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Core-Stateless Fair Queueing: A Scalable
Architecture to Approximate Fair Bandwidth

Allocations in High-Speed Networks
Ion Stoica, Scott Shenker, Fellow, IEEE, and Hui Zhang, Member, IEEE

Abstract—Router mechanisms designed to achieve fair band-
width allocations, such as Fair Queueing, have many desirable
properties for congestion control in the Internet. However, such
mechanisms usually need to maintain state, manage buffers,
and/or perform packet scheduling on a per-flow basis, and
this complexity may prevent them from being cost-effectively
implemented and widely deployed. In this paper, we propose
an architecture that significantly reduces this implementation
complexity yet still achieves approximately fair bandwidth allo-
cations. We apply this approach to an island of routers–that is, a
contiguous region of the network–and we distinguish between edge
routers and core routers. Edge routers maintain per-flow state;
they estimate the incoming rate of each flow and insert a label
into each packet based on this estimate. Core routers maintain
no per-flow state; they use first-in-first-out packet scheduling
augmented by a probabilistic dropping algorithm that uses the
packet labels and an estimate of the aggregate traffic at the router.
We call the schemeCore-Stateless Fair Queueing. We present
simulations and analysis on the performance of this approach.

Index Terms—Binary linear codes, covering radius, least cov-
ering radius.

I. INTRODUCTION

A CENTRAL tenet of the Internet architecture is that con-
gestion control is achieved mainly through end-host al-

gorithms. However, starting with Nagle [23], many researchers
observed that such end-to-end congestion-control solutions are
greatly improved when routers have mechanisms that allocate
bandwidth in a fair manner. Fair bandwidth allocation protects
well-behaved flows from ill-behaved ones, and allows a diverse
set of end-to-end congestion-control policies to co-exist in the
network [9]. As we discuss in Section IV, some maintain that
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fair bandwidth allocation1 plays a necessary, not just beneficial,
role in congestion control [9], [28].

Until now, fair allocations were typically achieved by using
per-flow queueing mechanisms—such as Fair Queueing [9],
[26] and its many variants [2], [14], [29]—or per-flow dropping
mechanisms such as Flow Random Early Drop (FRED) [20].
These mechanisms are more complex to implement than tradi-
tional first-in-first-out (FIFO) queueing with drop-tail, which
is the most widely implemented and deployed mechanism
in routers today. In particular, fair allocation mechanisms
inherently require the routers to maintain state and perform
operations on a per-flow basis. For each packet that arrives at
the router, the routers needs toclassifythe packet into a flow,
update per-flow state variables, and perform certain operations
based on the per-flow state. The operations can be as simple
as deciding whether to drop or queue the packet (e.g., FRED),
or as complex as manipulation of priority queues (e.g., Fair
Queueing). While a number of techniques have been proposed
to reduce the complexity of the per packet operations [1],
[29], [33], and commercial implementations are available in
some intermediate class routers, it is still unclear whether these
algorithms can be cost-effectively implemented in high-speed
backbone routers because all these algorithms still require
packet classification and per-flow state management.

In this paper, we start with the assumptions that: 1) fair allo-
cation mechanisms play an important, perhaps even necessary,
role in congestion control; and 2) the complexity of existing fair
allocation mechanisms is a substantial hindrance to their adop-
tion. Both of these points are debatable; developments in router
technology may make such algorithms rather inexpensive to im-
plement, and there may be solutions to congestion control that
do not require fair allocation (see Section V for a discussion on
the related approaches). By using these two assumptions as our
starting points, we are not claiming that theyare true, but rather
are only looking at the implications if indeed theywere true.
If one starts with these assumptions, then overcoming the com-
plexity problem in achieving fair allocation becomes a vitally
important problem.

To this end, we propose and examine an architecture and a set
of algorithms that allocate bandwidth in an approximately fair
manner while allowing the routers on high-speed links to use
FIFO queueing and maintain no per-flow state. In this approach,
we identify a contiguous region of network, called anisland, and
distinguish between the edge and the core of the island. Edge

1In this paper, we use the max–min definition of fairness [17].
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Fig. 1. (a) Reference network (island) in which all nodes implement Fair
Queueing, whose functionality is approximated by (b) a CSFQ island. In
CSFQ, only edge routers maintain per-flow state; core nodes do not maintain
per-flow state.

routers compute per-flow rate estimates andlabel the packets
passing through them by inserting these estimates into each
packet header. Core routers use FIFO queueing and keep no
per-flow state. They employ a probabilistic dropping algorithm
that uses the information in the packet labels along with the
router’s own measurement of the aggregate traffic. The band-
width allocations within this island of routers are approximately
fair. Thus, if this approach were adopted within the high-speed
interiors of ISPs, and fair allocation mechanisms were adopted
for the slower links outside of these high-speed interiors, then
approximately fair allocations could be achieved everywhere.
However, this approach, like Fair Queueing [9] or Random Early
Detection (RED) [12], still provides benefit if adopted in an
incremental fashion, although the incremental adoption must
be done on an island-by-island basis, not on a router-by-router
basis.

We call this approachCore-Stateless Fair Queueing (CSFQ)
since the core routers keep no per-flow state but instead use
the state that is carried in the packet labels.2 In this paper, we
show that this approach canapproximatethe functionality of a
reference network (island) in whichall nodes implement Fair
Queueing, i.e., the bandwidth allocations in both the reference
and CSFQ islands are approximately the same (see Fig. 1). We
describe the details of this approach—such as the rate estimation
algorithm and the packet dropping algorithm—in Section II.

While our scheme does not achieve the near-perfect levels of
fairness obtained by Fair Queueing and other sophisticated and
stateful queueing algorithms, we derive a worst-case bound for
the performances of CSFQ in an idealized setting. This bound
is presented in Section II.

This worst-case analysis does not give an adequate guide
to the typical functioning of CSFQ. In Section III, we present
results from simulation experiments to illustrate the perfor-
mance of our approach and to compare it to several other
schemes, namely, Deficit Round Robin (DRR) (a variant of Fair
Queueing), FRED, RED, and FIFO. We also discuss therein the
relative mechanistic complexities of these approaches.

Sections II and III of the paper are narrowly focused on the
details of the mechanism and its performance (both absolute
and relative), with the need for such a mechanism taken for
granted. In Section IV, we return to the basic question of why
fair allocations are relevant to congestion control. We present
the related work in Section V and conclude with a summary in

2Obviously, these core routers keep some state, but none of it is per-flow state,
so when we say “stateless” we are referring to the absence of per-flow state.

Section VI. The CSFQ implementation for ns-2 [24] is available
at http://www.cs.berkeley.edu/istoica/csfq.

II. CSFQ

In this section, we propose an architecture that approximates
the service provided by an island of Fair Queueing routers, but
has a much lower complexity in the core routers. The architec-
ture has two key aspects. First, to avoid maintaining per-flow
state at each router, we use a distributed algorithm in which
only edge routers maintain per-flow state, while core (nonedge)
routers do not maintain per-flow state but instead utilize the
per-flow information carried via a label in each packet’s header.
This label contains an estimate of the flow’s rate; it is initial-
ized by the edge router based on per-flow information, and then
updated at each router along the path based only on aggregate
information at that router.

Second, to avoid per-flow buffering and scheduling, as re-
quired by Fair Queueing, we use FIFO queueing with proba-
bilistic dropping on input. The probability of dropping a packet
as it arrives to the queue is a function of the rate estimate car-
ried in the label and of the fair share rate at that router, which is
estimated based on measurements of the aggregate traffic.

Thus, our approach avoids both the need to maintain per-flow
state and the need to use complicated packet scheduling and
buffering algorithms at core routers. To give a better intuition
about how this works, we first present the idealized bit-by-bit or
fluid version of the probabilistic dropping algorithm, and then
extend the algorithm to a practical packet-by-packet version.

A. Fluid Model Algorithm

We first consider a bufferless fluid model of a router with
output link speed , where the flows are modeled as a contin-
uous stream of bits. We assume each flow’s arrival rate is
known precisely. Max–min fair bandwidth allocations are char-
acterized by the fact that all flows that are bottlenecked by this
router have the same output rate. We call this rate thefair share
rate of the link; let be the fair share rate at time. In gen-
eral, if max–min bandwidth allocations are achieved, each flow
receives service at a rate given by . Let de-
note the total arrival rate: . If , then
the fair share is the unique solution to

(1)

If , then no bits are dropped and we will, by conven-
tion, set .

If , i.e., flow sends no more than the link’s fair
share rate, all of its traffic will be forwarded. If ,
then a fraction of its bits will be dropped,
so it will have an output rate of exactly . This suggests a
very simple probabilistic forwarding algorithm that achieves fair
allocation of bandwidth: each incoming bit of flowis dropped
with the probability

(2)
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Fig. 2. Architecture of the output port of an edge router and a core router,
respectively.

When these dropping probabilities are used, the arrival rate
of flow at the next hop is given by .

B. Packet Algorithm

The above algorithm is defined for a bufferless fluid system
in which the arrival rates are known exactly. Our task now is
to extend this approach to the situation in real routers where
transmission is packetized, there is substantial buffering, and the
arrival rates are not known. Fig. 2 presents the architecture of a
CSFQ node.

We still employ a drop-on-input scheme, except that now we
drop packets rather than bits. Because the rate estimation (de-
scribed below) incorporates the packet size, the dropping prob-
ability is independent of the packet size and depends only, as
above, on the rate and fair share rate .

We are left with two remaining challenges: estimating the
rates and the fair share . We address these two issues
in turn in Sections II-B1 and B2, and then discuss the rewriting
of the labels. Pseudocode reflecting this algorithm is described
in Figs. 3 and 4. We should note, however, that the main point
of our paper is the overall architecture and that the detailed al-
gorithm presented below represents only an initial prototype.
While it serves adequately as a proof-of-concept of our archi-
tecture, we fully expect that the details of this design will con-
tinue to evolve.

1) Computation of Flow Arrival Rate:Recall that in our ar-
chitecture, the rates are estimated at the edge routers and
then these rates are inserted into the packet labels. At each edge
router, we use exponential averaging to estimate the rate of a
flow. Let and be the arrival time and length of theth
packet of flow . The estimated rate of flow, , is updated
every time a new packet is received

(3)

where and is a constant. We discuss the
rationale for using the form for the exponential weight
in Section II-G.

2) Link Fair Rate Estimation:Next, we present an estima-
tion algorithm for . To give intuition, consider again the
fluid model in Section II-A where the arrival rates are known
exactly, and assume the system performs the probabilistic drop-
ping algorithm according to (2). Then, the rate with which the
algorithm accepts packets is a function of the current estimate

Fig. 3. Pseudocode of CSFQ.

of the fair share rate, which we denote by . Letting
denote this acceptance rate, we have

(4)

Note that is a continuous nondecreasing concave and
piecewise-linear function of . If the link is congested

, we choose to be the unique solution to
. If the link is not congested , we take

to be the largest rate among the flows that traverse the link,
i.e., . From (4), note that if we knew
the arrival rates , we could then compute directly. To
avoid having to keep such per-flow state, we seek instead to
implicitly compute by using only aggregate measurements
of and .

We use the following heuristic algorithm with three aggregate
state variables: , the estimate for the fair share rate;, the
estimated aggregate arrival rate;, the estimated rate of the
accepted traffic. The last two variables are updated upon the
arrival of each packet. For, we use exponential averaging with
a parameter where is the interarrival time between
the current and the previous packet

(5)

where is the value of before the updating. We use an
analogous formula to update.

The updating rule for depends on whether the link is con-
gested or not. To filter out the estimation inaccuracies due to
exponential smoothing, we use a window of size. A link is
assumed to becongestedif at all times during an interval
of length . Conversely, a link is assumed to beuncongestedif

at all times during an interval of length . The value
is updated only at the end of an interval in which the link is ei-
ther congested or uncongested according to these definitions. If
the link is congested, thenis updated based on . We
approximate by a linear function that intersects the origin
and has slope . This yields

(6)



36 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Fig. 4. Pseudocode of CSFQ (fair rate estimation).

If the link is not congested, is set to the largest rate of
any active flow (i.e., the largest label seen) during the last
time units. The value of is then used to compute dropping
probabilities, according to (2). For completeness, we give the
pseudocode of the CSFQ algorithm in Fig. 4.

We now describe two minor amendments to this algorithm re-
lated to how the buffers are managed. The goal of estimating the
fair share is to match the accepted rate to the link bandwidth.
Due to estimation inaccuracies, load fluctuations between’s
updates, and the probabilistic nature of our algorithm, the ac-
cepted rate may occasionally exceed the link capacity. While
ideally the router’s buffers can accommodate the extra packets,
occasionally the router may be forced to drop the incoming
packet due to lack of buffer space. Since drop-tail behavior will
defeat the purpose of our algorithm, and may exhibit undesirable
properties in the case of adaptive flows such as TCP [12], it is
important to limit its effect. To do so, we use a simple heuristic:
every time the buffer overflows, is decreased by a small fixed
percentage (taken to be 1% in our simulations). Moreover, to

avoid overcorrection, we make sure that during consecutive up-
dates does not decrease by more than 25%. While the choice
of these percentage values is somewhat arbitrary, as shown in
Section III, they offer consistent performance over a wide range
of simulation scenarios.

In addition, since there is little reason to consider a link con-
gested if the buffer is almost empty, we apply the following rule.
If the link becomes uncongested by the test in Fig. 4, then we
assume that it remains uncongested as long as the buffer occu-
pancy is less than some predefined threshold. In this paper, we
use a threshold that is half of the total buffer capacity.

3) Label Rewriting: Our rate estimation algorithm in Sec-
tion II-B1 allows us to label packets with their flow’s rate as
they enter the island. Our packet dropping algorithm described
in Section II-B2 allows us to limit flows to their fair share of
the bandwidth. After a flow experiences significant losses at a
congested link inside the island, however, the packet labels are
no longer an accurate estimate of its rate. We cannot rerun our
estimation algorithm, because it involves per-flow state. Fortu-
nately, as noted in Section II-A, the outgoing rate is merely the
minimumbetween the incoming rate and the fair rate. There-
fore, we rewrite the the packet labelas

(7)

By doing so, the outgoing flow rates will be properly repre-
sented by the packet labels.

C. Weighted CSFQ

The CSFQ algorithm can be extended to support flows
with different weights. Let denote the weight of flow.
Returning to our fluid model, the meaning of these weights is
that we say afair allocation is one in which all bottlenecked
flows have the same value for . Then, if ,
the normalized fair rate is the unique value such that

. The expression for the dropping
probabilities in the weighted case is .
The only other major change is that the label is now ,
instead simply . Finally, without going into detail, we note
that the weighted packet-by-packet version is virtually identical
to the corresponding version of the plain CSFQ algorithm.

It is important to note that with weighted CSFQ, we can only
approximate islands in which each flow has the same weight at
all routers in an island. That is, our algorithm cannot accommo-
date situations where the relative weights of flows differ from
router to router within an island. However, even with this limita-
tion, weighted CSFQ may prove a valuable mechanism in imple-
menting differential services, such as the one proposed in [36].

D. Performance Bounds

We now present the main theoretical result of the paper. For
generality, this result is given for weighted CSFQ. The proof is
given in the technical report [34].

Our algorithm is built around several estimation procedures
and, thus, is inherently inexact. One natural concern is whether
a flow can purposely “exploit” these inaccuracies to get more
than its fair share of bandwidth. We cannot answer this ques-
tion in full generality, but we can analyze a simplified situation
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where the normalized fair share rateis held fixed and there is
no buffering, so the drop probabilities are precisely given by (2).
In addition, we assume that when a packet arrives, a fraction of
that packet equal to the flow’s forwarding probability is trans-
mitted. Note that during any time interval a flow with
weight is entitled to receive at most service time;
we call any amount above this theexcess service. We can bound
this excess service, and the bounds are independent of both the
arrival process and the length of the time interval during which
the flow is active. The bound does depend crucially on the max-
imal rate at which a flows packets can arrive at a router (lim-
ited, for example, by the speed of the flow’s access link); the
smaller this rate , the tighter the bound.

Theorem 1: Consider a link with a constant normalized fair
rate and a flow with weight . Then, the excess service re-
ceived by a flow with weight that sends at a rate no larger
than is bounded above by

(8)

where and represents the maximum length of a
packet.

By bounding the excess service, we have shown that in this
idealized setting the asymptotic throughput cannot exceed the
fair share rate. Thus, flows can only exploit the system over
short time scales; they are limited to their fair share over long
time scales.

E. Implementation Complexity

At core routers, both the time and space complexity of our
algorithm are constant with respect to the number of competing
flows and, thus, we think CSFQ could be implemented in very
high-speed core routers. At each edge router, CSFQ needs to
maintain per-flow state. Upon each arrival of each packet, the
edge router needs to: 1) classify the packet to a flow; 2) update
the fair share rate estimation for the corresponding outgoing
link; 3) update the flow rate estimation; and 4) label the packet.
All these operations with the exception of packet classification
can be efficiently implemented today.

Efficient and general-purpose packet classification algo-
rithms are still under active research [15], [19], [31], [32].
We expect to leverage these results. We also note that packet
classification at ingress nodes is needed for a number of
other purposes, such as in the context of Multiprotocol Label
Switching (MPLS) [4] or for accounting purposes; therefore,
the classification required for CSFQ may not be an extra cost. In
addition, if the edge routers are typically not on the high-speed
backbone links, then there is no problem as classification at
moderate speeds is quite practical.

F. Architectural Considerations

We have used the term “flow” without defining what we
mean. This was intentional, as the CSFQ approach can be
applied to varying degrees of flow granularity; that is, what
constitutes a flow is arbitrary as long as all packets in the flow
follow the same path within the core. In this paper, for conve-
nience, a flow is implicitly defined as an IP source–destination
address pair, but one could easily assign fair rates to many other

granularities such as source–destination–ports. Moreover, the
unit of “flow” can vary from island to island as long as the rates
are re-estimated when entering a new island.

Similarly, we have not been precise about the size of these
CSFQ islands. In one extreme, we could take each router as an
island and estimate rates at every router; this would allow us to
avoid the use of complicated per-flow scheduling and dropping
algorithms, but would require per-flow classification. Another
possibility is that ISPs could extend their island of CSFQ routers
to the very edge of their network, having their edge routers at
the points where customer’s packets enter the ISP’s network.
Building on the previous scenario, multiple ISPs could combine
their islands so that classification and estimation did not have to
be performed at ISP–ISP boundaries. The key obstacle here is
one of trust between ISPs.

G. Miscellaneous Details

Having presented the basic CSFQ algorithm, we now return
to discuss a few aspects in more detail.

We have used exponential averaging to estimate the arrival
rate in (3). However, instead of using a constant exponential
weight, we used where is the interpacket arrival time
and is a constant. Our motivation was that more
closely reflects a fluid averaging process which is independent
of the packetizing structure. More specifically, it can be
shown that if a constant weight is used, the estimated rate
will be sensitive to the packet length distribution and there are
pathological cases where the estimated rate differs from the
real arrival rate by a factor; this would allow flows to exploit
the estimation process and obtain more than their fair share.
In contrast, by using a parameter of , the estimated rate
will asymptotically converge to the real rate, and this allows
us to bound the excess service that can be achieved (as in
Theorem 1). We used a similar averaging process in (5) to
estimate the total arrival rate.

The choice of in the above expression presents
us with several tradeoffs. First, while a smaller increases
the system responsiveness to rapid rate fluctuations, a larger
better filters the noise and avoids potential system instability.
Second, should be large enough such that the estimated rate,
calculated at the edge of the network, remains reasonably accu-
rate after a packet traverses multiple links. This is because the
delay jitter changes the packets’ interarrival pattern, which may
result in an increased discrepancy between the estimated rate
(received in the packets’ labels) and the real rate. To counteract
this effect, as a rule of thumb, should be one order of mag-
nitude larger that the delay jitter experienced by a flow over a
time interval of the same size . Third, should be no larger
than the average duration of a flow. Based on these constraints,
an appropriate value for would be between 100 and 500 ms.

A second issue relates to the requirement of CSFQ for a label
to be carried in each packet. One possibility is to use the Type Of
Service byte in the IP header. For example, by using a floating-
point representation with 4 bits for mantissa and 4 bits for ex-
ponent, we can represent any rate between 1 kb/s and 65 Mb/s
with an accuracy of 6.25%. Another possibility is to define an
IP option in the case of IPv4, or a hop-by-hop extension header
in the case of IPv6.
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III. SIMULATIONS

In this section, we evaluate our algorithm by simulation.
To provide some context, we compare CSFQ’s performance
to three additional algorithms. Two of these, FIFO and RED,
represent baseline cases where routers do not attempt to achieve
fair bandwidth allocations. The other two algorithms, FRED
and DRR, represent different approaches to achieving fairness.

• FIFO: Packets are served in a first-in-first-out order, and
the buffers are managed using a simple drop-tail strategy;
i.e., incoming packets are dropped when the buffer is full.

• RED: Packets are served in a first-in-first-out order, but
the buffer management is significantly more sophisticated
than drop-tail. RED [12] starts to probabilistically drop
packets long before the buffer is full, providing early con-
gestion indication to flows which can then gracefully back
off before the buffer overflows. RED maintains two buffer
thresholds. When the exponentially averaged buffer oc-
cupancy is smaller than the first threshold, no packet is
dropped, and when the exponentially averaged buffer oc-
cupancy is larger than the second threshold, all packets are
dropped. When the exponentially averaged buffer occu-
pancy is between the two thresholds, the packet dropping
probability increases linearly with buffer occupancy.

• FRED: This algorithm extends RED to provide some de-
gree of fair bandwidth allocation [20]. To achieve fairness,
FRED maintains state for all flows that have at least one
packet in the buffer. Unlike RED, where the dropping de-
cision is based only on the buffer state, in FRED drop-
ping decisions are based on this flow state. Specifically,
FRED preferentially drops a packet of a flow that has ei-
ther 1) had many packets dropped in the past, or 2) a queue
larger than the average queue size. FRED has two vari-
ants (which we will call FRED-1 and FRED-2). The main
difference between the two is that FRED-2 guarantees to
each flow a minimum number of buffers. As a general
rule, FRED-2 performs better than FRED-1 only when the
number of flows is large. In the following data, when we
do not distinguish between the two, we are quoting the re-
sults from the version of FRED which performed the best.

• DRR: This algorithm represents an efficient implemen-
tation of the well-known weighted fair queueing (WFQ)
discipline. The buffer management scheme assumes that
when the buffer is full, the packet from the longest queue is
dropped. DRR is the only one of the four to use a sophisti-
cated per-flow queueing algorithm and, thus, achieves the
highest degree of fairness.

These four algorithms represent four different levels of
complexity. DRR and FRED have to classify incoming flows,
whereas FIFO and RED do not. DRR in addition has to
implement its packet scheduling algorithm (whereas the rest
all use first-in-first-out scheduling). CSFQ edge routers have
complexity comparable to FRED, and CSFQ core routers have
complexity comparable to RED.

We have examined the behavior of CSFQ under a variety of
conditions. We use an assortment of traffic sources [mainly, con-
stant bit rate (CBR) and TCP, but also someON–OFF sources]
and topologies. All simulations were performed in ns-2 [24],

which provide accurate packet-level implementation for var-
ious network protocols, such as TCP and Receiver-driven Lay-
ered Multicast (RLM) [22], and various buffer management and
scheduling algorithms, such as RED and DRR.

Unless otherwise specified, we use the following parameters
for the simulations in this section. Each output link has a latency
of 1 ms, a buffer of 64 kB, and a buffer threshold for CSFQ
is 16 kB. In the RED and FRED cases, the first threshold is
set to 16 kB, while the second one is set to 32 kB. The aver-
aging constant used in estimating the flow rate is ms,
while the averaging constant used in estimation the fair rateis

ms. Finally, in all topologies we use, the first router
(gateway) on the path of a flow is always assumed to be the
edge router; all other routers are assumed without exception to
be core routers.

We simulated the other four algorithms to give us benchmarks
against which to assess these results. We use DRR as our model
of fairness and use the baseline cases, FIFO and RED, as repre-
senting the (unfair) status quo. The goal of these experiments is
determine where CSFQ sits between these two extremes. FRED
is a more ambiguous benchmark, being somewhat more com-
plex than CSFQ but not as complex as DRR.

In general, we find that CSFQ achieves a reasonable degree
of fairness, significantly closer to DRR than to FIFO or RED.
CSFQ’s performance is typically comparable to FRED’s,
although there are a few situations where CSFQ significantly
outperforms FRED. There are a large number of experiments
and each experiment involves rather complex dynamics. Due
to space limitations, in the following sections, we will merely
highlight a few important points and omit detailed explanations
of the dynamics.

A. Single Congested Link

We first consider a single congested link shared byflows
[see Fig. 5(a)]. We performed three related experiments.

In the first experiment, we have 32 CBR flows, indexed from
0, where flow sends times more than its fair share of
0.3125 Mb/s. Thus flow 0 sends 0.3125 Mb/s, flow 1 sends
0.625 Mb/s, and so on. Fig. 5(a) shows the average throughput
of each flow over a 10-s interval; FIFO, RED, and FRED-1 fail
to ensure fairness, with each flow getting a share proportional to
its incoming rate, while DRR is extremely effective in achieving
a fair bandwidth distribution. CSFQ and FRED-2 achieve a less
precise degree of fairness; for CSFQ, the throughputs of all
flows are between 11% and 12% of the ideal value.

In the second experiment, we consider the impact of an
ill-behaved CBR flow on a set of TCP flows. More precisely,
the traffic of flow 0 comes from a CBR source that sends at
10 Mb/s, while all the other flows (from 1 to 31) are TCP flows.
Fig. 6(a) shows the throughput of each flow averaged over a
10-s interval. The only two algorithms that can most effectively
contain the CBR flow are DRR and CSFQ. Under FRED, the
CBR flow gets almost 1.8 Mb/s—close to six times more than
its fair share—while the CBR only gets 0.396 and 0.355 Mb/s
under DRR and CSFQ, respectively. As expected, FIFO and
RED perform poorly, with the CBR flow getting over 8 Mb/s
in both cases.
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(a)

(b)

Fig. 5. (a) 10-Mb/s link shared byN flows. (b) Average throughput over 10 s
whenN = 32 and all flows are CBR flows. The arrival rate for flowi is (i+1)
times larger than its fair share. The flows are indexed from 0.

In the final experiment, we measure how well the algorithms
can protect a single TCP flow against multiple ill-behaved
flows. We perform 31 simulations, each for a different value
of , . In each simulation, we take one TCP
flow and CBR flows; each CBR sends at twice its fair share
rate of Mb/s. Fig. 6(b) plots the ratio between the
average throughput of the TCP flow over 10 s and the total
bandwidth it should receive as a function of the total number of
flows in the system . There are three points of interest.
First, DRR performs very well when there are less than 22
flows, but its performance decreases afterwards, because then
the TCP flow’s buffer share is less than three packets, which
is known to significantly affect its throughput. Second, CSFQ
performs better than DRR when the number of flows is large.
This is because CSFQ is able to cope better with the TCP
burstiness by allowing the TCP flow to have more than two
packets buffered for short time intervals. Upon receiving a burst
of packets, it takes a while for the estimated rate of the flow to
catch up with the actual rate. During this time, the packets of
the flow might be admitted in the queue even if the actual rate
of the flow is higher than the fair rate. Furthermore, note that
unlike DRR, once a packet is enqueued, it cannot be dropped
later. Finally, across the entire range, CSFQ provides similar or
better performance as compared with FRED.

B. Multiple Congested Links

We now analyze how the throughput of a well-behaved flow is
affected when the flow traverses more than one congested link.
We performed two experiments based on the topology shown

(a)

(b)

Fig. 6. (a) Throughputs of one CBR flow (0 indexed) sending at 10 Mb/s, and
of 31 TCP flows sharing a 10-Mb/s link. (b) Normalized bandwidth of a TCP
flow that competes withN CBR flows sending at twice their allocated rates, as
a function ofN .

Fig. 7. Topology for analyzing the effects of multiple congested links on the
throughput of a flow. Each link has ten cross flows (all CBR flows). All links
have 10-Mb/s capacities. The sending rates of all CBR flows, excepting CBR-0,
are 2 Mb/s, which leads to all links between routers being congested.

in Fig. 7. All CBR flows, except CBR-0, send at 2 Mb/s. Since
each link in the system has 10-Mb/s capacity, this will result in
all links between routers being congested.

In the first experiment, we have a CBR flow (denoted CBR-0)
sending at its fair share rate of 0.909 Mb/s. Fig. 8(a) shows the
fraction of CBR-0’s traffic that is forwarded, versus the number
of congested links. CSFQ and FRED perform reasonably well,
although not quite as well as DRR.
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(a)

(b)

Fig. 8. (a) Normalized throughput of CBR-0 as a function of the number of
congested links. (b) Same plot when CBR-0 is replaced by a TCP flow.

In the second experiment, we replace CBR-0 with a TCP
flow. Similarly, Fig. 8(b) plots the normalized TCP throughput
against the number of congested links. Again, DRR and CSFQ
prove to be effective. In comparison, FRED performs signifi-
cantly worse though still much better than RED and FIFO. The
reason is that while DRR and CSFQ try to allocate bandwidth
fairly among competing flows during congestion, FRED tries to
allocate the buffer fairly. Flows with different end-to-end con-
gestion-control algorithms will achieve different throughputs
even if routers allocate the buffer fairly. In the case of Fig. 8(a),
all sources are CBR, i.e., none are adopting any end-to-end con-
gestion-control algorithms, and FRED provides performance
similar to CSFQ and DRR. In the case of Fig. 8(b), a TCP flow is
competing with multiple CBR flows. Since the TCP flow slows
down during congestion while CBQ does not, it achieves signif-
icantly less throughput than a competing CBR flow.

C. Coexistence of Different Adaptation Schemes

In this experiment, we investigate the extent to which CSFQ
can deal with flows that employ different adaptation schemes.
RLM [22] is an adaptive scheme in which the source sends the

information encoded into a number of layers (each to its own
multicast group) and the receiver joins or leaves the groups as-
sociated with the layers based on how many packet drops it is
experiencing. We consider a 4-Mb/s link traversed by one TCP
and three RLM flows. Each source uses a seven-layer encoding,
where layer sends kb/s; each layer is modeled by a CBR
traffic source. The fair share of each flow is 1 Mb/s. In the RLM
case, this will correspond to each receiver subscribing to the first
five layers.3

The average receiving rates averaged over a 1-s interval for
each algorithm are plotted in Fig. 9. We have conducted two sep-
arate simulations of CSFQ.4 In the first one, we have used the
same averaging constant as in the rest of this paper: ms
and ms. Here, one RLM flow does not get its fair
share (it is one layer below where it should be). We think this
is due to the bursty behavior of the TCP that is not detected by
CSFQ soon enough, allowing the TCP to opportunistically grab
more bandwidth than its share at the expense of less aggressive
RLM flows. To test this hypothesis, we have changed the aver-
aging time intervals to ms and ms, respec-
tively, which result in the TCP flows bandwidth being restricted
much earlier. As shown in Fig. 9(d), with these parameters all
flows receive roughly 1 Mb/s.

An interesting point to notice is that FRED does not provide
fair bandwidth allocation in this scenario. Again, as discussed
in Section III-B, this is due to the fact that RLM and TCP use
different end-to-end congestion-control algorithms.

Finally, we note that we have performed two other similar
experiments (not included here due to space limitations): one in
which the TCP flow is replaced by a CBR that sends at 4 Mb/s,
and another in which we have both the TCP and the CBR flows
together along with the three RLM flows. The overall results
were similar, except that in both experimentsall flows received
their shares under CSFQ when using the original settings for
the averaging intervals, i.e., ms and ms.
In addition, in some of these other experiments where the RLM
flows are started before the TCP, the RLM flows get more than
their share of bandwidth when RED and FIFO are used.

D. Different Traffic Models

So far, we have only considered CBR and TCP traffic sources.
We now look at two additional source models with greater de-
grees of burstiness. We again consider a single 10-Mb/s con-
gested link. In the first experiment, this link is shared by one
ON–OFF source and 19 CBR flows that send at exactly their
share, 0.5 Mb/s. TheON andOFF periods of theON–OFF source
are both drawn from exponential distributions with means of
200 ms and 19 200 ms, respectively. During theON period, the
ON–OFFsource sends at 10 Mb/s. Note that theON-time is on the
same order as the averaging interval ms for CSFQ’s
rate estimation algorithm, so this experiment is designed to test
to what extent CSFQ can react over short time scales.

The ON–OFF source sent 4899 packets over the course of
the experiment. Table I shows the number of packets from the

3More precisely, we have 2 kb/s= 0.992 Mb/s.
4See also [22] for additional simulations of RLM and TCP.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Throughput of three RLM flows and one TCP flow along a 4-Mb/s link. (a) DRR. (b) FRED. (c) CSFQ (K = 100 ms; K = 200ms). (d) CSFQ
K = 20 ms; K = 40ms. (e) RED. (f) FIFO.

ON–OFF source that were dropped at the congested link. The
DRR results show what happens when theON–OFF source is
restricted to its fair share at all times. FRED and CSFQ also are
able to achieve a high degree of fairness.

Our next experiment simulates Web traffic. There are 60 TCP
transfers whose interarrival times are exponentially distributed
with the mean of 0.1 ms, and the length of each transfer is drawn
from a Pareto distribution with a mean of 40 packets (1 packet
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TABLE I
STATISTICS FOR AN ON–OFF FLOW WITH 19 COMPETING

CBR FLOWS (ALL NUMBERS ARE IN PACKETS)

TABLE II
MEAN TRANSFERTIMES (IN MILLISECONDS) AND THE CORRESPONDING

STANDARD DEVIATIONS FOR 60 SHORT TCP FLOWS IN THE PRESENCE OF A

CBR FLOW THAT SENDS AT THE LINK CAPACITY, I.E., 10 MB/S

TABLE III
MEAN THROUGHPUTS(IN PACKETS) AND STANDARD DEVIATIONS FOR19 TCP
FLOWS IN THE PRESENCE OF ACBR FLOW ALONG A LINK WITH PROPAGATION

DELAY OF 100MS. THE CBR SENDS AT THELINK CAPACITY OF 10 MB/S

1 kB) and a shaping parameter of 1.06. These values are con-
sistent with those presented in [8]. In addition, there is a single
10-Mb/s CBR flow.

Table II presents the mean transfer time and the corre-
sponding standard deviations. Here, CSFQ and FRED do less
well than DRR, but one order of magnitude better than FIFO
and RED.

E. Large Latency

All of our experiments, so far, have had minimal latencies. In
this experiment, we again consider a single 10-Mb/s congested
link, but now the flows have propagation delays of 100 ms in
getting to the congested link. The load is comprised of one
CBR that sends at the link capacity and 19 TCP flows. Table III
shows the mean number of packets forwarded for each TCP flow
during a 100-s time interval. CSFQ and FRED both perform rea-
sonably well.

F. Packet Relabeling

Recall that when the dropping probability of a packet is
nonzero, we relabel it with a new label where
so that the label of the packet will reflect the new rate of the
flow. To test how well this works in practice, we consider the

Fig. 10. Simulation scenario for the packet relabeling experiment. Each link
has 10-Mb/s capacity and a propagation delay of 1 ms.

TABLE IV
THROUGHPUTSRESULTING FROM CSFQ AVERAGED OVER 10 S

FOR THETHREE FLOWS IN FIG. 10 ALONG LINK 2

topology in Fig. 10, where each link is 10 Mb/s. Note that as
long as all three flows attempt to use their full fair share, the fair
shares of flows 1 and 2 are less on link 2 (3.33 Mb/s) than on
link 1 (5 Mb/s), so there will be dropping on both links. This
will test the relabeling function to make sure that the incoming
rates are accurately reflected on the second link. We perform
two experiments (only looking at CSFQ’s performance). In the
first, there are three CBR flows sending data at 10 Mb/s each.
Table IV shows the average throughputs over 10 s of the three
CBR flows. As expected, these rates are closed to 3.33 Mb/s. In
the second experiment, we replace the three CBR flows by three
TCP flows. Again, despite the TCP burstiness which may neg-
atively affect the rate estimation and relabeling accuracy, each
TCP gets its fair share.

G. Discussion of Simulation Results

We have tested CSFQ under a wide range of conditions,
conditions purposely designed to stress its ability to achieve
fair allocations. These tests, and the others we have run but
cannot show here because of space limitations, suggest that
CSFQ achieves a reasonable approximation of fair bandwidth
allocations in most conditions. Certainly, CSFQ is far superior
in this regard to the status quo (FIFO or RED). Moreover,
in all situations, CSFQ is roughly comparable with FRED,
and in some cases it achieves significantly fairer allocations.
Recall that FRED requires per-packet flow classification while
CSFQ does not, so we are achieving these levels of fairness
in a more scalable manner. However, there is clearly room
for improvement in CSFQ. We think our buffer management
algorithm may not be well tuned to the vagaries of TCP buffer
usage, and so are currently looking at adopting an approach
closer in spirit to RED for buffer management, while retaining
the use of the labels to achieve fairness.

IV. WHY ARE FAIR ALLOCATIONS IMPORTANT?

In Section I, we stated that one of the underlying assumptions
of this work is that fairly allocating bandwidth was beneficial,
and perhaps even crucial, for congestion control. In this section,
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we motivate the role of fair allocations in congestion control by
discussing the problem of unfriendly flows, and then end this
section with a discussion of the role of punishment. In what fol-
lows, we borrow heavily from [3], [9], and [11], and have ben-
efited greatly from conversations with S. Deering and S. Floyd.
We should note that the matters addressed in this section are
rather controversial and this overview unavoidably reflects our
prejudices. This section, however, is merely intended to provide
some perspective on our motivation for this work, and any bi-
ases in this overview should not undercut the technical aspects
of the CSFQ proposal that are the main focus of Sections II and
III.

A. Unfriendly Flow Problem

Data networks such as the Internet, because of their reliance
on statistical multiplexing, must provide some mechanism to
control congestion. The current Internet, which has mostly
FIFO queueing and drop-tail mechanisms in its routers, re-
lies on end-to-end congestion control in which hosts curtail
their transmission rates when they detect that the network is
congested. The most widely utilized form of end-to-end con-
gestion control is that embodied in TCP [16], which has been
tremendously successful in preventing congestion collapse.

The efficacy of this approach depends on two foundational
assumptions: 1) all (or almost all) flows arecooperativein that
they implement congestion-control algorithms; and 2) these
algorithms arehomogeneous—or roughly equivalent—in that
they produce similar bandwidth allocations if used in similar
circumstances. In particular, assumption 2 requires, in the
language of [11], that all flows are TCP-friendly.5

The assumption of universal cooperation can be violated in
three general ways. First, some applications areunresponsivein
that they do not implement any congestion-control algorithms at
all. Most of the early multimedia and multicast applications, like
vat, nv, vic, wb, and RealAudio fall into this category. Second,
some applications use congestion-control algorithms that, while
responsive, are not TCP-friendly. As we saw in Section III-C,
RLM is such an algorithm. Third, some users will cheat and use
a non-TCP congestion-control algorithm to get more bandwidth.
An example of this would be using a modified form of TCP
with, for instance, larger initial window and window opening
constants.

Each of these forms of noncooperation can have a significant
negative impact on the performance obtained by cooperating
flows. At present, we do not yet know how widespread non-
cooperation will be and, thus, cannot assess the level of harm
it will cause. However, in lieu of more solid evidence that non-
cooperation will not be a problem, it seems unsound to base
the Internet’s congestion-control paradigm on the assumption of
universal cooperation. Therefore, we started this paper with the
fundamental assumption that one needs to deal with the problem
of unfriendly flows.

5Actually, the term TCP-friendly in [11] means that “their arrival rate does not
exceed that of any TCP connection in the same circumstances.” Here, we use it
to mean that the arrival rates are roughly comparable. We blur this distinction to
avoid an overly unwieldy set of terms. However, we think the distinction may
be rendered moot since it is unlikely that congestion-control algorithms that are
not TCP-equivalent but are TCP-friendly—i.e., they get much less than their fair
share—will be widely deployed.

B. Punishment

In Section IV-A, we argued that the allocation approach gave
drop-intolerant flows an incentive to adopt end-to-end conges-
tion control; now we ask: what about drop-tolerant flows?

We consider, for illustration,fire-hoseapplications that have
complete drop tolerance: they send at some high rateand get
as much value out of the fraction of arriving packets, call it,
as if they originally just sent a stream of rate. That is, these
fire-hose applications care only about the ultimate throughput
rate, not the dropping rate.6 In a completely static world where
bandwidth shares were constant, such fire-hose protocols would
not provide any advantage over just sending at the fair share
rate. However, if the fair shares along the path were fluctuating
significantly, then fire-hose protocols might better utilize in-
stantaneous fluctuations in the available bandwidth. Moreover,
fire-hose protocols relieve applications of the burden of trying to
adapt to their fair share. Thus, even when restrained to their fair
share, there is some incentive for flows to send at significantly
more than the current fair share.7 In addition, such fire-hoses
decrease the bandwidth available to other flows because packets
destined to be dropped at a congested link represent an unneces-
sary load on upstream links. With universal deployment of the
allocation approach, every other flow would still obtain their fair
share at each link, but that share may be smaller (by no more
than a factor of , where is the total number of flows
and is the number of fire-hoses) than it would have been if
the fire-hose had been using responsive end-to-end congestion
control. It is impossible to know now whether this will become
a serious problem. Certainly, though, the problem of fire-hoses
in a world with fair bandwidth allocation is far less dire than the
problem of unfriendly flows in our current FIFO Internet, since
the incentive to be unfriendly and the harmful impact on others
are considerably greater in the latter case. As a consequence, our
paper emphasizes the problem of unfriendly flows in our current
FIFO Internet, and is less concerned with fire-hose flows in an
Internet with fair bandwidth allocation.

Nonetheless, the fire-hose problem should not be ignored;
flows should be given an incentive to adopt responsive
end-to-end congestion. A possible method is to explicitly
punish unresponsive flows by denying them their fair share.8

One way to implement this method in CSFQ is to change the
computation of drop probability [see (2)] to

(9)

6Approximations to complete drop-tolerance can be reached in video trans-
port using certain coding schemes or file transport using selective acknowledg-
ment.

7These fire-hose coding and file transfer methods also have some overhead
associated with them, and it is not clear whether, in practice, the overheads are
greater or less than the advantages gained. However, one can certainly not claim,
as we did above for drop-intolerant applications, that the allocation approach
gives drop-tolerant applications a strong incentive to use responsive end-to-end
congestion-control algorithms.

8Another possible method, used in ATM Available Bit Rate (ABR), is to
have network provide explicit per-flow feedback to ingress nodes and have edge
nodes police the traffic on a per-flow basis. We assume this is too heavyweight
a mechanism for the Internet.
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As a result, a flow with an arrival rate times larger than
the fair rate will receive an allocation of only , instead of

as in the original CSFQ. Thus, the higher the bandwidth of a
flow is, the less bandwidth it receives. Another important point
to note here is that, unlike other proposals that aim to punish
high-bandwidth flows [11], our solution does not require core
routers to maintain any state.

V. RELATED WORK

There are, in the literature, two general approaches that ad-
dress the problem of unfriendly flows: 1) the allocation ap-
proach, and 2) the identification approach. In the rest of this
section, we discuss these two approaches in more detail.

A. Allocation Approach

In the allocation approach, a router isolates flows from each
other by allocating the bandwidth fairly between them. As a
result, unfriendly flows can only have a very limited impact on
other flows. It is important to note that the allocation approach
does not demand that all flows adopt some universally standard
end-to-end congestion-control algorithm; flows can choose to
respond to the congestion in whatever manner that best suits
them without harming other flows.

1) Stateful Solutions:Traditionally, fair allocations were
achieved by usingper-flowmechanisms such as Fair Queueing
[9], [26] and its many variants [2], [14], [29], or per-flow
dropping mechanisms such as FRED [20]. However, these
mechanisms require each router to maintain state and perform
operations on a per-flow basis. For each packet that arrives at
the router, the router needs to classify the packet into a flow,
update per-flow state variables, and perform certain operations
based on the per-flow state. The operations can be as simple
as deciding whether to drop or queue the packet (e.g., FRED),
or as complex as manipulation of priority queues (e.g., Fair
Queueing). While a number of techniques have been proposed
to reduce the complexity of the per-packet operations [1],
[29], [33], and commercial implementations are available in
some intermediate class routers, it is still unclear whether these
algorithms can be cost-effectively implemented in high-speed
backbone routers because all these algorithms still require
packet classification and per-flow state management.

While in this paper we have assumed that a packet is classi-
fied based on its source and destination IP addresses, in general
a packet can be classified on any combination ofpartially spec-
ified fields in the packet header. Besides source and destination
IP addresses, these fields usually include the port numbers and
the protocol type.9 Unfortunately, the general problem of classi-
fication is inherently difficult. Current solutions [15], [19], [31],
[32] work well only for a relatively small number of classes, i.e.,
no more than several thousand. In particular, Gupta and McK-
eown [15] have shown that the packet classification problem is
similar to the point location problem in the domain of compu-
tation geometry. Given a point in an-dimensional space, this

9For instance, one could use a general packet classifier in conjunction with
the weighted version of CSFQ to allocate a higher bandwidth to the Web traffic,
or to control the allocation of the entire traffic between two given subnetworks.

problem asks to find the enclosing region among a set of re-
gions. In the case of nonoverlapping regions, the best bounds
for regions in an -dimensional space are in time
and in space, or, alternatively, in time and

in space. This suggests a clear tradeoff between space and
time complexities. It also suggests that it is very hard to simul-
taneously achieve both speed and efficient memory usage.

2) Stateless Solutions:Recently, several solutions using a
CSFQ-like architecture were proposed to address the scalability
limitations of traditional fair queueing solutions [5], [7], [35].
Like CSFQ, these solutions differentiate between edge and core
routers. Edge routers maintain per-flow state and insert state
in the packet headers, while core routers maintain no per-flow
state. However, unlike CSFQ where the packet labels represent
the estimated rate of their flow, in these schemes the packets of
the same flow are marked withdifferentlabels. In turn, each core
router computes a threshold and then drops all packets with la-
bels higher than this threshold.10 By properly assigning labels to
the packets and computing the threshold at a congested link such
that the sum of the allocated rates equals the link capacity, all
these schemes are able to accurately approximate fair queueing.
One potential advantage of these solutions over CSFQ is that
they do not require core routers to relabel packets. In addition,
Tag Unified Fair Queueing differentiates between the TCP and
UDP flows in order to avoid the TCP flows being overpenalized
due to their response to losses [7].

CHOKe is another recent proposal for approximating fair
queueing [25]. With CHOKe, an incoming packet is matched
against a random packet in the buffer. If the packets belong to
the same flow both packets are dropped, otherwise the packet
is enqueued. As a result, this simple mechanism preferentially
drops the packets of high-bandwidth flows. While CHOKe is
very simple to implement and does not require edge routers
to maintain any per-flow state, it may fail to accurately ap-
proximate fair queueing when the number of flows is large
or in the presence of very high-speed flows. For instance, the
simulations reported in [25] show that a high-speed UDP can
get several times more bandwidth than it deserves.

3) ATM ABR: The problem of estimating the fair share
rate has also been studied in the context of designing ABR
algorithms for ATM networks. While the problems are similar,
there are also several important differences. First, in ATM
ABR, the goal is to provide explicit feedback to end systems
for policing purposes so that cell losses within the network can
be prevented. In CSFQ, there is no explicit feedback and edge
policing. Packets from a flow may arrive at a much higher rate
than the flow’s fair share rate and the goal of CSFQ is to ensure,
by probabilistic dropping, that such flows do not get more
service than their fair shares. Second, since ATM already keeps
per-virtual-circuit (VC) state, additional per-VC state is usually
added to improve the accuracy and reduce the time complexity
of estimating the fair share rate [6], [10], [18]. However, there
are several algorithms that try to estimate the fair share without
keeping per-flow state [27], [30]. These algorithms rely on the
flow rates communicated by the end system. These estimates

10Tag Unified Fair Queueing is slightly different in that it drops the packet
with the highest label from the queue when the queue overflows [7].
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are assumed to remain accurate over multiple hops, due to
the accurate explicit congestion control provided by ABR. In
contrast, in CSFQ, since the number of dropped packets cannot
be neglected, the flow rates are recomputed at each router, if
needed (see Section II-B3).

B. Identification Approach

In theidentificationapproach, a router uses a lightweight de-
tection algorithm to identify ill-behaved (unfriendly) flows [11],
[21]. Once a router detects the ill-behaved flows, it uses either a
scheduling scheme such as Class-Based Queueing [13] or pref-
erential dropping to manage the bandwidth of these unfriendly
flows. This bandwidth management can range from merely re-
stricting unfriendly flows to no more than the current highest
friendly flow’s share to the extreme of severely punishing un-
friendly flows by dropping all their packets.

While these solutions can be incrementally deployed on a
router-by-router basis, they have several drawbacks when com-
pared to CSFQ. First, these solutions require routers to main-
tain state for each flow that has been classified as unfriendly.
In contrast, CSFQ does not require core routers to maintain any
per-flow state. Second, designing accurate identification tests
for unfriendly flows is inherently difficult. This is mainly be-
cause the throughput of a TCP depends on the round-trip time
(RTT), and it is very hard for a router to accurately estimate
RTT with only local information. For example, in [34] we show
using simulations that the solution presented in [11] may fail
to identify an unfriendly flow that uses up to three times more
bandwidth than a regular TCP flow. Finally, the identification
approach requires that all flows implement a similar conges-
tion-control mechanism, i.e., TCP-friendly. We believe this is
overly restrictive as it severely limits the freedom of designing
new congestion protocols that best suit application needs.

VI. SUMMARY

This paper presents an architecture for achieving reasonably
fair bandwidth allocations while not requiring per-flow state in
core routers. Edge routers estimate flow rates and insert them
into the packet labels. Core routers merely perform probabilistic
dropping on input based on these labels and an estimate of the
fair share rate, the computation of which requires only aggregate
measurements. Packet labels are rewritten by the core routers
to reflect output rates, so this approach can handle multihop
situations.

We tested CSFQ and several other algorithms on a wide
variety of conditions. We find that CSFQ achieves a significant
degree of fairness in all of these circumstances. While not
matching the fairness benchmark of DRR, it is comparable or
superior to FRED and vastly better than the baseline cases of
RED and FIFO.

The main thrust of CSFQ is to use rate estimation at the edge
routers and packet labels to carry rate estimates to core routers.
The details of our proposal, such as the exact form of buffer
management or the constants used in the averaging procedures,
are still very much the subject of active research. However, the
results of our initial experiments with a rather untuned algorithm
are quite encouraging.

One open question is the effect of large latencies. The logical
extreme of the CSFQ approach would be to do rate estimation
at the entrance to the network (at the customer/ISP boundary),
and then consider everything else the core. This introduces sig-
nificant latencies between the point of estimation and the points
of congestion; while our initial simulations with large laten-
cies did not reveal any significant problems, we do not yet un-
derstand CSFQ well enough to be confident in the viability of
this “all-core” design. However, if viable, this “all-core” design
would allow all interior routers to have only very simple for-
warding and dropping mechanisms, without any need to classify
packets into flows.

One of the initial assumptions of this paper was that the more
traditional mechanisms used to achieve fair allocations, such as
Fair Queueing or FRED, were too complex to implement cost
effectively at sufficiently high speeds. If this is the case, then
a more scalable approach like CSFQ is necessary to achieve
fair allocations. The CSFQ islands would be comprised of high-
speed backbones, and the edge routers would be at lower speeds
where classification and other per-flow operations were not a
problem. However, CSFQ may still play a role even if router
technology advances to the stage where the more traditional
mechanisms can reach sufficiently high speeds. Because the
core version of CSFQ could presumably be retrofit on a siz-
able fraction of the installed router base (since its complexity
is roughly comparable to RED and can be implemented in soft-
ware), it may be that CSFQ islands are not high-speed back-
bones but rather are comprised of legacy routers.

Finally, we should note that the CSFQ approach requires
some configuration, with edge routers distinguished from core
routers. Moreover, CSFQ must be adopted one island at a time
rather than router by router. We do not know if this presents a
serious impediment to CSFQ’s adoption.
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