire hour. The total size of
the compressed pcaps for CPMD for March 2015 is 472
GB, representing over 2.6 billion UDP DNS responses.

In order to create many shards quickly, we create
shards in parallel via a process pool; each process in
the pool converts a separate pcap. Compared to creating
a single aggregate SQLite3 database for CPMD March
2015, creating shards in parallel is roughly an order of
magnitude quicker (9.4h vs. 1h).

We developed the MapReduce application using
Python’s multiprocessing library. We also developed two
extension libraries in C: one for SQLite3 and one for
Python. The SQLite3 extension provides functions for
manipulating IP addresses and qnames, as well as hash-
ing strings; the Python library implements a bit array.
Combined, the extensions allow efficient representation
of sets of IP addresses and hashed qnames.

We compared the speed of the MapReduce queries to
analogous queries on the aggregate CPMD March 2015
database using queries of roughly two types: querying
the frequency of a table field and querying the distinct
values for a field. Using this approach, the queries in-
volving client IP addresses were 5–7× faster than queries
on the aggregate database, and queries involving hashed
(instead of full) qnames were roughly 2× faster.

Given the opportunity to query traffic at the packet
level (rather than the aggregate), what additional ques-
tions can we now ask? What opportunities are there to
‘join’ the shard tables with secondary sources, such as IP
geolocation and BGP routing datasets, and what are effi-
cient methods for exposing such datasets to the queries?
Does this overall scheme scale to multiple root and TLD
nameservers, and what privacy challenges do the non-
aggregated databases pose?



References

[1] Matthew Lentz et al. “D-mystifying the D-root Ad-
dress Change”. In: Proceedings of the 2013 Confer-
ence on Internet Measurement Conference.

[2] David Plonka and Paul Barford. “Context-aware
Clustering of DNS Query Traffic”. In: Proceedings
of the 8th ACM SIGCOMM Conference on Internet
Measurement.

[3] Roland van Rijswijk-Deij et al. “The Internet of
Names: A DNS Big Dataset”. In: Proceedings
of the 2015 ACM Conference on Special Interest
Group on Data Communication.

[4] RSSAC. Advisory on Measurements of the Root
Server System. Nov. 2014.

[5] D. Wessels. dnstop. URL: http : / / dns .

measurement-factory.com/tools/dnstop.


